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Abstract
In this paper we introduce a notion gfsubharmonicity for non-smooth functions
and then usingg-subharmonic exhaustion function, define gapseudoconvexity
which is applicable to the domain with non-smooth boundaknong others, we
generalize the Donnelly-Fefferamn type theoremgepseudoconvex domains and as

an application of this theorem, we give approximation teewoffor 3-closed forms.

1. g-subharmonic functions and g-pseudoconvex domains

For a real valuedC? function ¢ defined onU c C", Lop-Hing Ho [5] first de-
fined g-subharmonicityof ¢ on U and using thigy-subharmonic function, he introduce
the notion ofweak q-convexityfor domains with smooth boundaries. In this paper,
first we investigate a natural extension of these notionsh& dlass of upper semi-
continuous functions and domains with non-smooth bousdariAfter that, we deal
with L2-estimate for thej-equation on this domain, which is essentially Donnelly-
Fefferman theorem [3, 1, 2] in case the domain is pseudogonve

DEFINITION 1.1. Lety be an upper semicontinuous function bh Then we
say thaty is g-subharmonicon U if for every g-complex dimension spacd and for
every compact seK ¢ H nU, the following holds: ifh is a continuous harmonic
function onK andh < ¢ on 9K, thenh < ¢ on K.

One of the most typical examples gfsubharmonic function which is not pluri-
subharmonic is—Z‘jtlﬂzj |2+(q—1)Z'j‘:q|zj |2. Also, note that an upper semicontinuous
function onU is plurisubharmonic exactly when it is 1-subharmonic grelibharmonicity
implies g’-subharmonicity whenevey < g’ and ann-subharmonic function is just sub-
harmonic function in usual sense. Before listing some ptae of g-subharmonic
function, we emphasize that-plurisubharmonicity is a different notion: @> smooth
functionu on U is calledqg-plurisubharmonidf its complex Hessian has at least-{ q)
non-negative eigenvalues at each pointlbf Also, there is a parallel notion of-
plurisubharmonicity for upper semicontinuous functiofsr Eexample, see [4]).
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To approximate non-smootirsubharmonic function by smoothsubharmonic func-
tion, we define a mollifiero.(2) = p(z/€)/|€|?", wherep is a non-negative smooth ra-
dial function inC" vanishing outside the unit ball and satisfyitig, pdV = 1. HeredV
stands for the standard Lebesgue measure. We now list ragierfies ofg-subharmonic
function.

Proposition 1.2. Let U be an open set df" and 1 < q < n. Then the following
hold:
(1) If ¢ is g-subharmonic in U then g is subharmonic in U
(2) If ¢ is g-subharmonic in U then uxp. is smooth g-subharmonic in.UMoreover
Us* p. \ U whene — 0. Here U. = {z e U: ¢ < dist(z, bU)}.
(3) In general the set of g-subharmonic functions in U is not invariant untelo-
morphic maps but in variant under unitary change of coordinates
(4) If x is a convex increasing function andis g-subharmonic in U then x o ¢ is
¢ is g-subharmonic in U
(5) Let ¢ € C2(U). Then the g-subharmonicity gf is equivalent to

(1.1) Z/ Z(pjga,-K&kK >0 forall g-forms « = Z/ oy dZ°,
IKl=g—1 j,k [J]=q

where }_" denotes summation over strictly increasing multi-indices

Proof. (1) is obvious. For the proof of (3), (4), and (5), sée4]. Sincegy is
subharmonic ilJ, we see (2) except thg-subharmonicity oluxp.. To see this, leH
be g-dimensional complex subspace@!. By (2), g-subharmonicity is invariant under
the unitary change of coordinates. Hence we may assumeHtkaf(z,0): z=(Z,2") €
C"}, whereZ € CY andZ € C" 9. Sinceu is g-subharmonicu(z, 0) is subharmonic
in H. Henceu % p.(-, 0) is subharmonic inJ,, i.e., ux p.(-, 0) is g-subharmonic
in U.. O

We also say thap € C2(U) is strictly g-subharmonidf ¢ satisfies (1.1) with strict
inequality. With thisq-subharmonicity, we define the followingrpseudoconvexity for
domains so that 1-pseudoconvexity exactly coincides wibhugoconvexity in usual
sense.

