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Abstract
We consider the Noetherian properties of the ring of differential operators of an

affine semigroup algebra. First we show that it is always right Noetherian. Next we
give a condition, based on the data of the difference betweenthe semigroup and its
scored closure, for the ring of differential operators being anti-isomorphic to another
ring of differential operators. Using this, we prove that the ring of differential
operators is left Noetherian if the condition is satisfied. Moreover we give some
other conditions for the ring of differential operators being left Noetherian. Finally
we conjecture necessary and sufficient conditions for the ring of differential operators
being left Noetherian.

1. Introduction

Let K be an algebraically closed field of characteristic zero. LetD(R) be the ring
of differential operators of a finitely generated commutative K -algebraR as defined by
Grothendieck [11]. We study the Noetherian properties ofD(R) when R is an affine
semigroup algebra.

It is well known that, if R is a regular domain, thenD(R) is Noetherian, and the
category of leftD(R)-modules and that of rightD(R)-modules are equivalent (see for
example [3], [16]). Bernstein-Gel’fand-Gel’fand [2] showed thatD(R) is not Noether-
ian in general if we do not assume the regularity. However,D(R) is known to be
Noetherian for some families of interesting algebras; Muhasky [17] and Smith-Stafford
[29] independently proved thatD(R) is Noetherian ifR is an integral domain of Krull
dimension one. Tripp [31] proved that the ringD(K [1]) of differential operators of
the Stanley-Reisner ringK [1] is right Noetherian, and gave a necessary and sufficient
condition for D(K [1]) to be left Noetherian.

Let A := fa1, a2, : : : , ang � Zd be a finite subset. We denote byNA the monoid gen-
erated byA, and by K [NA] its semigroup algebra. We consider the ringD(K [NA])
of differential operators ofK [NA]. We saw in [25, 26] that the algebraD(K [NA])
is strongly related toA-hypergeometric systems (also known as GKZ hypergeometric
systems), defined in [15] and [13], and systematically studied by Gel’fand and his
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collaborators (e.g. [7, 8, 9, 10]). The ringD(K [NA]) was studied thoroughly when
the affine semigroup algebraK [NA] is normal (e.g. [14] and [18, 20]). In particu-
lar, Jones [14] and Musson [20] independently proved thatD(K [NA]) is a Noether-
ian finitely generatedK -algebra whenK [NA] is normal. Traves and the first author
[26, 27] proved thatD(K [NA]) is a finitely generatedK -algebra in general, and that
D(K [NA]) is Noetherian if the semigroupNA is scored. The scoredness means that
K [NA] satisfies Serre’s (S2) condition and it is geometrically unibranched. The ques-
tion of Morita equivalence betweenD(K [NA]) for a scoredK [NA] and that for its
normalization was studied in Smith-Stafford [29], Chamarie-Stafford [6], Hart-Smith
[12], and Ben Zvi-Nevins [1].

Generally speaking,D(R) is more apt to be right Noetherian than to be left Noether-
ian, and a prime of height more than one is often an obstacle for the left Noetherian
property ofD(R) (see for example [5], [19], [29], and [31]). We observe thisphenom-
enon as well.

As in [29], by using Robson’s lemma (Lemma 5.1), we prove thatD(K [NA]) is
right Noetherian (Theorem 5.10) for anyA. To state conditions for the left Noetherian
property, we need to introduce the standard expression of a semigroupNA; let Sc(NA)
be thescored closureof NA, the smallest scored semigroup containingNA (see 6.4).
There existb1, : : : , bm 2 Sc(NA) and faces�1, : : : , �m of R�0A, the cone generated
by A, such that

(1.1) NA = Sc(NA) n m[
i =1

(bi + Z(A\ �i )).

Assuming that the expression (1.1) is irredundant, we see that the setfbi +Z(A\�i ): i =
1, : : : , mg is unique, and we call the expression (1.1) thestandard expressionof NA.

One way to prove the left Noetherian property is to show the correspondence be-
tween left ideals and right ideals, and then to use the right Noetherian property. To
show the correspondence, we define a setB based on the standard expression (see (6.1)
for the definition ofB), and, whenB 6= ;, we consider a rightD(K [NA])-module
K [!(NA)], an analogue of the canonical module. Then we see that the category of
left D(K [NA])-modules and that of rightD(K [!(NA)])-modules are equivalent (The-
orem 6.11), and hence we derive the left Noetherian propertyof D(K [NA]) from the
right Noetherian property ofD(K [!(NA)]) (Theorem 6.12). (For this reason and an-
other technical reason, we prove the right Noetherian property not only of D(K [NA])
but of a little more general algebras.) In this way, for example, we see thatD(K [NA])
is left Noetherian ifK [NA] satisfies Serre’s (S2) condition.

Another way to prove the left Noetherian property is the way similar to the one
used for showing the right Noetherian property. As in [29, Proposition 7.3], a suffi-
cient condition for the left Noetherian property is given inthis way (Theorem 7.3).
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Finally we conjecture thatD(K [NA]) is left Noetherian if and only if for alli
with codim�i > 1  \

� j��i ,bi�b j2K � j , codim� j =1

� j

!
= �i .

When this condition is not satisfied, we construct a left ideal of D(K [NA]) which is
not finitely generated (Theorem 7.8).

This paper is organized as follows. In Section 2, we recall some fundamental facts
about the rings of differential operators of semigroup algebras, and fix some notation.
In Section 3, we recall the results on the finite generation in[26, 27], and general-
ize them suitably for our proof of the right Noetherian property. In Section 4, we
introduce preorders, which indicate theD-module structures ofK [t�1

1 , : : : , t�1
d ]. In

Section 5, we prove the right Noetherian property. In Section 6, we consider the cor-
respondence between leftD-modules and rightD-modules. In Section 7, we consider
the left Noetherian property; we give a sufficient conditionin Subsection 7.1 and a
necessary condition in Subsection 7.2.

2. Rings of differential operators

In this section, we briefly recall some fundamental facts about the rings of differ-
ential operators of semigroup algebras, and fix some notation.

Let K be an algebraically closed field of characteristic zero, andR a commuta-
tive K -algebra. ForR-modulesM and N, we inductively define the space ofK -linear
differential operators fromM to N of order at mostk by

Dk(M, N) := fP 2 HomK (M, N) : Pr � r P 2 Dk�1(M, N) for all r 2 Rg.
Set D(M, N) :=

S1
k=0 Dk(M, N), and D(M) := D(M, M). Then, by the natural com-

position, D(M) is a K -algebra, andD(M, N) is a (D(N), D(M))-bimodule. We call
D(M) the ring of differential operatorsof M. For the generalities of the ring of dif-
ferential operators, see [11], [16], [30], etc.

Let

(2.1) A := fa1, a2, : : : , ang
be a finite set of vectors inZd. Sometimes we identifyA with the matrix of column
vectors (a1, a2, : : : , an). Let NA andZA denote the monoid and the group generated by
A, respectively. Throughout this paper, we assume thatZA = Zd for simplicity. We
also assume that the coneR�0A generated byA is strongly convex.

