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Abstract

O. Chalykh, A.P. Veselov and M. Feigin introduced the notidrgoasiinvariants
of Coxeter groups, which is a generalization of invariants. [2], Bandlow and
Musiker showed that for the symmetric groiy of order n, the space of quasi-
invariants has a decomposition indexed by standard takleghey gave a description
of a basis for the components indexed by standard tableashage § — 1, 1). In
this paper, we generalize their results to a description bésis for the components
indexed by standard tableaux of arbitrary hook shape.

1. Introduction

In [3] and [5], O. Chalykh, A.P. Veselov and M. Feigin intro@éakcthe notion ofjuasi-
invariants for Coxeter groups, which is a generalization of invariarfeer any Coxeter
group G, the quasiinvariants are determined by a multiplicitywhich is a G-invariant
map from the set of reflections to non-negative integers.

We denote byS, the symmetric group of ordar. In the case 0f5,, the multiplicity
is a constant function. Take a non-negative integeA polynomial P € Q[X1, X2,..., Xn]
is called anm-quasiinvariant if the difference

(A—G, DPX, - Xn)

is divisible by & — x; )2™+1 for any transpositioni( j) € S,.

The notion of quasiinvariants appeared in the study of trentyum Calogero Moser
system. In the case &, this system is determined by the following differentialeop
ator (the generalized Calogero—Moser Hamiltonian):

n
32 1 3 d
Lm= — —2m —_——
" Z ax? Z i — Xj (aXi an)

X
i=1 O 1<i<j<n

wherem is a real number.
Let G be a Coxeter group. We denote I8 the sub ring generated by invariant
polynomials forG and by | € the ideal of the ring of quasiinvariants generated by the
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invariant polynomials of positive degree. For a generictiplitity, there exists an iso-
morphism from the ringS® to the ring of G-invariant quantum integrals of the gen-
eralized Calogero—Moser Hamiltonian (sometimes calledsdHaChandra isomorphism).
We denote byl,, £,,..., L, the operators corresponding to fundamental invariant-poly
nomialsoy, o2, ..., on. The generalized Calogero—Moser Hamiltonian is a member of
this ring (see for example [5], [6]).

In the case of non-negative integer multiplicities, Chalynd Veselov showed that
there exists a homomorphism from the ring of quasiinvasigntthe commutative ring
of differential operators whose coefficients are rationaictions (see e.g. [3]). It is
shown that the restriction of such homomorphism o8toinduces the Harish-Chandra
isomorphism. In the case of non-negative integer muliijdis there are much more
quantum integrals.

Let m be a non-negative integer multiplicity. In [5], Feigin ands¢élov introduced
the notion ofm-harmonics which are defined as the solutions of the follgnsgstem:

Ly =0,
Loy =0,
Loy =0.

Feigin and Veselov also showed that the solutions of suckesysre polynomials.
They also showed that the spacenastharmonic polynomials is a subspace of the space
of m-quasiinvariants and has dimensif@|. In [7], G. Felder and Veselov gave a for-
mula of the Hilbert series of the space mfharmonic polynomials.

In [4], P. Etingof and V. Ginzburg proved the following:

(i) the ring of quasiinvariants o6 is a free module oveS®, Cohen—Macaulay and
Gorenstein,

(i) there is an isomorphism from the quotient space of doasiiants by|® to the
dual space ofmn-harmonic polynomials,

(iii) the Hilbert series of the quotient space of the quasiitants by € is equal to
that of m-harmonic polynomials.

Let I5(N) be the dihedral group of regular N-gon. In [5], Feigin ands&lev con-
sidered quasiinvariants db(N) for any constant multiplicity. Sincé,(N) has rank 2,
guasiinvariants can be expressed as a polynomial &amd z. Feigin and Veselov gave
generators oveB'2(N) by a direct calculation. In [6], Feigin studied quasiineats of
I,(N) for any non-negative integer multiplicity. He gave a fressis of the module of
quasiinvariants oveB'2(N) using the above mentioned results of Etingof and Ginzburg.
An explicit description of basis of the quotient space of gjimariants forS; is con-
tained in [5]. Another description is given in [1]. In [7], fdS, Felder and Veselov
provided integral expressions for the lowest degree nomasgtric quasiinvariant poly-
nomials (the degreem + 1). However, for any integen > 4 a basis of the quotient
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space of quasiinvariants &, is not known.

In this paper, we consider the quasiinvariants Syf In this case,m is a non-
negative integer. We denote Wyl,, the ring of quasiinvariants and b, the ring
of symmetric polynomials. We defin®I} as the quotient space @}l by the ideal
generated by the homogeneous symmetric polynomials ofiypmslegree.

In [2], J. Bandlow and G. Musiker showed that the sp&leg, has a decompos-
ition into subspaces indexed by standard tableaux. Eaclpooemt has aA, module
structure. The quotient spad@l’, is also decomposed in the same way. They con-
structed an explicit basis of the submodules@f;, indexed by standard tableaux of
shape i — 1, 1).

In this paper, we extend the result in [2]. We construct asasithe submodules
of QI indexed by standard tableaux of shape—(k + 1, 1¥°!) (a hook) (see The-
orem 3.8). The elements of our basis are expressed as dedstniof a matrix with
entries similar to elements of basis introduced in [2]. Weoashow that our basis is
a free basis of the submodule @f,, indexed by a hookrn(— k + 1, 1¢1) over A,
(Corollary 3.11).

We also show how the operatbr, acts on our basis. In [5], it is proved that the
operatorL, preserve®Ql,,. In [2], it is obtained explicit formulas of the action &fy,
on their basis. We extend these formulas to those of our f@kisorem 4.4).

