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Abstract

We study the boundari; of the Milnor fiber for the non-isolated singularities in
C3 with equationz™ — g(x, y) = 0 wherem > 2 andg(x, y) = 0 is a non-reduced plane
curve germ. We give a complete proof tHat is a Waldhausen graph manifold and
we provide the tools to construct its plumbing graph. As aaneple, we give the
plumbing graph associated to the germs— (x? — y%)y' = 0 with | odd andl > 3.
We prove that the boundary of the Milnor fiber is a Waldhausemifola new in
complex geometry, as it cannot be the boundary of a norm#ceriisingularity.

1. Introduction

In [16] the authors state with a sketch of proof that the baupdL; of the Milnor
fiber of a non-isolated surface singularity @ is a Waldhausen graph manifold (non-
necessarily “reduziert”). These manifolds are convetyedescribed by a plumbing
graph. The present paper is devoted to the study of germsawithationz™ — g(x, y) =
0 wherem > 2 andg(x, y) =0 is a non-reduced plane curve germ. For them:

1) We prove in details that; is indeed a Waldhausen manifold (Section 4). The
Waldhausen decomposition far; is obtained by gluing two specific Waldhausen sub-
manifolds along boundary tori: the trunk and the (non-ngaely connected) vanishing
zone.

2) We prove that the vanishing zone is in fact a Seifert méshifmd we elucidate its
structure (Section 5).

3) We show how to obtain the trunk (Section 2) and how to detenthe gluing
between the two submanifolds (Section 4).

In particular, we elucidate in this paper, for singulasti@ith equationsz™ —
g(x, y) =0, the following points which are not treated in [16]:

a) We prove that the vanishing zone is a Seifert manifold. tased in the erratum
[17], the vanishing zone is in general a Waldhausen manibeitl non-necessarily a
Seifert one.
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b) The explicit description of the vanishing zone given bela Section 5 enables us
to give an explicit description of the plumbing graph bof, whereas the Waldhausen
structure was not explicitly described in [16]. We need #gplicit description to ob-
tain the following new results:

In Section 6, we expound wheln; is a lens space for the germs under consider-
ation in this paper. The reason why lens spaces come up igieggdl at the end of
Section 2.

In Section 7, the plumbing graph is given for the singulasiti? — (x? — y®)y' =0
with | odd andl > 3. In [15], D. Massey computes the homology of the Milnor fiber
F; for these examples, but he doesn’t study the topology of égtsndaryL;. Here,
we prove that the boundaries of their Milnor fibers are Waldleaumanifolds new in
complex geometry, as they cannot be the boundary of a norantdce singularity.

Information about the homology df; is given in Section 8. In [18] we determine
the plumbing graph for the boundary of the Milnor fiber of Hivrgch singularities
z" — xky! =0. Here we obtain the following result.

Theorem 8.1. Let f(x,y, z) = z" — xXy' = 0 be the equation of a Hirzebruch
singularity Assume thagcd(m, k,1) =1, that 1 < k < | and that m> 2. Let d=
gedk, I) and writek = k/d andl =1/d. Then H(L:, Z) is isomorphic to the direct
sum of a free abelian group of rarl(m — 1)(d — 1) and a torsion group The torsion
subgroup is the direct sum @ — 1) cyclic factors One of them is of order kh and
the other(m — 2) factors are of orderkl.

Necessary results about Seifert and Waldhausen manifaddseealled in Section 3.
The dictionary which translates Waldhausen decompositinto plumbing graphs pro-
vided by [22] can then be used to obtain the canonical plughgiaph forL;.

There are two questions which need clarification in our us&-ofanifold theory:
irreducibility and normal forms for plumbing graphs. Sinte relevant statements are
somewhat scattered through the literature, we group theamiappendix (Section 9).

We thank the referee for her/his careful reading and mangflletcomments.

2. Definitions and main results

We consider germd (X, v, z) € C{X, vy, z} such thatf (0, 0, 0) = 0. We deal with
germs f such that the dimension of the singular locu¢f) is equal to 1. Hencef
is reduced.

We denote byB?" the Z-ball with radiusr > O centered at the origin &&" and
by §"-1 the boundary ofB>". We setFy = Bfn f1(0) andLo = S n f1(0). Ac-
cording to the theory of Milnor [19], extended by Burghelead averona [3] in the
non-isolated case, the homeomorphism classes of the @fs=§) and &, Lo) do
not depend ore > O if it is sufficiently small. As a consequence, we shall ulgual

remove ‘¢” from our notations.
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The restrictionf|BS N f ~1(B2 —{0}) — (BZ—{0}) is a locally trivial differentiable
fibration whose isomorphism class does not depend)en0 provided thaty is suf-
ficiently small (0< n <« €). See Milnor [19] and also Hamm-Lé [6]. Therefore, the
diffeomorphism classes of the manifoléfs = B8N f ~1(t) and Ly = N f (t) do not
depend ort if 0 < |t| < 7. We say thatr is the Milnor fiber of f and thatL, is the
boundary of the Milnor fiber.F is oriented by its complex structure ahdg is oriented
as the boundary of.

We denote byn: Fo — F, the normalisation. It follows from the arguments in
Durfee [4] that the boundary, of an algebraic neighbourhood of%(0) is well de-
fined. We shall callly the boundary of the normalisation.

The strategy used to obtain the boundary of the Milnor fibemfam-isolated singu-
larities is the following. LetX(f) be the singular locus of . By hypothesisZ(f) is a
curve. LetKy=LoN X(f) be the link of the singular locus ihg. Let Ko= n—1(Ko)
be the pull-back ofKg in Lo. A good resolution ofF, provides a Waldhausen de-
composition forLo as a union of Seifert manifolds such th&t is a union of Seifert
leaves. LetM, be a tubular neighbourhood & in Lo. The closureNg of (Lo— Mo)
is called thetrunk of L;.

From now on, let us suppose théatis of the form f(x, y,z) =z" — g(x, y). In
4.6 we define a submanifolil; of L; called thevanishing zonaroundKg,. A slightly
less general version of Theorem 4.7 can be easily statedllaaso

Theorem. (1) The closure Nof L\ M; is homeomorphic to the trunko.
(2) The manifold M is a Seifert manifold

The construction (see 4.6) of the vanishing zone is so petiat it gives rise to
a very explicit description ofM;. To each irreducible component of the singular
locus of f corresponds a connected compondfiii) of M;. A hyperplane section
argument provides a plane curve gergf ¢ y") and an integek. Let d = gcdfy, k).
In Section 5 we prove the following result.

Theorem 5.4. The vanishing zone ) is the mapping torus of a diffeomorphism
h: G; — G; such that
(1) G is diffeomorphic to the Milnor fiber of the plane curve gerfh-z y™.
(2) The diffeomorphism h is finite of order /dl.
(3) If d < n;, the diffeomorphism h has exactly m fixed points and the actidn has
order nn/d on all other points
(4) Around a fixed point h is a rotation of angle2zk/n;.

Following the terminology introduced by D. Siersma in [26}e call the above
diffeomorphismh the vertical monodromyfor o;.
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REMARK. We prove the above theorem without assuming thas irreducible.
The number of connected components § and Lo is equal to the number of ir-
reducible components of. The intersection between two irreducible components of
f = 0 furnishes at least one irreducible component of the $amgocus X(f) and a
corresponding connected component of the vanishing zorencé] the constructions
given here show that after the gluing of all connected corepts of the vanishing
zone with the trunk, we obtain a connected manifold This implies that the Milnor
fiber F is connected. As the singular locus 6fhas dimension 1F; is connected by
a much more general result of M. Kato and Y. Matsumoto in [12].