The (semi)group algebra ofZd is the Laurent polynomial ringK [Zd] = K [t�1
1 , : : : ,

t�1
d ]. Its ring of differential operators is the ring of differential operators with Laurent
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polynomial coefficients

D(K [Zd]) = K [t�1
1 , : : : , t�1

d ]h�1, : : : , �di,
where [�i , t j ] = Æi j , [�i , t

�1
j ] = �Æi j t

�2
j , and the other pairs of generators commute. Here

[ , ] denotes the commutator, andÆi j is 1 if i = j and 0 otherwise.
The semigroup algebraK [NA] =

L
a2NA Kta is the ring of regular functions on

the affine toric variety defined byA, where ta = ta1
1 ta2

2 � � � tad
d for a = t (a1, a2, : : : , ad),

the transpose of the row vector (a1, : : : , ad). We say thatS � Zd is an NA-set if
S + NA � S. Then K [S] :=

L
a2S Kta is a K [NA]-module. Let S, S0 � Zd be NA-

sets. Throughout this paper, we simply writeD(S, S0) and D(S) for D(K [S], K [S0])
and D(K [S]), respectively. ThenD(S, S0) can be realized as a submodule of the ring
D(Zd) = D(K [Zd]) as follows:

D(S, S0) = fP 2 D(Zd) : P(K [S]) � K [S0]g.
(See [4, p. 31], [17, Proposition 1.10], and [29, Lemma 2.7].)

Put sj := t j � j for j = 1, 2,: : : , d. We introduce aZd-grading on the ringD(Zd)
as follows: Fora = t (a1, a2, : : : , ad) 2 Zd, set

D(Zd)a := fP 2 D(Zd) : [sj , P] = a j P for j = 1, 2,: : : , dg.
Then the algebraD(Zd) is Zd-graded;D(Zd) =

L
a2Zd D(Zd)a. Let S, S0 � Zd be NA-

sets. Fora 2 Zd, set D(S, S0)a := D(S, S0) \ D(Zd)a and D(S)a := D(S) \ D(Zd)a.
Then D(S) =

L
a2Zd D(S)a is a Zd-graded algebra, andD(S, S0) =

L
a2Zd D(S, S0)a is

a Zd-graded (D(S0), D(S))-bimodule. We can describeD(S, S0)a explicitly as in [18,
Theorem 2.3]. Fora 2 Zd, we define a subset�S,S0(a) of Zd by

�S,S0(a) = fd 2 S: d + a =2 S0g = Sn (�a + S0).
We simply write�S(a) for �S,S(a). We regard the set�S,S0(a) as a subset inK d.

Proposition 2.1.

D(S, S0)a = taI(�S,S0(a)),

where

I(�S,S0(a)) := f f (s) 2 K [s] := K [s1, : : : , sd] : f vanishes on�S,S0(a)g.
3. Finite generation

In [26] and [27], we proved thatD(NA) is finitely generated as aK -algebra, and
that Gr(D(NA)) is Noetherian ifNA is scored, where Gr(D(NA)) is the graded ring
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associated with the order filtration ofD(NA). In Section 5, we prove thatD(NA) is
right Noetherian (Theorem 5.10) for anyA, by using Robson’s lemma (Lemma 5.1).
To this end, we need to generalize the results in [26] and [27]in a wider situation.
This section is devoted to this purpose.

Let us recall the primitive integral support function of a facet (face of codimension
one) of the coneR�0A. We denote byF the set of facets of the coneR�0A. Given� 2 F, we denote byF� the primitive integral support functionof �, i.e., F� is a
uniquely determined linear form onRd satisfying
(1) F� (R�0A) � 0,
(2) F� (� ) = 0,
(3) F� (Zd) = Z.

REMARK 3.1. Let � 2 F. By the definition ofF� , there existsm 2 N such that
F� (NA) �m+N. Accordingly, for anNA-set S, there existsm 2 N such thatF� (S) �
m + N.

Let Sc be a scoredNA-set, i.e., by definition,

Sc =
\
�2Ffa 2 Zd : F� (a) 2 F� (Sc)g.

Lemma 3.2. Let Sc be a scoredNA-set. Then Sc is a finitely generatedNA-set
if and only if F� (Sc) is a finitely generated F� (NA)-set for each facet�.

Proof. The only-if direction is obvious.
Suppose thatF� (Sc) is a finitely generatedF� (NA)-set for each facet�. Let M� :=

max(N n F� (Sc)) (cf. Remark 3.1), andF� (Sc)+ := fm 2 F� (Sc): m< M� g [ f1g. Then
F� (Sc)+ is a finite set. For a map� which assigns a facet� to an element ofF� (Sc)+,
we define a subsetSc(�) of Sc by

Sc(�) = fa 2 Sc : F� (a) = �(� ) for all facets� g.
Here we agree thatF� (a) =1 meansF� (a) � M� +1. ThenSc =

S� Sc(�). We also set

Sc(�)R = fa 2 Rd : F� (a) = �(� ) for all facets� g.
Since Sc is scored,Sc(�) = Sc(�)R \ Zd.

For each ray (1-dimensional face)� of R�0A, fix d� 2 NA\ �. Set

F(�) = fd� : � � � for all facets� with �(� ) 6=1g.
Since any strongly convex cone is generated by its 1-dimensional faces,�

a 2 Rd :
F� (a) = 0 for all facets� with �(� ) 6=1,
F� (a) � 0 for all facets� with �(� ) =1

�
= R�0F(�).
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HenceR�0F(�) is the characteristic cone ofSc(�)R, and there exists a polytopeP(�)
such thatSc(�)R = P(�)+R�0F(�) (see [28,§8.9]). Clearly there exists a finite setG(�)
such thatR�0F(�) \ Zd = G(�) +

P
d�2F(�) Nd� . Thus Sc(�) is generated by (P(�) \

Zd) [ G(�) as anNF(�)-set. ThereforeSc is finitely generated as anNA-set.

Let Sc be a scored finitely generatedNA-set. Letb1, : : : , bm 2 Sc, and let�1, : : : , �m

be faces ofR�0A. Let

(3.1) S := Sc n m[
i =1

(bi + Z(A\ �i ))

satisfy F� (S) = F� (Sc) for all facets�. We say thatSc is the scored closureof S. We
assume that the expression (3.1) is irredundant. Thenfbi + Z(A\ �i ) : i = 1, : : : , mg is
unique, and we call (3.1) thestandard expressionof S. We do not assume thatS is
an NA-set, unless we state the contrary. In the remainder of this section and the next
section, Sc and S are fixed as above.

We define a ring of differential operators by

D(S) := fP 2 D(Zd) : P(K [S]) � K [S]g.
First we consider theZd-graded structure ofD(S). Put D(S)a := D(S) \ D(Zd)a.