2. Preliminaries

2.1. Symmetric group and Young diagram. We denoteQ[Xi, X, ..., Xn] by
K, and the symmetric group ofl, 2,...,n} by S,. For a finite setX, we denote the
symmetric group onX by Sx.

The symmetric grouf, acts onK, by

oP(Xt, ...y Xn) = P(Xo@yr -+ s Xom)): 0 € S

A polynomial P(xq, Xo,..., X) is called a symmetric polynomial when for anye S,
P(X1, X2, . .., Xn) Satisfies

oP(Xy, ..., Xn) = P(Xg, ..., Xn).

We denote byA, the subspace spanned by symmetric polynomials and gshe sub-
space ofA, spanned by homogeneous polynomials of degteaVe setAY = {0} if
d < 0. Thei-th elementary symmetric polynomial is denoted &y For a partition
v = (v1, v2,...), we definee, =[], e,. A basis of A, is given by{e,}.

The group ring ofS, overQ is denoted byQ$S,. The action ofS, on K, is natur-
ally extended to that 0QS,. For a subgroufH of S,, we define H], [H] in QS, by

[Hl=2 o,

oeH

[H] =D sgr(o)o.

oeH
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Let A = (A1, A, ...) be a partition. When is a partition of a positive integer,
we denote this by - n. We definel(x) = #{i | A; # 0} and |A| = >, Ai. They are
called the length and the size afrespectively.

For a partitiona, the Young diagram of shapeis a diagram such that iisth row
has); boxes and it is arranged in left-justified rows. For examfhe, Young diagram
of shape (4, 3, 1) is

We denote byi( j) a box on thei( j)-th position of the diagram. For instance,
the box (2, 3) of the Young diagram of shape (4, 3, 1) is

We identify the Young diagram of shapewith the partitiona.

Let k, n be integers such th&t> 2 andn > k. We definen(n,k) = (n—k+1, ¥ 1),
We havel (n(n, k)) = k and |n(n, k)| = n. We call n(n, k) (also the Young diagram of
n(n, k)) the hook.

For A F n, we define the arm length(i, j) for box (i, j) € A as

a(i, )=#0G,0)j<lI,(0,1)ear}.
We also define the leg lengtlii, j) for box (, j) as
10, §) =#(K, J) 1T <k, (k j) €A}
We defineh(i, j) = a(i, j) +1(, j) + 1 called the hook length for box,(j) € 2.

A tableau of shape is obtained by assigning a positive integer to each box of
the Young diagrani. In this paper, we assume that entries of boxes are differaci
other. For a tableald, we denote byD; ; the entry in the boxi( j) of D. We define

menfD) = {Dij | (i, j) € A}.
A tableauT is called a standard tableauTf satisfiesmen{T) = {1, 2,..., n} and

Ti,j <Tk,jy T|J <Ti1|, i <k, j <.

We denote byST(A) the set of all standard tableaux of shapend by ST(n) the set
of all standard tableaux with boxes.
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For a tableauD of shapei, we define
C(D) = [{0 € Snenp) | o preserves each column @f}]’,
R(D) = [{o € Snenip) | o preserves each row db}],

f, = #STO),
f,C(D)R(D)
D=
Vp = H (% —X%;j)
(i,j)eCo

whereCp = {(i, j) | i < j andi, j are entries in a same column &f}. The element
Yo € QSnenip) Satisfiesy = yp.

DEFINITION 2.1. Lets, s, ..., S be mutually distinct positive integers.
(1) We denote byD(s1, %, ..., S St, &+1,-- -5 Sn) the tableau of shape(n, k) such that
the entries in the first column and in the first row aes,, ..., s and sy, Si1,..+, S

in order, respectively.

(2) A tableauD(s;, S, - - -, S St, S+1, - - -5 Sn) IS @ standard tableau of shapén, k)
if and only if the following holds:

S, S, ..., S IS a permutation of 1,2,..,n,
=1, <SS%1=Z- <.

Then we simply writeD(s;, S, ..., S Sty Sty -2 S) asT(L, %, .-+, %)
(3) Leti be an integer such that £i <k (resp.k +1 <i <n). We setD =

D(s1, 2, - - -2 S Sty St 1s - - -5 Sn)- We define
DS :D(Sﬂ.i"-13—113—0—-1!'-'5S(;SCIJS(—HL!-'-!S"I)
(reSst = D(Sly LI S(wsly S(+11 L | Sflv S+1! LI S”I))

For example, the standard tableh(lL, 3,4)= D(1, 3,41, 2,5, 6) of shape (4,1,1) is

2|5]6]

NEE

The tableauT (1, 3, 4} is

2[5]6]

BE

and T(1, 3, 4% is

5(6]

NEE
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We have the following propositions.

Proposition 2.2 ([2]). Forany f=3 .o fo0 € QS, P e A, and Qe Ky, we
have f(PQ) = Pf(Q).

Proposition 2.3 ([2]). Let iy, i, ...,i, be a permutation ofl, 2,...,n. Then
[S] and [S] are expressed as follows

[S] =@+ (i in) + -+ (n-1, 1)) - - (L4 (i1, T3) + (12, 13))(1 + (i, 12)),
[S]' =@~ (@1, 0n) =+ = (in-1,n)) -+ - (L= (i1, i3) — (i2, i3))(L — (in, i2)).

2.2. The quasiinvariants of S,. We recall the definition and the notation of
m-quasiinvariants. Take a non-negative integer A polynomial P € K, is called an
m-quasiinvariant if the difference

(I—G, )P, ..., Xn)

is divisible by & — x;)*™*! for any transpositioni( j) € S,. We denote byQl,, the
ring of quasiinvariants and by, the space of symmetric polynomials. We denote by
Im the ideal ofQl,, generated byey, ..., . We setQl}, = Ql,/Im.

We recall results in [2].

