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Abstract

Harris proved that there is an indecomposable bimodule wittrivial source
which induces a Morita equivalence between Glauberman+dat corresponding
block algebras of finite groups with normal defect groups &ne Glauberman
correspondence of characters in corresponding blocks. ®te an implication of
the Puig correspondence in the conext of the Glaubermaan&be correspondence
and then, using this, show Harris’s theorem in two ways.

1. Introduction

In this article, for a primep, let (K, O, k) be a p-modular system wher® is a
complete discrete valuation ring having an algebraicalbsed residue fieldk of char-
acteristicp and having a quotient fiel& of characteristic zero which will be assumed
to be large enough for any of finite groups we consider in thicla.

Let G be a finite group and a solvable group such th& acts onG via auto-
morphism and |G|, |S]) = 1.

Glauberman showed in [13] that there is a bijective corredpace with sign be-
tween the set o6-invariant irreducible characters @& and the set of irreducible char-
acters ofGS = Cg(S), called theGlauberman correspondenas (K-)characters.

Watanabe began in [36] a block-theoretical study of the Bdaman correspondence,
and gave a §-)block correspondence under suitable assumptions, dc@llauberman-
Watanabe correspondenceshe proved that if ab-invariant blockb of G has a defect
group D centralized bysS, then all irreducible characters mare S-invariant, and by the
Glauberman correspondence, all of them are mapped bigéctiv the irreducible charac-
ters belonging to a single bloak(b) of G° havingD as a defect group and whose Brauer
category is equivalent to that df and that Glauberman correspondence with sign gives
a perfect isometnpetween the additive group of generalized charactebsand inw(b).

In fact, an existence dkotypyis proved. Here for the notions of perfect isometry and
isotypy, see [6].
So, it is desirable to give a ring-theoretical explanation this.
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In fact, until now, the case where the group pssolvable and the case where
the block has a normal defect group have been treated. Horsalvable case, see
[18] and [16]. Koshitani and Michler proved in [22] that Glariman-Watanabe cor-
responding block algebras ovkrwith normal defect groups are Morita equivalent. In
fact, Koshitani noted in [21] that they are Puig equivaldhiat is, having isomorphic
source algebras, see [27, Definition 3.2] and hence Moritévalgmt overO by [29,
Lemma 7.8]. Then, Harris showed in [14] that there is an indgmosableD[G® x G]-
module with a trivial sourc realizing a Morita equivalencalanducing the Glauberman
correspondence. Recall that if the bimodule inducing a Moeuivalence between
block algebras has a trivial source, then these blocks aig €guivalent, see [31],
and an isotypy is induced in the character level, see [32].

In this article, we point out that above Harris’s result alstlows from the Puig’s
theory as described in [27], [28] and [30]. In fact, we showTiheorem 4.9 that,
taking asS a cyclic groupS of prime orderq (by induction, it suffices to consider
this case, see Theorem 2.1 (i), (i) and Theorem 4.11), forSanvariant block b
of G with an S-centralized normal defect group, there is some pointedigresee
[27, Definition 1.1], G? of OGb viewed as an interioiG-algebra, see [27, Defini-
tion 3.1], such that the block algebfaGSw(b) is isomorphic to the embedded alge-
bra (OGb)g, see [30, 4.2], 01G§ in OGDb as interiorGS-algebras. Then, since an in-
decomposable direct summand @fGh| s, g, Which belongs to the only isomorphism
class whose multiplicity inOGb| s, ¢ is not divided byq, induces a Morita equiv-
alence betweerd@Gb and (OGb)g, it cleary induces the Glauberman correspondence,
see Theorem 2.1 (3), and hence Harris's result follows.

This article consists of the following:

In Section 2, we recall the correspondences of GlaubermdMétanabe.

In Section 3, we describe an implication of the Puig corresigoce quoted in Theo-
rem 3.1 in the context of the Glauberman-Watanabe correlspme. Then as a special
case we note in Corollaries 3.6 and 3.7, fore {O, k}, a vertex preserving correspon-
dence between the indecomposal@énvariant RG-modules and the indecomposable
RGS-modules with some properties, characterized by the niligitips, depending on
Barker’s investigations. Whe®S contains a normalizer of a source, corresponding
modules are the Green corresponding modules, see [35,08621].

In Section 4, we specialize to group algebras with normaédefroups, and, in
Corollary 4.10, the Harris’s result stated above is dedumedpplying Puig’s theorems,
in particular, the structure theorem as &n{, OD)-bimodule of the source algebra of
a block with a normal defect group.

In Section 5, we note the compatibility of the results in 88t with an obser-
vation by Okuyama in [26]. In fact, we note that Corollary @.also follows from
Broué’s theorem on the Morita equivalence and the relatignir( Section 5 given in
[26] with the interpretation«(x) in Section 5 of §) given in [34], see Remark 5.1.
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The author thanks Tetsuro Okuyama, Atumi Watanabe and fieeees by whose
comment an earlier version of this article is revised, arglsuipervisor Shigeo Koshi-
tani for helpful comments.

Notation and terminology. We will cite necessary facts from textbooks [19], [24]
and [35] rather than original articles, and in particulag refer to [35] for Puig’s theory.

For finite groupsG and S, if S acts onG via group automorphisms, we can con-
sider the semi-direct produ x S determined by that action, and denote it @S
Let H be a subgroup o6. We denote byAH ={(h,h) e G x G | h € H} the diagonal
subgroup ofG x G. If S stabilizesH, the centralizer ofS in H is denoted byHS.
We denote by IH\G] a set of left coset representatives ldfin G. We denote byGy
the set of elements o& with the order coprime tgp. A cyclic group of orderr is
denoted byC,.

By a character, we always mean an ordinary character kveDenote by IrrG)
the set of all irreducible characters & and by IrrG)® the set of allS-invariant ir-
reducible characters o&. For 6 € Irr(H), we denote InG | 8) = {x | x € Irr(G)
such that @, xJ 8] # 0}, where [, -] is the usual inner product of characters. When
(IG,19]) =1, for ¢ € Irr(G)S, there exists a uniquely determined extensjoa Irr(GS|
$) of ¢ satisfying the conditiorS c Ker(det¢)), called thecanonical extensiomf ¢,
see [19, Lemma 13.3]. Whe§ is cyclic, S acts on IrrGS), see [11, Proposition 1.15
and (1.16)], whereS = Hom(S, £*) >~ S is the dual group ofS, whose elements will
be identified with the elements of I8). Above action is denoted multiplicatively.

For a ring R, we denote byR* the multiplicative group consisting of units &,
by J(R) the Jacobson radical dR and by Irr(R) the set of all irreducible characters
of R. Let R € {O,k} and R’ € {K, O, k}. We denote byR'G the group algebra o6
over R'.

By modules, we meafR'-free finitely generated left modules. For modulsand
W, denoteW | V if W is isomorphic to a direct summand ®f. For an R'G, R'H)-
bimodule X, we view it as anR’[G x H]-module in the usual way: g¢h)-x =g -
x-h™! wherege G, he H andx € X. (We use - for the action of elements of
group algebra on modules over that group algebra.) For a alosobgroupN of G
(denotedN <« G), an R'N-module Y and g € G, we denote byY9 the (@-)conjugate
R’'N-module, see [35, Example 10.10]. Conjugate modules areeatbfalso for the
modules over twisted group algebras, see [10, (5.27)]. HoGanoduleU, we denote
by P(U) the projective cover ofJ.

By a block of G or RG, we mean a primitive idempotett of Z(RG). The set
of blocks of RG with a defect groupD is denoted by Bt(G | D). For a blockbgy of
OG, denote bybg the block of kG given by the canonical image df, and denote
Irr(bo) = {¢ € Irr(G) | ¢(bp) # 0}, which is also called a block and whose elements are
called the characters d@& in by or by.