Similarly to Proposition 2.1, we can write

D(S) =
M
a2Zd

D(S)a, D(S)a = taI(�S(a)),

where�S(a) = Sn (�a + S).

Proposition 3.3. Let ZC stand for Zariski closure in Kd. We regard F� as a
linear map from Kd to K.
(1)

ZC(�Sc(d)) =
[
�2F

[
k2F� (Sc)n(�F� (d)+F� (Sc))

F�1� (k).

(2)

ZC(�S(d)) = ZC(�Sc(d)) [ [
bi�d2S+Z(A\�i )

(bi � d + K �i ).

In particular, D(S) is a subalgebra of D(Sc).

Proof. (1) is easy, and (2) follows from Lemma 3.5 below. See also [27, Propo-
sition 5.1].
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Fix M 2 N so that

(3.2) M > maxF� (Sc)
c [ fF� (bi ) : i g �min F� (Sc) [ fF� (bi ) : i g for all facets � ,

where F� (Sc)c = Z n F� (Sc). Then, for N � M,

N + F� (Sc) � F� (Sc) for all facets � .

For a face� , put

Æ Æ
N(A\ � ) := fa 2 N(A\ � ) : F� (a) � M for all � 2 F with � 6� � g.

Lemma 3.4. Let � be a face ofR�0A. Then

S+
Æ Æ

N(A\ � ) � S.

Proof. SinceSc is anNA-set, S+N(A\ � ) � Sc. Let a2 Æ Æ
N(A\ � ), and letb2 S.

It remains to show thatb + a =2 b j + Z(A\ � j ) for any j . If � j 6� � , then there exists a
facet � such that� � � j and � 6� � . For such�,

F� (a + b) � M + min F� (Sc) > F� (b j ).

Hencea + b =2 b j + Z(A\ � j ).
If � j � � , then a + b =2 b j + Z(A\ � j ) sinceb =2 b j + Z(A\ � j ).

Lemma 3.5.

(d + S) \ Sc \ (bi + Z(A\ �i )) 6= ; , bi � d 2 S+ Z(A\ �i ).

Proof. The implication) is obvious.
For the implication(, let a2 S and d+a2 bi +Z(A\�i ). For � 2 F with � � �i ,

F� (d + a) = F� (bi ) 2 F� (Sc).

If � 6� �i , then there existsa� 2 Æ Æ
N(A\ �i ) such thatF� (d + a + a� ) 2 F� (Sc). By

Lemma 3.4,a +
P� 6��i

a� 2 S. Henced + a +
P� 6��i

a� belongs to the set in the left
hand side.

By Proposition 3.3,I(�Sc(d)) = hpdi, where

(3.3) pd(s) =
Y
�

Y
k2F� (Sc)n(�F� (d)+F� (Sc))

(F� (s)� k).
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Theorem 3.6. Let Gr(D(Sc)) denote the graded ring associated with the order
filtration of D(Sc). Then the following hold:
(1) Gr(D(Sc)) is finitely generated as a K-algebra. D(Sc) is left and right Noetherian.
(2) D(S) is finitely generated as a K-algebra.
(3) D(Sc) is finitely generated as a right D(S)-module.

Proof. For (1) and (2), the argument in [27, Sections 5 and 6] works with the
new M (3.2) in place of the oldM [27, (5)]. In [27], we did the argument when
Sc = R�0A\ Zd.

For (3), we briefly recall some notation from [27]. For a ray� of the arrange-
ment determined byA, i.e. R� is the intersection of some hyperplanes (F� = 0), take
a nonzero vectord� from Zd \ � satisfying the conditions:

(3.4)
F� (d�) � M if F� (d�) > 0,

F� (d�) � �M if F� (d�) < 0,

and

(3.5) d� 2 Z(A\ � ) \ � for all faces � of R�0A satisfying R� � �.

Let � be a map fromF to a set

M̃ := f�1g [ f+1g [ fm 2 Z : jmj < Mg.
Define a subsetSc(�) of Zd by

(3.6) Sc(�) := fd 2 Zd : F� (d) = �(� ) for all � 2 Fg,
where we agree thatF� (d) = +1 (�1, respectively) meanF� (d) � M (� �M,
respectively). We also define

(3.7) F(�)R :=
\
�2F

8><
>:d 2 Rd :

F� (d) = 0 if �(� ) 6= �1,
F� (d) � 0 if �(� ) = +1,
F� (d) � 0 if �(� ) = �1

9>=
>;,

In the case of (3), ford1 2 Sc(�) and � � F(�)R, the deficiency ideal (cf. [27,
Definition 5.4]) is the same as in the case of (2), i.e.,

D(Sc)d1 � D(S)d� = D(Sc)d1+d� � I
0
� [

bi�d�2S+Z(A\�i )

(bi � d� + K (A\ �i ))

1
A.

Hence the same argument in the proof of [27, Theorem 5.14] works as well.
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4. Partial preorders

In this section, we keep situation (3.1), and introduce preorders, which indicate
the D(S)-submodule structure ofK [Zd] = K [t�1

1 , : : : , t�1
d ].

For an idealI of K [s] and a vectorc 2 K d, we define a new idealI + c by

I + c := f f (s� c) : f (s) 2 I g.
The following lemma is immediate from the definition.

Lemma 4.1. For a subset V of Kd and a pointa2 K d, let I(V) denote the ideal
of polynomials vanishing on V, and ma := I(fag) the maximal ideal ata. Then the
following hold:
(1) I(V) + c = I(V + c).
(2) ma + (b� a) = mb.
(3) If p is prime, then so isp + c.

Let p be a prime ideal ofK [s]. In the setfp + a: a 2 Zdg, we define�S by

(4.1) p �S p + a
def., I(�S(a)) 6� p.

REMARK 4.2. WhenS = NA, ma �S mb if and only if a � b in the sense of
[26], which was also considered in [21].

Lemma 4.3. �S is a partial preorder.

Proof. First, sinceI(�S(0)) = (1) 6� p, we havep �S p.
Second, letp �S p + a and p + a �S p + a + b. Then we haveI(�S(a)) 6� p and

I(�S(b)) 6� p+a. The latter is equivalent toI(�S(b)�a) 6� p. Sincep is prime, we have

I(�(a))I(�(b)� a) 6� p.

From the inclusionD(S)bD(S)a � D(S)a+b, we obtain

I(�S(a))I(�S(b)� a) � I(�S(a + b)).

Hence we have

I(�S(a + b)) 6� p,

or equivalently

p �S p + a + b.
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Lemma 4.4. Let � 2 K d, and let a 2 Zd. Then I(� ) + � �S I(� ) + � + a if and
only if, for all facets� � � , F� (�) 2 F� (Sc) implies F� (� + a) 2 F� (Sc), and, for all
faces�i � � , � + a� bi 2 K �i implies bi � a =2 S+ Z(A\ �i ).