Lemma 2.4 ([2]). The ring Ql,, of quasiinvariants has following decomposition

Qlm= P »(@Qlw.

TeSTn)

The spaceyr(Ql,,) has following description
(2.1) y1(Qlm) = yr(Kn) N VE™ K.

For A I n, the vector spac@Tesm) yr(Ql,,) is called thei-isotypic component
of Ql .

Let K be a polynomial ring. We denote bi[i] the subspace spanned by homo-
geneous polynomials of degrédn K. The Hilbert series oK is defined as a formal
power seriesd =, dim(K[i])t'. We denote it byH (K, t).

For [f] € QI}, we define the degree off] as the minimal degree in the class
[f]. In [4] and [7], the Hilbert series 0QI*, is given as follows:

Theorem 2.5 ([4], [7])-

% mn(n— . w(i,j;m 1tk
@2 HQ =S [ [t

Abn (i, j)er k=1
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where we sew(i, j;m) =m((, j)—ad, j))+13, j).
In particular, for T € ST()) the Hilbert series ofyr(Ql}) is given as follows

n k
. 1-t
(2.3) H(VT(QI;); '[) _ tmn(n—l)/2 H H tw(l'J'm) 1—th(i ik
(i,j)er k=1

Lets;, s,..., S be mutually distinct positive integers. We &+ D (s, $;S1,S3:- -+, Sh)-
We define the following polynomial iQ[Xg,, . .., Xs,]:

(2.4) Qi = / "y [t - x)mdt.
Xsy i=1

Recall that we defing(n, k) = (n—k+1, 1°%). In [2], J. Bandlow and G. Musiker
found an explicit basis ofr(QI%) whenT € STn(n, 2)).

Theorem 2.6 ([2]). Let T € STn(n, 2)). The set{QI™, Q7™,..., QT *M is a
basis ofyr(Ql%).

REMARK 2.7. In [2], it is shown thatQ\™ is divisible by V& = (x3 — x;)2™+L,
We can similarly show thaQ" is divisible by Vp = (xs, — Xs,)2™+1.

Let f € Q[Xg,, Xs,, - - -, Xs,]- We denote by dqg(f) the degree off as the poly-
nomial in x5. The leading term off in x4 means the highest term df in X5 and the
leading coefficient off in x5 means the coefficient of the leading term bfin Xs.
For a homogeneous polynomig| we define degy) as the degree of.

The ponnomiaIsQ'E:,m have the following properties, which we will use to show
Proposition 3.3.

Proposition 2.8. Let §,%,..., S be mutually distinct positive integers. Let | be
a non-negative integer and take a tableau=DD(s;, ;S1, Ss, ..., Sh) Of shapen(n, 2).
The polynomial dgm is a homogeneous polynomial of degree #rh+ 1 and sat-
isfies following properties.
(1) The polynomial dgm iS symmetric in ¥, ..., Xs, and anti-symmetric in g, Xs,.
(2) We havedeg(sl(Q'E:,m) = nm+ 1| + 1. The leading coefficient of '& in xs, is
D)™ Iml/ [Teg(mn+1 +1—5).
(3) Letie({l,...,n}\{1,2. We havedeg_ (QE™ = m. The leading coefficient of )
in x5 is equal to(—1)"QY.

Proof. We show the casB = T (1, 2) since the proofs of other cases are similar.
We setT = T(1, 2).
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(1) It follows from the fact that' [T_,(t — x)™ is symmetric inxy, Xz, - - -, Xn.

(2) We show this statement by induction am

Whenm = 0, the polynomialQ® is (1/(I +1))(x|"* —x;™). So, the statement holds.

Whenm > 1, assume that the statement holds for all numbers lessnthdn [2],
the ponnomiaIQ'T:m is expressed as:

n
(25) I%m — Z(_l)la Q_I'Il_+|7i:m71.
i=0
By the induction assumption om, we have degl(QQH’“mfl) =nm+1|—i+ 1.

From (2.5), we have dggQ}™) = nm+1+1 and the leading term is igoQ}""™ " —
e QM'=E™1 The leading coefficient oR™ in x; is

(-)"(m-1)!  (=)"(m-—1)!
[Eomn+1+1-5) [[Zgmn+1-s)
(_1)m+lm!

- M ogmn+1+1-5s)

(3) Expanding {— x;)™ in Q'T:m, we have

m
. m .
= > (7).
s=0
Thus, the statement holds. O

As a corollary of this proposition, we hav@'g,m # 0 when D is a tableau of
shapen(n, 2).

3. A basis for the isotypic component of shapen(—k + 1, 1x-1)

We give a basis for thg(n, k)-isotypic component. Le$;, s, ..., S, be mutually
distinct positive integers. Throughout this section, weBe= D(Sy,.-., S S1: S+1,---»Sh)
andT =T(1, 2,..., k).

DerINITION 3.1. (1) Letp be a non-negative integer. Fiorj such that I<i <
j <k, we define a ponnomiaRB::’;Sj iN Q[Xs,, Xgy - - - » Xs,] @S

Xs: n
3.1 REM =/ "t Tt = xg)™dt.
( ) D_s,sI . E( S)

S
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(2) Letk be an integer such th&t> 2. Take a partitionn = (w1, 2, ..., k_1) Such

that sg > o > -+ > k1 > 0. We define a polynomiaQs™ in Q[Xs,, Xs, - - - » Xs,]
as follows:

AR 5T
3.2) QLM = Di.Szx?e D;.SQ,Sg ) D:.Sz’S3

RGN o REEM e RESTC

We denote the empty sequence by Whenk = 1, n is the empty sequenc@.
We setQE™ = 1. We simply write QT as Q2™

REMARK 3.2. SettingD’ = D(sy, S: S, S, - - - » Sn), We haveRET o = QP

The |oolynomiaIQ’[‘;m has the following properties, which we will use to show our
main results.

