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Abstract
We study the boundaryL t of the Milnor fiber for the non-isolated singularities in

C3 with equationzm�g(x, y) = 0 wherem� 2 andg(x, y) = 0 is a non-reduced plane
curve germ. We give a complete proof thatL t is a Waldhausen graph manifold and
we provide the tools to construct its plumbing graph. As an example, we give the
plumbing graph associated to the germsz2 � (x2 � y3)yl = 0 with l odd andl � 3.
We prove that the boundary of the Milnor fiber is a Waldhausen manifold new in
complex geometry, as it cannot be the boundary of a normal surface singularity.

1. Introduction

In [16] the authors state with a sketch of proof that the boundary L t of the Milnor
fiber of a non-isolated surface singularity inC3 is a Waldhausen graph manifold (non-
necessarily “reduziert”). These manifolds are conveniently described by a plumbing
graph. The present paper is devoted to the study of germs withequationzm�g(x, y) =
0 wherem � 2 and g(x, y) = 0 is a non-reduced plane curve germ. For them:
1) We prove in details thatL t is indeed a Waldhausen manifold (Section 4). The
Waldhausen decomposition forL t is obtained by gluing two specific Waldhausen sub-
manifolds along boundary tori: the trunk and the (non-necessarily connected) vanishing
zone.
2) We prove that the vanishing zone is in fact a Seifert manifold and we elucidate its
structure (Section 5).
3) We show how to obtain the trunk (Section 2) and how to determine the gluing
between the two submanifolds (Section 4).

In particular, we elucidate in this paper, for singularities with equationszm �
g(x, y) = 0, the following points which are not treated in [16]:
a) We prove that the vanishing zone is a Seifert manifold. As stated in the erratum
[17], the vanishing zone is in general a Waldhausen manifoldbut non-necessarily a
Seifert one.
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b) The explicit description of the vanishing zone given below in Section 5 enables us
to give an explicit description of the plumbing graph ofL t , whereas the Waldhausen
structure was not explicitly described in [16]. We need thisexplicit description to ob-
tain the following new results:

In Section 6, we expound whenL t is a lens space for the germs under consider-
ation in this paper. The reason why lens spaces come up is explained at the end of
Section 2.

In Section 7, the plumbing graph is given for the singularities z2� (x2� y3)yl = 0
with l odd andl � 3. In [15], D. Massey computes the homology of the Milnor fiber
Ft for these examples, but he doesn’t study the topology of its boundary L t . Here,
we prove that the boundaries of their Milnor fibers are Waldhausen manifolds new in
complex geometry, as they cannot be the boundary of a normal surface singularity.

Information about the homology ofL t is given in Section 8. In [18] we determine
the plumbing graph for the boundary of the Milnor fiber of Hirzebruch singularities
zm � xkyl = 0. Here we obtain the following result.

Theorem 8.1. Let f(x, y, z) = zm � xkyl = 0 be the equation of a Hirzebruch
singularity. Assume thatgcd(m, k, l ) = 1, that 1 � k < l and that m� 2. Let d =
gcd(k, l ) and write k̄ = k=d and l̄ = l=d. Then H1(L t , Z) is isomorphic to the direct
sum of a free abelian group of rank2(m� 1)(d� 1) and a torsion group. The torsion
subgroup is the direct sum of(m� 1) cyclic factors. One of them is of order m̄kl̄ and
the other(m� 2) factors are of orderk̄l̄ .

Necessary results about Seifert and Waldhausen manifolds are recalled in Section 3.
The dictionary which translates Waldhausen decompositions into plumbing graphs pro-
vided by [22] can then be used to obtain the canonical plumbing graph forL t .

There are two questions which need clarification in our use of3-manifold theory:
irreducibility and normal forms for plumbing graphs. Sincethe relevant statements are
somewhat scattered through the literature, we group them inan appendix (Section 9).

We thank the referee for her/his careful reading and many helpful comments.

2. Definitions and main results

We consider germsf (x, y, z) 2 Cfx, y, zg such that f (0, 0, 0) = 0. We deal with
germs f such that the dimension of the singular locus6( f ) is equal to 1. Hencef
is reduced.