It is stated in [16] thatl, is never homeomorphic t,. But the particular case
when both the trunk is a solid torus ang is a lens space is rather delicate. Indeed,
when the trunk is a solid torus the complexity of the Waldsusanifolds, defined
in [16] p. 2309, could vanish. In [17], p.310, we state (with@roof) that when both
the trunk is a solid torus and; is a lens space, theffi is analytically equivalent to
72 — xy for somel > 2. This statement corrects the point (2) p.2310, in [16], and
completes the proof that; is never homeomorphic thy. To produce in a forthcoming
paper a complete proof that is never homeomorphic tho, the first two authors need
a characterization of the germa® — g(x, y) for which L; is a lens space. Theorem 6.3
solves the problem.

Theorem 6.3. The boundary of the Milnor fiber of an irreducible gernixfy, z) =
Z" — g(x, y), where m> 2 and g, y) = 0 is non-reducedis a lens space if and only
if f is analytically equivalent toZ— xy for some I> 2.

REMARK. For our purpose lens spaces are defined as graph manifoldisexh
from a plumbing graph which is a “bamboo” with genus zero iced.

For technical reasons, we use in this paper a polydisc
B(@)=BZ xBf x BZ={(x,y,2) € BY, IX| <o, ly| <8, 1zl <y}
where O< o < B8 <y < €/3 in place of a standard baB?.

DEFINITION. The polydiscB(«) is a Milnor polydisc for f if:
i) For eacha’ with 0 < &’ < « the pair B(c’), f~1(0) N B(«')) is homeomorphic to
the pair 8%, f~1(0) N BY).
ii) For eacha’ with 0 < o’ < « there existsy with 0 < n <« &’ such that:
1) the restriction off to W(«', n) = B(e') N f*l(B,f — {0}) is a locally trivial
differentiable fibration on BZ — {0}),
2) this fibration does not depend e (when O< o’ < &) up to isomorphism.
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3. Three-dimensional manifolds

In this section, we recall some facts pertaining to 3-dirfmred manifolds in a
setting appropriate to our needs.

We consider differentiable, compact (usually connecteayadifolds M possibly
with boundary. When the boundagM is non-empty, we assume that it is a disjoint
union of tori. Manifolds are oriented. Classifications aren@lap to orientation pre-
serving diffeomorphism. In the situations we mebt,is quite often the boundary of a
complex surface/. The complex structure gives rise to an orientationvoind M =
dV receives an orientation via the boundary homomorphisntH,(V modaV; Z) —
H3(0V; Z).

3.1. Seifert foliations. In this paper, we only need to consider orientable Seifert
fibrations (to be called Seifert foliations, since we have tany fibrations present).
As our manifolds are oriented and compact, we may define &$édifliation onM as
an orientable foliation by circles. Thanks to a theorem o$tEjm [5], this is equivalent
to requiring that there exists a fixed point fré&-action on M such that the leaves
coincide with the orbits.

An exceptional orbit (leaf) is one such that the isotropygsohp is non-trivial. It
is a finite cyclic subgroup of order > 2. The slice theorem (and orientability &)
imply that for each exceptional leaf there exist:

i) a tubular neighbourhood which is a union of leaves,
i) an orientation preserving diffeomorphism of this neiglirhood with the mapping
torus of a rotation of ordew on an oriented 2-disc, sending leaves to leaves.

A Seifert invariant for an exceptional leaf is defined asdal. Suppose that the
rotation angle on the 2-disc is equal ta2/a. We need the orientation of the 2-disc
to get the correct sign for the angle. We have ged(*) = 1 and we choos@g™* such
that 0< B* < @. Now let 8 be any integer such thag* = 1 (mod«). The pair
(a, B) is a Seifert invariant of the exceptional leaf. See [20]85—-140. The choice
of a B in its residue class (mod) is related to the choice of a section of the foliation
near the exceptional leaf. The Seifert invariasat ) is callednormalisedif a section
is chosen in such a way that8 < «.

Let r > 0 be the number of boundary componentshMf The space of leaves is
a compact connected orientable surface of gampusO with r boundary components.

Suppose now that sections of the foliation are chosen on leachdary component
of M and that they are kept fixed during the following discussidve then choose a
B for each exceptional leaf. Once these choices have been, niagleEuler number
e € Z is defined. See [20] for details. Essentially it is the obtton to extend the
section already defined on some part of the orbit space. Tthgdne depends on the
choice of theg’s, but the rational numbeey, = e — ) Bi/«; does not. Of course, if
r > 0 the numberse and g, still depend on the choice of a section on the boundary
of M.
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3.2. Waldhausen manifolds and plumbing graphs. The manifoldsL o and L,
we study in this paper are graph manifolds in Waldhausen'sesdg27]. They will
appear in the following dress.

A Seifert manifold is a 3-dimensional compact oriented rfadi given with a
Seifert foliation.

A finite decompositionM = M; of a 3-manifoldM is Waldhausen if:

(1) EachM; is a Seifert manifold.
(2) If i # ] the intersectionM; N M; is either empty or equal to a union of common
boundary components.

A manifold is Waldhausen if it admits a Waldhausen decontjousi It is best de-
scribed by a plumbing graph. To begin with, we consider d¢eer83-manifolds which
are circle bundles over a closed oriented surface (we ordyl tere to consider these).
Such a bundle is characterised by its Euler number and thasgehthe base space.
Two bundles may be glued together by an operation called lghgn See [22] for
details.

A 3-manifold constructed by plumbing is represented by aplgraThe vertices
represent the bundles. They carry two integral weights: gdreusg of the base space
and the Euler numbee. An edge represents a plumbing operation. The dual graph
of a good resolution for a normal surface singularity is alsighted like this. If un-
derstood as a plumbing graph, it describes the boundary adna-algebraic neigh-
bourhood of the exceptional locus. See [22] for details. 28] [Neumann assigns a
canonical plumbing graph to each Waldhausen manifold. idedatly useful are the
bamboo o-o-.. -0 with genus zero vertices and Euler numbers —2 for a lens
space (see [22, Theorem 6.1]) and the star-shaped treecfantltler Seifert spaces (see
[22, Corollary 5.7]).

3.3. Mapping tori and Nielsen invariants. Let G be a compact, connected and
oriented differential surface. L&t G — G be an orientation preserving diffeomorphism
of ordern > 2. Let P be a point in the interior 06 whose orbit undeh is of cardinal
m < n. Let A be the integer defined as

A= — > 2.

3=

Consider the diffeomorphisnth™ for which P is a fixed point. Choose a little
disc D? with centre P invariant byh™. “Little” means that, at the exception d¢¥, all
points in D2 have an orbit of cardinah. The discD? is oriented by the orientation
of G and its boundaryD? is oriented as the boundary &2. Thenh™: D? — D? is
conjugate to a rotation of angte/A with 0 < w < A andw prime toA. The orientation
convention forD? and its boundary is essential to obtain a well-defined angét.o
be the integer such that© o < A andwo =1 mod A.
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DEFINITION. The pair {, o) is the Nielsen invariantof h at P (or for the orbit
of P) and the rational number/2 is the Nielsen quotient

If G has a non-empty boundary, €& be the closed oriented surface obtained by
attaching a 2-disc on each boundary componenGofLet h be the conical extension
of hto G. It may be thath is not quite differentiable at the centre of the new discs
but this is unimportant.