Proposition 3.3. Let s, s,..., S, be mutually distinct positive integers. We set
D=D(s,...,S: S, Ska1,---5S). Letuw = (1, 1o, ..., k1) be a partition such that
pa>pz > > 1200

Then the polynomial ¢™ satisfies the following.

(1) The polynomial @™ is symmetric in ¥.,, X, - - -, X5, and anti-symmetric in
Xs» Xsr - -+ » Xs- IN particular, Q5™ is divisible by \E™1.
(2) We havedeg(sl(Q’é:m) = (n+k—2)m+ 3 + 1. The leading coefficient of 3"
in Xg, IS
(_1)(kfl)m+lm!

Q(#Zv---v#k—l):m‘
[Teo(mn+ 1+ 1—5)

D=1

In particular, we havedeg@Qp™) = (k—1)nm+ |u| + k — 1.
(3) We havedeg, ,( 5™ = (k — 1)m. The leading coefficient of €3 in xc1 is
(~D)ImQEE,.
(4) The polynomial cg"“ is invariant underyp.

Proof. We show the casP = T. The proofs of other cases are similar.

(1) From Proposition 2.8 (1), it follows that the polynomi@k™ is symmetric
iN Xqi1, Xkt2, - - - » Xn-

Adding the first row to the second row, we get

M1:m M2:Mm MUk—1;M
RT:lr,nZ RT:lr,nZ e RT:l,Zm
13 Mh2: Mk—1;
wom | Rz Rras -0 Rras
T - . . .
Rulim Rulim Rﬂk—lim

T:k—1,k Tk—1k °°° T:k—1,k
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Repeating this process, we get

3 g - |88 Frae A

RUL R o REGT
Thus, the polynomiaQ#zm is anti-symmetric inx, ..., Xx. We can show thaQ?m is
anti-symmetric inxy, Xs, ..., X and Xg, Xo, X4 - - - , X in similar ways. Thus the first

statement holds.

From Remark 2.7 and (3.3), the polynom@}™ is divisible by [Jo_,(X1 —Xs)>™+2.
Using this proposition (1), we se®:™ is also divisible byV2™+.

(2) We seeQy™ as a polynomial inx;. From Proposition 2.8 (2), (3), the lead-
ing term of Q¢™ in xs, is in RYGRIZY .- REY™, . We use Proposition 2.8 (2), (3)
again, and the statement holds.

(3) From Proposition 2.8 (3), the leading coeﬁicient(@#:m in Xgq1 IS

D"RRty,  (CDTRT, oo (CDTRA
(3 4) (_1)m R#iﬂ]zzvg (_1)m Miﬂizvg o (_1)m Mtﬂizvg
1" R#‘%;T:kfl,k 1" R¢E:+T;k71,k e (YT Rﬁﬂ]:kfl,k

The polynomial (3.4) is equal to-@)* IMQLT,.

(4) To prove (4), we define the following notation.

For positive integerd, j such thati # j, we define a tableaui,(j)D as fol-
lows. Wheni, j ¢ men{D), we define i, j)D = D. Wheni € men{D) and j ¢
men{D), (i, j)D is a tableau obtained by replacing the entryn D with j. When
i, j e men{D), (i, j)D is a tableau obtained by interchanging the entgnd j in D.

Using Proposition 2.3yt is equal to

1 k / n
m{l— Sg;‘(l- 5)}[3{2,3 ..... Kl [1+ Z (1, 3)][5{k+1,...,n}]-

s=k+1

From (1), we obtain

1 B — m
Y (QY Zﬁ{kQ¢~ + > 11— 2)—---—(1,k)}Q’(‘1',s)T}-

s=k+1



QUASIINVARIANTS OF S, OF HOOK SHAPE 471

We consider the sunp.¢_, ;{1 — (1, 2)—--- — (1, K)}Q(sgr- We have

z {1-(1,2-(1,3)—---—(1, k)}QéLlr;])T

s=k+1

n
m m m m
= z {Qugr + Quor + Qagr + -+ + Qugrl-
s=k+1

Consider the sunQ(;'yr + Q(zr- By definition, we have

‘m ‘m
Q?LS)T + Qé,S)T

Mm1:m 2:m Mk—1:M 1M 2 m Mk—1:M
RT:s;h% RT;s;h% T RT:s,2m RT:lr’ﬁ RT:lr’ﬁ e RT:l,sm
15 2] Mk—13 15 2] Mk—13
RT:2,3 RT:2,3 T RT:2,3 RT:s,3 RT:s,3 T RT:s,3
= . . . + .
1;m 2;m Mk—1:M A1:m 2:m Mk—1,M
RT:kfl,k RT:kfl,k T I:QT:kfl,k RT:kfl,k RT:kfl,k T RT;kfl,k

Adding the first row to the second row in the second deterntjnaa get

:m m
Qiyr + Qg

M1:m M2:M Mk—1:M 1M M2 M Mk—1:M
RT;s.,n% RT;s,r% T RT:s,zm RT:lrﬁ RT:lrﬁ e RT:l,sm
13 23 k13 15 2] Mk—13
RT:s,3 RT:S,3 T RT:S,3 RT:s,3 RT:s,3 T RT:S,3
= . . ) . + .
1M 2:mM MUk—1:M M1:m 2:M MUk—1:M
RT:kfl,k RT:kfl,k T RT:kfl,k RT:kfl,k RT:kfl,k T RT:kfl,k

Adding the two terms, we obtain

m m
Qéll,s)T + Qé,s)T
R#lim R#zim R#k—llm

T:lmz T:1h12 T T;1,2m
M1: h2: MUk—1}
. RT:S,3 RT:s,3 e RT;S,S

1M M2:M Mk—1:M

RT:kfl,k RT:kfl,k e RT:kfl,k

Repeating this process, we get

1-(1,2-(@1,3)—---—(1, k)}Qar:)T _ ¢:m.