Proof. By definition, I(� ) + � �S I(� ) + � + a means ZC(�S(a)) 6� � + K � . By
Proposition 3.3, the latter condition means that, for all facets� � � , F� (�) 2 F� (Sc)
implies F� (� + a) 2 F� (Sc), and, for all faces�i � � , � + a� bi 2 K �i implies bi � a =2
S+ Z(A\ �i ).

For � 2 K d and a face� , set

(4.2) E(S)� (�) := f� 2 K �=Z(A\ � ) : �� � 2 S+ Z(A\ � )g.
Define another partial preorder�S,� by

(4.3) � �S,� � def., E(S)� 0(�) � E(S)� 0(�) for all faces � 0 with � 0 � � .

We denote by� �S,� � if � �S,� � and � �S,� �, or equivalently, if

E(S)� 0(�) = E(S)� 0(�) for all faces � 0 with � 0 � � .

When S = NA, the setE(S)� (�) was considered in [24]. As in the case when
S = NA, we have the following lemma.

Lemma 4.5. (1) E(S)� (�) is a finite set.
(2) E(S)R�0 A(�) = f� modZdg.
(3) For a facet� 2 F, E(S)� (�) 6= ; if and only if F� (�) 2 F� (S) = F� (Sc).

Proof. The proofs are the same as in the case whenS = NA. See [24, Proposi-
tions 2.2 and 2.3].

By Lemma 4.5 (2),� + Zd = � + Zd if � �S,� �.

Lemma 4.6. For any � 2 K d, � + Zd has only finitely many equivalence classes
with respect to�S,� .

Proof. Let� 2 �+Zd. If there exists� 2 K � 0 such that��� 2 Zd, then��� 2
Zd, and E(S)� 0(�) and E(S)� 0(�) are contained in the finite set�+Q(� 0\Zd)=Z(A\� 0).
If there exists no such� 2 K � 0, then E(S)� 0(�) and E(S)� 0(�) are empty. Hence the
number of equivalence classes is finite.
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Next we compare two preorders�S and�S,� . By Lemmas 4.4 and 4.5,

(4.4)

I(� ) + � �S I(� ) + � + a

, �
for all facets � � � , E(S)� (�) 6= ; ) E(S)� (� + a) 6= ;,
for all faces �i � � , � + a� bi =2 E(S)�i (�).

Note that� + a� bi =2 E(S)�i (� + a) is automatic.
Hence we have proved the following proposition.

Proposition 4.7.

� �S,� �) I(� ) + � �S I(� ) + �.

We denote byI(� ) + � �S I(� ) + � if I(� ) + � �S I(� ) + � and I(� ) + � �S I(� ) + �.

Corollary 4.8.

� �S,� �) I(� ) + � �S I(� ) + �.

Similarly to [27, Lemma 3.6], the following holds.

Lemma 4.9.

S+ Z(A\ � ) = [Sc + Z(A\ � )] n[�i��(bi + Z(A\ �i )).

Lemma 4.10.

Sc + Z(A\ � ) = fa 2 Zd : F� (a) 2 F� (S) = F� (Sc) for all facets� � � g
= fa 2 Zd : E(S)� (a) 6= ; for all facets� � � g.

Proof. This is immediate from the definitions and Lemma 4.5.

Theorem 4.11.

� �S,� �, I(� ) + � �S I(� ) + �.

Proof. It is left to prove the implication(. We suppose thatI(� )+� �S I(� )+�+
a. Hence we suppose the two conditions in (4.4). We show thatE(S)� 0(�)� E(S)� 0(�+
a) for all � 0 � � . We assume the contrary; we suppose that� 2 E(S)� 0(�)nE(S)� 0(�+a).
Then we have

� 2 K � 0,(4.5)

�� � 2 S+ Z(A\ � 0),(4.6)

� + a� � =2 S+ Z(A\ � 0).(4.7)
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By (4.5) and (4.6),F� (�) 2 F� (Sc) for all � � � 0. Then by (4.5) and the first condition
of (4.4) F� (�+a��) = F� (�+a) 2 F� (Sc) for all � � � 0. Then by (4.7) and Lemma 4.9
there exists�i � � 0 such that� + a� � 2 bi + Z(A\ �i ). Hence� + a� bi + Z(A\ �i ) =� + Z(A\ �i ) 2 E(S)�i (�). This contradicts the second condition of (4.4).

5. Right Noetherian property

In this section, we assume thatS0 is a scored finitely generatedNA-set, that the
expressionSm = S0 n Sm

i =1(bi + Z(A \ �i )) with all bi 2 S0 is irredundant, and that
F� (Sm) = F� (S0) for all facets�. In the notation in (3.1),S0 = Sc and Sm = S. We
prove thatD(Sm) is right Noetherian by the induction onm.

Let

D(S0, Sm) := fP 2 D(Zd) : P(K [S0]) � K [Sm]g,
and for a 2 Zd let

D(S0, Sm)a := D(S0, Sm) \ D(Zd)a.

Then D(S0, Sm) is a right ideal ofD(S0), and a left ideal ofD(Sm). We have

(5.1) D(S0, Sm)a = taI(�S0,Sm(a)), �S0,Sm(a) = S0 n (�a + Sm),

and

(5.2) ZC(�S0,Sm(a)) = ZC(�S0(a)) [ [
bi�a2S0+Z(A\�i );1�i�m

(bi � a + K �i ).

We use the following Robson’s lemma to prove the right Noetherian property of
D(Sm).

Lemma 5.1 (Proposition 2.3 in [23]). Let A be a right ideal of a right Noether-
ian ring S. Let R be a subring of S containing A. Suppose that S is finitely generated
as a right R-module, and that S=A is a right Noetherian R-module. Then the ring R
is right Noetherian.

By Lemma 5.1 and Theorem 3.6, we only need to show thatD(S0)=D(S0, Sm) is
a Noetherian rightD(Sm)-module.

Let k � m, and let Sk = S0 n Sk
i =1(bi + Z(A \ �i )). Since we know, by Theo-

rem 3.6, thatD(S0) is right Noetherian, and thatD(S0) is a finitely generated right
D(Sk)-module, the sequence of right ideals ofD(S0)

(5.3) D(S0, Sm) � D(S0, Sm�1) � � � � � D(S0, S1) � D(S0)

is a sequence of finitely generated rightD(Sk)-modules.
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Set

(5.4) Mk := D(S0, Sk�1)=D(S0, Sk).

We want to show that eachMk is a Noetherian rightD(Sm)-module.

Lemma 5.2.

I(�S0,Sk(a)) = hpai � \
bi�a2S0+Z(A\�i );i�k

I(bi � a + �i ).

Proof. By (3.3) and (5.2),

I(�S0,Sk(a)) = hpai \ \
bi�a2S0+Z(A\�i );i�k

I(bi � a + �i ).

Suppose thatbi �a 2 S0 +Z(A\ �i ). If bi �a+ K �i � ZC(�S0(a)), then there exists
a facet� � �i such thatF� (bi � a) 2 F� (S0) n (�F� (a) + F� (S0)). This contradicts the
fact that F� (bi ) 2 F� (S0). Hence pa =2 I(bi � a + �i ). If f pa 2 Ti I(bi � a + �i ), then
f 2Ti I(bi �a+�i ) sinceI(bi �a+�i ) is prime. We have thus proved the assertion.