RULE (Nielsen invariants for boundary components). We define Nielsen in-
variant for boundary components & as the Nielsen invariants for the centre of the
attached discs. It is important to notice that the boundampmonents ofG are ori-
ented as the boundary of the attached discs and not as theldguaf G.

If we follow this rule we can always imagine that the surfaees closed.
Let h: G — G be an orientation preserving diffeomorphism of ordeof an ori-
ented surface as above. Thepping torus Th) of h is defined as follows.

DEFINITION. The mapping torud (h) is the quotient of the producs xR by the
equivalence relationx(t+1) ~ (h(x),t). It is oriented by the orientation d& followed
by the usual orientation dR (the order is unimportant)This is the definition adopted
in complex geometryoften implicitly) as well as in foliation theoryholonomy. Be-
ware that topologistqfor instance in knot theojyoften use the opposite equivalence
relation (x, t) ~ (h(x), t +1).

Sinceh is of finite order, the mapping torus(h) is an oriented Seifert manifold.

Proposition 3.3.1. The Nielsen invariant for an orbit of lengtk n and the nor-
malised Seifert invariant for the corresponding excemloleaf of the mapping torus
coincide

For a proof see [20] p.145-150.

Proposition 3.3.2. The sum of the Nielsen quotienrtgr of h around all the short
orbits (i.e. with cardinal < n) and boundary components is an integer

Proof. The lemma is an immediate consequence of Proposti®d and the fact
that eg = 0 for a mapping torus (next lemma). ]

Proposition 3.3.3. Suppose that the surface G is closéthen the rational Euler
number g of the Seifert foliation on the mapping torugH) vanishes
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Proof. Letn be the order oh. The mapping torud (h") is a covering ofT (h) of
ordern and the covering map preserves the Seifert structures. e5ldnycthe functorial-
ity of ey, we haveey(T (h")) = ney(T(h)). See [11] 3.3. or [23] 1.2. BuT(h")=Gx St
becauseh” =id and hencegy(T(h")) = 0. L]

3.4. Comments. i) The plumbing graph forL; can be obtained as follows.
The plumbing graph for the trunk is part of the plumbing gréph the normalised
surface. From the mapping torus of the vertical monodromyg, abtain the Seifert-
Waldhausen invariants of the vanishing zone by the dictipgéen in [25]. Then [22]
gives the plumbing graph for the vanishing zone. The pastihgwo Seifert pieces
along a common boundary component is represented in thebpigngraph by a bam-
boo having vertices witlg = 0.

ii) Neumann proves in [22] that the boundary of a normal swgfaingularity is
an irreducible 3-manifold, i.e. each embedded 2-spheradmoa 3-ball. In [16], Sec-
tion 5, we show that the boundany; of the Milnor fiber of the germf(x, y, z) =
22 — y? is diffeomorphic toS' x S?, which is not an irreducible 3-manifold.

iii) Usually when lens spacek(n, q) are considered it is implicitly assumed that
n > 2. In this paper we shall call generalised lens space antede8rmanifold which
is orientation preserving diffeomorphic tio(n, q) or S* or S' x S°. They are exactly
the 3-manifolds which admit a genus one Heegaard decongusif beautiful result
of F. Bonahon [1] says that such a Heegaard decompositioniggi@ up to isotopy.

iv) A manifold which has two Seifert structures (one of theonsorientable) is
a frequent pebble in the shoe. Lietbe “the” orientation-preserving involution of the
annulusS* x [0, 1] which exchanges the two boundary components. The m@gprus
of h is a Seifert manifold which has two exceptional leaves withk 2. This is the
Seifert structure that Waldhausen cdl}s See [27]. We shall not meet the other Seifert
structure, except in Fig. 1 since Neumann uses it in his niisateon process.

4. From the boundary of the normalisation to the boundary of the Milnor
fiber

Let g € C{x, y} be non-reduced and such thg{0, 0) = 0. Let ]_[!:1 g" be the
factorisation ofg into a product of irreducible factors with; prime tog; if i # j.
We choose the indices in such a way that- 1 if and only ifi <ig for someig with
1<ipg=<I|. We choose the coordinate axis such tkas prime tog.

Now let f(x,y,2) =2z —g(X, y) and letT" = {dg/dy =0} N {f = 0}. The singular
locus (f) of f is the intersection offz = 0} with {g'(x, y) = 0} where g'(x, y) =
[Tz 9"

(4.1) Asx is prime tog, for a sufficiently smalk, the hyperplane$i, = {x = a}
intersect transversally the curg(f) at any point of B® — {0}) N ©(f) and:

Bfﬂ{z:O}ﬂ{g—?/:O}ﬂ{f =0} c =(f).
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Moreover, we choose a sufficiently general coordinate sxis order to have:

Bfm{z:om{g—g: }m{f =0} c =(f).

Let S be the boundary of the polydisB(«) = BZ x B x B2 where O<a < 8 <
y <€/3 and letS(a) = S} x Int B x Int BZ. We take a sufficiently smaj such that:

1) Lo=({f=0Nn9 izl <y}
We take a sufficiently smalk with 0 < o < 8 such that:
2) {g=0IN{z=0NY C Yw).

Using D.T. L&, Section 1 in [14], the above conditions imphat B(«) is a Milnor
polydisc for f as defined at the end of Section 2. We will use this polydisclate
of a standard balB?.

Let Fo= f 1(0)N B(a). ThenLo = SN Fy is the boundary of,. The link Kq of
the singular locusz(f) of f is by definition Ko = Z(f) N Lo.

Now let n: F; — Fo be the normalisation of,. We have seen in Section 2 that
Lo =n"1(Lo) can be identified with the boundary of the normalisatiomality let K o =
n~1(Ko) be the pull-back oKy by the normalisation.

REMARK 4.2. The resolution theory implies that there exists a dexmition of
Lo as a gluing of Seifert manifolds such thidf is a union of Seifert leaves.

Let ¢: C3 — C? be the projection defined by(x, y, z) = (x,z). For a smallg with
0 < 6 < a we denote byMg the union of the connected components of {(St x
B2)) N Fo which meetKo.

Proposition 4.3. There exists a sufficiently small such that
(1) Mo C e),
(2) MoN{z=0} =Ko,
(3) n~Y(Mo) = My is a tubular neighbourhood oK in Lo. MoreoverKy is the ram-
ification locus ofy o n restricted toMo.