DEFINITION 1.3. LetD be an open set i©". ThenD is calledq-pseudoconvex
if there is ag-subharmonic exhaustion function f@.

Note thatD is pseudoconvex if and only if it is 1-pseudoconvex, sincauttharmonic
function is just plurisubharmonic. Also, we say tHatis strictly g-pseudoconveit the
boundary ofD, bD is of C?-class and its defining function is strictty-subharmonic.
Now we mention some elementary propertiesppseudoconvex domains as an in-
dependent remark.
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REMARK 1.4. LetD be g-pseudoconvex, ¥ q < n. Then the following hold:
(1) If bD is of C?-class, then by (1.1),D is weakly g-convex in the sense of
L.-H. Ho [5].
(2) If g <(/, theng-pseudoconvexity implieg'-pseudoconvexity.
(3) D has aC*-smooth strictlyg-subharmonic exhaustion function, more precisely

there are strictlyg-pseudoconvex domaind),’s, v =1, 2,..., satisfying
oo

(1.2) D=JD. D,ccDyccD.
v=1

Proof. For (1), we refer to [5]. From the property gftsubharmonicity, (2) is
clear. We prove (3). Lep be ag-subharmonic exhaustion function f@ and U; =
{¢(2) < j}. Note thatU; ' D as j — oco. By Sard’s theorem, we can find a decreas-
ing sequencge;} with lim;_, . ¢; = 0 and two increasing sequencgs}, {bj} with
limj_ o 8 =00, limj_ b; = oo such that for everyj,

(@ U; c Dj:={ze D:uxp(2)+2?/a; < bj};
(b) UjUDj CC Dj+1;
(c) eachD; has smooth boundary. ]

Even though the domain is not pseudoconvex, we have thewioip Donnely-
Fefferman type theorem [3] for the-equation ong-pseudoconvex domains.

Theorem 1.5. Let D be a g-pseudoconvex domain @ and lety be a given
g-subharmonic function in DLet ¥ € C?(D) be strictly plurisubharmonic and-e*
be also g-subharmonicLet 0 < ¢ < 1. Then for everyd-closed (0, r)-form g, q <
r <n, there is a solution u of the equatioiu = g such that

2—ptey +eyr
a3 [urervave gt 35 [ vigugue v av,

|K|=r—1 j,k
whenever the right had side dfL.3) is bounded Here (1) = () L.

If ¥ has the form,y = —log(—v), wherev is a negativeq-subharmonic function
in D, then—e¥ is g-subharmonic. This is the typical example that satisfiesate
sumption onyr of Theorem 1.5. Note thate ¥ is g-subharmonic means that

(L1.4) Y'Y vi@vi@akac s Y. Y vi@aik Ak

IKi=g-1 j.k IKl=g-1 j.k

for every (0,g)-form a= Z/N\:q aydz’ in D. In fact, (1.4) holds for any (@), r > q
forms in D, sinceqg-subharmonicity implies -subharmonicity.
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This kind of L? existence and estimate for tfleequation have been thoroughly
studied on strictly pseudoconvex domains by Donnely-Feféa [3] and on general
pseudoconvex domains by Berndtsson [1] and Btocki [2]. Al in order to prove
the estimate like Blocki [2], pluggings = v /¢ into (1.3), we obtain the following

20—ty k +
fDIUIe‘”* dV<(1_8)2 - Z Z/W ik Gk dV,

|Kl=r=1 j,k

whenevery is strictly plurisubharmonic and-e v/ is g-subharmonic inD.

We end this section stating an approximation theorematatosed forms as one
application of Theorem 1.5. In particular, B is 1-pseudoconvex, i.e., pseudoconvex,
then this corollary corresponds to the approximation fotommrphic functions in
L2-norm.

Corollary 1.6. Let D be a g-pseudoconvex domain@i and h a continuous g-
subharmonic function in D Assume that K= {z € D: h(z) < 0} cc D. If 3-closed
(O,r)-form f, r > q— 1 is smooth in a neighborhood of ,kthen for eachs > 0, there
is a 9-closed(0, r)-form g whose coefficients are in?(D) and satisfying

I f—gsllLew) < 8.