We refer to [35, Section 10] for the notion of amtérior) G-algebra Aover R.
We denote by RésA the (interior) H-algebra given by the restriction tbl of the
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structural map.AH is a subalgebra of\ consisting ofH-fixed elements. If 4 is the
unique idempotent ofA®, A is called aprimitive G-algebra. We view group alge-
bra RG, block algebraskRGb and R-endomorphism rings oRG-modules as interior
G-algebras in the usual way, see [35, Examples 10.3 and 1Q@@jsideringRGb as
an (RG, RG)-bimodule, we view Engd1,c(RGb) as an interiorG-algebra using the
left RG-module structure ofRGh. Then, as is well-known, we have an isomorphism
of interior G-algebras

() RGb — EndR[lxe](RGb), X = @x

where ¢ is the R-endomorphism ofRGb given by the left action ok € RGh.

We refer to [28, Section 5] for the notions k&-group G, a k*-subgroupH, a
k*-group homomorphisnand thek*-group algebraR.G over R. See also [35, Ex-
amples 10.4, 10.8 and p.407]. We also denotekhgs an algebra ovek’ defined by
K ®0 0,G. With the obvious grading’R;é becomes a twisted group algebra @f
over R'. For anR,G-moduleV and anR/,H-moduleV’, we denote byv | the re-
striction of V to R, H-module and byv'+§ the inducedR,G-module R.G ®r.p V.
Similar notations forfC-characters. We denote bg(V’, V) the multiplicity of V' in
VLS, that is, the number of modules isomorphic\6 in a direct sum decomposition
of V]&, and byn(V, V) the multiplicity of V in V'4S. We use the similar notations
for modules over ordinary group algebras, see [28, 5.12.2].

For aG-algebraA over R, the trace mapfrom A" to A® is defined by T§ (a) =
de[H\G] ad for a € A" and, for ap-subgroupP of G, the Brauer homomorphisrBré
is defined by the canonical epimorphish? — A(P) = AP /{}",, Trg(AQ) + J(R)AP}
where Q runs over strict subgroup d?, see [35, Section 11]. WheA = RG, A(P)
will be identified withkCg(P), see [35, Proposition 37.5].

We refer to [35, Sections 13 and 14] for the notigmsinted groupsof A, the
action of G on them by the conjugation, thdwcalnessand the relation&, > Hg and
Ky pr Hg between pointed group, and Hg of A. For f € g, f Af has the obvious
H-algebra (interiorH-algebra if A has an interiorH-algebra structure) structurefg
is the primitive (interior)H-algebra isomorphic tof Af, called anembedded algebra
of Hg in A. For its uniqueness, see [35, Section 13]. When a local @oigroup
P, of A such thatHg > P, is maximal with respect to the relation, P, is called
a defect pointed groupf Hg, see [35, Section 18] an® is called adefect groupof
Hg. For themultiplicity m(8, o) of the pointg in o, we refer to [4, Section 2]. In
particular, if A is a primitive G-algebra andx = {14}, thenm(8, «) is the number of
occurrences of idempotents gfin a primitive idempotent decomposition of in A",
see [35, p.28].

We denote byA(Hg) the multiplicity algebraand byVa(Hg) the multiplicity mod-
ule, of the pointed grougHg of A, see [35, Section 13]. Denote by the canonical
epimorphism fromAH to A(Hg). For anotherG-algebraA, if 7: A— A’ is anem-
beddingof G-algebra, see [35, Section 12], thé¢ninduces an injectiorHg — Hg', of
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pointed groups ofA into pointed groups ofA’, see [35, Proposition 15.1]F also in-
duces an embedding dfic(Hg)/H (= Ng(Hgp)/H)-algbra A(Hg) — A'(Hg) described
in [35, Proposition 15.3] and an isomorphism lof-groups fromN/G(m, which

is defined by the action oNg(Hg)/H on A'(Hg), to No(Hg)/H, which is defined
by the action ofNg(Hg)/H on A(Hg), described in [35, Proposition 15.4]. Through
these, Va(Hg) will be identified with a direct summand ofx(Hg), see [35, Propo-
sition 15.5]. WhenA is a primitive G-algebra, a defect pointed group), of Gy, is
called adefect pointed groupf A, P is called adefect groupof A, i € y is called a
source idempotentf A and the embedded algebfg of P, in Ais called asource al-
gebraof A. Moreover, VA(P,) is called thedefect multiplicity modulef A, which is

indecomposable projectivie.N-module, whereN = Ng(P,)/P, see [35, Section 19].
A canonical characterof a blockb is the character oDCg(D)/D corresponding to
the simple projective modulb’RGb(D,gnch(GD(%/DD, where D; is a defect pointed group
of RGb, see [35, Section 37].

When A is an interiorG-algebra overRr, its structural homomorphism from G
to A* can be extended tp: RG — A and we denotey-a = ¢(y)a anda -y = ap(y)
for y e RG anda € A. Moreover if A is primitive, then there is a unique blodk of
RG such thatb - 15 = 14, and in this case, we say thatis in b, see [30, 4.1].

When anR-algebraE is isomorphic to Eng(L) for someRR-module L, we also
use- for the obvious action of elements & on L.

2. The correspondences of Glauberman and Watanabe

In this section, we recall the correspondences of Glauberamal Watanabe.

Theorem 2.1 (Glauberman [13]). For any pair (G, S) where G is a finite group
and S is a finite solvable group acting on G such th@G|, |S|) = 1, there exists a
uniquely determined bijective map(G, S): Irr(G)S — Irr(G®) satisfying the following
conditions
(i) For T«S, Irr(G)S is mapped bijectively tarr(G7)° by n(G, 7).

(i) In the situation of(i), 7(G, S) = 7 (G7, S/T) o 7 (G, 7).

(i) If S is a gq-group for some prime,cthen for ¢ € Irr(G)®, 7(G, S)(¢) is a unique
constituent of¢¢gs with a multiplicity m; not divisible by q In fact, ¢ determines a
sign €4 € {£1} such that | = ¢, (modq).

The correspondence in Theorem 2.1 is called Blauberman correspondenasf
(K-)characters.

REMARK 2.2. For anS-invariant simple projectivekG-module W, there is an
S-invariant irreducible and projectiv©G-lattice Wy such thatW >~ Wy /J(O)We.
Thus we can consider the Glauberman correspondé@t S)(¢) of the charactet af-
forded byW. A set{n(G,S)(£)} forms a block ofG® with defect 0, see [25, Theorem
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in p.517], so that there exists an irreducible and projeat\GS-lattice Wy’ which af-
fords the character (G, S)(¢). We call a simple projectivieG®-module isomorphic to
Wo'/J(O)We' a Glauberman corresponderf W.

By (i) and (ii) in Theorem 2.1, it suffices to consider the cageeresS is cyclic of
prime orderq, see Theorem 4.11. In the following, we always assume Ciondi.3
below.

ConDITION 2.3. G is a finite group ands >~ Cy acts onG whereq is a prime
not dividing the order ofG. SetI’ =GS A is a non-trivial element of.

In fact, the correspondence in Theorem 2.1 is determinedtdrated application
of the correspondence in [19, Theorem 13.6, Definition 18ich is defined when
an acting group is cyclic, see [19, Definitions 13.12 and @3Pheorem 13.18] (note
also that, with the notations in Theorem 2.1 and Proposifléh €, = 8, under the
common assumptions, see [19, Theorem 13.14 (b)]). For a U=k, we cite the fol-
lowing form of the Glauberman correspondence under Candi2.3, which follows
immediately from [19, Theorem 13.6], see also [11]:

Proposition 2.4 (Glauberman [13]). For ¢ € Irr(G)S, let ¢  Irr(I") be the canon-
ical extension ofp when q is odd and ¢ € Irr(I") an arbitrary extension ofp when
g =|S| = 2. Then there is a sigd, which makes the following equation of generalized
characters hold

(@ — 1) hss = 85 (m (G, S)(¢) x 1 — A(w(G, S)($) x 1)).