Corollary 4.4. The closure Ny of (Lo — Mp) in Lg is a Waldhausen manifold
Proof of Corollary 4.4. The restriction of the normalisatio to the closureN,

of (Lo — Mg) in Lo is a diffeomorphism ontdNy. But Ng is a Waldhausen manifold
by Remark 4.2. ]



300 F. MCHEL, A. PICHON AND C. WEBER

Proof of Proposition 4.3. From (4.1) fact 2) we hag C S(«). Then there ex-
ists & such thatMy C S(«). We can choosé small enough such thdtoN{|z| < 6} is
a tubular neighbourhood dfj =0} N'Ly in Lo. This proves (2). The singular locus of
@ restricted toFy is the curvel’ N B(«x). Let A = ¢(I"). We can choosé still smaller
in order thatA N (St x B?) = St x {0}. As ©(f)={z=0}NT this proves (3). [

(4.5) From the definition oB(«) given at the end of Section 2, there exists a
very smalln with 0 < 7 < 6 < « such thatf restricted toW(a, n) = B(a)N f (B —
{0}) is a locally trivial fibration on B,f — {0}). When O< |t|< n we say thatF =
W(a, n) N f~1(t) is “the” Milnor fiber of f and thatL; = F, N S is the boundary of
the Milnor fiber of f.

In S we considerS() = St x BZ x Int B2 and S(8) = B2 x S} x IntB2. As , 8, ¥
have been chosen such tHag = (f 2(0)N S) C (S(e) U S(B)) (see (4.1) fact 1)) there
existsn with 0 < <« o such thatL; C (S(a) U S(8)) for all t with 0 < [t| < 7.

(4.6) LetM(n) be the union of the connected componentsSof{| f | < n}N{|z| <
6} which meetKgy. Let N(n) be the closure of W(a, n) N'S) — M(n) in S. For anyt
with 0 < |t] <n let M{ =L{NM(n) and letN; = L " N(n) be the closure ofl{; — My)
in L;.

Theorem 4.7. There exists a sufficiently smajl such that for any t with0 <
[t] < n we have
(1) M¢ C S),
(2) f restricted to N») is a fibration on $ with fiber N for 0 < |t| < n,
(3) M, has a Seifert structure such that the restriction of z on aeije& leaf is con-
stant

REMARK 4.8. Theorem 4.7 enables us to descriheas the union of the Seifert
manifold M; with the manifold N; which is diffeomorphic to the Waldhausen sub-
manifold No of Lo defined in the proof of Corollary 4.4. Moreover, the intersmct
M; N N; is equal todM; = dN; which is a disjoint union of tori. Hence we have:

Corollary 4.9. L. is a Waldhausen manifold

Proof of Theorem 4.7. Proposition 4.3 implies thdy = M(n) N f~1(0) is in-
cluded in S(e). As S(«) is open inS, we may choose; sufficiently small in order
that M(n) € S«). Thus point (1) is proved.

As noticed in (4.5), for a sufficiently smaij and fort such that O< [t] < n we
havelL; C §(a) U §(,3). Let L(n) = N(n) U M(n). We restrictn to have

(L(n)ﬂ{z:O}ﬂ {2—3 :0} N {|x] :a}> C Ko,

0]
(L(n)ﬂ{zzo}ﬂ {8_3 :0} NA{lyl =ﬂ}> C Kao.
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Moreover, Kq is included in the interior ofM(n). Hence the restriction off
to N(n) is a submersion. The intersectiad(n) N M(n) is included in S(@) and in
{lz| = 6}. In Proposition 4.3 we have chosénsuch thatdNy = dMy does not meet
{ag/dy = 0}. Hence, for a sufficiently smaly the intersectionN(n) N M(n) does not
meet{ag/dy = 0} either. This proves (2).

We consider the projectiop defined in 4.3. For G< |t| < n let us denote by
the restriction ofp to M;. The singular locus ofy is M; N {g =0} = M N {Z" =t}.
For eachc with 0 < |c|] < 6 we have

o7 (S x {c)) =M N {z=c}.

We saturate the solid torug! x B2 with the circlesS! x {c}. We pull-back this foliation
by ¢i. As ¢ is a branched cover whose ramification locus consists ofnhleaves
St x {c} with c™ =t, this gives a foliation in circles omM; with leaves defined by
M: N {z=c}. ]

4.10. Comments. At any point P of K, we consider the plane curve germ
f(a,y, 2 =0. the Milnor theory applied to this plane curve germ, iraplthat the con-
nected component d¥l (n)N{x = a} which containsP is homeomorphic to a ball. Hence
there exists a deformation retraction frdvh(n) onto the linkKy. We say thatM; is the
vanishing zonaroundKgy. Up to a diffeomorphism)N; is a common Waldhausen sub-
manifold of L;, Lo and Lo. This is why we say thaN; (resp.No) is the trunk of L;
(resp.Lo).

4.11. The gluing. We will explain now howL; can be constructed as a gluing
of No with M;. Let @ be the restriction ofx, z, f) on the intersectioN(;7) N M(y).
For any @, c,t) € St x §} x S}, we consider the art(a, ¢, t) = {(a, ¢, st) € S} x § x
B,f, s € [0, 1]} and we denote b¥(a, ¢, t) the inverse imageb~%(l (a, c, t)) of the arc
I(a, c,t).

As @ is a finite covering ontoS; x S} x BZ, C(a, c,t) is a union of disjoint
oriented embedded arcs parametrisedsbyThese arcs provide a homeomorphism
from MgN Ng to M{NN;. By Theorem 4.7, the restriction df on N(n) is a fibration.
As in the Milnor theory, any pull back by of the radial vector field orB,f has inte-
gral curves which provide a homeomorphigtifrom Ng to N;. But on N(n) N M(n),
the vector field tangent to the ar€a, c, t) is a pull back byf of the radial vector
field on B,f. Hence we can construd® such that its restriction 0@Ng = Ng N Mg is
r. We user on to glue Ny with M;, and we denote by the result of this gluing.
The identity map onM; and Ron on Ng induce a homeomorphism from the gluing
L onto L;. We also consider the manifold obtained by the gluing oNg with M;
(constructed with the help af). Then the identity map of; and R on N induce a
homeomorphism fronL onto L;. Let T be the boundary ofNo.
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4.12. Comments. Asr identifies each poinP of T with r(P) e dM;, T is also
(in L) the boundary ofVi;. On the other hand, for eadhe B,f the intersectiorM; N N;
(which is equal todM; = dN;) is a disjoint union of tori saturated by two transversal
foliations in circles. One of these foliations is given by timtersections with{x = a}
and the other by the intersections with= c}. By construction, the homeomorphism
r used for the gluing preserves these two foliations. Henlge,disjoint union of tori
T embedded irL is also saturated by these two foliations in circles.

Proposition 4.13. The trunk and the vanishing zone are both irreducible
3-manifolds

Proof. The definition of irreducible 3-manifolds is giventhre appendix of this pa-
per. In the appendix (9.1), it is recalled that a Seifert rfddiwith non empty bound-
ary is irreducible. Then, Theorem 4.7 implies that the Vainig zone is irreducible. As
the trunk has as many connected component§ @sit is sufficient to prove that the
connected componeW of the trunk contained in a connected componéhof L is
irreducible. ButW is obtained by removing an open tubular neighbourhood ottim-
ponentsKy of Ko. By 9.2 (Corollary J) such a Waldhausen manifold is irrebleci []

5. The vertical monodromy

With the notations of (4.1), the linK, of the singular locus off hasiy connected
components. We choosewith 1 <i <ip and we denote b¥; the component oKg
which corresponds to the irreducible facigrof g. More precisely:

Ki =(Sn{z=0}N{gi(x, y) = 0O}).

Let M(i) be the connected component of the vanishing Zd{e) (see (4.6)) which
containsK;. Letz: M(n) — St be the projection on thg-axis. LetM(i) = M{NM(i).
Let ; be 7 restricted toM;(i) with 0 < |t] < n.