We denote byB2n
r the 2n-ball with radiusr > 0 centered at the origin ofCn and

by S2n�1
r the boundary ofB2n

r . We setF0 = B6� \ f �1(0) and L0 = S5� \ f �1(0). Ac-
cording to the theory of Milnor [19], extended by Burghelea and Verona [3] in the
non-isolated case, the homeomorphism classes of the pairs (B6� , F0) and (S5� , L0) do
not depend on� > 0 if it is sufficiently small. As a consequence, we shall usually
remove “�” from our notations.
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The restriction f jB6� \ f �1(B2� �f0g) ! (B2� �f0g) is a locally trivial differentiable
fibration whose isomorphism class does not depend on� > 0 provided that� is suf-
ficiently small (0< � � �). See Milnor [19] and also Hamm-Lê [6]. Therefore, the
diffeomorphism classes of the manifoldsFt = B6� \ f �1(t) and L t = S5� \ f �1(t) do not
depend ont if 0 < jt j � �. We say thatFt is the Milnor fiber of f and thatL t is the
boundary of the Milnor fiber.Ft is oriented by its complex structure andL t is oriented
as the boundary ofFt .

We denote byn : F̃0 ! F0 the normalisation. It follows from the arguments in
Durfee [4] that the boundarỹL0 of an algebraic neighbourhood ofn�1(0) is well de-
fined. We shall callL̃0 the boundary of the normalisation.

The strategy used to obtain the boundary of the Milnor fiber fornon-isolated singu-
larities is the following. Let6( f ) be the singular locus off . By hypothesis6( f ) is a
curve. Let K0 = L0 \6( f ) be the link of the singular locus inL0. Let K̃ 0 = n�1(K0)
be the pull-back ofK0 in L̃0. A good resolution ofF̃0 provides a Waldhausen de-
composition forL̃0 as a union of Seifert manifolds such thatK̃ 0 is a union of Seifert
leaves. LetM̃0 be a tubular neighbourhood of̃K 0 in L̃0. The closureÑ0 of (L̃0� M̃0)
is called thetrunk of L t .

From now on, let us suppose thatf is of the form f (x, y, z) = zm � g(x, y). In
4.6 we define a submanifoldMt of L t called thevanishing zonearoundK0. A slightly
less general version of Theorem 4.7 can be easily stated as follows.

Theorem. (1) The closure Nt of Lt n Mt is homeomorphic to the trunk̃N0.
(2) The manifold Mt is a Seifert manifold.

The construction (see 4.6) of the vanishing zone is so precise that it gives rise to
a very explicit description ofMt . To each irreducible component�i of the singular
locus of f corresponds a connected componentMt (i ) of Mt . A hyperplane section
argument provides a plane curve germ (zm� yni ) and an integerk. Let d = gcd(ni , k).
In Section 5 we prove the following result.

Theorem 5.4. The vanishing zone Mt (i ) is the mapping torus of a diffeomorphism
h : Gt ! Gt such that:
(1) Gt is diffeomorphic to the Milnor fiber of the plane curve germ zm � yni .
(2) The diffeomorphism h is finite of order ni =d.
(3) If d < ni , the diffeomorphism h has exactly m fixed points and the actionof h has
order ni =d on all other points.
(4) Around a fixed point h is a rotation of angle�2�k=ni .

Following the terminology introduced by D. Siersma in [26],we call the above
diffeomorphismh the vertical monodromyfor �i .
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REMARK . We prove the above theorem without assuming thatf is irreducible.
The number of connected components ofF̃0 and L̃0 is equal to the number of ir-
reducible components off . The intersection between two irreducible components of
f = 0 furnishes at least one irreducible component of the singular locus6( f ) and a
corresponding connected component of the vanishing zone. Hence, the constructions
given here show that after the gluing of all connected components of the vanishing
zone with the trunk, we obtain a connected manifoldL t . This implies that the Milnor
fiber Ft is connected. As the singular locus off has dimension 1,Ft is connected by
a much more general result of M. Kato and Y. Matsumoto in [12].