Corollary 5.3. If (Mk)a 6= 0, then bk � a 2 S0 + Z(A \ �k), or equivalently, if
(Mk)bk�a 6= 0, then a 2 S0 + Z(A\ �k).

Proof. This is immediate from Lemma 5.2 and the definition ofMk (5.4).

Lemma 5.4. If (Mk)bk�aD(Sm)c 6= 0, then a� c�Sm,�k a.

Proof. We have

(5.5)

a� c 6�Sm,�k a

, I(�k) + a� c 6�Sm I(�k) + a

, I(�Sm(c)) � I(�k + a� c)

) (Mk)bk�aD(Sm)c = 0.

Here the first equivalence is by Theorem 4.11; the second is bythe definition of�Sm

(4.1). For the implication (5.5), letX 2 D(S0, Sk�1)bk�a and tc f (s) 2 D(Sm)c. SinceMk

is a right D(Sm)-module, Xtc f (s) 2 tbk�a+cI(�S0,Sk�1(bk�a+c)). Since f (s) 2 I(�Sm(c)),
we have f (s) 2 I(�k + a� c). Hence by Lemma 5.2

Xtc f (s) 2 tbk�a+cI(�S0,Sk�1(bk � a + c)) \ I(�k + a� c) � tbk�a+cI(�S0,Sk(bk � a + c)).

Thus the implication (5.5) holds.
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The following proposition is immediate from Lemma 5.4.

Proposition 5.5. Let C be a set of equivalence classes in S0 + Z(A \ �k) with
respect to�Sm,�k such thatd �Sm,�k c and c 2 C imply d 2 C.

Then
L

c2C(Mk)bk�c is a right D(Sm)-submodule of Mk =
L

c2S0+Z(A\�k)(Mk)bk�c.

For 1� k � m, set

(5.6) Šk := S0 n [
1�i�m;i 6= k

(bi + Z(A\ �i )).

Then D(Šk) is a K -subalgebra ofD(S0) (Proposition 3.3), and we may assume that
D(Šk) is right Noetherian by the induction. SinceMk is a Noetherian rightD(S0)-
module, andD(S0) is finitely generated as a rightD(Šk)-module by Theorem 3.6,Mk

is a Noetherian rightD(Šk)-module.
The following lemma relates the Noetherian property as a right D(Šk)-module to

that as a rightD(Sm)-module.

Lemma 5.6. Let C1�C2� bk�S0+Z(A\�k), and suppose that Ni :=
L

a2Ci
(Mk)a

(i = 1, 2) are right D(Sm)-submodules of Mk. If, for any a, a+ c 2 C2 nC1, X 2 (Mk)a,
and P 2 D(Šk)c, there exists Q2 D(Sm)c such that X.Q = X.P, then N2=N1 is a
NoetherianZd-graded right D(Sm)-module.

Proof. LetN be aZd-graded rightD(Sm)-submodule ofMk with N1 � N � N2. Put

Ñ :=

0
� M

a2C2nC1

Na

1
AD(Šk).

Then Ñ is a right D(Šk)-submodule ofMk. By the assumption,Ña = Na for all a 2
C2nC1. Hence (Ñ\N2 + N1)=N1 = N=N1. Therefore the Noetherian property ofMk as
a right D(Šk)-module implies that ofN2=N1 as aZd-graded rightD(Sm)-module.

Replacinga by bk � a in Lemma 5.6, we have the following corollary.

Corollary 5.7. Let C be an equivalence class in S0 + Z(A \ �k) with respect to�Sm,�k , and let d 2 C. If, for any a, a� c 2 C, X 2 (Mk)bk�a, and P2 D(Šk)c, there
exists Q2 D(Sm)c such that X.Q = X.P, then

M
a0�Sm,�k d

(Mk)bk�a0
, M

a0�Sm,�k d

(Mk)bk�a0
is a NoetherianZd-graded right D(Sm)-module, where�Sm,�k means�Sm,�k and 6�Sm,�k .
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Proposition 5.8. For each equivalence class C in S0 + Z(A\ �k) with respect to�Sm,�k , the assumption inCorollary 5.7 is satisfied.

Proof. Similarly to Lemma 5.2, we see

I(�Sm(c)) = hpci � I
0
� [

bi�c2Sm+Z(A\�i )

(bi � c + �i )

1
A,

I(�Šk
(c)) = hpci � I

0
� [

bi�c2Šk+Z(A\�i );i 6= k

(bi � c + �i )

1
A.

Since Sm � Šk, bi � c 2 Sm + Z(A \ �i ) implies bi � c 2 Šk + Z(A \ �i ). Hence,
if bk � c =2 Sm + Z(A \ �k), then I(�Šk

(c)) � I(�Sm(c)), i.e., D(Šk)c � D(Sm)c, and we
have nothing to prove.

Suppose thatbk � c 2 Sm + Z(A \ �k). Let f 2 I
�S

bi�c2Šk+Z(A\�i );i 6= k(bi � c + �i )
�
.

If f 2 I(bk � c + �k), then pc f 2 I(�Sm(c)), and again we have nothing to prove.
Let f =2 I(bk � c + �k). Let X 2 (Mk)bk�a. Suppose thatbk � a =2 K �k. Then there

exists a facet� � �k such thatF� (bk� a) 6= 0. SinceF� (s)� F� (bk� c) 2 I(bk� c+ �k),
pc f (F� (s)� F� (bk � c)) 2 I(�Sm(c)). We have

X.tc pc f (F� (s)� F� (bk � c)) = X.(F� (s� c)� F� (bk � c))tc pc f

= X(F� (a� c)� F� (bk � c))tc pc f

= X F� (bk � a)tc pc f .

Here the second equality above holds because

X 2 (Mk)bk�a = tbk�aI(�S0,Sk�1(bk � a))=tbk�aI(�S0,Sk�1(bk � a)) \ I(a + �k).

Hence in this case

X.tc pc f = X.
1

F� (bk � a)
tc pc f (F� (s)� F� (bk � c))

as desired.
Finally suppose thatbk � a 2 K �k. Sincea�Sm,�k a� c, we have

a� (a� bk) 2 Sm + Z(A\ �k), a� c� (a� bk) 2 Sm + Z(A\ �k),

or equivalently,

bk 2 Sm + Z(A\ �k), bk � c 2 Sm + Z(A\ �k).
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But the left hand side is false by the definition of (bk, �k), and the right hand side is
true, which is one of our assumptions. Hence the case whenbk � a 2 K �k does not
occur, and we have completed the proof of the proposition.

Corollary 5.9. Mk is a NoetherianZd-graded right D(Sm)-module.