Lemma 5.1. The projectionn; is a fibration Moreover the Seifert leaves con-
structed inTheorem 4.7are transverse to the fibers af.

Proof. The equation of the singular locusmfis {z= 0} N {dg/dy = 0}. This curve
does not meeM,(i) whent # 0. ]

We now choosea with |a] =« and P € K; n{x =a}. Let U(P) be the connected
component ofr~1(a) N M(i) which contains the poinP. Let fp denote f restricted
to U(P). Then fp is a plane curve germ with an isolated singular pointPa&and
G; = U(P) N M(i) is its Milnor fiber.
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DEFINITION 5.2. The vertical monodromy around; is the first return diffeo-
morphismh: G; — G; along the Seifert leaves d¥;(i).

The conjugacy class di does not depend on the choices Bfand a.

REMARK 5.3. Let €, w(s)) be a Puiseux expansion of the bramgiix, y) = 0.
Then G; = M(i) N = 1(a) hasr connected components. There exists a monodromy
h': G{ — G for the fibrations; such that f’'|g,)" is the vertical monodromy.

Consider the following decompositiog = g - g” in C{x, y} with g’ prime to
gi. Let k be the intersection multiplicity at the origin betwegn and g”. Let d =
gcd(i, k).

Theorem 5.4. The vanishing zone M) around K is the mapping torus of
h: G; — G; and we have
(1) G is diffeomorphic to the Milnor fiber of the plane curve gerfh-z y™.
(2) The vertical monodromy h is finite of order/d.
(3) If d < n; the vertical monodromy h has exactly m fixed points and theraaif
h has order n/d on all other points
(4) Around a fixed point h is a rotation of angle2zk/n;.

Proof. The fact that the vanishing zone is the mapping tofus is an immediate
consequence of Lemma 5.1 and Definition 5.2.

We first prove statements (1) to (4) whep(x, y) = y. In this case,G; is the
Milnor fiber of f(a, y,z) = z" — y"g"(a, y) with g” prime toy. Hence f(a, y, 2)
has atP = (a, 0, 0) the topological type of™ — y". Thus point (1) is proved. A
Seifert leaf of M¢(i) is in the hyperplandz = c} with 0 < |c| < 6. It is parametrised
by x = ad® with v € [0, 2r]. Moreover, there exists a unity(a) in C{a} such that
g’(a, y) =au(a)+y(- - -). Hence, the intersection pointa,{/, c) of G; with this Seifert
leaf satisfy an equation of the following type:

(*) y" = (@ u(@) +y(-- ) THE™ - 1)

As y =0 if and only if c™ =t, we havem fixed points forh whenz is equal to
eachm-th root of t. But |y| « |a], then the equations] implies thath is conjugate
to a rotation of angle-2kz/n; around each of then fixed points. Asd = gcdfy, k),
the generic order oh is n;/d. If d =n;, thenh is the identity. Ifd < n;, thenh has
exactly m fixed points.

In the general case, we consider the Puiseux expansiomu(s)) of gi(x, y). If
we make the substitution of variables=s", y =y —w(s) and f'(s,y,2) = f(s',y +
w(S), z) we are back to the preceeding case withreplaced byf’. O
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6. When is the boundary of the Milnor fiber a lens space?

In this section, we assume thétis irreducible. In particular, this implies that,
and Ng are both connected. In 4.11 we have described the bouridaof the Milnor
fiber by gluing the vanishing zon®; to the trunk Ng.

Proposition 6.1. (1) A connected component of; N6 never a solid torus
(2) When m> 2 a connected component of;Nhas m exceptional leaves or has a
basis with non-zero genus or both

Proof. In Theorem 5.4 we have described a connected compdvighn) of M;
as the mapping torus of the vertical monodroimyacting on a differentiable surface
Gt which is diffeomorphic to the Milnor fiber of the plane curvergez™ — y" with
n >2. Asm> 2, G; is always connected and never diffeomorphic to a disc. As a
consequenceéM;(i) is never a solid torus.

Whenm > 2 the surfaceG; has non-zero genus. Then:
i) If his the identity, the basis dfl(i) is G; itself which has non-zero genus.
i) If his not the identity, we have proved in 5.4 thathas exactlym fixed points
and henceM;(i) hasm exceptional leaves. O

Proposition 6.2. If L; is a lens spacethen the trunk I is a solid torus M; is
connected with a connected boundary aidf) is irreducible

Proof. LetT be a connected component ®Ng = dM;. As the connected com-
ponents ofM; are irreducible Seifert manifolds none of them being a stiidis (see
Proposition 4.13 and 6.1), Proposition D in 9.1 implies thats incompressible in
M;. Proposition 4.13 shows also that the trunk is irreducidfethe trunk were not
a solid torus, T would also be incompressible iNy (see again Proposition D in 9.1).
Then, van Kampen’s theorem and Dehn’s lemma would imply Th& incompressible
in L;. But a torus embedded in a lens space is always compressitdece Ny is a
solid torus.

As the trunk is a solid torus, the vanishing zokike is connected with a connected
boundary becaus&Ny = 9M;. By construction of the vanishing zone, the number of
connected components ®f; is equal to the number of irreducible components of the
singular locusz(f) of f. O

Theorem 6.3. The boundary of the Milnor fiber of an irreducible gernixfy, z) =
Z™ — g(x, y), where m> 2 and X, y) = 0 is non-reducedis a lens space if and only
if f is analytically equivalent toZ— xy for some I> 2.

Proof. In [18] Section 4 it is proved that the lens spdg@l, 1) is indeed the
boundary of the Milnor fiber of? — xy'.
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Conversely, wherL; is a lens space, Proposition 6.2 implies ti\ is a solid
torus and tha®(f) is irreducible. We have a decomposition lof as a gluing of the
Seifert manifoldM; and a solid torus. But a lens space is never a non-trivial ecteql
sum of two 3-manifolds (i.e. a lens space is prime). Hence ajdWausen classical
argument (see [27] p.90-91), the Seifert foliation M extends in a Seifert foliation
on L;. Now, we have a Seifert foliation oh; which has at mosin exceptional leaves
or a basis with non-zero genus or both (see Proposition @Hlanks to A. Hatcher (see
[7] p.31) the only possible case m =2 and the genus of the basis is 0.

Therefore, we can writg(x, y) = gi(X, y)' - g”(x, y) with g, irreducible,l =n; > 2,
g’ being either reduced and prime tp or a unity.

Let v : (C3, 0) — (C?, 0) be the projection defined by(x, y, 2) = (X, y). Let S
be the boundary of the polydisB; = B2 x B§ with 0 < @ < B such thatB; is a
Milnor polydisc for g. Let Ky = § N {g; = 0}. By constructiony(Mg) is a tubular
neighbourhood oK, in § and the closurdV of its complement inS; is ¥ (Np).

Let us consider the Milnor fibratiop = g1/|gi]: W — St for the plane curve germ
0:. Let G; be the Milnor fiber of this fibration. Thep o ¥ : Ng — St is a fibration
with fiber G} which is a ramified covering o6: induced byy. The ramification val-
ues of this covering ar&; N {g” = 0}. Hence the cardinality of the set of ramification
values is equal to the intersection multiplicityig(g:, 9”) of g1 and g” at the origin
of C2.