Thus, the statement holds. O

As a corollary of this proposition, we ha@y™ € y1(Ql ) whereT € STn(n,k)).
We introduce the following notations.
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DEFINITION 3.4. Lets, t, u be non-negative integers. When> 1, we set the
subsetsP(s; t; u), P(t; u) and Q(s; t; u) of the set of partitions as:

Pitiu) = (A €Z'[[Al =8, t =21 > 22>+ > Ay 2 0,
Q(s: t;u) = P(s; t; u)\P(s; t — 1; u),
P(t:u) = | J P(s: t: u).

s>0
Whenu = 0, we set
P(0; t; 0) = {0},
P(t; 0) = {2}.
Let| be a positive integer. We s&(l;t; 0) as empty set.
We definep(s; t; u) = #P(s; t; u) and q(s; t; u) = #Q(s; t; u).
REMARK 3.5. Letu € P(n—2;k—1) (resp.u € [Jg-0Q(S:n—2:k—1)). We have

k—1)k—-2 k—1)k—-2
$EHD) <t = -y - 2

(resp.n—2 + (k—2)(k — 3)/2 < |u| < (k— 1)(n — k) + (k— 1)(k — 2)/2).

We have the following proposition.

Proposition 3.6. Let k be an integer such thatx 2.
(1) Let | be an integer such thd@d <| <n—k—1. Then we have

p(l +w;n—3zk—l) = p(l +w;n—2zk—l).

(2) Let | be an integer such that* n—k. Then we have
o1+ 7DD, 1)

_ k-1Dk-2) )
= p<| +#,n—3,k—l)
k-2)k—-3)

I +k— ;
+p(+ n+ >

n—3;k—2).

(3) Let | be an integer such thd@l <| <k — 2. Then we have

k-Dk-2)
———5————Ln—2k—g
(k=2)k-3)
-

p((k -1 —-Kk)+

—p(k-200-10+ in-3k-2).
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Proof. (1) By definition, we have

q( (k — 1)2(k 2 ok 1)

= p(l + —(k Dk=2) -2, k— 1) p(l + —(k Dk=2) n—3 k- 1)
2 2
Therefore we showg(l + (k— 1)k —-2)/2Zn—2k—-1) =
We havel + (k—1)(k—)/2<n—k—-14+(k—-1)k—-2)/2 <n—-2+(k—2)(k—3)/2.
From Remark 3.5, we hav®(l +(k—1)(k—2)/2;n—2;k—1) = @. Thus, the proposition
follows.
(2) To prove (2), we show

o1+ 62, )

B )

Let = (j,u2,..., k) € Q(isj:K). Then, we haveiy,..., k) € QU — j;u2:k—1).
So, we getQ(i; j; k) = U'S 1OQ(| —j;s;k—1). Thus, we have

q(l W —2k— 1) Zq( w n+2;s;k—2).

We havel + (k—1)k—2)/2—n+2=1+k—n+ (k—2)(k—3)/2. So, we get
q( k-2, 5 1)

n—3
= q(l +k—n+&2(k_3);s;k—2).
=0

S

By definition, we obtain

n-3
Zq(l +k—n+w2(k_3);s;k—2)
s=0

)

(3) By definition, we have

p((k—l)(n—k)+wz(k_z)—l;n—zk—l)

k-Dk-2) |
f—l,s,k—l).

n—.

2
= q((k—l)(n—k)+
=0

S
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From Remark 3.5, we have((k — 1)(h—k) + (k—1)k—2)/2—-1;s5;k—1) =0
whens < n— 3. Therefore, we obtain

R LR
= a(k-vm-w+ D nzic-a).
From (2), we have
a(t-v0-1+ D021
= p(tc- 20K+ 2D nn-sik-2)
=p((k—Z)(n—k)+W—I;n—&k—z) O

We next consider the Hilbert series ¢f(Ql}). To simplify notation, we write
Psn-2k-1= P(S+ (K—1)k—-2)/2n—2k—-1).
Proposition 3.6 is rewritten as:
(1) Pin-3k-1= Pn-2k1,
(2) Pin-2k-1= Pr,n-3k-1 + Plik-nn-3k-2,
(3) Pk-1)(n—k)-1.n—2k-1 = Pk—2)(n—k)-I,n—3 k—2-
Lemma 3.7. We have

(k=1)(n—k)
(3.5) Hyr(QI5); 1) = thotnmikdez R g o keat®,

s=0
Proof. From (2.3), the Hilbert seried (y1(Ql}); t) is equal to

n |
O P I ;
mn(n—1)/2 || || m( @i, j)—adi, i)+G, )
t - t 1—thG )"
@i,j)erl=1

For 2<i <n—-k+1 and 2< j <k, we have
a(l,1)=n-k, 1(1,1)=k-1, h(1,1)=n,
a(l,i)=n—k+1—i, I(4,i)=0, hX,i)=n—k+2-—1i,
a(j,1)=0, I(j,)=k—j, h(j,)=k-j+1.
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Thus, we have

* (k=1)nm-+k(k—1)/2 T a-t
HOor@Ip):t) =t QW
Therefore, we must show
( _tn- s) (k=1)(n—k)
(3.6) H a—t) SZ(; Ps,n-2,k-1t°.

We show this by induction om.
If n =Kk, then both of L.h.s. and r.h.s. are equal to 1.