Note that, wherg = 2, aboves, depends on the choice @ In the above propo-
sition, sinceGSS is a direct product ofGS and S, characters ofGSS are denoted in
the form of the product of characters & and S. Note thatA(n(G, S)(¢) x 1) =
(G, S)(¢) x A. In the following, we will use the notation of product for chaters
of direct products, too.

Watanabe began in [36] p-block theory of the Glauberman correspondence under
the condition that a defect group is centralized §ywhich will be always assumed in
this article too.

Theorem 2.5 (Watanabe [36]). If an S-invariant block b ofOG has a defect
group D centralized by Sthen the following holds
(1) All charcters in b are S-invariant
(2) Thereis ablocks(b) of OGS with a defect group D such that(w(b)) = {7 (G, S)(¢) |
¢ €lrr(b)}.
(3) There is a perfect isomet@/lrr(b) >~ ZIrr(w(b)) mappingg < Irr(b) to 847 (G, S)(¢),
where$, is the sign described iProposition 2.4 i( the case of & 2, choosingé in
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Proposition 2.4so that{¢ | ¢ € Irr(b)} = Irr(B) for a blockb of I covering B. In fact,
the Glauberman correspondence induces an isotypy

The correspondence in Theorem 2.5 is called@@uberman-Watanabe correspon-
denceof (p-)blocks. We also define(b) by w(b).

Note that if S centralizes a Sylowp-subgroup ofG, then the Glauberman-Watanabe
correspondence induces a one-to-one correspondencedetreeset ofs-invariant blocks
of G and the set of blocks o&°S. In particular, the set of-invariant characters of
with defect 0 and the set of characters ®f with defect 0 correspond bijectively by
the Glauberman correspondence.

The following is included in Theorem 2.5 (3).

Proposition 2.6 (Watanabe [36]). With the notations ofTheorem 2.5,let & €
Irr(DCs(D)/D) be a canonical character of .b Then & is S-invariant and its
Glauberman correspondent is a canonical characterugb).

In the situation of Theorem 2.5, by [36, Proposition 1] anfl [8 is covered by
g distinct isomorphic blocks of* in the sense of [1] or [17]. In particular:

_ Lemma 2.7 (Dade [8], Watanabe [36])for b as in Theorem 2.5and any block
b of T" covering h it holds that Reg;(OI'b) ~ OGb as interior G-algebras and
Orblges ~ OGb asO[G x G]-modules

We also recall the following, see for example [22, Lemma :2.2]
Lemma 2.8. Ng(P) = Ngs(P)Cgs(P) for an S-centralized subgroup P of.G

3. The correspondence of Puig

In this section, we note an implication of the Puig corresjgmte in the context
of the Glauberman-Watanabe correspondence. Firstly, wall rthe Puig correspon-
denceof points or pointed groups and a particular case of Barke&ilt, see [30,
1.4.1], [4, Remarks 4.1 and 7.1, Propositions 4.4, 4.5, hd a5] and [35, Theo-
rem 19.1]:

Theorem 3.1 (Puig [27] [28]). Let A be a G-algebra For any local pointed
group B, and any subgroup H of G containg, Rhe correspondence mapping any
primitive idempotent j of A on the kH-moduler,(j) - Va(P,) induces a bijection
from the set of pointg of H on A such that P is a defect pointed group of H
onto the set of isomorphism classes of projective indeceaipe direct summands of
VA(P),)¢% whereH = Nw(P,)/P. Moreovery for pointed groups i and H of A with
a defect pointed group R and le o and jee,
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(1) Ko = H if and only if, (j)- Va(P,) | (m,(1)- Va(P,)) LK, and nfe, o) = m(s, (j)-

VA(Py)v %/(l) ' VA(P)/))- o

(2) K, pr He if and only if 7, (1) - Va(P,) | (n,,(j)~VA(PV))T%. When A is an interior
G-algebra constructed from the endomorphism ring offa@-module L n(l-L,j-L)=

n(m, () - Va(P,), 7, (j) - Va(P,)), and moreover itr, (1) - Va(P,) and 7, (j) - Va(P,) are

simple kK- and k.H-modules respectivglyhen r{l - L, j-L)=m(j - L,1-L) (Barken.

With the above notations, ¥Wa(P,) is simple (and projectivel}*é—module, we can
apply the Glauberman correspondence by considering aropigie covering group of

the twisted group algebri.G, which is a well-known argument, see for example [16]
and [23], and get some informations on pointed groupsAohy the Puig correspon-
dence quoted above. Note that we may use the twisted grogbralgyersion of the
Glauberman correspondence described in [11].

For V and V' as in Lemma 3.2 (1) below, we call I@(E\S-module isomorphic
to V' a Glauberman corresponderdf V. When A is an S-invariant ordinary block
algebra with defect 0, this usage coincides with that of R&m@a2. In Lemma 3.2 (3),
we view V| as akN-module in the canonical way, see [35, Example 10.9].

Lemma 3.2. Let A be aT-algebra which is simple as a k-algebrgThen the
unique simpleA-moduleZ has the kI'-module structure associated with tivealgebra
structure of A, see[35, Example10.8].) Let N be an S-invariant normal subgroup of
G such that G= GSN. Assume that the N S-algebra structure Afis interior whose
structural map commutes with the action Iof Then
(1) Assume that a direct summaitof Z is a simple and projective,k-module such
that V = \7¢g is a simple(and projectiv® k,G-module Then there existsunique up
to isomorphisman indecomposable direct summanddf V¢gS such that ¢f m(V’, V).
Furthermore V' is a simple(and projectivg k*é\s-module and mV’,V) =41 (modq).
(2) Assume that a direct summand U iﬂlgs is simple and projective*lé'é-module
and there exists an S-invariant simpland projectivg direct summand U of UTgS
such that gt n(V, V') (see the first paragraph of the proof () for this conditior).
Then U”,U) = +1 (modq), and any indecomposable S-invariant direct summand of
UTgS which is not isomorphic to U has a multiplicity divisible by g
(3) Let W be an indecomposable direct summand ¢ﬁ\1for V in (1). Then

(A) W is a simpleprojective and S-invariant kN -modul&he isomorphism classes

of the indecomposable direct summands of3Vare the isomorphism classes of

g-conjugate of W where g runs over Go that are S-invariant

(B) Let V' and W be Glauberman correspondents of V and kspectively Then

(@) The isomorphism classes of the indecomposable direct sndwtd V¢ﬁ§
are the isomorphism classes of c-conjugate dfwhere ¢ runs over &
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(b) If V|§ isindecomposabléso that W=V | §), then V| 82 is indecomposable
(so that W~ V' 7).

Proof. TheT-algebra structure ofA determines a*-group I' with a structural

short exact sequence: 3 k* 5 ' 4 I - 1. Recall that® may be taken explicitly
asT"={(a,x) e A* xT" |a®=a* for anya’ e A} with d((a, X)) = x for (a, x) € I and
7(0) = (014, Ir) for o € k*. There is a split monomorphism NS — NS of dixs
mappingy to (y- 1z, y). ThenuN$ is a normal subgroup of. Since(N9 inter-
sects trivially withz(k*), the canonical epimorphisms of groups I' — I'/i((N'S and

7: I — I'/N S determine thek*-group I'/«(N S) whose structural short exact sequence
is given by the following commutative diagram:

T d

1 k> r 1

N,

| — kX ——>P/(NS) —L>T/NS —1.