As m = 2 this covering has degree 2. Hence

x(G1) = 1— u(91),
x(GY) = 2(1— u(1)) — Mo(91, 9"),

where x( ) is the Euler characteristic and( ) is the Milnor number.

As Np is a solid torus,G] is a disjoint union of discs. The only solution for the
second equation just above jigg;) = 0 andmg(gz, 9”) equals either 1 or 0.

Wheng” is not a unity, i.emg(g1, g”) =1, then we can choose the axis in such a
way thatg;(x, y) =y andg”’(x, y) = X. As a consequence we obtain thifx, vy, z) =
22— xy.

Otherwise, we can choose the second axis in such a waygtlaty) =y. Then,
f(x,y,2)=z2—y with | >3 as f is irreducible. Then the vertical monodromy is the
identity on a surface which has non-zero genus. Hence thishiag zone is a Seifert
manifold whose basis has non-zero genus. Then, we can uss [@hove (or compute
the rank of the first homology group @f;) to see that we never get a lens spadel

REMARK. The reducible case? — y? is treated in [16]. It is proved thalt, is
then diffeomorphic toS? x St.
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7. Examples

In this section we apply the method presented above to thpilsirities with equa-
tion 22 — (x2 — y®)y' = 0 ( > 3) with | odd. The ingredients necessary to get the
Waldhausen structure are stated in Proposition 7.1.

Proposition 7.1. Write =2 +1 ( > 1). Then
(1) The trunk is the Waldhausen manifold Q
(2) The vanishing zone is connected with one boundary compoiare precisely it
is the mapping torus of an orientation preserving diffeopiism h of order | acting
on the Milnor fiber of the plane curve singularity z y' = 0. It has two fixed points
The rotation angle at the fixed points is equal(te2/1)27. On the complement of the
fixed points the diffeomorphism h induces a free action ofdiccgroup of order |
(3) The Waldhauseff, 8) for the gluing between the trunk and the vanishing zone is
equal to(l + 3,1 +2).

Indications for the computations. 1. The trunk can be obtained by computing
explicitly the normalisation. Sinckis odd, the normalisation of the surfazé— (x? —
y®)y' = 0 has equatiorz? — (x?> — y3)y = 0. As the singularity is of multiplicity two,
the method of Laufer [13] is very efficient. The result is aficies. The boundary
Lo of the normalisation is a Seifert manifold with a base spacgemusg = 0, Euler
numbere = +1 and with 3 exceptional leaves. Their invariands §) are respectively
(2, 1), (2,1) and (3,1). The kndK, of the singular locus off is represented by
the exceptional leaf with invariants (3, 1). Hence the tru¥ik is the complement of
a small open tubular neighbourhood of this knotlig. We denote byT the single
boundary component ofl.

The referee has remarked that Orlik-Wagreich [24] can aksoubked to get the
Seifert structure of the boundary of the normalisationcasithe equation is weighted
homogeneous.

2. As above in Section 5 we denote by G; — G; the vertical monodromy.
The orderl of h and the two fixed points with angles-2/1)2r are obtained from
Section 5. Hence the vanishing zoi has two exceptional Seifert leaves with nor-
malised Seifert invariantd,(I) (see Section 3.1).

3. We now compute Waldhausen’s invariaat g) which characterises the gluing
between the trunk, and the vanishing zon®l;. See [27] p.109 or [25] p.342.2 and
p. 366 for the definitions.

We consider the manifold. homeomorphic td_; obtained in (4.11) as the gluing
of the trunk No and the vanishing zon&/;. Let T be the common boundary dfio
and M, in L. The torusT is oriented as the boundary &fl;. Curves onT which
come from M; will be denoted by a subscript + and those which come fisig by
a subscript—. As in the classical Seifert's notations, “H” denotes a tagiBeifert
leaf while “Q” denotes a section. Since sections will alwdoes written with a sub-



NON-ISOLATED SINGULARITIES OF COMPLEX SURFACES 307

script + or —, there should be no confusion with Waldhausen manif@ld Following
Waldhausen we set ikl (T, Z):

H_ :OtQ++,3H+.

For the above formula to make sense, one has to orient therSkidvesH. and
H_ and the sectiorQ.. Here we orienbG; as the boundary of the Milnor fiber of the
plane curve gern (a, y, z) = 0. We orientH, such thatdoG; e H. > 0 wheree denotes
the intersection pairing irHy(T, Z). A section Q. is oriented from the orientation
chosen onH. by the rule Q. ¢ H. = +1. From an orientation oH. one traditionally
obtains an orientation oH_ by requiring thatH_ e H. =« > 0.

Claim 1. With the above orientationave havex =1 +3 and 0G; e H; =1.

Proof. The leafH. has for equatiorz = ¢ with ¢ € §}. On the other hand the
intersectionT N {x? — uy® = 0} for someu € C* provides two leavesi_ of the Seifert
structure of the trunkNy. Indeed there exist two non-zero complex numbhere such
that one of these leaves is parametrised &Y s?, ws'*3) with s® € St. Of course
this subscripte has nothing in common with Seifert’s or Waldhausen'sWe have to
prove thatH_ e H, =1 + 3. With the chosen orientationd_ e H. is positive. From
the equation ofH. and the given parametrisation ¢f_ we directly obtain that the
absolute value o& is | + 3. With the chosen orientations the intersectid®; e H. is
positive and the order of the vertical monodromy beingts absolute value is. [

Lemma 7.2. There exists a section ,Qsuch thatdG; =1 Q.+ — H..

Proof. LetG; be the closed surface obtained froG by gluing a disk along
its boundary and leh: G; — G; be the periodic extension df. As the sum of the
Nielsen quotients oh is an integer (Proposition 3.3.2), the Nielsen quotientadn
—0G; (i.e. 9G; with the opposite orientation) equalgll Applying Proposition 3.3.1,
there then exists a sectid@. on T (i.e. Q+ e Hy =+1 in Hy(T, Z)) such that

0G; =1 Q+ — H.. O
Claim 2. We haves = —1.

Proof. AsdG; is the intersection ok = a with T, from the parametrisation of
H_ given in Claim 1 we obtain that the absolute value &6() e H_ is 3. We write
(0G¢) @ H_ = 3¢ wheree € {+1,—1}. On the other hand, by Lemma 7.2 we ha@, =
0G; + Hy. Then:

1B=1Q,eH_=3—1-3=3—1)—1.
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As | is odd, whenl > 3 the only solution of the above equality (in the integers)
ise =+1 andB = —1. Whenl = 3 the equation implie@ = (¢ — 2). Then, we still
have the solutiorr = +1 andg = —1. Again it is the only one because we can exclude

= —3 by the following argument: there exists a sectiQf (for example one of the
two connected components @fN {y = b}, whereb is any suitable constant) such that
there is a unique intersection point betweldn and Q). Of course this last argument
can be used (for any=2 +1 ( > 1)) to show thatg is +1 or —1. O

4. Now, let us compute the Euler numbers Mf and Ny corresponding to the
choices of sections on their common boundary compofielaind around their excep-
tional Seifert leaves.

