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Abstract

We apply techniques of zeta functions and regularized mtsdtheory to study
the zeta determinant of a class of abstract operators witfpaot resolvent, and in
particular the relation with other spectral functions.

1. Introduction

Let & be a complex vector bundle over a clogaedimensional smooth Riemannian
manifold M, and H a symmetric non-negative elliptic pseudo differential raper of
orderr > 0 in the space of th&? sections ofs. The zeta function oH is defined by
the (absolutely and locally uniformly convergent) seriedére ther, are the positive
eigenvalues ofH)

(s H) =) A%
n=1

when Re$) > m/r, and by analytic extension elsewhere, and admits a merdriworp
extension withs = 0 as a regular point (this is equivalent to take the tracé\ Fr of
the complex powers oA [8]). In terms of the heat operator

Z(s, H) = %f tS1(Tre " — dim kerH) dt,
0

and the asymptotic expansion of the trace of the heat seapgean be used to obtain
the analytic continuation of the zeta function, and infotiora on poles and residues
[3]. Following Ray and Singer [6], the zeta regularized deieant of H is defined by

d
logdet H = —d—sg(s, H) L

but, the information contained in the heat expansion is mmugh for the zeta de-
terminant. Various authors investigated the propertiesegtilarized products and zeta
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determinants (see for example [7], [12], [1] and [5]). Apply some results in abstract
zeta function theory [9] and [11], we prove the following geal result concerning the
relationship between the zeta determinant and the Fredbeterminant (compare with
[2] for the caser < m).

Theorem 1.1. Let H be a self-adjoint non-negative elliptic pseudo déferal op-
erator of order r defined in the space of thé sections of some complex vector bundle
over a compact Riemannian manifold of dimension m. Then

1
logdet H = ———— Reg log det(l —AR(x, HI™+1)),
g det [y 71 el ( ( )

whereReg); _~, f(A) denotes the constant term in the asymptotic expansion(of for
large .

Our approach consists in showing that the spectrum of theatps of this class
is a set of complex numbers of a particular type that has baadies in [11], and
called of sequence of spectral type (see also [12] for sinaifgoroach, and the general
formulation in [5]). The main results then follow from geakproperties of this type
of sequences. We present the definition and the main prepesfi these sequences in
the next section, and we state and prove the results for thetups in the last section.
Our main reference for operator determinants is [4].

2. Sequences of spectral type

Let S= {a,}2, be a sequence of non-vanishing complex numbers, ordered<as 0
|ai] < |ag| < --- (if we need to include the number O in the discussion, it wiél b
denoted bya; = 0) with the unique point of accumulation at infinite. We imduze
some spectral functions associated to this type of seqagiacel we study their main
properties. This section in essentially based on [10] arid. [1

The positive real number (possibly infinite)

. logn
S = limsup ,
n-oo 10g|an|

is called the exponent of convergenceS)fand denoted bg(S). We are only interested

in sequences witle(S) = 59 < oco. If this is the case, then there exists a least integer
p such that the seriegﬁozlaﬁp’l converges absolutely. Ky is not an integer,p is

the greatest integer less thag) if s is an integer,p may be eithersy or 5 — 1. We
assumesy; — 1 < p < g (for ss — 1 = p if and only if the associated zeta function
converges fors = g integer, thus up to pathological cases we can tpke [s], the
integer part). We call the integqr the genus of the sequen& and we writep = g(9).