—

There is a subgroupl(«(N 9)* of I'/«(N S satisfyingd((I"/«(N S)*) = '/N S with a
central subgroupZ = Ker(d") = (I'/«((N9)* N T(k*) ~ C, whered" is the restriction
of d to ([/«(NS)* andr is an integer determined byr /NS =rp" (p1r), see [35,
Proposition 10.5]. Note thaqtr. ThenT™* = 7 Y(T/«(N9)*) is a finite subgroup of
I' containingy(N ), satisfyingd(I'*) =T, and having a central subgroup= Ker(d*) =
N t(k*) ~ C, whered* is the restriction ofd to I'*. For a subgroupH of T,
define a subgroupi* of I'* by H* =d*"1(H). If H is contained inG and S-invariant,
then «(S) acts coprimely onH* sinceq { r|H| and we have, forg,, h) € H* (s-
1%,5)Y(an, h)(s-14,5) = (a3, h%) e '*Nd~%(H) = H*. Note thatl'* = G*/(S). Moreover,
(H*“® = (HS)*. In fact, for @, c) € (HS)* (s-1z 5) Y(ac, C)(s- 14, 9) = (&S, ¢) is
equivalent to g, ¢) modulo Z, that is, a$ = ua. for someu € k* such thatr(u) € Z.
But since the order ofx dividesr, x must be 1. Hence, H*)® > (HS* The
converse inclusion is clear. The inclusiéh* — H induces an isomorphism

(3.2.1) R'H*e~R'H,

where e is the central idempotent dR’Z corresponding to the faithful linear repre-
sentation ofZ determined byz — u, € k* wherez = t(u,) € Z, see [28, Proposi-
tion 5.15 (i)] or [10]. In the following, through the isomdrsm (3.2.1), we will freely
identify R, H-modules andR’H*-modules not annihilated bg Similarly, we will
identify the characters of,H and the characters dfH* coverings where¢ € Irr(Z)

is the character corresponding ¢p see [10, Proposition 8.1]. Note that any charac-
ter which is a constituent of the characters obtained byrictish or induction of an
irreducible character oH* covering¢ to groups containingZ coversg.
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Let Vo be theO,I-module lifting V, and lety be the K-character oftC,I" cor-
responding to ®o Vo. Then¢ = Vg is the Sinvariant irreducible character cor-
responding toV. Note that, by [10, Proposition 9.2], the characterskgfH with
defect 0, see [10, Definition 9.1], correspond to the characof H* with defect O
covering¢.

We also denote. for A o L|gl € z(/§) (viewing t|s a map tou(S)). Then with the
notations of Proposition 2.4 for appropriate groupsgjf= 1 (in the case ofj = 2,
when we takep = v), it holds that

Vigusg =¥ =MVl gusg = V)
wherey’ e Irr(G*9y(9)) is some extension af’ = 7(G*, «(S))(¢) (Wwhenq = 2, ' =

¢ x 1). Note thatG*'(9,(S) = (GSS)*. Hence, since. acts regularly on InG*9(9)),
blocks of G*® are covered by isomorphic blocks of5*(9(S) and projective modules

are uniquely determined by its corresponding charactexs,[24, Ill, Exercise 16], we
see that

q-1
(3.2.2) Vil =V @ <@ Al X)

i=0

for a simple projectivek*G/S\SrmoduIe V'’ corresponding toy’ and some projective
k*§§$modu|e X. HereA'X is a projectivek*(3/§3module corresponding ta'® €
Irr(G*“9(9)), denoting® e Irr(G*(9,(S)) the character corresponding f6. We use
similar notations in (3.2.3) below. ¥, = —1, then

r* = r=
wie*m@) + w/ - )L(I/,‘l’G*’(S)t(S) + Ip/)

and so we see that, for some projectkgéS\Smoduley,

q-1 q-1
(3.2.3) Vs (@ )J\7’> @ (@ Al y).
i=0

j=1

Hence, we see that (1) holds for a modMécorresponding t07/¢gzxs. We also refer
to the proof of [11, Theorem 6.13] for the above argument.

We show (2). Denote by the character of5*'(® with defect 0 corresponding to
the simple projectivekG*®-module U, and letv” = 7(G*, «((9)~1(v). We see that
the condition that there existd” as in the statement is equivalent to the condition
that v” is a character oflG* with defect 0. (This is also equivalent to the condition
that v” belongs to a block ofG* which has a defect group centralized Hp).) In
this case,U” is a simple projectivk G*-module corresponding to” andn(U”, U) =
[v", v1S] = [v, v"1 8] = £1 (moda).
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Any ((S)-invariant direct summand dﬂTg;(g can be written asd?(T) for some
t(S)-invariant simplekG*-module T. By [33, Theorem 3],

n(P(T), U) =m(P(U), T).

Since U = P(U), it suffices to show that | m(U, T) for any «((S)-invariant simple
kG*-module T such thatT £ U”.

Let p be the Brauer character &* corresponding td@ and ¢ the function defined
by 6(g9*) = p(gyy) whereg* € G* and gy, is the p’-part of g*. Theng'is a generalized
character oiG* andp“IG;, =p, see [24, lll, Lemma 6.13]. Since i8 ((S)-invariant and
generalized characters &* are uniquely expressed as linear combinations of elements
of Irr(G*), p can be expressed as

seS

wherey; are((S)-invariant characters d@&*, 0; are not(S)-invariant characters d&* and
m;, m; are appropriate non-zero integers. Therappears iry; ig;@ with a multiple of
g, sincey; andv are not the Glauberman corresponding characters, seel[24xkr-
cice 6.20]. On the other hand, appears with a multiple of in ZSGSGE(S)@:(S), since
foranyse S

* — * uW(s) 1 *
[v, 95(%8*@] =[v®7, (9}(5)¢8*‘<s>) © 1=[v. 6i1Gus]-

Hence,v|G*,;/s,) appears with a multiple of in pi,g:(s) = (,5¢g:(s))

c®, and the asser-
p/

tion follows.

For (3), note thaG*>N* = Z x(N), G* = G*ON* and G* (I N*(S = Z x ((N9).
Then (A), (B) (a) and (B) (b) are just restatements of [35, h&an26.10] and [37,
Corollary 2.4], [37, Lemma 5.3] and [20, Lemma 2.2] respatyi, by the identi-
fication through the isomorphism (3.2.1) and the correspoods IrrZi«(N) | ¢) —
Irr(i(N)), ¢ x & = & and IrrZu(NS) | ¢) — Irr((N9S)), ¢ x &'+ £'. O

Note that in Lemma 3.2, by the Frobenius reciprocity lawy, V') = m(V’, V)
andm(U, U”) =n(U”, U), and soV’ satisfies the condition in (2) and ~ V'’ if and
only if U”" >~ V.

By the definition of the canonical extension and Proposifigh we see immediate-
ly the following:

Lemma 3.3. Let q be odd With the assumptions okemma 3.2 (4) (B) (b)
and the notations in the proof odfemma 3.2,the following are equivalentdenoting

Ving = Vlzeng =¢ xnandé = ’NiEN)S-
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(1) 1SI7t Y5 u(9) acts trivially on V' where(s) is the canonical image of(s) € T
in k..

(2) ¢ is the canonical extension @f.

(3) ¥l{ng- is the canonical extension f| ..

(4) n is the canonical extension @t

Lemma 3.4. Let A be a primitive interior G-algebra with a defect group Pet
H. be a pointed group of AAssume N(P) = Ny(P)Cs(P). Then H has a defect
group P if and only if H has a defect pointed group, Rvherev is any local point
of P on A

Proof. This follows from the transitivity of defect pointegloups by the conjuga-
tion action, see [35, Corollary 18.6]. ]

Proposition 3.5. Let A be a primitive interior G-algebra oveR which can be
extended to an interiof-algebra A and which has an S-centralized defect group P
and a simple defect multiplicity moduléet o = {1} be a unique point of & Then
(1) There is a unique poing of AG® satisfying the following

(i) The pointed group § of A has P as a defect group

(i) qfms=m(, a).

In fact mg satisfies p = £1 (modq).

(2) ([4, Proposition 4.8))G, pr G3.

(3) If Alisin b where b is a block of G having an S-centralized defgoup D, then
Ag is in w(b).