As the rational Euler number of the mapping-torusﬁ)fs zero (see Proposition
3.3.3), the Euler numbee of M, corresponding to the above choices of sect@n
on T and around the two exceptional leaves is given By=0=e— (1/I +1/1 +I_/I).
Thene = 1. As this choice of sections leads to the non-normalizeddiéaisen pair
(o, B) = (1 +3,-1), one has to replace the sectigh by Q/, = Q. — H. in order to
obtain the normalized Waldhausen pdir(3, | +2). For M;, the corresponding Euler
number is there,orm=€e+1 = 2.

Now, we compute the invariants &f,. The equalityH_ = (I + 3)Q; — H, leads
to Q. e H_ = —1 (always withT oriented as the boundary d&fl;). Therefore,—Q.
can be used as a section @n and we selQ_ = —Q.. HenceH, =—(1+3)Q_ — H_.
By Lemma 7.2, we also havél, = —1Q_ — 3Gy, then dG; = 3Q_ + H_. Recall
that G, is glued along the meridiam of the knotKo in Lo. Hence we haven =
3Q_ + H_. As the orientation onl coincides with the orientation of the boundary
of the oriented tubular neighbourhodao of Ko, our choice of sectiorQ_ gives the
normalized Seifert invariant (3, 1) iig. Hence the corresponding Euler numigéris
the same as ity i.e.€ = 1. To compute the normalized Waldhausen pair for the trunk
No, we must consider the torub with the opposite orientation, we denote it BY.
ThenT’ is oriented as the boundary 8f,. But asH, = —(1 +3)Q_ — H_, we have to
replace the sectio®_ by Q" =—Q_—H_ in order to obtainH, = (1+3)Q_+(1+2)H_.
This sectionQ”_ on T/, gives the normalized Waldhausen pait 8,1 +2) for No. The
corresponding normalized Euler number f§ip is €, =€ +1 = 2.

5. Summary. The Waldhausen graph for the boundary of the Miiiboe is the
following. There are two vertices (each representing aef®eihanifold) joined by an
edge. Each vertex has Seifert weiglgs= 0 ande = +2. At one vertex there are
two exceptional leaves with invariants, (_); at the other vertex there are two excep-
tional leaves with invariants (2, 1). Along the edge the Waldsen gluing invariant is
(1 +3,1 +2) (there is no need to put an orientation on the edge, sineernverse of
—1is —1).

From the process described in ([22], Theorem 5.6) (see astidhs 3.2 and 3.4
i) of the present paper) we can compute a plumbing graph;dfom this Waldhausen
graph. The resulting plumbing graph is shown in Fig. 1. Themiling graph of the
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mapping torusM; = T(h) and that of the pairi(o, Ko) are also shown in Fig. 1. When
we proceed from the graphs ®f; and (o, Ko) to the graph ofL;, the Euler numbers
at the rupture vertices have to be changed in order to takeaiotount the normalisa-
tion of the Waldhausen paiw( B).

Theorem 7.3. The boundary L of the Milnor fiber of the non-isolated singular-
ity with equation 2—(x?—y3)y' (I > 3) with | odd is not orientation preserving diffeo-
morphic to the boundary of a normal surface singularity

Proof. The normalized form of the graph &f is given in Fig. 2 above, where
the genus on the vertex on the right<s0. This contradicts Neumann’s theorem [22],
8.2 p.335. O
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142 vertices

1-1 vertices
Fig. 3.

REMARK 7.4. If we reverse the orientation df;, we obtain a Waldhausen
3-manifold which is orientation preserving diffeomorpha the boundary of a normal
surface singularity. Indeed, if we apply the recipe given[®g] in bottom p.310 and
top p.311 we have to reverse the sign of the Euler numberser@dgshat we do not
need to worry about edge signs, since the graphs we considdarees. Then we ap-
ply the procedure of p.313 to obtain a graph which satisfies R®@m this graph the
normalisation process of Neumann's Section 3 (especiaBy produces the graph in
normal form of Fig. 3. The intersection form of this graph igative definite.

8. The homology of the boundary of the Milnor fiber

Theorem 8.1. Let f(x,y, 2) = z" — xKy' = 0 be the equation of a Hirzebruch
singularity Assume thagcd(m, k,1) =1, that 1 < k < | and that m> 2. Let d =
gedk, 1) and writek = k/d and| =1/d. Then H(L¢, Z) is isomorphic to the direct
sum of a free abelian group of rarfl(m — 1)(d — 1) and a torsion group The torsion
subgroup is the direct sum @M — 1) cyclic factors One of them is of order kh and
the other(m — 2) factors are of orderkl.

The proof is a consequence of the description we givelfoin [18]. The main
ingredient is the determination of the monodromit, t—1] module associated to the
vanishing zone. As we proved in [18] that is in fact a Seifert manifold, one can
check that the result fits with [2].

Theorem 8.2. When | is odd the group H(L;, Z) for the singularity ? — (x? —
y3)y' is cyclic of orderd4l.
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9. Appendix

There are two questions which need clarification in our us&-ofanifold theory:
irreducibility and normal forms for plumbing graphs. Sintte relevant statements are
somewhat scattered through the literature, we group thethisnappendix. Recall that
3-manifolds are supposed to be compact, oriented, with demyna disjoint union of
tori. We work in the differentiable category.

9.1. Irreducible 3-manifolds.

DEFINITION. A 3-manifold M is irreducible if every (embedded) 2-sphere M
bounds a 3-ball inM.

Alexander proved thaR® is irreducible and that a 2-sphere B bounds two
3-balls.

Lemma A. Suppose that th&-manifold M is fibered over the circle!Swith a
connected and orientable fibre F not diffeomorphic to thephere Then M s ir-
reducible

Proof. Consider the universal covét of M. Observe that its interior is diffeo-
morphic toR3, which is irreducible by Alexander. By the “going down argemt’ we
deduce thatV is irreducible. O

Theorem B (Going up and down).Let p: M — M be a covering mapThen M
is irreducible if and only ifM is.

Comments. M irreducible= M irreducible is classical. It is proved in Hatcher's
notes [7, Proposition 1.6]. The reverse implicatidbh irreducible = M irreducible is
much harder. It is proved in [7, Theorem 3.15]. See also tt®duction to [7].

Waldhausen’s Satz (1.8). Let F be a system of incompressible surfacesMn
Let U be a small neighbourhood ¢f. Let M =M\ U. ThenM is irreducible if and
only if M is.

Theorem C. Except $ x & and P¥(R) #t P3(R) every Seifert manifold is ir-
reducible In particular, every Seifert manifold with boundary is irreducible

For a proof see Jaco’s book [10] p. 88 and Hatcher's notes .[I8.p
We denote byoM the boundary ofM.
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Proposition D. Let M be an irreducible and connecte&imanifold such that a
componentX of dM is compressible Then M is a solid torus In particular, dM is
connected

Proof. Let D be a compressing disc foE. Let U be a small tubular neigh-
bourhood of D. ConsiderM = M \Lj. By construction the boundar&l\7| contains
a 2-sphere. Hence it bounds a 3-bBllin M. Now V =B UU is a solid torus since
U is attached alongB as a 1-handle. Being compacy, is closed inM and it is
easy to see that it is also open. Sindeis connected, we hav®l = V. ]

Corollary E. Let M be an irreducible and connectegimanifold and suppose
that 9M is not connectedThen each connected componentd®d is incompressible

General Principle. Let {M;}i =1,...,k be a finite collection of Seifert manifolds
with non-empty boundary, none of them being a solid torust Mebe constructed by
gluing the M;’s along boundary tori. ThetM is irreducible.