It is stated in [16] thatL t is never homeomorphic tõL0. But the particular case
when both the trunk is a solid torus andL t is a lens space is rather delicate. Indeed,
when the trunk is a solid torus the complexity of the Waldhausen manifolds, defined
in [16] p. 2309, could vanish. In [17], p. 310, we state (without proof) that when both
the trunk is a solid torus andL t is a lens space, thenf is analytically equivalent to
z2 � xyl for some l � 2. This statement corrects the point (2) p. 2310, in [16], and
completes the proof thatL t is never homeomorphic tõL0. To produce in a forthcoming
paper a complete proof thatL t is never homeomorphic tõL0, the first two authors need
a characterization of the germszm�g(x, y) for which L t is a lens space. Theorem 6.3
solves the problem.

Theorem 6.3. The boundary of the Milnor fiber of an irreducible germ f(x, y, z) =
zm � g(x, y), where m� 2 and g(x, y) = 0 is non-reduced, is a lens space if and only
if f is analytically equivalent to z2 � xyl for some l� 2.

REMARK . For our purpose lens spaces are defined as graph manifolds obtained
from a plumbing graph which is a “bamboo” with genus zero vertices.

For technical reasons, we use in this paper a polydisc

B(�) = B2� � B2� � B2
 = f(x, y, z) 2 B6� , jxj � �, jyj � �, jzj � 
 g
where 0< � < � < 
 < �=3 in place of a standard ballB6� .

DEFINITION. The polydiscB(�) is a Milnor polydisc for f if:
i) For each�0 with 0< �0 � � the pair (B(�0), f �1(0)\ B(�0)) is homeomorphic to
the pair (B6� , f �1(0)\ B6� ).
ii) For each�0 with 0< �0 � � there exists� with 0< � � �0 such that:

1) the restriction of f to W(�0, �) = B(�0) \ f �1(B2� � f0g) is a locally trivial

differentiable fibration on (B2� � f0g),
2) this fibration does not depend on�0 (when 0< �0 � �) up to isomorphism.
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3. Three-dimensional manifolds

In this section, we recall some facts pertaining to 3-dimensional manifolds in a
setting appropriate to our needs.

We consider differentiable, compact (usually connected) 3-manifolds M possibly
with boundary. When the boundary�M is non-empty, we assume that it is a disjoint
union of tori. Manifolds are oriented. Classifications are done up to orientation pre-
serving diffeomorphism. In the situations we meet,M is quite often the boundary of a
complex surfaceV . The complex structure gives rise to an orientation ofV and M =�V receives an orientation via the boundary homomorphism� : H4(V mod�V ; Z) !
H3(�V ; Z).

3.1. Seifert foliations. In this paper, we only need to consider orientable Seifert
fibrations (to be called Seifert foliations, since we have too many fibrations present).
As our manifolds are oriented and compact, we may define a Seifert foliation on M as
an orientable foliation by circles. Thanks to a theorem of Epstein [5], this is equivalent
to requiring that there exists a fixed point freeS1-action on M such that the leaves
coincide with the orbits.

An exceptional orbit (leaf) is one such that the isotropy subgroup is non-trivial. It
is a finite cyclic subgroup of order� � 2. The slice theorem (and orientability ofM)
imply that for each exceptional leaf there exist:
i) a tubular neighbourhood which is a union of leaves,
ii) an orientation preserving diffeomorphism of this neighbourhood with the mapping
torus of a rotation of order� on an oriented 2-disc, sending leaves to leaves.

A Seifert invariant for an exceptional leaf is defined as follows. Suppose that the
rotation angle on the 2-disc is equal to 2���=�. We need the orientation of the 2-disc
to get the correct sign for the angle. We have gcd(�, ��) = 1 and we choose�� such
that 0< �� < �. Now let � be any integer such that��� � 1 (mod�). The pair
(�, �) is a Seifert invariant of the exceptional leaf. See [20] pp.135–140. The choice
of a � in its residue class (mod�) is related to the choice of a section of the foliation
near the exceptional leaf. The Seifert invariant (�, �) is callednormalisedif a section
is chosen in such a way that 0< � < �.