Proof. Recall from [36, Proposition 1] that there is &ninvariant defect pointed
group P, of A by the transitivity underNg(P) of defect pointed groups oA with
the groupP, see [35, Corollary 18.6] and the Glauberman’s lemma, s8e [Em-
ma 13.8]. Note that by the equalit)ig(P) = Ngs(P)Cs(P) (Lemma 2.8) and the as-
sumption of A being an interiorG-algebra, any defect pointed group éf with the
group P is also S-invariant.

(1) and (2) follow from the Puig correspondence Theorem 3d bBemmas 2.8,
3.2 and 3.4. Here, in the application of Lemma 3.2, viewihg Re{;(,&) and P, as
a pointed group ofA, we takeN = Ng(P,)/P, Nr(P,)/P ~ NS C = PCg(P)/P ~
Cs(P)/Z(P) and A(P,) for G, I, N and A in Lemma 3.2, respectivelys is deter-
mined as the point of5° on A corresponding to a Glauberman correspondéhiof
V =Va(P,) = VA(P,)I X% in v¢%s.

We show (3). For the argument below, see [5, Section 2]. IFirsiote that we
may assumeP < D, see [35, Proposition 37.3]. Recall that tk€-module structure
of Va(P,) comes from the canonical epimorphism: A? — A(P,) =~ End(Va(P,)),
which makesA(P,) an interior Cg(P)-algebra and the faai-a=a for anyu € Z(P)



THE GLAUBERMAN-WATANABE CORRESPONDINGBLOCKS 339

anda € A(P,), which makesA(P,) an interiorC-algebra. The canonical epimorphism
kCgs(P) — KC induces a one-to-one correspondenég,— fp, between BI(Cg(P) |
Z(P)) and BK(C | 1), see [24, V, Theorems 8.10 and 8.11]. Simgefactors through
the Brauer homomorphism Br see [35, Corollary 14.6], wher is in b, that is,
b.1a =14, we see that

(3.4.1) BrEC(b) - 1ap,) = lae,)-
Similary, for the blockb’ of GS such thatAg is in b/, we see that
(3.4.2) BIEC* (D) - Lay(p,) = Lag(r, )

where P, is a defect pointed group of\s corresponding tdP, by the embedding as-
sociated WithGS. Any direct summandV of VA(PV)¢g is an S-invariant simple pro-

jective kC-module, see Lemma 3.2 (3) (A), ai¥ determinesep € BI,(C | 1) and
ep € Blk(Cs(P) | Z(P)). Note that P,ep) is ab-Brauer pair by (3.4.1). A Glauberman
correspondenwW’ of W determinesw(ep) € BIK(CS | 1), which is the canonical image
of w(ep) € Blx(Cgs(P) | Z(P)) since the character corresponding\ib can be seen as
a character irep. By Lemma 3.2 (3) (B),W' is isomorphic to a direct summand of a
Glauberman correspondent of Va(P,), which can be identified wittVa,(P,/), with
the canonicakC-module structures, by the construction &f Hence we see that

w(ep) - Ag(Py) 70,

and so P, w(ep)) is ab’-Brauer pair by (3.4.2). On the other hand, sin€ {(ep))
is a w(b)-Brauer pair by Theorem 2.5 (3), it holds thait= w(b). ]

Following [5, Section 2], we say thafg G-module L is simply defectivef the in-
terior G-algebra Eng (L) has a simple defect multiplicity module. It is known thaé th
simple kG-modules, the fullOG-lattices of the irreducible characters &, see [27,
Proposition 1.6] or [35, p.213], an®@G-modules with full vertex, see [3, Proposi-
tion 1.2], are simply defective.

Corollary 3.6. Let P be an S-centralized p-subgroup of Ghen
(1) Assume that X is a simply defective indecomposable S-amtaRlG-module with
vertex P Then there existsunique up to isomorphispan indecomposable direct sum-
mand X of X|$s satisfying the following

(i) X' has P as a vertex

(i) atm(X’, X).
In fact, X’ is simply defectivem(X’, X) = +1 (modq) and the set of isomorphism
classes of sourc& P-modules of X and Xis same
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(2) Assume that Y is a simply defective indecompos&iB>-module with vertex P
and there exists an S-invariant simply defective indecaaiple RG-module Y satis-
fying the following

() Y” has P as a vertex

(i) gfn(y”,Y).
Then iY”,Y) =41 (modq), any S-invariant indecomposable direct summand Dng
with vertex P and not isomorphic to”Yhas a multiplicity divisible by gand the set of
isomorphism classes of sour@P-modules of Y and "Yis same
(3) (Barker)n(X, X’) =m(X’, X) and so X in (1) satisfies the condition if2) and
(XY~ X. For Y in (2), m(Y, Y")=n(Y”,Y) and so(Y") ~ .
(4) If X in (1) belongs to a block b of G with an S-centralized defect grabpn X
belongs to the blocks(b) of GS.

Proof. SinceX can be extended to aRI’-module X by [9, Theorem 4.5], (1)
follows from Proposition 3.5 (1) forA = Endg(X), [35, Example 13.4 and Proposi-
tion 18.11] and Lemma 2.8. (4) follows from Proposition 33. (

For (2), we consider the multiplicities o&-invariant direct summands df”Tgs
with vertex P.

Let Y be an extension of to an RGSS-module. Denote byP, be a defect

pointed group of8 = Endz(Y). Identify Endz(Y) with Re€:S(Endz(Y)) as interior

GS-algebra and the defect multiplicity modulé: of Endr(Y) with V5(P,) L5t 5)p -

Through the canonical embedding of interi@fS-algebraD: B — € = Indis¢(B), see
[35, p.129], V5(P,) is identified with the direct summand, (1 ® 15 ® 1) - Ve(P,)

of Vé(Py/)¢Egi:Zgy/:/P, where P, is a pointed group ot corresponding toP, by
D. On the other hand, fox € CPy’CP such that 19 15 ® 1 = TIE™S(x), that is,
1g = Trgsg(1® 15 ® 1) = Trp(x), recall the following equalities and the isomorphism
from the last part of the proof of [4, Proposition 7.4]:

VC(PV’) = 77;/’(1(3) : VC(PV’)
= 7, (Tr5 (X)) - Ve(Py)
=T P (%) - Vie(Py)

Nr(P,)/P N, (P,)/P

= Tryepyre (TR, (0)) - Ve(Py)
_ Nr(P,/)/P

= Trye Py p (T (1® 15 ® 1)) - Va(Py)

Nr(P,/)/P
~(m(l®lg®1l)- VC(PV’))TNGSS(Pyr)/P'

Hence, with the above identifications, we have

Ne(P,)/P N=(P,)/P
Ut Nestp, /e = Ve(Pr)ng(e,y/p-
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Let G, be a pointed group of with a defect pointed grouf?,.. Note thatG,
has a defect pointed group, if and only if G, has a defect grouf, see [35, Propo-
sition 16.7]. Forj € 0 ands e S, we have

7y (i%) - Ve(Py) = my (s - 1e)my () (5 - 1g) - Ve(Py)
= ”y’(571 : 16)”)/’(]) : Vé(Py’)

and it is isomorphic tos-conjugate modules(,(j) - Va(P,))* of the k,Ng(P,)/P-
modulern, (j)-Ve(P,). Hence, we see that the indecomposable direct summagf) -
Ve(P,r) of Vc(PyNE;((E{/,))ﬁ is S-invariant if and only ifG, is S-invariant.

On the other hand, for the interidt-algebra Eng (Y 15sg), a pointed groupG,
of Endz (Y15ss) and j” € o”, we see similarly thaG,. is Sinvariant if and only
if the indecomposable direct summand- (Y45ss) of the RG-module (Y45s¢) 5 is
S-invariant.

Therefore, (2) follows from the condition in (2), Lemma 3@ fA=C(P,), The-
orem 3.1 forC, the isomorphism of interiol-algebraC ~ Endg (Y 15sg), See [35,
Example 16.4], and the isomorphism &G-module (Y15sg) 16 = Y1Ss.