2. Bochner identity

In this section we first prove the following Bochner identity differential forms:
for any C? real valued functionp and smooth (O;)-form o = >’ . @3 dZ’, we have

Z Z 82, (OlJKOlee ‘)

|Kl=r=1 j,k

—— - ’ _
(2.5) = —2Rele, 0 ,0)e ¥+ Y D gjiajk ke
K= —1 ]k

* 3 L[ @) @iande + 6o Eae ]

IKj=r—1 j,k

Here ( , ) be an inner product induced by a standard Hermitian metri€"irand this
inner product can be naturally extended to differentialer Also, hereﬁz denotes

the formal adjoint ofd-operator inL?(e ¥) and for C* function v, ;v and fv is
defined by

— av
8jU:—_
)

d
, v =€ —(e"").
j 9Z]
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Note that the following two equalities hold:
’ n / n
do = Z ZBjadeJ, 8;0(:— Z ZS‘foziK dz¥
[Jj=r j=1 IKl=r—1 j=1

for smooth (Or)-form « = Y, @3 dZ’. Then (2.5) can be easily obtained by the
direct calculation of the left hand side of (2.5). Let|? = («, ). Then, since

n
|a|?e ¢ = Z/ Z|5Ja3|2e**” - Z/ Z(gkdeigjakUeﬂﬁ

J=r j=1 IKl=r—1 j,k

and

(2.6) Talfe?= 3 S (5faj, sfok)e *,
IKl=r -1 .k

we can rewrite (2.5) as

’ 92 _ _y
) Zazj—agk(aJKakKe )

IK|=r=1 j.k
— B ’ -
2.7) = —2Rel, ,e)e “+ Y Y gjoikaxe
IK|=r—1 j,k
, n
+ 3> jayPet — [dal’e + (3 al’e Y.
[J=r j=1

The Bochner identity (2.7) for smooth (0, 1)-forms can benfbun [1].
Next, multiplying both sides of (2.7) by a smooth functian and integrating it
over D, we obtain the following Bochner-Kodaira identity.

Lemma 2.1. Let Q be a bounded domain i@" with smooth boundary angd its
defining function of2. If w, ¢ € C*(Q), « € Cf,,(2) N Dom(@"), i.e, « is a (0, r)-
form (1 <r < n) which is smooth up to the boundary and satisfies aRdeumann
boundary conditions on ®,

n
D pj-ajk =0 on b foral K,
=1
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then we have
2 Re/ w(%:a, a)e™ +/ w|da|?e™ —/ w|§;a|ze_‘”
Q Q Q

= ' =Y v (VL ef‘p_ =y (Y1 e7W
(2.8) Z Z[/ﬂ WP jK kK /S;kaO(JKakK }

Kj=r—1 j,k
n
! — ’
) Z/ widjasl2e+ 3 Z/ wpjiejk okk€ .
= j=1 /¢ IK|=r—1 j,k vbe

Here we omitted the standard volume form .dV

In [1], Berndtsson also proved (2.8) for for smooth (0, 1pris «. Though the
proof of Lemma 2.1 is essentially same, for the convenief@eunder, we give a
brief verification.

Proof of Lemma 2.1. From now on, for the simplification of riaa, we will
omit the notationdV. Multiply the left hand side of (2.7) byw. Then we have to
calculate the following integration ovee,

’ 92 _ _
| = Z Z wBZj Bfk(ajKakKe ).

Klzr—1 jk €

We may assume thdbp| = 1 on b2. Then twice integration by parts give

| = Z’ Z_/;Zw“zajK&kKeﬂﬁ*- Z, Z/k;g wjajK&kKeﬂp,OEdS

IKl=r—1 j.k IKl=r—1 j.k

+ Z/ Z/bg wik(ajkakke€ ?)p; dS

Kl=r—1 jk

where dS is the volume measure diQ. Because of thé)-Neumann boundary con-
ditions, the second integration of the right hand side of dbeve equality vanishes.
Hence we have to evaluate the third integration of the rigimidhside of the above
equality. Again, by thed-Neumann boundary conditions, we have, laf

ng(am&kKef‘”)pi = Z[(gkajK)&kK97¢ +ajk Ok(akke )] pj
ik ik

= Z(gkajK)&kKe_(ppj-
.k

(2.9)