Let r � 0 be the number of boundary components ofM. The space of leaves is
a compact connected orientable surface of genusg � 0 with r boundary components.

Suppose now that sections of the foliation are chosen on eachboundary component
of M and that they are kept fixed during the following discussion.We then choose a� for each exceptional leaf. Once these choices have been made, the Euler number
e 2 Z is defined. See [20] for details. Essentially it is the obstruction to extend the
section already defined on some part of the orbit space. The integere depends on the
choice of the� ’s, but the rational numbere0 = e�P �i =�i does not. Of course, if
r > 0 the numberse and e0 still depend on the choice of a section on the boundary
of M.
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3.2. Waldhausen manifolds and plumbing graphs. The manifoldsL̃0 and L t

we study in this paper are graph manifolds in Waldhausen’s sense [27]. They will
appear in the following dress.

A Seifert manifold is a 3-dimensional compact oriented manifold given with a
Seifert foliation.

A finite decompositionM =
S

Mi of a 3-manifoldM is Waldhausen if:
(1) EachMi is a Seifert manifold.
(2) If i 6= j the intersectionMi \ M j is either empty or equal to a union of common
boundary components.

A manifold is Waldhausen if it admits a Waldhausen decomposition. It is best de-
scribed by a plumbing graph. To begin with, we consider oriented 3-manifolds which
are circle bundles over a closed oriented surface (we only need here to consider these).
Such a bundle is characterised by its Euler number and the genus of the base space.
Two bundles may be glued together by an operation called plumbing. See [22] for
details.

A 3-manifold constructed by plumbing is represented by a graph. The vertices
represent the bundles. They carry two integral weights: thegenusg of the base space
and the Euler numbere. An edge represents a plumbing operation. The dual graph
of a good resolution for a normal surface singularity is alsoweighted like this. If un-
derstood as a plumbing graph, it describes the boundary of a semi-algebraic neigh-
bourhood of the exceptional locus. See [22] for details. In [22] Neumann assigns a
canonical plumbing graph to each Waldhausen manifold. Particularly useful are the
bamboo o–o–� � � –o with genus zero vertices and Euler numberse � �2 for a lens
space (see [22, Theorem 6.1]) and the star-shaped tree for the other Seifert spaces (see
[22, Corollary 5.7]).

3.3. Mapping tori and Nielsen invariants. Let G be a compact, connected and
oriented differential surface. Leth: G! G be an orientation preserving diffeomorphism
of ordern � 2. Let P be a point in the interior ofG whose orbit underh is of cardinal
m< n. Let � be the integer defined as

� =
n

m
� 2.

Consider the diffeomorphismhm for which P is a fixed point. Choose a little
disc D2 with centreP invariant byhm. “Little” means that, at the exception ofP, all
points in D2 have an orbit of cardinaln. The disc D2 is oriented by the orientation
of G and its boundary�D2 is oriented as the boundary ofD2. Thenhm: D2 ! D2 is
conjugate to a rotation of angle!=� with 0< ! < � and! prime to�. The orientation
convention forD2 and its boundary is essential to obtain a well-defined angle.Let �
be the integer such that 0< � < � and!� � 1 mod �.
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DEFINITION. The pair (�, � ) is the Nielsen invariantof h at P (or for the orbit
of P) and the rational number�=� is the Nielsen quotient.

If G has a non-empty boundary, let̂G be the closed oriented surface obtained by
attaching a 2-disc on each boundary component ofG. Let ĥ be the conical extension
of h to Ĝ. It may be thatĥ is not quite differentiable at the centre of the new discs
but this is unimportant.

RULE (Nielsen invariants for boundary components). We define theNielsen in-
variant for boundary components ofG as the Nielsen invariants for the centre of the
attached discs. It is important to notice that the boundary components ofG are ori-
ented as the boundary of the attached discs and not as the boundary of G.

If we follow this rule we can always imagine that the surfacesare closed.
Let h : G ! G be an orientation preserving diffeomorphism of ordern of an ori-

ented surface as above. Themapping torus T(h) of h is defined as follows.