Comments. 1) The proof is an easy consequence of Waldhausen'’s Safrit(1.8
[27] and from the fact that a Seifert manifold with boundasyiireducible and with
incompressible boundary if it is distinct from a solid torus

2) We wish the manifoldsM constructed this way to be orientable (even ori-
ented). This requirement is achieved as follows: Edghis oriented; hence each of
its boundary component is also oriented. For the gluing iteiguired that the diffeo-
morphisms are orientation reversing.

3) Itis allowed that two boundary components of the sadvheare glued together.

4) The image of a boundary component of a submanifdidis an incompress-
ible torus inM (a short proof uses van Kampen’s theorem and Dehn’s lemma).

9.2. Irreducibility and plumbing graphs. We consider plumbed 3-manifolds as
in Neumann [22] with oriented bases. To begin with, we cassidlumbing graphs
which produce closed manifolds (there are no arrows).

DEFINITION. The valency(also called the degree) of a vertex is the number of
edges attached to the vertex (a loop counts for 2)upture vertexis a vertex which
has genus> 1 or valency> 3 (or both as Waldhausen says).d&ad branchis a bam-
boo (always of curves of genus 0) attached to a rupture vemekending at a vertex
of valency 1 and genus 0. lng edgeis a bamboo attached to rupture vertices (which
may coincide). In Neumann [22], dead branches and long edge<salled maximal
chains.
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Let M be the 3-manifold produced by a plumbing graph. The subrokhibro-
duced by a dead branch is a solid torus, while the one prodbygeal long edge is a
thickened torus. In both cases there is an invariant esdigntiefined by Waldhausen
[27] on p. 109 (and earlier by Seifert) and denotedobyWe propose to define it as the
absolute value of the intersection number on some torusdsgtwwo canonical curves.
In the case of a solid torus is the intersection number on its boundary between a
meridian curve and a Seifert leaf from the rupture vertex.the case of a thickened
torus « is the intersection number on an intermediate torus betweerSeifert leaves
which come from both sides. Note that= 0 means in both cases that the two curves
are isotopic.

Consider a dead branch (i.e. the submanifold is a solid Yordfen: 1)a =0
means that the core of the solid torus is a “singular leaf” ¢ae't extend the Seifert
foliation inside the solid torus); 2y =1 means that the Seifert foliation of the rupture
vertex can be extended through the solid torus with the cera gegular leaf; 3y > 2
means that the Seifert foliation can be extended throughstiid torus with the core
as an exceptional leaf.

For each kind of bamboo there is a formula which computes tliariant o (it
is a continued fraction). The formula is given in Neumann][&) p.318 and bottom
p.323.

By Conditions N1,...,N6, we refer to the Neumann’s condiicstated in [22]
p.311 and p.312.

Neumann’s Condition N2. A plumbing graph satisfies Condition N2 if each ver-
tex on a bamboo has Euler number—2. Equivalently: each vertex of genus 0 and
valency < 2 has Euler numberx —2.

Fact. If a plumbing graph satisfies condition N2, then alk are > 2. This is
an easy consequence of the continued fraction formula.

Neumann’s Corollary 5.7. Closed Seifert manifolds have a plumbing graph sat-
isfying N2 which is either a bamboo or is star-shaped. ForvergiSeifert manifold
this plumbing graph is unique if we require that graphs age-tike and satisfy N2. It
is Neumann’s canonical star-shaped plumbing graph fore8aifianifolds.

Conversely a star-shaped plumbing graph satisfying N2 ymesl a Seifert mani-
fold. At the rupture vertex, there is no condition on the geifit may be< —1 in
general; however we consider here only oriented bases) dheftuler number. Dead
branches are in bijection with exceptional leaves. Thigripdrtant: Condition N2 im-
plies thate > 2 for a dead branch. Recall also that 3-manifolds are orierngechange
of orientation induces a change in the canonical graph.

Let us now turn towards Seifert manifolds with boundary amdmtbing graphs
which produce manifolds with boundary. LEtbe some plumbing graph (always con-
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nected with oriented base spaces, but we do not supposé thatisfies other condi-
tions). Suppose that we select a finite number of fibres inShbundles represented
by the vertices ofl" and that we remove the interior of a small tubular neighboadh

of each fibre (without loss of generality, we may assume thatrteighbourhood is a
union of St fibres). We represent each selected fibre (indeed its liteilar neigh-

bourhood) by an arrow attached to the corresponding vertéis graph with arrows

contains all the instructions to construct a plumbed mdshifeith boundary.

Our former vocabulary can easily be modified to cope with tige situation. The
valency of a vertex is now the sum of the number of edges anchefnumber of
arrows attached to it. A graph with arrows satisfies Conditi? if each vertex with
genus 0 and valencyx 2 has Euler number —2. A rupture vertex has a basis of
genus> 1 or has valency> 3 (or both!).

Lemma F. LetI be a connected plumbing gragipossibly with arrows satisfy-
ing Condition N2. Suppose that’ is star-shapedi.e. tree-like with exactly one rupture
vertey. ThenI produces a Seifert manifold which is not a solid torus

Proof. Without loss of generality, we may assume that the bamof arrows is
1. Sincerl is star-shaped it represents a Seifert manifold with onentbary compo-
nent. Fundamental group considerations imply that the g@fuhe rupture vertex is 0.
Since there is a rupture vertékx and only one arrow, the number of dead branches at
V is at least 2. Sincé satisfies Condition N2, each dead branch produces an excep-
tional leaf @ > 2). But a Seifert foliation of a solid torus has at most oneegtional
leaf. For a proof of this last assertion see Hatcher's notgdottom p. 19. ]

Theorem G. LetT" be a connected plumbing graflpossibly with arrow} with
dead branches satisfying Conditior2NThenT" produces an irreducible manifold

Proof. If I' contains no rupture vertex, it is either a bamboo or a circBim-
boos with no arrows produce lens spaces which are irredubplthe going down the-
orem. Note thatS' x S is excluded becausE satisfies N2. Bamboos with possibly
one arrow at extremities clearly produce irreducible n@d#. Circuits produce torus
bundles overS' which we already know to be irreducible (see the first parto$ t
addendum).

We may assume therefore thBtcontains rupture vertices. Split each long edge
in the middle of some of its edges. Add an arrowhead at each egemity of the
split edges. We obtain a disjoint union of star-shaped ploglgraphs which satisfy
Condition N2. By Lemma F each of them produces a Seifert rolthifvhich is not
a solid torus. Each such manifold is irreducible with incoegsible boundary. The
General Principle achieves the proof. O
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Corollary H ([22], Theorem 1). The boundary of a normal surface singularity is

an irreducible 3-manifold

Corollary J. Let (2, P) be a normal surface singularity & and lety be a germ

of analytic curve atP in . Let M be the boundary of¥, P) and letM be equal to
M minus a small open tubular neighbourhoodMfn y. Then M s irreducible.

Proof of Corollaries H and J. We accept thatmay be empty; this covers the

first corollary. Consider a resolution: £ — ¥ for which the total transform of has
normal crossings. By the du Val-Mumford theorem all Euler bens are< —1. After
possibly some blowing downs, we may further assume that @aetiucible (!) com-
ponent of the exceptional locus with genus 0 and with valen@ has self-intersection
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