Since Y ., akk dk is tangential tob2 and for all indicesk, ZTzl pj -ajk =0 onbe,
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we have for all indiceK,
O:Z&ngk Zaijj
k i

or equivalently, onb$2

(2.10) Z&kK(gkajK)pj == Z K AKK Pjk-
jk jk
Plugging (2.10) into the right hand side of (2.9), we obtain
(2.11) | = Z Z/ Wi jK Ak € ¥ — Z Z/ wpjijk akk € ¥ dS
Klr—1 j,k V€ IKler—1 jk /0%
We also multiply the right hand side of (2.7) by and integrate it ovef2. Combining
this with (2.11), we have (2.8) of Lemma 2.1. O

3. Proof of Donnelly-Fefferman type theorem

Before proving Theorem 1.5 for genergtpseudoconvex domains and general
g-subharmonic functions, we first verify our theorem for a sthty bounded
g-pseudoconvex domaif. Moreover, we assume that, i are smooth up ta, ¥
is positive definite, and-e~¥ is g-subharmonic.

If « satisfies thed-Neumann boundary conditions df2, then we have

(3.12) 2 Ref w(dd, 0, a)e ¥ = 2f wld, al’e —2 Re/ (@ 0, dw sa)e?,
Q Q Q
where the interior multiplicatio®w 1 « is defined by the following manner

ow o = Z, Z%-aﬂ( de

In fact, using (2.6) and integration by parts, we see (3.18t w = €Y. Then us-
ing (1.4), we have

4 —_ _
- X% [ e
Q

Kl=r—-1 jk

(3.13) = Z Z[E/Q‘/fikaJK&kKe(ﬂgw_gz_/szlﬁjlﬁkamo?kl(e“’9"’i|

Kl=r—1 j .k

>¢e(l—¢) Z ZAW]IZ“]KOTKK97¢7£V/-

IKl=r—1 j.k
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Also suppose that is 9-closed in©2. Note that the second integral of the right hand
side of (2.8) vanishes and the first integral and the bounddegral of the left hand
side of (2.8) are non-negative. Now applying Lemma 2.1 with- e~*¥ and using
(3.12), (3.13), we obtain

! —_ —_—) —
(-0 ¥ Y [ viiadioe
IK|ar=1 j,k <
5f|5;a|2e*¢*w+2gf|5;a| |0y saje ¢V
Q Q

2¢ 5 o o e(l—¢) ’ -
v 88 . v
< (1+1_8) /Q|a¢,a| e = > D /ijkaJKakKe ooev,

IKl=r=1 j.k

Here we again use (1.4) for the last integral of the abovemesti. Hence we have
proved that

/ = —p—cW 4 ok 2 —p— ¥
(3.14) > Z/Qw,ka,wme Vs ey ) Bl

IKl=r—1 j.k

for every 9-closed (Oy)-form « which satisfies thed>-Neumann boundary conditions.
Let g be ad-closed (0y) form on Q and assume

gl = > Z/ ¥ kgik GV < oo
Q

IKj=r—1 j.k

Note that since;i) is a positive definite Hermitian matrix, the following hstd

, _ 1 . _
g o)l = 3 lgoasl?== 30 D lgjkaixl?

|J|=r Kl|=r—1 j=1

=

=l

( > ijkngng)( S Zt/fmgm@ux).

IKj=r—1 jk IK[=r—1 j.k

Therefore, by (3.14), we have

/(g, ae”
Q

for every smoothi-closed (0r) form « satisfyingd-Neumann conditions obQ. Now
to solve thed-equation for a giverd-closed (0r) form g, we need the following
Hérmander’sL?-method.

2
(3.15)

4 1 2 =k 12 _p—
< . = 0 S anad
< r||g||1,,/9| ]
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Lemma 3.1. Let 2 be a smoothly bounded domain @' and ¢ a smooth func-
tion in Q. If g is a d-closed(0, r)-form satisfying the inequality

V (9, )™
Q

for all « € CF, (@) N Dom(@@") with 3o = 0, where1/w is an integrable positive func-
tion, then there is a solution u of the equatiém = g such that

2

<c / 3267
Q

/ luPwe™ < C.
Q
Proof. The proof is a slight modification of Hormander's nwethto solve the

3-equation. This can be found in [1]. For the convenience, \we @ brief proof.
For a € Dom(@,) = Dom(@"), define an anti-linear functional

L(§;a):/g(g, aye?.