(3) follows from Theorem 3.1, (1) and (2). O

Note that in the proof of Corollary 3.6 (2), except in the lasragraph, we only
use the condition that a defect multiplicity module Yfis simple. Hence, we may use
the notations in the proof of Corollary 3.6 (2) for any indeqmsableRGS-module Y
with an S-centralized verteX? and with a simple defect multiplicity moduld. Then
we see thaty satisfies the condition in Corollary 3.6 (2) if and onlysf (1® 15 ®
1) - V&(Py ) no(p,yp = U satisfies the condition in Lemma 3.2 (2) fée= C(P,).
For example, ifS centralizes a Sylowp-subgroup ofNg(P,/)/P, then the condition
is satisfied, see the first paragraph of the proof of Lemma 3.2 (

Corollary 3.7. Assume that S centralizes a Sylow p-subgroup ofL&t P be
any S-centralized p-subgroup of. GThen there is a one-to-one correspondence be-
tween the set of isomorphism classes of S-invariant simpfgctve indecomposable
RG-modules with vertex P and the set of isomorphism classsimyfly defective in-
decomposabléR GS-modules with vertex PThe set of isomorphism classes of source
RP-modules of the corresponding modules is sanibe corresponding modules be-
long to the Glauberman-Watanabe corresponnding blocks

Proof. With the notaions in Corollary 3.6 (1), the map+— X' induces a map
from the former set to the latter set in the first statement.

Let Y be any simply defective indecomposal®& S-module with vertexP. ThenY
satisfies the condition in Corollary 3.6 (2), see the remdnbva this corollary. Hence,
with the notations in Corollary 3.6 (2), the map— Y” induces a map from the latter
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set to the former set in the first statement. Note that Cagolde6 (2) says the unique-
ness ofY” up to isomorphism under the assumption of the existence’of

By Corollary 3.6 (3), above two maps are mutually inverse snbgtween the sets
in the first statement. O

4. The Glauberman-Watanabe corresponding blocks with normal defect
groups

In this section, we reprove Harris’s result Corollary 4.1€ldw. For this, in The-
orem 4.9 below, we will show that the condition that &invariant block algebra
A =0Gb has anS-centralized normal defect group is a sufficient conditiond prim-
itive interior GS-aIgebraAﬂ determined by Proposition 3.5 being a block algebra (in
this case, the simple modules kb and kGSw(b) correspond by the correspondence
in Corollary 3.6).

CONDITION 4.1. b is an Sinvariant block of OG with an S-centralized defect
group D, and A is a primitive interiorG-algebraOGhb. g is a point of AG° determined
by Proposition 3.5 and € 8.

Proposition 4.2. AssumeCondition 4.1. ThenOGb| 3%, has unique up to iso-
morphism an indecomposable direct summand M satisfying the follgwin
(i) M has AD as a vertex
(i) gtm=m(M, OGh).
In fact m satisfies m= £1 (modq), and M is isomorphic to (OGb) = fOG and is
an (OGSw(b), OGhb)-bimodule

Proof. As is well-known, see [31] or [2], we can identify theimts of GSx G on
the interiorG x G-algebra Eng(OGb) with the points ofGS on the interiorG-algebra
A = OGb through €) in Section 1. Note also that, for p-subgroupP of GS since
we see Re$ S (Endo(OGb)) is relatively A P-projective, see [35, p.111], it holds

TIS3C(Endn (OGH)*P) = TISTC (TrR 58 (Endn (OGH)2P))
= TS (Endo (OGH)P*C) ~ TIS*(OGH)P).

GxG
GSxG

with vertex AD correspond to the points oG b)GS with defect groupD. Since block
algebras have simple defect multiplicity modules, see [3b6rollary 37.6], the hypo-
theses of Proposition 3.5 are satisfied by Lemma 2.7, andesstéttements follow. []

Hence, the isomorphism classes of the indecomposable diweamands oOGb|

CONDITION 4.3. D in Condition 4.1 is normal irG.
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Lemma 4.4 (Fan-Puig [12]). Let A be a primitive G-algebra with a normal de-
fect group P and let P be a defect pointed group of. AThen any point of P on
A is a G-conjugate ofy, and so is a local point Hence for any subgroup H of G
containing B any pointed group Hof A has P as a defect group

Proof. SinceGyy,; pr P, and P is normal inG,

1A e TIR(APYAP) © D~ (APyAP)I= 3~ APy9AR,
ge[P\C] ge[P\G]

see [12, 2.12.3]. Hence any primitive idempotentAdt belongs to some ideaPy9 AP
of AP by Rosenberg’s lemma, see [35, Proposition 4.9]. Note thatpaimitive idem-
potent j of AP included in APy9AP must belong toy9, see [12, 2.12.4] or [35,
Lemma 14.3], and so the statement follows. ]

In the normal defect case of our setting, since the Puig spamdence does not
lose the information by Lemmas 2.8, 3.4 and 4.4, we have thewing:

Corollary 4.5. AssumeConditions 4.1and 4.3. Then any indecomposable direct
summand 0OG b¢g§XGG hasAD as a vertex Hence we have the following indecompos-
GxG .

able direct sum decomposition 6IGb| Z< -

OGbLEIE ~ m(fOG) @ <@ m; Mi>,

where m= £1 (modq) and m =0 (modq) for all i.

Lemma 4.6. AssumeConditions 4.1and4.3. Then there are defect pointed groups
Ds, and Dy, of OGb andOGSw(b), respectivelysatisfying the following
(i) io=igfo= foi; for some ¢ € 8o, i € 6p and b € B.
(i) Ng(Ds,) = Ngs(Ds;)DCg(D). In particular, we may takg DCg(D)\Ng(Ds,)] =
[DCess(D)\Ngs(Dsy)]-

Proof. LetD;s be a defect pointed group @?Gb, and letD; be a defect pointed
group of OGSw(b) such thatVOGsw(b)(DS’)i«DCGS(D)/D is a Glauberman correspondent
of Voeb(Ds)! pcg(p)/p: See Proposition 2.6. Then we have

(4.6.1) Ng(Ds) N G® = Ngs(Ds)
and

(4.6.2) Ng(Ds) = Ngs(Ds)DCgs(D),
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see [35, Proposition 37.11], [37, Lemma 3.5 (a)], Lemma 2.&xplicitly [22, Lem-
ma 3.1 (d) (i)].

By the isomorphism Englpxg(M) =~ Af? for M as in Proposition 4.2, Lemmas 2.8,
3.4 and 4.4 and [35, Proposition 15.1 (e)], we have an indposable decomposition

g =m( @ o)
S
1

ce[Ngs(Ds)\G

wherel is an indecomposabl®[D x G]-module isomorphic ta OG for i € §, which
is called asource moduleof b in [2], and m; = m(l, M). On the other hand, by the
similar consideration for Eng}; .cs(OGSw(b)) >~ OG3w(b), we have a decomposition

MSC ~ (0GSw(b) ®oes M) STC

~ m|r< @ |/(C/’1)> Roes M
cel

Ngs(Dy)\G¥]

~ m|'< @ (' ®ocs M)(C/’l)),
c'el

Ngs(Dy)\G¥]

wherel’ is an indecomposabl@[D x GS]-module isomorphic ta’OGS for i’ € §' and
m;- =m(l’, OGSw(b)). Note, firstly, that we may takeNgs(Ds)\G®] = [Ngs(Ds)\ G5
by (4.6.1). Secondly,

m; = dimk(Vendo(my(D x G)s)
= dimk(Va, (Ds))
= dimg(Vogswm)(Ds'))
= dim(Vendo (0Gsu(by (D x G5)z) = my.

Here, for the first and last equalities, see [35, Propos#id (a)] and the third equal-

ity follows from Proposition 2.6 and Lemma 3.2 (3) (B) (b). érbfore, comparing the
above two decompositions dfl | $ %8, we see thal @) ~ I’ ®ogs M as O[D x G]-
modules for some € [Ngs(Ds)\GS]. Hence we may take somee 8, i’ € §' and
f € B such thati®=i’f = fi’, and soDsc and Dy satisfy the condition (i).