Proof. SinceS0+Z(A\�k) has only finitely many equivalence classes with respect
to �Sm,�k by Lemmas 4.6 and 4.10,Mk is a NoetherianZd-graded rightD(Sm)-module
by Corollary 5.7 and Proposition 5.8.

Theorem 5.10. D(Sm) is right Noetherian.

Proof. By the sequence (5.3) and Corollary 5.9,D(S0)=D(S0, Sm) is a Noether-
ian Zd-graded rightD(Sm)-module, and henceD(Sm) is Zd-graded right Noetherian by
Robson’s lemma. Then, by the general theory ofZd-graded algebras (see [22]),D(Sm)
is right Noetherian.

6. Right modules and left modules

We retain the notation in Sections 3 and 4. ThusSc is a finitely generated scored
NA-set, we have an irredundant expression (3.1):

S = Sc n m[
i =1

(bi + Z(A\ �i ))

with bi 2 Sc, and F� (Sc) = F� (S) for all facets�. In this section, we assume thatS is
an NA-set. WhenS satisfies Serre’s (S2) condition, it is not difficult to see thatD(S)
and D(!(S)) are anti-isomorphic to each other, where

!(S) = �1� (the weight set of the canonical module ofK [S]).

Hence the left Noetherian property ofD(S) is derived from the right Noetherian prop-
erty of D(!(S)). In this section, we give a sufficient condition for this argument to
stay valid.

For P =
P

a ta fa(s) 2 D(Zd), the operatorP� =
P

a fa(�s)ta is called the formal

adjoint operator ofP. Then K [Zd] = K [t�1
1 , : : : , t�d

d ] is a right D(S)-module by taking
formal adjoint operators.

Lemma 6.1 (cf. Proposition 4.1.5 in [26]). Suppose that3 � Zd satisfies that
a 2 3 and b�S,f0g a imply b 2 3. Then K[�3] is a right D(S)-submodule of K[Zd].

Proof. Let fa 2 I(�S(a)) and b23. Then we have (ta fa(s))�.t�b = fa(�s)ta.t�b =
fa(�s)ta�b = fa(b� a)ta�b.
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The conditionb� a 6�S,f0g b is equivalent toI(�S(a)) � mb�a by Lemma 4.1 and
Theorem 4.11. Hence (ta fa(s))�.t�b = 0 if b� a 6�S,f0g b. This proves the lemma.

For the left Noetherian property, we construct anNA-set!(S), and show a duality
betweenD(S) and D(!(S)). To construct!(S), we prepare some notation. Let̃F
denote the unionF [ f�i : i = 1, : : : , mg. Set

(6.1) B :=

8><
>:(b� )�2F̃ :

� b� 2 K � \ Zd=Z(A\ � ) for all � 2 F̃ .� For all i and all � 2 F̃ with � � �i , there existsj with� j = � such thatbi + b�i = b j + b� j mod Z(A\ � ).

9>=
>;.

Throughout this section, we assume

(6.2) B 6= ;.
Fix an element (b� ) 2 B once for all. We define a subset!(S) of Zd by

!(S) := fa 2 Zd : b� =2 E(S)� (�a) for each� 2 F̃g
= fa 2 Zd : �a� b� =2 S+ Z(A\ � ) for each� 2 F̃g.

By Lemma 6.1,K [!(S)] is a right D(S)-module.

REMARK 6.2. If S satisfies Serre’s (S2) condition,

(6.3) S =
\
�2F(S+ Z(A\ � )),

then F̃ = F, and (0) 2 B. Hence condition (6.2) is satisfied.
WhenNA satisfies Serre’s (S2) condition,�!(NA) for (0) 2 B is the weight set of

a right D(NA)-module Hd
m

(K [NA])�, the Matlis dual of the local cohomology module
Hd

m
(K [NA]).

Lemma 6.3. !(S) is an NA-set.

Proof. Let a 2 !(S), and b 2 NA. Suppose thata+ b =2 !(S). Then there exists a
face � 2 F̃ such that�a� b� b� 2 S+ Z(A\ � ). Then from theNA-stability of S we
obtain�a� b� 2 S+ Z(A\ � ), which contradicts the assumptiona 2 !(S).

Lemma 6.4. D(S)� � D(!(S)), where

D(S)� = fP� : P 2 D(S)g.
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Proof. Since theNA-set Sc is finitely generated,!(S) is not empty. We know
that !(S) is an NA-set by Lemma 6.3. Hence, ifP� 2 D(S)� satisfiesP�(ta) = 0 for
all a 2 !(S), then P� = 0.

Next we show that!(S) is of the form considered in Sections 3 and 4. Then we
show thatD(S)� = D(!(S)) under condition (6.2). Thus we deduce the left Noetherian
property of D(S) from the right Noetherian property ofD(!(S)) if condition (6.2) is
satisfied.

We define the scored closureSc(!(S)) of !(S) by

(6.4) Sc(!(S)) :=
\
�2Ffa 2 Zd : F� (a) 2 F� (!(S))g.

Lemma 6.5. Sc(!(S)) is a finitely generated scoredNA-set.

Proof. ClearlySc(!(S)) is scored. Since!(S) is anNA-set by Lemma 6.3,Sc(!(S))
is also anNA-set.

For the finite generation, by Lemma 3.2, it is enough to prove that eachF� (Sc(!(S))) =
F� (!(S)) is finitely generated as anF� (NA)-set. For this, it suffices to show thatF� (!(S))
is bounded below. For each facet�, we know by Lemma 4.9

S+ Z(A\ � ) = [Sc + Z(A\ � )] n[�i =�(bi + Z(A\ � )).

Clearly

F� (!(S)) � �(F� (S)c [ fF� (bi ) : �i = � g).
This proves the finite generation, since the right hand side is bounded below.

Corollary 6.6. D(!(S)) is right Noetherian.

Proof. By the Noetherian property ofK [NA], Lemma 6.5, and the similar argu-
ment to that in [27, Proposition 3.4],!(S) can be written of the form considered in
Sections 3 and 4. Hence we can apply Theorem 5.10 to!(S).

Lemma 6.7. For � 2 F̃ ,

!(S) + Z(A\ � ) = fa 2 Zd : E(S)� 0(�a) 63 b� 0 for any � 0 2 F̃ with � 0 � � g.
Proof. The inclusion ‘�’ is clear by definition.
For the inclusion ‘�’, let a 2 Zd satisfy E(S)� 0(�a) 63 b� 0 for any � 0 2 F̃ with� 0 � � . Then we can takeb 2 N(A \ � ) such thatF� (�a� b) =2 F� (S) for any facet� 6� � . Then E(S)� 0(�a� b) = ; for any face� 0 6� � . In particular, a + b 2 !(S).
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Lemma 6.8. Let � be a facet. For � 2 Zd \ K�,

� 2 E(!(S))� (�a), b� � � =2 E(S)� (a).

Proof. By Lemma 6.7,

!(S) + Z(A\ � ) = fa 2 Zd : �a =2 b� + S+ Z(A\ � )g.
Hence

Zd = [!(S) + Z(A\ � )] q�[b� + S+ Z(A\ � )].