Forae Cﬁr)(ﬁ)ﬂDom(ﬁ*), decompos@ =« + 8, wherea € Kerd and g e (Kerd)* c
Kergz. By the assumption and the density, we have for anyDom@*),

L(@3,a) < C / 6,a/% ¢ /w.
Q

By the Hahn-Banach theorem and the Riesz representatiareting there is a €
L2(e¥ /w) such that for anya € Dom(@"),

(3.16) /(g, aje™ :/(v,ﬁ;';a)e‘“’/w
Q Q
and the norm of the anti-linear functional satisfies
(3.17) L] =/ lv|?e™¢/w < Cy.
Q

Let u=v/w. Then by (3.16),u is a solution todu = g and (3.17) gives the desired
estimate foru. O

Next, we prove the following Donnelly-Fefferman type thewr for general
g-pseudoconvex domaild and generalb-subharmonic functiorp in D (without the
assumption of smoothness oj.
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Proof of Theorem 1.5. SincP is ag-pseudoconvedomain, we can choose strict-
ly g-pseudoconvex domains, Bvith smooth boundary such that

o
D=(JD,, D,ccDuccD foral v
v=1

Also there is a decreasing sequer{gg,} of smoothg-subharmonic functions which
converges pointwise t@. Now we apply the estimate (3.15) with,, w = e *¥ and
Q = D, for eachv. Then we have for all smooth-closed (0r) form o satisfying
9-Neumann conditions obD,

2
(3.18) ‘/ (g, a)e™®| < CZ/ \5:va|2e“/’"‘8"’,
DV DU

where

C=

|Kl=r=1 j,k

Note that Yw =e¥ is integrable inD,. Applying Lemma 3.1 with (3.18), we see that
there are solutionsl, and corresponding estimates (1.3) for all domdhs Sinceg,
is decreasing, the consta@, is bounded by the quantity of the right hand side of
(1.3) that is independent of. Therefore there is a limit of some subsequence of
{u,} which satisfiessu = g on D and the desired estimate (1.3). O

4. Application to approximation theorem

In this section we prove Corollary 1.6. Lhtbe a continuousj-subharmonic func-
tion in D. Assume thatk ={ze D: h(z) <0} cc D.

Proof. Let f be a givend-closed (0;s) form whose coefficients are ih?(K),
s>q—1 andy(z) = log(l +|z|?). Note that for all 1< j, k <n,

Wz Y _ oz, S
0z 1+|22° 0Zjoz  (1+[z12)2  1+|z?

wheregji is the Kronecker's symbol. It follows thag is strictly plurisubharmonic and
—e ¥ is plurisubharmonic, i.e.g-subharmonic. Lel be an open neighborhood &f
in which f is smooth and-closed. We choose open séisso thatk c U cc V ccC
D and x € C*®(C") vanishing outsideV and satisfyingy =1 onU. Letu=9(x f) =
dx A f ands > 0 be given. Note thati is a 9-closed (0s+ 1)-form in D, s+1>q
whose coefficients are ih?(D). We claim that there is a; such thatdvs = u on D
and |lvsll 2y < 8. Putgs = x f —vs. Note thaty f = f on K. Hence we have

I —gsllLek) = llvsllzky < 8.
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We prove our claim. First, we can choogg> 0 so thath > ¢g on V \ U, sinceh
is continuous and non-negative outside For A > 0 to be determined later, we apply
the main theorem t@ = 1h, ¥ =log(1+|z/%), ande = 1/2. Writeu =}, _,;u;dZ’.
Then there is a;, to dv, = u and satisfying

32 e
/|U)L|2e—)\h+log(1+|z\2)/2 < T Z Z/ w]kquukKe—Ah+Iog(1+\z|2)/2_
D D

IKi=s |,k

Notice that for some consta@y which is independent of, we have

2
Cu [[1usl2 = [ I e vhsreety,
K D

sinceh < 0 on K. On the other hand, since has a support inv \ U, for some
constantCy\y, we have

32 / e — 2
%z Z Z/ PR Tee 804202 < o o,
IKl=s j.k P

Here Cy\y depends only om, ¢ and fixedeo. Hence if we choose large enough so
that CV\U e‘MO/CK < 6, we see thatl)3|L2(K) < 4. O
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