The seriey o ;a;° converges uniformly on Re( > s +¢, for all reale > 0, absolutely
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if Re(s) > s and diverges if Re) < 5. We define the zeta function associatedStby

(5.9 =) a°
n=1

when Re$) > e(S), and by analytic continuation otherwise. The Weierstreason-
ical product

00 N
I1 (1 + i)eZ‘;‘(Si((l)i/J)(zJ /a).
an

n=1

converges uniformly and absolutely in any bounded closgineof the complex plane,
and is an entire function of orde(S) (this is the first Borel theorem) which vanishes
if and only if z= —a, for somen. We call the open subset{S) = C — S of the com-
plex plane the resolvent set & We define the Gamma function associatedstby the
canonical product

1 i Z 9(s) i j/a)
= 14+ = JeXinGD/iE /an)
I'(z, 9 El( an)

For further convenience, we use the variable= —z for the Gamma function.
When necessary in order to define the meromorphic branch ddnatytic function,
the domain fora will be the open subse€ — [0, co) of the complex plane. For all
A € p(S), we define

1 ind —A oS i i
2.1 — = 1+ 2 )X NER /a0,
@ F(=29) ,E[l( T a, ) |
For each non-negative integkr we define the following functions
00 9(9—k-1 . .
(1) j+ky A
re(x, §) = k! <— + ) P

where in particular,

Lemma 2.1. For all k,

k+1

re(r, S = logl'(—x, S

_dkk+1

and

rox, 9 =r(x, 9 = —;—/\ logT(—2, S).
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Lemma 2.2. If k = g=g(S), then

rg(h, S = —g! {(@+1,S—2)=—g! Y (&, — 1) 9"
n=1

This is a uniformly convergent series and we can take the fomin — oo that isO.
This implies that (A, S) can not have a term liké—1)™ and consequentliogI'(—2, S)
can not have a term liké—A)™%, with m > g.

We use the notatiol, , = {z€ C | |argz—a)| <6/2}, witha>§ >0, 0< 6 < 7.
We useDy 4 = C — Xy 4, for the complementary (open) domain and , = 0%y 4 =
{ze C | |arglz — a)| = 6/2}, oriented counter clockwise, for the boundary. With this
notation, we define now a particular subclass of sequences.

DEFINITION 2.3. LetS= {an};°, be a sequence of non-vanishing complex num-
ber with unique accumulation point at infinity ardS) < co. We say thatS is a se-
quence of spectral type if the following conditions hold:

(1) there exista > 0 and O< @ < &, such thatS is contained in the interior of the
sectorXy a;

(2) the logarithm of the associated Gamma function as a tmifssymptotic expansion
for large A € Dy o(S) = C — £y 4 Of the following form

Ke
logT(—%, S) = Y D auk(—1) logh(=1) + o((=1)™),

a k=0

where {«} is a decreasing sequence of real numheys£ 0 > o > - -+ > ay = —00,
andk =0, 1,..., K, € N, for eacha.

We call the numbeutry the order of the sequenc® and we use the notaticn(S).
We call the open sebDy 5(S) the asymptotic domain o8.

Note that the numbeN appearing in the above definition gives the number of
elements in the sequende}, this number will appear in the following as related to
the number of poles of the associated zeta function. We satyShs a sequence of
spectral type of infinite order if this number is not finite,dawe write o(S) = oo.

REMARK 2.4. The pointA = 0 belongs by definition to the domain of analicity
of I'}(—A, S) for a sequence of spectral type, and Itg-1, S) has a zero of order
g9 +1atr=0.

DEFINITION 2.5. A sequence of spectral type is called regular if the fimeits
ay k In the expansion of the logarithm of the associated Gammetifum vanish for all
k#0, 1.
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REMARK 2.6. Let S be a regular sequence of spectral type willd) = ay.
Then, we have

N N
log T (~2, S) = Y 8, o(—1)" + D au a(~1)% log(—2) + O((~1)™),
j=0 j=0
for large A in Dy a(S), whereag # 0> a1 > -+ > ay = 0o(9).

REMARK 2.7. |If Sis a regular sequence of spectral type, thgn< e(S).

We introduce a further spectral function for a sequence etspl type, namely
we define the heat function associatedSdy

2.2) ft,s) = 1+ie—tan.
n=1

Note that only the first condition of Definition 2.3 is actyalecessary for the
convergence of the series appearing in equation (2.2). tkallyy we state the main
results about regular sequences of spectral type in themresntext.