Hence the assertion follows.

The following proposition may be considered as the duality betweenS and!(S).

Proposition 6.9.

S = fa 2 Zd : E(S)� (a) 3 0 for all � 2 F̃g
= fa 2 Zd : E(!(S))� (�a) 63 b� for any � 2 F̃g
= !(!(S)).

Proof. For any face� , we have

S+ Z(A\ � ) = Sc + Z(A\ � ) n[�i��(bi + Z(A\ �i )).

Hence

S = S2(S) \ \
codim�i>1

(S+ Z(A\ �i )),

whereS2(S) =
T�2F (S+Z(A\� )) is the S2-closure ofS. This means the first equality

of the proposition.
For the second equality, first note that by Lemma 6.8

(6.5) E(S)� (a) 3 0, E(!(S))� (�a) 63 b�
for any facet�. We have

S2(S) = fa 2 Zd : E(S)� (a) 3 0 for all facets� g
= fa 2 Zd : E(!(S))� (�a) 63 b� for any facet� g.
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Suppose thata 2 S2(S) and b�i 2 E(!(S))�i (�a) for some �i with codim�i > 1.
Then�a� b�i 2 !(S) + Z(A\ �i ). By Lemma 6.7,E(S)�i (a+ b�i ) 63 b�i , or equivalently,
E(S)�i (a) 63 0. We have thus proved the inclusion ‘�’ of the second equation.

Since S = S2(S) nScodim�i>1(bi + Z(A \ �i )), and since the right hand side of the
second equality is included inS2(S), to prove the inclusion ‘�’, it suffices to show
that b 2 bi + Z(A\ �i ) with codim�i > 1 does not belong to the right hand side. Since
(b� ) belongs toB, for any � 2 F̃ with � � �i there existsj with � j = � such that

b + b�i � b� 2 b j + Z(A\ � ).

In particular,

b + b�i � b� =2 S+ Z(A\ � ).

Hence

b� =2 E(S)� (b + b�i ) for any � 2 F̃ with � � �i .

This means by Lemma 6.7

�b� b�i 2 !(S) + Z(A\ �i ).

This is equivalent to

b�i 2 E(!(S))�i (�b).

Henceb does not belong to the right hand side of the second equality of the proposition.

Theorem 6.10. Under condition(6.2),

D(!(S)) = D(S)�.
Proof. By Lemma 6.4 and Proposition 6.9,D(!(S))� � D(S). Hence

D(!(S)) = D(!(S))�� � D(S)� � D(!(S)).

HenceD(!(S)) = D(S)� and D(S) = D(!(S))�.
Theorem 6.11. Assume that S satisfies condition(6.2). Then there exist one-to-

one correspondences between left modules, left ideals, right modules, right ideals of
D(S) and right modules, right ideals, left modules, left ideals of D(!(S)), respectively.

Proof. This is immediate from Theorem 6.10.
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Fig. 1. The semigroupNA in Example 6.15

Theorem 6.12. If S satisfies condition(6.2), then D(S) is left Noetherian. In
particular, D(S) is left Noetherian, if S satisfies Serre’s condition(S2).

Proof. This is immediate from Corollary 6.6 and Theorem 6.11.

Theorem 6.13. Assume that S satisfies condition(6.2) and that there existsa 2
Zd such that!(S) = a + S. Then there exist one-to-one correspondences between left
modules, left ideals of D(S) and its right modules, right ideals, respectively.

Proof. We have

D(!(S)) = D(a + S) = taD(S)t�a ' D(S)

as K -algebras. Hence the theorem follows from Theorem 6.11.

Corollary 6.14. Assume that K[NA] is Gorenstein. Then there exist one-to-one
correspondences between left modules, left ideals of D(NA) and its right modules,
right ideals, respectively.

Proof. In this case,NA satisfies the assumption of Theorem 6.13.

EXAMPLE 6.15. Let

A =

�
0 1 3 3 4 4 6 6
2 1 1 2 0 1 0 1

�
.

The semigroupNA is illustrated in Fig. 1. The scored extentionSc(NA) equalsN2.
We have

Z(A\ �1) = Z

�
2
0

�
and Z(A\ �2) = Z

�
0
2

�
.
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The standard expression ofNA is

NA = N2 n �� 1
0

�
+ Z

�
2
0

�� n �� 0
1

�
+ Z

�
0
2

�� n �� 1
0

�
+ Z

�
0
2

��

n �� 2
1

�
+ Z

�
0
2

�� n � 2
0

�
.

The S2-closureS2(NA) equalsNA[ nh 2
0

io
, and thusNA does not satisfy (S2) condi-

tion.
We haveF̃ = f�1, �2, f0gg.
The setB consists of only one element (b� ):

We can check that, for this (b� ), !(NA) =
h �2

0

i
+ NA. Hence, by Theorems 6.11

and 6.12, the category of leftD(NA)-modules and that of rightD(NA)-modules are
equivalent, andD(NA) is Noetherian.

7. Left Noetherian property

In this section, we consider the left Noetherian property; we give a sufficient con-
dition in Subsection 7.1 and a necessary condition in Subsection 7.2.

Let S be a semigroupNA, and S2 its S2-closure.
Let

(7.1)

S = Sc n m[
i =1

(bi + Z(A\ �i )),

S2 = Sc n l[
i =1

(bi + Z(A\ �i ))

be the standard expressions forS and S2. Hence�i (i � l ) are facets, while�i (l <
i � m) are not.

Lemma 7.1.

D(S) � D(S2).
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Proof. Recall that

D(S2)a = D(Sc)a � I
0
� [

bi�a2S2+Z(A\�i ),i�l

bi � a + K �i

1
A,

D(S)a = D(Sc)a � I
0
� [

bi�a2S+Z(A\�i ),i�m

bi � a + K �i

1
A.

Note that fori � l

S2 + Z(A\ �i ) = S+ Z(A\ �i )

since�i is a facet. HenceD(S) � D(S2).

7.1. A sufficient condition. Since D(S2) is left Noetherian by Theorem 6.12,
the following lemma is proved similarly to Lemma 5.1.

Lemma 7.2. If D(S2)=D(S2, S) is a Noetherian left D(S)-module, then D(S) is
left Noetherian.

Theorem 7.3. Assume that S2 n S is a finite set. If, for all i > l , the intersection

\
bi�b j2K � j , j�l

� j

equals the origin, then D(S) is left Noetherian.

Proof. We show thatD(S2)=D(S2, S) is finite-dimensional. Then the theorem fol-
lows from Lemma 7.2.