For (ii), it suffices to show thaNgs(Ds)® = Ngs(Ds) since Ng(Dsc) = Ng(Ds)¢ =
Ngs(Ds)°DCg(D) by (4.6.2). AssumeNgs(Ds) # Ngs(Dys)¢. Then, by (4.6.1),

NGs(D(;f) _T/ NGS(D(S/)C = NGS(D(s)C = NGS(D(SC).

Hence, there is some € Ngs(Dys) such thatx ¢ Ngs(Dsc) and so (°)* ¢ §°. There-
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fore, i°OG # (i°)*OG as O[D x G]-modules. On the other hand, #[D x G]-
modules,

iCOG=i"fOG ~i”"fOG = (i f)*OG = (i°)*OG,
which is a contradiction. HenceD;. and Dy satisfy the conditions. O

We cite Puig’'s theorems as lemmas, on which our proof of Térao4.9 depends.

Lemma 4.7 (Puig [30, Proposition 4.3]). Let b be a block oG and i a source
idempotent ofOGb. Then there is an equivalence of categories between the argteg
of isomorphism classes of primitive interior G-algebrashirand the category of iso-
morphism classes of primitivéliGi-algebras see[31, 4.2]. An object A of the former
corresponds to an object-iA - i of the latter

Lemma 4.8 (Puig [28] or see [35, Theorem 44.3])Let b be a block 0©G with
a normal defect group PDs a defect pointed group @@Gb andie . Then for any g
(iOGi)* satisfying zgl -U-ag=ud-iforany ue D where ge E = [DCg(D)\Ng(Ds)]
(see[35, Proposition44.2] for the existence ofg, we have the following description of
a source algebra®Gi of OGb as an(OD, OD)-bimodule

i0Gi =P 0D - a3 ~ P ODg.

geE geE

Theorem 4.9. AssumeConditions 4.1and 4.3. Then(OGh)s and OGSw(b) are
isomorphic as primitive interior G-algebras In particular, OGb and OGSw(b) are
Puig equivalent([21], [14]).

Proof. Second statement is clear, sinkes OGb and Ag are Puig equivalent by
the construction.

Since Ag is in w(b) by Proposition 3.5 (3), it suffices to show that, for some
source idempotenit of OGSw(b),

(4.9.1) i OGSw(b) i’ =i’ Ag-i’
as primitivei’OGSi’-algebras, see Lemma 4.7.

For (4.9.1), letdo, &, io € do, ij € &, and fo € B be points and idempotents as in
the statements of Lemma 4.6. Then we can see that

@1ip-OGSw(b) iy — iy- foAf-iy, X foxfy

is well-defined and is an isomorphism of primitivgOGSij-algebras.
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It is straightforward to check thap is well-defined and is an,OGSi/-algebra
homomorphism by thé,OGSi/-algebra structures df, - OGSw(b) - iy = i,0GSi} and
ig - foAfo-ig =ijfoAfiy = foigOGigfo, wWhich is equal toigAig, see the condition
(i) in Lemma 4.6. Below, we note that is an isomorphism ofD-spaces, using the
structure theorem of the source algebra of a block with a abrefect group. Denote
E = [DCgs(D)\Ngs(Ds;)] = [DCs(D)\Ng(Ds,)], see the condition (i) in Lemma 4.6.
By Lemma 4.8, we have

i§0G%iy =D 0D - a

gel

for a; e (i,OGSi)* as in Lemma 4.8. Then, for anye E, aq =p(ay) = foag fo is in
(ioAig)* and satisfiesg~(u-ig)ag = u9-io for anyu € D, as is immediately checked.
Hence we have

i0Aio = P OD - 3

geE

by Lemma 4.8. Thereforey is an isomorphism, sinag maps ar0-basis{u - ag}uep,gez
of i,0GSi; O

Assume Conditions 4.1 and 4.3. Sind®G | OGblS:S., fOG has a trivial
source. By Theorem 4.9, tensorif@?G over OG, that is, multiplication by the idem-
potent f, induces a Morita equivalence betwe&Gb and OGSw(b), see [35, Theo-
rem 9.9]. Moreover, from this and the decomposition of thérie®on of OGb-modules
to @GS-modules described in Corollary 4.5,0G induces cleary the Glauberman cor-
respondence, see Theorem 2.1 (3). (Note thdt, ihencew(b), is a principal block,
then the defect multiplicity module is trivial and sb=b, OGblS:%. = fOG and
OGb = 0GSw(b).)

From above and [15, Proposition 2.5], we have the followingifduction, see
the first paragraph of the proof of Theorem 4.11.:

Corollary 4.10 (Harris [14]). Assume the following
1. G is a finite group acted by a finite solvable groSpsuch that(|G|, |S|) = 1.

2. b is an S-invariant block of G with anS-centralized normal defect group .D
Letl=9<S5 <SS <---<5 =S8 be a composition series & such that|S/S 1|
is a primeg for 1 <i <n. (Thenlrr(b) = Irr(b)S and there is a unique block; (b) of
GS such thatlrr(wi (b)) = {7 (G, S)(¢) | ¢ € Irr(b)}, see[36, Proposition 1 and Theo-
rem 1].)

Then there is an indecomposalGS x G]-module with a trivial source induc-
ing a Morita equivalence betwee®?Gb and OGS wj;(b) and the Glauberman corre-
spondence betwedrr(b) and Irr(w; (b)). In particular, OGb and OGS w; (b) are Puig
equivalent([21], [14]).
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In fact, we have a formulation in terms of pointed groups, alhimplies Corol-
lary 4.10:

Theorem 4.11. With the same assumptions and the notation€arollary 4.10,
we have the following
(1) There is a sequence =G > G > Gy > --- > G5 > D; of pointed groups
of OGb such tha{OGb)s ~ OGS wj(b) as interior G¥-algebras wheres is any point
of (OGh)P, which is necessarily localseeLemma 4.4.
(2) (WatanabeFor |; € 8, yi — Vi -l;, is an isomorphism of interior &-algebra from
OGS wj(b) to ;OGl; where y e OGS w;(b), and so |OGl; = OGS w; (b)l;.
(3) For |j € g, the (OGS, OG)-bimodule JOG induces a Morita equivalence be-
tween OGb and OGS wj(b) and the Glauberman correspondence betwéefb) and
Irr(wj (b)).

Proof. Firstly, recall the definition o (b). Below, the action 0f§/S_; on G5+
is the action induced by the given action®fon G. For anS /S _i-invariant blockB of
GS-t with an §/S_1-centralized defect group, denote by /s _,(B) the Glauberman-
Watanabe corresponding block 6Ff = (GS-1)S/S-1 induced byr (G5, S§/S_1). Tak-
ing wo(b) = b and using inductionuw; (b) is defined byw;(b) = wg,s_,(wi—1(b)). By
induction, then, Irr@; (b)) = {7 (G, S)(¢) | ¢ € Irr(b)} by Theorem 2.1 (ii) and Theo-
rem 2.5 (2),wj(b) is S+1/S-invariant by Theorem 2.1 (i) fo§ < S+1 andwj(b) has a
defect groupD by Theorem 2.5 (2), which i§.1/S-centralized.

By Theorem 4.9, there is some primitive idempotérit (OGS-1w;_;())(C* 35 =
(OGS-1w;_1(h))®" such that

fiOGS1w;_1(b) fi ~ OGS w;(b)
as interiorGS-algebras. Since we have an interi@f-t-algebra isomorphism
Ui_1: OGS1w_y(b) — li_10Gli_1

for l;_1 € Bi_1 by induction (in the casé =1, this is trivial), for the primitive idem-
potentl; = W _1(f;) of (Ii,l(QGIi,l)GS, there is an interiolGS -algebra isomorphism

i : (110Gl _)l; =1;,0Gl, — OGS w; (b).