Proposition 2.8. Let S be a regular sequence of spectral type with oa&) =

an. Then the associated heat function has the following asymptatjgaesion for
t — 0"

N 1
f(L9=1=)" Y cyut “ loght +o(t™™),

j=0 k=0
where
Coj0 = m(aai,o + ¥ (—aj)ay; 1),
o = 8.1
T ()

Proposition 2.9. Let S be a regular sequence of spectral type of ord) =
any < 0. Then the associated zeta function is holomorphic in the compkdkgtane
Re@) > an — € (positive smalle), up to a finite set of poles. The poles in the half
plane Re@) > an — € are at most N+ 1, are located at s= ay, an_1,-.., % =< e(9),
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and are of order at mos® with residues

Cotj,l

Res¢(s, 9 =1,y (=0.Mfeje2),
Coj,0 I/I(O(J-) _ L -

Res ¢(s, 9 = {F(a;) TO gy 70 h 2 el

s=a; (1) =) cy 1 @) =-1,-2,..., —[lan]],

Res $(s, 9 = (1) (=) G0 o) =—1,=2,..., —[lan]]:

in particular, s = 0 is a regular point with¢ (0, S) = Cpo.

REMARK 2.10. Itisimportant to observe that all the formulas giveog®sition 2.9
can be written using exclusively the coefficieatsx appearing in the asymptotic expan-
sion of the Gamma function. This follows from PropositioB @r by direct computations.

Proposition 2.11. Let S be a regular sequence of spectral type wi(s) < O.
Then the zeta function associated to S is holomorphic at @ and satisfies the follow-
ing expansion near s= 0

¢(s, S) = —ap,1— a0,08 + O(s9),

where the g are the coefficients in the expansion of the associated itgaic Gamma
functionlog I'(—4, S).

3. Spectral functions for operators with compact resolvent

Let H be an (infinite dimensional) complete separable HilbertepandA a closed
operator in. We use the notatioR(x, A) = (A1 — A)~! for the resolvent ofA, p(A)
for the resolvent sety (A) for the spectrum, andg(A) for o (A) — {0}. For a compact
operatorT, we denote bys,(T), n € N, the singular values of (with the convention
that [|s,(T)| > 0 for n > 0). We denote by3,(#) the set of the compact operatdrs
such that) o7 ; si(T)P < co. Thus,B1(H) is the trace class, and fdr € B1(H) the trace
of T is defined by

o
TrT =) an(T),
n=1
where 1,(T) are the positive eigenvalues af.
Lemma 3.1. Let A be a closed operator in the Hilbert spagé Assume there

exist non-negative integers k and guch that(R(x, A)¥ € Bp(H) for somei € p(A).
Then oo(A) = {An}32, is a sequence of non-vanishing complex numbers with unique
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accumulation point at infinityfinite exponent of convergence and geg@8) = kp—1.
If we further assume thatp(A) is contained in some sect@, g, thenop(A) is a reg-
ular sequence of spectral type.

Proof. By definition, R(%, A))*P is compact. Thusgo(R(%, A)) consists of an at
most countable number of eigenvalues with finite multipjicind has no point of accu-
mulation except possibly 0, and is contained in some closgld abntered at the origin
of the complex plane. Leto(R(A, A)) = {An(R(A, A)}:2,. By the spectral mapping
theorem for bounded operates((R(x, A)¥) = {AK(R(x, A)}2,. By definition

> An((RG AY9IP < oo,

n=1

By the spectral mapping theorem for unbounded operatoe fbex bijection of the set
o (—R(», A)) onto the setr(A) U {oco}. This implies thatg(A) = {An = 1/An(R(L, A)) +
1} ,. Therefore the seri€s n ;|1n| %P, converges. This proves the first implication. For
the second one, we can use Lemma 2.2. O

Lemma 3.1 allows to introduce for an operatdrof that type, all the spectral func-
tions and the other invariants defined in Section 2 for secegnjust using the spec-
trum of A as underlying sequence. For example we can introduce tfzefaettion,
£(s, oo(A)). For simplicity, we use the notation(s, A) instead, namely we simply put
the operator in the place of the non-vanishing part of itscepen. In particular, we
have the following general abstract result.