Note that all�i with i > l are the originf0g, since S2 n S is finite.
First we show thatD(S2)a = D(S2, S)a for all but finite a 2 Zd. Recall that

D(S2)a = D(Sc)a � I
0
� [

bi�a2S2+Z(A\�i ),i�l

bi � a + K �i

1
A,

D(S2, S)a = D(Sc)a � I
0
� [

bi�a2S2+Z(A\�i ),i�m

bi � a + K �i

1
A.

Hence D(S2)a 6= D(S2, S)a if and only if there existsi > l such that

(7.2)
� bi � a 2 S2,

� bi � b j 2 K � j ( j � l ) ) b j � a =2 S2 + Z(A\ � j ).
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It suffices to show that for a fixedi > l there exists only finitely manya 2 Zd with (7.2).
Take M as in (3.2), i.e.,

M > maxF� (S)c [ fF� (bi ) : i g for all facets � .

(Note that minF� (S) [ fF� (bi ) : i g = 0 in our case.)
Suppose thata 2 Zd satisfies (7.2). Then

(7.3)
� F� (bi � a) � 0 for all facets � ,

� F� j (bi � a) = F� j (b j � a) � M for all j � l with bi � b j 2 K � j .

There exists only finitely many sucha 2 Zd, since the intersection
T

bi�b j2K � j , j�l � j

equals the origin.
Now it is left to show that eachD(S2)a=D(S2, S)a is finite-dimensional. LetI :=

I(fbi � a: bi � a 2 S2, l < i � mg). Then D(S2)aI � D(S2, S)a. There exist surjective
K [s]-module homomorphisms

D(S2)a=D(S2, S)a D(S2)a=D(S2)aI  K [s]=I .

The latter is an isomorphism, sinceD(S2)a is a singly generatedK [s]-module by [25,
Proposition 7.7]. HenceD(S2)a=D(S2, S)a is finite-dimensional, and we have completed
the proof.

7.2. A necessary condition. Let S be a semigroupNA, and let

S = Sc n m[
i =1

(bi + Z(A\ �i ))

be the standard expression, whereSc is the scored extention ofS. In this subsection,
we assume that codim�m > 1, and that

(7.4)

0
� \
�i��m;bi�bm2K �i

�i

1
A 6= �m,

and we show thatD(S) is not left Noetherian. We construct a strictly increasingse-
quence of left ideals ofD(S).

Let � be a ray ofR�0A contained in
�T�i��m;bi�bm2K �i

�i
� n (�m n f0g). Fix a vector

d� 2 N(A\ �). Similarly to Lemma 5.2, we have the following lemma.

Lemma 7.4.

(7.5) D(S)�kd� = I

0
� [

bi +kd�2S+Z(A\�i )

(bi + K �i )

1
A � P�kd� ,
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where D(Sc)�kd� = K [s] P�kd� .
Lemma 7.5. For k� 0,

(7.6) bm + kd� 2 S+ Z(A\ �m).

Proof. Sinced� 2 S, bm + kd� 2 Sc. Suppose thatbm + kd� =2 S + Z(A \ �m).
Then there existsi with �i � �m such thatbm + kd� 2 bi + Z(A\ �i ) for k� 0. Hence
d� 2 Z(A\�i ). Thus we havebm 2 bi +Z(A\�i ), and thenbm+Z(A\�m)� bi +Z(A\�i ).
By the irredundancy of the standard expression, we havei = m. But, since� 6� �m,
we havebm + kd� =2 bm + Z(A\ �m).

Lemma 7.6. Suppose that�i � �m and bi � bm 2 K �i . Then

(7.7) bi + kd� =2 S+ Z(A\ �i ).

Proof. By the definition of�, � � �i for such �i . Henced� 2 Z(A \ �i ). Then
we seebi + kd� =2 S+ Z(A\ �i ).

For eachi with bi + kd� 2 S+ Z(A\ �i ) and bi + K �i 6= bm + K �m, we take a facet�i � �i as follows:
(1) If �i 6� �m, then take a facet�i � �i such that�i 6� �m.
(2) If �i � �m and bi � bm =2 K �i , then take a facet�i � �i such thatF�i (bi ) 6= F�i (bm).
(3) We do not need to consider the case where�i � �m and bi � bm 2 K �i by Lem-
ma 7.6.
Finally take a facet�m containing� and �m. Then defineE(k) by

(7.8) E(k) := (F�m � F�m(bm))
Y

bi +kd�2S+Z(A\�i ),
bi +K �i 6= bm+K �m

(F�i � F�i (bi )) � P�kd� .

Then, by Lemma 7.4,E(k) 2 D(S)�kd� .
Lemma 7.7. E(k) =2 (F�m � F�m(bm))D(S)�kd� for k� 0.

Proof. By the definitions of�i ,
Q

bi +kd�2S+Z(A\�i ),
bi +K �i 6= bm+K �m

(F�i � F�i (bi )) =2 I(bm + K �m).

Hence the assertion follows from Lemmas 7.4 and 7.5.

Theorem 7.8. D(S) is not left Noetherian.

Proof. We construct a strictly increasing sequence of left ideals.



554 M. SAITO AND K. TAKAHASHI

First we claim that fork, l � 0

(7.9) D(S)�ld� � E(k) � (F�m � F�m(bm))D(S)�(l+k)d� .
Let f (s)P�ld� 2 D(S)�ld� . Note that, by Lemma 7.4, fork, l � 0 we have f (s)P�kd� 2
D(S)�kd� if and only if f (s)P�ld� 2 D(S)�ld� , and recall from [27, Lemma 5.10] that
P�(l+k)d� = P�ld� P�kd� for k, l � 0. Thus fork, l � 0

f (s)P�ld� E(k) = f (s)P�ld� (F�m � F�m(bm))
Y

bi +kd�2S+Z(A\�i ),
bi +K �i 6= bm+K �m

(F�i � F�i (bi ))P�kd�
2 (F�m � F�m(bm))K [s] f (s)P�ld� P�kd�
= (F�m � F�m(bm))K [s] f (s)P�(l+k)d�
� (F�m � F�m(bm))D(S)�(l+k)d� .

Thus we have proved claim (7.9).
Take k0 2 N large enough. By Lemma 7.7 and claim (7.9), forl > h,

E(lk0) =2
 

hX
k=1

D(S) � E(kk0)

!
�lk0d� .

Therefore
�Ph

k=1 D(S) � E(kk0) : h = 1, 2,: : : 	 is a strictly increasing sequence of left
ideals of D(S).

Finally we make a conjecture of the condition forD(S) to be left Noetherian.

Conjecture 7.9. Let (7.1) be the standard expressions of S and S2. Then the
following are equivalent.
(1) D(S) is left Noetherian.
(2) D(S2)=D(S2, S) is a Noetherian left D(S)-module.
(3) D(S2)=D(S) is a Noetherian left D(S)-module.
(4) For all i > l , 0

� \
� j��i ,bi�b j2K � j , j�l

� j

1
A = �i .

REMARK 7.10. Lemma 7.2 says that (2) implies (1). Clearly (2) and (3)are
equivalent under (1). The implication (1)) (4) is Theorem 7.8. Note also that (4) is
satisfied when the setB is not empty (cf. Theorem 6.12).

By Theorems 7.3 and 7.8, the conjecture is true ford � 2.
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