Whenn > k + 1, we assume that (3.6) holds with all numbers less thawe
have the following identity:

( —tn- S) (1_tnsl) nk (1_tnsl)
H (1-ts) H (1—ts) H 1-ts)

By the induction assumption, we obtain

k- tnsl) n (1 tnsl)
I e Ty

— tS)
(k-1)(n—k—1) (k—2)(n—K)
= Z ps,n—3,k—1ts + tnk Z ps,n—3,k—2ts-
s=0 s=0

We can rewrite this as

p(L—t")
H ts)

(k—1)(n—k-1)
= Z (ps—n+k,n—3,k—2 + ps,n—3,k—l)ts
s=n-k
(k=1)(n—K) n—k-1
+ Z ps—n—+—k,n—3,k—2tS + Z ps,n—3,k—1ts-
s=(k—1)(n—k)—k+2 s=0

Using Proposition 3.6 (2), we have
(k—1)(n—k—1)
Z (Ps—n+kn-3k-2 + Psn-ak-1)t°

s=n—k
(k—1)(n—k—1)

= Z ps,nfz,kflts-

s=n—k
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From Proposition 3.6 (1) and (3), the lemma holds. ]
We state the main theorem in this paper.
Theorem 3.8. The set{Q4 ™} cp(n—2k-1) iS @ basis ofyr(QI%).

To simplify notation, we set

k—=1k-2)
> ;

Pa2k-1=P(n—2k—1),

k-1k-2) ]
+f,n—2,k—l).

Psnook-1 = P(S + n—2,k— 1),

Qs,n—z,kfl = Q (S

We define following notations.

Let X ={s,S,..., S} be the set oh positive integers. We recall th&y is the
symmetric group onX and Sx acts onQ[Xs,, Xs,, - - - , Xs,] from the left.

We defineAx as the subspace @[Xs,, Xs,, - - -, Xs,] Spanned by all polynomials
which is invariant undeiSx. We defineA§’< as the subspace afx spanned by homo-
geneous polynomials of degree We defineAd = {0} if d < 0.

Theorem 3.8 follows from the following proposition.

Proposition 3.9. Let D be a tableau of shape(n, k). If

(3.7) > Q" =0

peP(n-2k—1)
where f, € Amenip), then all f, is equal toOQ.

Proof. We show this proposition by induction on the siz@f tableauD.

In the cas&k =1, (3.7) is f Q) = 0 wheref € Amenipy. Therefore, the proposition
holds whenk = 1. We assume thdt > 2.

We recall thatn > k. Whenn = 2, we havek = 2. Then L.h.s. of (3.7) is equal to
foQL™. Therefore, the lemma holds when= 2.

Assume that (3.7) holds when the size of the tabl&ais less tham for n > 3.
We show the cas® = T since the proofs of other cases are similar.

We recall thatA, is a graded ring. Therefore, we can decompose

fu=> ful

>0
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where f,, € Al. Thus, (3.7) is written as

(38) Z Z fu,l Q?m =

neP(n-2:k—1) 1>0

where f,; € Al. We have degDt™) = (k — 1)nm + |u| + k — 1, and we obtain
deg(f.  Q¥™ = (k—)nm+ [u| +d +k—1,
Thus, (3.8) is written as

(3.9) > D fudkenmpkn Q" = 0.

d>0 peP(n—2:k—1)

Hence, for anyd we obtain

(3.10) Z o d—(mnm-{u—k+1QF " = 0.

neP(n—2:k—1)

Fix d. Recall that the sePsn_,k—1 IS not the empty set if & s < (k— 1)(n —K).
Let s be an integer such that9s < (k—1)(n —k) and takeu € Psn_2k-1. Then, we
have degQy™) = (k—1)nm+k(k—1)/2+s. We setd’ = d — (k— 1)nm—k(k —1)/2.
We expressf, ¢_s as

d—s
> ae
r=0 |v|=d'-s
I(v)=r
We recall that
k—1)(k—-2
S

Pn_z’k_j_ = P(n —2:k— 1)

L K=Dk=2) oy 1)_

Qs,n—z,k—l = Q(S 2

Therefore, (3.10) is written as

(k=1)(0—k)

(3.11) Z > Z > a.eQr”

s=0 uePsn 2k-1 = 0‘\)| d'-s

|(v)=r
We showa{’, = 0 for r > 0. We show this by induction on. To prove this, we
consider the leading terms .
As a polynomial inxy.1, the degree of l.h.s. of (3.11) ik & 1)m + d’ and the
; o (k=2,k=3,...,0) (k=2k=3,...0xm_ (k—2,k=3,...,0) _
leading term is ina ) €q) QT Hence we have, ) =0.
Using the following lemma, we complete the proof of Progosit3.9.
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Lemma 3.10. Let k be an integer such thatk 3. We assume that for each in-
teger | such tha <| <n—1 and each tableau of shapgn—1,1), the statement of
Proposition 3.%holds.

Let r an integer such that <r <d — 1. If we have the following equation

(k=1)(n—k)

(3.12) Z > Z Z al' e =0,

s=0  pePspok-1 i=0 |v|=d'—
)=t

then all constants /4, are equal toO.

Proof. We set

(k=1)(n—k)

- 2 S YT dew

s=0 [,LEpsnzkll O‘l)l d'—s
()=

From Proposition 3.3 (3), we have deg(l) = (k —1)m +r. The leading term of
in Xgp1 IS in

(k—1)(n—k)

Z > 2 ae

MEPsn_2k-1 |v|=d'—s
I(v)=r
Recall that we havePsn 2k 1 = Qsn2k-1 U Psn_sk_1 and this union is disjoint.
Therefore, we can rewrite this as

(k=1)(n—k)

> A wewQr

s=n—k u€Qsn-2k-1 ‘l)(l)|=d’7$
[ (v®y=r

(k=1)(n—k—1)

o2 2 2 AeseQr”

nEPsn_3k-1 |v@|=d'—s
[(v@)=r

We set

(k=1)(n—k)

z z z arM l,(1)ev(1) Q#zm.

s=n—k u€Qsn-2k-1 |l)(l)|=d’7$
[ (v®y=r

(k=1)(n—k—1)

I = Z Z Z a-r V(z)ev@)QT

UEPsn 3k-1 [v@)|=d'—s
1(@)=r
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First, we show that the constardé, in |, are equal to O.