Theorem 3.2. Let A be a closed operator in the Hilbert spagé Assume there
exist non-negative integers k and guch that(R(x, A))¥ € By(H) for somea € p(A).
Assume thato(A) C £,4, for some a>0and0 < 6 < . Then

log det A =ReglogI'(—A, A).
A=o00

If the resolventR(A, A) itself is of trace class, thek= p = 1 and hence the genus
is trivial, namelyg(A) = 0. The trace is related to the functiog(x, A) introduced in
Section 2

dim ker A =1
TrR(A, A) — ——— =r19(A, A) = .
PRO, A) = == =rolk A) = ) -

n=1

Let us first proceed with the assumption that Ree {0}. Thus, for allA € p(A),
AR(A, A) is of trace class, and fdi| || R(A, A)|| < 1, the operator (this is well posed,
since |R(2, A)ll = [IR(x, A)ll1 < o0)

log(l — AR, A)) = —AR(, A) — )L;R(A, A?Z 4.
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is well defined and belongs tB;(#). Thus, we can define its determinant as
det(l — AR(x, A)) = 1090 —-RG.A)
Since
| —AR(, A) = (I —AA Y
we can define the determinant
det(( —2A™H)™Y) = det( — AR(:, A)),

and using the spectral representationg {(fA) = {An}32;,
log det(( —AA™H)™) = —log ﬁ(l - i)
n=1 )Ln ,

and therefore

det( — AR(:, A)) = det(( —rA™H™
i
11— 2/An '
This gives the gamma function introduced in Section 2, ngmel
det( — AR, A)) = det(( —AAY)™Y) =T (-4, A).

If A has non trivial kernel, leb(A) = {An}°,. Then, we define the determi-
nant by

- 1
det(l —AR(, A) =[] T
n=1 n

where the zero eigenvalue is omitted.
We have proved the following result.

Proposition 3.3. Let A be a closed operator in the Hilbert spagé with resol-
vent of trace class. Assume thajf(A) C X4, for some a> 0 and0 < 0 < w. Then

log det A = Reg log det(l —AR(%, A)).
A=00

This result extends to the more interesting class of operatmsidered in Lemma 3.1
as follows.



ZETA DETERMINANTS AND OPERATOR DETERMINANTS 49

Proposition 3.4. Let A be a closed operator in the Hilbert spage Assume
there exist non-negative integers k andspich that(R(x, A)X € Bp(H) for somea e
p(A). Assume thatg(A) C a4, for some a> 0 and0 < 6 < w. Then

log det A = Resg log(det(l — A R(x, AkP)))L/kp,
A=o00

Proof. Letog = {An}52,. By Lemma 3.1,g(A) = kp— 1. It is easy to see that
this implies thatg(A*P) = 0, and thereforeR(x, A*P) is of trace class. Thus, the op-
erator AP satisfies all the hypothesis of Proposition 3.3. The stat¢rfalows since
t(as, 9 =¢(s, ), and¢’(0, ) = a¢’(0, S). L]

Eventually, we turn to elliptic operators, and to the prodéfTdhieorem 1.1. The
advantage of working with this class of operators is due t fétt that some of the
hypothesis of Proposition 3.4 are automatically satisfi€dr, if H is a self-adjoint
non-negative elliptic pseudo differential operator of erd defined in the space of
the L? sections of some complex vector bundle over a compact Rigimarmanifold
of dimensionm, then, op(H) is a sequence with exponent of convergemeg and
genusg = [m/r]. This means thatR(x, H))9*! is of trace class, and therefore all the
hypothesis of Proposition 3.4 are satisfied.
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