DEFINITION. The mapping torusT(h) is the quotient of the productG�R by the
equivalence relation (x, t +1)� (h(x), t). It is oriented by the orientation ofG followed
by the usual orientation ofR (the order is unimportant).This is the definition adopted
in complex geometry(often implicitly) as well as in foliation theory(holonomy). Be-
ware that topologists(for instance in knot theory) often use the opposite equivalence
relation (x, t) � (h(x), t + 1).

Sinceh is of finite order, the mapping torusT(h) is an oriented Seifert manifold.

Proposition 3.3.1. The Nielsen invariant for an orbit of length< n and the nor-
malised Seifert invariant for the corresponding exceptional leaf of the mapping torus
coincide.

For a proof see [20] p. 145–150.

Proposition 3.3.2. The sum of the Nielsen quotients�=� of h around all the short
orbits (i.e. with cardinal< n) and boundary components is an integer.

Proof. The lemma is an immediate consequence of Proposition3.3.1 and the fact
that e0 = 0 for a mapping torus (next lemma).

Proposition 3.3.3. Suppose that the surface G is closed. Then the rational Euler
number e0 of the Seifert foliation on the mapping torus T(h) vanishes.
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Proof. Letn be the order ofh. The mapping torusT(hn) is a covering ofT(h) of
ordern and the covering map preserves the Seifert structures. Hence, by the functorial-
ity of e0, we havee0(T(hn)) = ne0(T(h)). See [11] 3.3. or [23] 1.2. ButT(hn) = G�S1

becausehn = id and hencee0(T(hn)) = 0.

3.4. Comments. i) The plumbing graph forL t can be obtained as follows.
The plumbing graph for the trunk is part of the plumbing graphfor the normalised
surface. From the mapping torus of the vertical monodromy, we obtain the Seifert-
Waldhausen invariants of the vanishing zone by the dictionary given in [25]. Then [22]
gives the plumbing graph for the vanishing zone. The pastingof two Seifert pieces
along a common boundary component is represented in the plumbing graph by a bam-
boo having vertices withg = 0.

ii) Neumann proves in [22] that the boundary of a normal surface singularity is
an irreducible 3-manifold, i.e. each embedded 2-sphere bounds a 3-ball. In [16], Sec-
tion 5, we show that the boundaryL t of the Milnor fiber of the germ f (x, y, z) =
z2 � y2 is diffeomorphic toS1 � S2, which is not an irreducible 3-manifold.

iii) Usually when lens spacesL(n, q) are considered it is implicitly assumed that
n � 2. In this paper we shall call generalised lens space an oriented 3-manifold which
is orientation preserving diffeomorphic toL(n, q) or S3 or S1 � S2. They are exactly
the 3-manifolds which admit a genus one Heegaard decomposition. A beautiful result
of F. Bonahon [1] says that such a Heegaard decomposition is unique up to isotopy.

iv) A manifold which has two Seifert structures (one of them non-orientable) is
a frequent pebble in the shoe. Leth be “the” orientation-preserving involution of the
annulusS1� [0, 1] which exchanges the two boundary components. The mapping torus
of h is a Seifert manifold which has two exceptional leaves with� = 2. This is the
Seifert structure that Waldhausen callsQ. See [27]. We shall not meet the other Seifert
structure, except in Fig. 1 since Neumann uses it in his normalisation process.

4. From the boundary of the normalisation to the boundary of the Milnor
fiber

Let g 2 Cfx, yg be non-reduced and such thatg(0, 0) = 0. Let
Ql

i =1 gni
i be the

factorisation ofg into a product of irreducible factors withgi prime to g j if i 6= j .
We choose the indices in such a way thatni > 1 if and only if i � i0 for somei0 with
1� i0 � l . We choose the coordinate axis such thatx is prime to g.

Now let f (x, y, z) = zm� g(x, y) and let0 = f�g=�y = 0g \ f f = 0g. The singular
locus 6( f ) of f is the intersection offz = 0g with fg0(x, y) = 0g where g0(x, y) =Qi0

i =1 gni�1
i .