If r >d —n+k, we have|u| < (k—1)(k —2)/2 + n — k. On the other hand, if
1 € Qsn_2k-1, we have|u| > (k —1)(k — 2)/2 + n — k. Therefore ifr > d —n +k,
the sum inl; is empty. We only need to consider the case whend —n + k.

We define the following notations. LeX = {s;, S, ..., S} be the set oh positive
integers. For a partitiom = (v, vo,...), we define

exi= DL XaXa

1<lj<-<lj<n

ex,v = H eX,u,a
i

= Q(XSL! ceey XSj,la XSJ'+11 LR XSn)v

(s)) _ (1)
eXfu - HeX,vi'
S

e

In particular, if X = {1, 2,..., n}, then we simply writeeg(j')i as Q(j) and egg?v asel)).
Whenr < d’ —n + k, the leading term ofl in x; is in l1. For u € Qsn-2k-1,
there existsu' = (i}, ..., Uy _5) € Pagk—2 such thatu = (n —2, u), ..., e _,). In

particular, we have.’ € Psik—nn-3k—2. The leading coefficient of; in x; is

(k=1)(n—k)

> > D> el @) Q"

s=n—k ePsikonnzk2 vD|=d'—s
1(v®)=r

where we seb,, o = (—1)kDM+im /Hgnzo(anrn—l—s)ar(“;f)”‘ ) We can rewrite

this as

(k=2){n—K)

(1 ":m
2. >, b’:ﬂ)eiﬂ))f(r) T

s=0  wePsnsk—2 [vW|=d'—s+k—n
[(w@)=r

Since e%f(l,) = €mengT1),v®—(1), this is rewritten as

(k—2)(n—k)

Z Z Z by Bmentr),v0—ar) Q™

s=0  wePsnak-2 [vW|=d'—s+k—n
| (v W)=r
The shape of the tableali! is (n —k + 1, 1°2). Thus T! hasn — 1 boxes. By the

induction assumption on, all b", are equal to 0. Thus we ha\aé”_lz’”/l"") = 0. So,
v @)
we getl; = 0.
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We next considell,. The leading coefficient of, in X1 is

(k=1)(n—k—1)
k+1
(3.13) > D D gt
s=0 nEPsn_zk-1 |v@|=d'—s

1(v@)=r

where we setl, = (-1)¢2ma" .

Sincee®

L@ _(1r) = Emen(Tk+1),,@—(1), We can rewrite (3.13) as

(k=1)(n—k—1)

Z > Z €y EmengT+1) v —(1r) Qs

EPsn3k-1 [VP|=d'—
1(v@)=r

The tableauT*** hasn—1 boxes. By the induction assumption pnall ¢, are equal
to 0. Thus, alla*, are equal to 0.
Thus, the lemma follows. Therefore, the proposition aldtofies. ]

From Theorem 3.8 and Proposition 3.9, we obtain the follgwéorollary.

Corollary 3.11. Let T € ST(n(n, k)). The space/7(Ql,,) is a free module over
An and the sef{Q4™}.cp(—2x-1) is a free basis.

Proof. In this proof, we simply writeQ:™ as Q*. Using Proposition 3.9, the set
{Q*} is linearly independent oveh,,.
Since H(yr(Ql}): t) = t(k=Dnmk(k—1)/2 g:ol)(n—k) Psn_2k_1tS, we have

yr(Qlm) = &b yr(Qlm)d].

d>(k—1)nmk(k—1)/2

Let d be a non-negative integer such tltht (k — 1)nm + k(k — 1)/2. We show that
the subspace ofr(Ql,)[d] is generated by Q*} over A, by induction ond.

Whend = (k — 1)nm + k(k — 1)/2, the coefficient o &-Dnm+kk-1/2in the poly-
nomial H(yr(Ql}):t) is equal to 1. Thereforeyr(Ql.)[d] is a space spanned by
Qk=2k=1..0) Thys the statement follows wheh= (k — 1)nm + k(k — 1)/2.

Whend > (k — 1)nm + k(k — 1)/2 4+ 1, we assume that the statement holds with all
numbers less thath We denote by the vector space ové€ spanned byQ*}, cpn—2:k—1).

Take f € y1(Ql,)[d]. From Theorem 3.8, we can fing € V[d] such that ] =
[g] in »r(QI%). Thus, we havef —g € Iy,. This is expressed as

f-g=> Aus

s>1
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where As € A and us € y7(Qlm).
Sinceyr(Qlm) is a graded space, we can decompose= > ., Us; whereus; €
y1(QIn)i]. We have degfsus;) =s+i. Thus, we have

f—QZZ Z Asusvi.

120 s+i=l

Since f — g € yr(Ql)[d], we getzIyéd > stizl Asusi = 0. Therefore, we have

f-g= Z AsUsd-s.

s>1

The polynomial As has the degree at least 1. So, the polynoriigl_s has the
degree less thad. By the induction assumptions 4—s can be expressed as

Us d—s = Z By
|

where B, € A, and vy € V. Thus, the statement follows. O

4. The operator L,

The operatorl, is defined as

n
92 1 L
Lm=> — —2m = %)
" Z“8xi2 2 Xi—Xj(aXi ax,-)

i=1 1<i<j<n

This operator is discussed in [4] and [5]. It is related to thesiinvariants. In
[5], Feigin and Veselov showed that the operatqy preservesQl,,. We consider how
Lm acts on our polynomiaQ4™. In [2], for T(1,2) Bandlow and Musiker showed the
following formulas for the action ot .