Note thatl; is also primitive in OG b)Gs, see [35, Proposition 4.12], and |gt be the
point of GS in OGb containingl;. Note thatg; is uniquely determined by the point
of (OGS-1w;_1(b))©* 3% containing f;, see [35, Proposition 15.1 (a)]. Sin&é
has defect grou® and Ngs_;(D) = Ngs (D)Cgs.1(D), Ds is a defect pointed group
of GZ where$ is any local point of OGb)P. From above, (1) follows.
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Sincel; OGl; ~ OGS wj(b) as interior GS-algebras inw;(b), the structural map,
which is an interiorGS -algebra homomorphism)GS w;(b) — 1;OGl;, yi = i -;, is
an isomorphism. Hence, we have (2).

By (2), we can takex;_1 € OGS—w;_4(b) such thatl; = xi_1 - lj_1 = lj_1 - Xi_1.
Then (3) follows from the following isomorphisms o©GS w; (b), OGb)-bimodules:

fi (OGS 2wi_1(D)) ®pgs1 fi-1(OGF2wi_»(b)) ®pgs - -+
®oc= f2(0GH w1 (b)) ®ocs f1(OGb)
~1i(1i-10Gli—1) ®pgs 1 li-1(1i-20GCli-2) ®pgs 2 -+
®ocs 12(110G) ®pgs 11(OGb)
=1 (i_10GS 1) ®pgs-1 li1(li 20G5 2l ) @ pgs_2 - -
®oc= 12(010G%11) ®pes 11(OGh)
=i ®pgs-1 li-1®pgs-2 - ®oc l2®pcs 11(OGh)
=1l Xi—1) Qg1 li—1(li—2- Xi—2) ®pgs—2 - ®oc= l2(l1 - X1) ®pgs 11(OGh)
=li(lic - Xi—1) ®pgs-1 li—1(li—2 - Xi—2) ®pgs-2 - Qo |2 ®oes [2(OGh)

=1 Roes- li—1 Roci-2 " Qoce l2 ®pcs || (OGh)
~1,(OGb). O

5. Appendix

Throughtout this section, we assume Condition 4.1.

Since the Glauberman correspondence induces an isotypyedetGlauberman-
Watanabe corresponding blocks, it is desirable to existadided complex inducing a
splendid derived equivalence and the Glauberman corredgpae. In fact, in the nor-
mal defect case, this is proved in Harris’s result Corolldrg0.

On the other hand, Okuyama pointed out in [26] that there imespairwise or-
thogonal (possibly zero) idempotents, 0 <i <q — 1, of ((’)Gb)GS such thatb =
Z?:’Ol by and, as generalized characters/diGS x GJ,

() Do— D= Y §(n(G, (@) xP) for 1<l =<q-1,
¢pelrr(b)

where ®; is the character corresponding G, 43 is the dual of¢ and§, is the
sign described in Proposition 2.4, takiggso that IrrPo) = {¢ | ¢ € Irr(b)} in the case
of g =2. Here and below, we denote Iy a canonical extension df in the sense of
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[36, p.555]. In fact, we can take d%

gq-1
() bi=) ebjs for 0<i<qg-1,
j=0

whereby is the block of OT such that Iri) = (\'v | ¥ € Irr(b)} and e is the block
of OS corresponding ta\! e Irr(S) for any integert, see [34, Section 4]. Note that
whenq = 2, by depends on the choice k.

We note that the normal defect case fits into this observafidrat is, there is a
complex C* of (OGS, OG)-bimodules which induces a splendid derived equivalence
betweenOGb and OGSw(b) and whose character is canonically reduced to the left
hand side of £) (hence which induces the Glauberman correspondence). mLet
m(fOG, OGb) as in Proposition 4.2. In fact, by Proposition 5.2 below; éxample,
we can take

C*: - . >0->b0G—->b0G—->0— ---

where the degree dfiyOG is 0 and the non-trivial differential is induced by inclusio
in the casem = 1 (modq) and projection in the casm = —1 (modq). Note that
C* >~ fOG or C* >~ fOGJ1] in the appropriate derived (or homotopy) category where
we view fOG as a complex concentrated in degree 0.

REMARK 5.1. From §) and Proposition 5.2 below, we see that, under Condi-
tions 4.1 and 4.3, the character 6f®o fOG is 3, (7 (G, S(#) x ¢). Hence, by

[7, Théoréme 0.2.],f OG induces a Morita equivalence betwe@Gb and OGSw(b),
and we can also get Corollary 4.10 without using Lemmas 4.8, afd 4.8, if we
utilize the facts £) and &x).

For a groupH and anOH-module M, we denote byM g a maximal direct sum-
mand of M any of whose indecomposable direct summand Qass a vertex. We
have a more precise statement of Proposition 4.2:

Proposition 5.2. AssumeCondition 4.1. With the above notationsve have the
following isomorphisms aqf®GS, OG)-bimodules when q is oddif m = 1 (modq) then

(5.1.1) (000G ap ~ fOG ® (0 OG)ap

and if m= —1 (modq) then

(5.1.2) (0 OG)ap ~ FOG ® (beOG)ap,

and when g= 2, depending on the choice of,bwe have(5.1.1) or (5.1.2). Hence
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if moreover we assum€ondition 4.3,then we have
boOG ~ fOG & b OG

or

bOG ~ fOG & bOG.

Proof. Letq be odd andn=1 (modq). Similar for the casen= —1 (modq),
using (3.2.3) in the proof of Lemma 3.2.

Let D; be a defect pointed group @I'by andV = Vg (Ds). As in the proof of
Proposition 4.2, the indecomposable decomposition@)lff(o¢GSSXr)AD is described
by the indecomposable decomposition \BiLGsS. Note thatNr(D) = Ngss(D)Cr(D).
Below we will identify S with its canonical image ifCr(D)/D and recall thatv has
a canonicakCr(D)/D-module structure.

Firstly, since primitive idempotents of Epghss.r (OTbg) remain to be primitive
idempotents of Engigs,rj(OTbo), for primitive idempotentsj; and j, of (OT'hg)®*S
such thatj;OT'bo | (OTbo gss.r)ap and j2OTbg | (OTBod gss,r)ap,

j1(0T D) 85T ~ (j,0Tbg) | SoSxT

GSxI' — GSxTI'

if and only if

. ~ .\ Ngsg(Ds)/D . ~\ | Ngsg(Ds)/D
(rs(i) - V)i, = (s(i2) - V)i

Secondly, for a primitive idempoten} of (OT'bp)®°S, since j = Y% j in
(OTbp)®°S and 5 is an interior S-algebra homomorphism, we haee- (jOI'by) # 0
if and only if & - (5(j) - V) #0 for t € Z.

Note that an indecomposable direct summandf OT'bg|gss, - is determined by
Z| s, ande such thate - Z # 0.

Since a canonical character 65 is the canonical extension of a canonical char-
acter ofb by [36, p.558], from the isomorphism (3.2.2) in the proof admhma 3.2,
Lemma 3.3 and above remarks, we have the following isomsmplof (OGSS, OT)-
bimodules for some®@GS, OGb)-bimodule

g-1
(OTbolgas, 1) ap = 2°TOG & <EB M\?)
i=0

where, for an OGS, OGb)-bimodule M, we denote by’ M the extension ofM to
(OGSSe, OT'bg)-bimodule.
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Hence, by Lemma 5.3 for = 0 below, we have

(bOG)ap = (A°TOG @ 12NN S5T ~ fOG e N

and

(B OG)ap = (AN ST ~ N

Hence the statement follows.
Similar for the case of) = 2. O

Lemma 5.3. AssumeCondition 4.1. With the above notations and for any integer
t, we have the followindOGS, OG)-bimodule isomorphism

b OG ~ (& OTb) gsc-

Proof. We have the following isomorphisms @@GS, OG)-bimodules:

q-1
&_j @FB( = Z €j+t—i BJHOFBt = biOFBt ~ b OGh.
j=0
For the last isomorphism, see Lemma 2.7. ]
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