(4.1) As x is prime tog, for a sufficiently small�, the hyperplanesHa = fx = ag
intersect transversally the curve6( f ) at any point of (B6� � f0g) \6( f ) and:

B6� \ fz = 0g \ ��g�y
= 0

� \ f f = 0g � 6( f ).
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Moreover, we choose a sufficiently general coordinate axisy in order to have:

B6� \ fz = 0g \ ��g�x
= 0

� \ f f = 0g � 6( f ).

Let S be the boundary of the polydiscB(�) = B2� � B2� � B2
 where 0< � < � <
 < �=3 and letS(�) = S1� � Int B2� � Int B2
 . We take a sufficiently small� such that:

L0 = (f f = 0g \ S) � fjzj < 
 g.1)

We take a sufficiently small� with 0< � < � such that:

(fg = 0g \ fz = 0g \ S) � S(�).2)

Using D.T. Lê, Section 1 in [14], the above conditions imply that B(�) is a Milnor
polydisc for f as defined at the end of Section 2. We will use this polydisc in place
of a standard ballB6� .

Let F0 = f �1(0)\ B(�). Then L0 = S\ F0 is the boundary ofF0. The link K0 of
the singular locus6( f ) of f is by definition K0 = 6( f ) \ L0.

Now let n : F̃0 ! F0 be the normalisation ofF0. We have seen in Section 2 that
L̃0 = n�1(L0) can be identified with the boundary of the normalisation. Finally let K̃ 0 =
n�1(K0) be the pull-back ofK0 by the normalisation.

REMARK 4.2. The resolution theory implies that there exists a decomposition of
L̃0 as a gluing of Seifert manifolds such thatK̃ 0 is a union of Seifert leaves.

Let ': C3 ! C2 be the projection defined by'(x, y, z) = (x, z). For a small� with
0 < � � � we denote byM0 the union of the connected components of ('�1(S1� �
B2� )) \ F0 which meetK0.

Proposition 4.3. There exists a sufficiently small� such that:
(1) M0 � S(�),
(2) M0 \ fz = 0g = K0,
(3) n�1(M0) = M̃0 is a tubular neighbourhood of̃K 0 in L̃0. Moreover K̃ 0 is the ram-
ification locus of' Æ n restricted toM̃0.

Corollary 4.4. The closure N0 of (L0 � M0) in L0 is a Waldhausen manifold.

Proof of Corollary 4.4. The restriction of the normalisation n to the closureÑ0

of (L̃0 � M̃0) in L̃0 is a diffeomorphism ontoN0. But Ñ0 is a Waldhausen manifold
by Remark 4.2.
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Proof of Proposition 4.3. From (4.1) fact 2) we haveK0 � S(�). Then there ex-
ists � such thatM0 � S(�). We can choose� small enough such thatL0\ fjzj � �g is
a tubular neighbourhood offg = 0g \ L0 in L0. This proves (2). The singular locus of' restricted toF0 is the curve0 \ B(�). Let 1 = '(0). We can choose� still smaller
in order that1 \ (S1� � B2� ) = S1� � f0g. As 6( f ) = fz = 0g \ 0 this proves (3).

(4.5) From the definition ofB(�) given at the end of Section 2, there exists a
very small� with 0< �� � < � such that f restricted toW(�, �) = B(�)\ f �1(B2� �f0g) is a locally trivial fibration on (B2� � f0g). When 0< jt j� � we say thatFt =

W(�, �) \ f �1(t) is “the” Milnor fiber of f and thatL t = Ft \ S is the boundary of
the Milnor fiber of f .

In S we considerS̄(�) = S1�� B2� � Int B2
 and S̄(�) = B2�� S1� � Int B2
 . As �, �, 

have been chosen such thatL0 = ( f �1(0)\ S) � (S̄(�) [ S̄(�)) (see (4.1) fact 1)) there
exists� with 0< � � � such thatL t � (S̄(�) [ S̄(�)) for all t with 0� jt j � �.