Theorem 4.1 ([2]). Let k m be non-negative integers.
Then we have k(Qf ,) = k(k — 1)Q¥ 25 for k > 2 and Ln(Qf{] ,) = O for
k=0, 1

We extend these formulas. We sBt= T (1, 2,..., k). To write formulas simply,
we define the following polynomials.

DEFINITION 4.2. Leta = (aq, a, . . ., ag_1) € Z¥ 1.
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We define a polynomiaQ{™ as follows:

@1.M 2. M k—15M
Rrii2 R, -+ Ryl
o1:M o2 M Qk—1:M
41 wm Rri2s Rr%s -+ Ryy3
(4.1) T =
1.Mm 2.Mm k—1:M
Rricix Rricix - Rridik
whene; > 0,i =1,...,k—1. Otherwise we defin@7" = 0.

REMARK 4.3. If o is a partition, Q5™ is equal to a polynomial defined in Defi-
nition 3.1 (2). Ifa € ZX3', QF™ is equal toQt™ up to a sign wherg. is a partition
sortedw.

We obtain the following formulas for the action af,,. To write the formula sim-
ply, for @ = (a1, ay, ..., ax_1) € Z¥* we define

oD = (g, ..., iy, 0 — 1, g, ..., aj_1, o) — 1, aj41,. .., an).

Theorem 4.4. Leta = (o1, ..., ax 1) € Z¥1 and take Te STn(n, k)). Then
we have

i=1

al::m
+ 2m Z —oj Qt
1<i<j<k-1

+ Z (S— t)let—)tl,...,ai,1,3,a‘+1,---,Otj,l,t,otj_H ..... ap):m

wj—2>s>t>0
Stt=aj+aj—2

This follows from following lemma. We define a polynomig;", ; as

S:m t:m
RT:1,2 RT:l,Z

RS,th _
T:1,2,3 Rs:m Rt;m .
T:2,3 T:2,3

Lemma 4.5. (1) We have

Ln(10) = L( )0 + fLm(g)‘f‘zé(aixif)(a% )

(2) Let k be a non-negative integer and m be a positive integeznThie have

X n n X
k/ Lkt [t = x)mdt = —mZ/ J th(t —x)™ ]t = x)™dt.
X s=1 r=1"X%

i = = i S#T
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(3) Let k | be non-negative integers such that-kl. Then we have

n
0 k:m 0 I:m 0 k:m 0 I:m

E — R —R; —|—Ry — R

i=1(axi T.1,2)(axi T:1,3 aXi T:1,3 X T:1,2

_ k—1,/—1:m s,t:m
=m| —IRy 55" + Z (s—-DRY123]-
k—2>s>t>0
S+t=k+I-2

4.2)

Proof. (1) It follows from Leibniz’s rule.
(2) It follows from the following identity:

Xj a n
/ —t“T ]t —x9)"dt = 0.
x ot 1%

(3) Whenm = 0, it follows from R{T , = (x5t — x4 /(k + 1). We consider
the casem > 1.

We show this formula by induction ok — 1. We define f(t, x) = H’S‘:l(t — Xg)™
and fi(t, x) = (t — %)™ " []gz (t —x)™

Whenk —1 =1, Lh.s. of (4.2) is equal to

n X2 X3
mZZ/ t"fi(t,x)dt/ u*=1f; (u, x) du
i=1“%

X1

n X3 X2
—mZZ/ tkfi(t,x)dt/ u1f,(u, x) du.
i=17%

X1

So, this is equal to

mZZ/XZtk1{(t—xi)+xi}fi(t,x)dt/X3 UL (u, X) du
i=17%

X1

— mZZ/X3 tk_l{(t —X) + X} fi(t, x) dt /X2 Uk_lfi(u, x) du
i=1v%

X1

n X2 X3
=mZZ/ t"’lf(t,x)dt/ u“1f(u, x) du
i=17%

X1

n X3 2
—mZZ/ tk—lf(t,x)dt/ u*=1, (u, x) du.
j=1v%

X
X1
Using (2), we have

l.h.s. of (4.2)= —m(k — 1)R_|F?11’,25732:m.
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We consider the case—| = 2. Calculating it in the same way, we have

Lh.s. of (4.2)= —m(k — 2)R_|I<_:—11’,2k'—33:m

n X2 X3
+m22/ tk’lfi(t,x)dt/ x U2 f; (u, x) du
i=1 7%

X1

n X3 X2
—m? Z/ 1 (t, x) dt/ x U2 f; (u, x) du.
i=17%

X1

Fromx = u— (u—x), we get

l.h.s. of (4.2)= —m(k — 2)R$T11’,2k’—33;m

+m22/xztk—1fi(t,x)dt/xg{u—(u—xi)}uk—Zfi(u, x) du

i=17% X1

— mZZ/X3tkl fi(t, x)dt/xz{u — (U= )2 (u, x) du.
ji=17% X1

It is equal to—m(k — 2)R."5 ;*™. Thus the statement holds whén-| = 2.
Whenk—I > 3, we assume that the formula (4.2) holds with all numbers than
k —1. Calculating l.h.s. of (4.2) in the same way, we have

l.h.s. of (4.2)

= —mIR ™ + mk — DRSS

n
9 _k—1m 9 _it1m 0 _1m 0 i1m
E —RI — RAIm) (L RkE R1m)
+ i:1(axi T,1,2)(3Xi T:1,3 % T:1,3 _Bxi T:1,2

Hence the formula (4.2) holds by the induction assumptiowl, the statement has been
proved. O
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