(4.6) Let M(�) be the union of the connected components ofS\fj f j � �g\fjzj ��g which meetK0. Let N(�) be the closure of (W(�, �) \ S)� M(�) in S. For any t
with 0� jt j � � let Mt = L t \M(�) and let Nt = L t \N(�) be the closure of (L t �Mt )
in L t .

Theorem 4.7. There exists a sufficiently small� such that for any t with0 <jt j � � we have
(1) Mt � S(�),
(2) f restricted to N(�) is a fibration on B2� with fiber Nt for 0� jt j � �,
(3) Mt has a Seifert structure such that the restriction of z on any Seifert leaf is con-
stant.

REMARK 4.8. Theorem 4.7 enables us to describeL t as the union of the Seifert
manifold Mt with the manifold Nt which is diffeomorphic to the Waldhausen sub-
manifold Ñ0 of L̃0 defined in the proof of Corollary 4.4. Moreover, the intersection
Mt \ Nt is equal to�Mt = �Nt which is a disjoint union of tori. Hence we have:

Corollary 4.9. L t is a Waldhausen manifold.

Proof of Theorem 4.7. Proposition 4.3 implies thatM0 = M(�) \ f �1(0) is in-
cluded in S(�). As S(�) is open in S, we may choose� sufficiently small in order
that M(�) � S(�). Thus point (1) is proved.

As noticed in (4.5), for a sufficiently small� and for t such that 0� jt j � � we
have L t � S̄(�) [ S̄(�). Let L(�) = N(�) [ M(�). We restrict� to have�

L(�) \ fz = 0g \ ��g�y
= 0

� \ fjxj = �g� � K0,�
L(�) \ fz = 0g \ ��g�x

= 0

� \ fjyj = �g� � K0.
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Moreover, K0 is included in the interior ofM(�). Hence the restriction off
to N(�) is a submersion. The intersectionN(�) \ M(�) is included in S(�) and infjzj = �g. In Proposition 4.3 we have chosen� such that�N0 = �M0 does not meetf�g=�y = 0g. Hence, for a sufficiently small� the intersectionN(�) \ M(�) does not
meet f�g=�y = 0g either. This proves (2).

We consider the projection' defined in 4.3. For 0< jt j � � let us denote by't

the restriction of' to Mt . The singular locus of't is Mt \ fg0 = 0g = Mt \ fzm = tg.
For eachc with 0� jcj � � we have

'�1
t (S1� � fcg) = Mt \ fz = cg.

We saturate the solid torusS1��B2� with the circlesS1��fcg. We pull-back this foliation
by 't . As 't is a branched cover whose ramification locus consists of them leaves
S1� � fcg with cm = t , this gives a foliation in circles onMt with leaves defined by
Mt \ fz = cg.

4.10. Comments. At any point P of K0, we consider the plane curve germ
f (a, y, z) = 0. the Milnor theory applied to this plane curve germ, implies that the con-
nected component ofM(�)\fx = ag which containsP is homeomorphic to a ball. Hence
there exists a deformation retraction fromM(�) onto the linkK0. We say thatMt is the
vanishing zonearoundK0. Up to a diffeomorphism,Nt is a common Waldhausen sub-
manifold of L t , L0 and L̃0. This is why we say thatNt (resp.Ñ0) is the trunk of L t

(resp.L̃0).

4.11. The gluing. We will explain now howL t can be constructed as a gluing
of Ñ0 with Mt . Let 8 be the restriction of (x, z, f ) on the intersectionN(�) \ M(�).
For any (a, c, t) 2 S1� � S1� � S1� , we consider the arcI (a, c, t) = f(a, c, st) 2 S1� � S1� �
B2� , s 2 [0, 1]g and we denote byC(a, c, t) the inverse image8�1(I (a, c, t)) of the arc
I (a, c, t).

As 8 is a finite covering ontoS1� � S1� � B2� , C(a, c, t) is a union of disjoint
oriented embedded arcs parametrised bys. These arcs provide a homeomorphismr
from M0\N0 to Mt \Nt . By Theorem 4.7, the restriction off on N(�) is a fibration.
As in the Milnor theory, any pull back byf of the radial vector field onB2� has inte-
gral curves which provide a homeomorphismR from N0 to Nt . But on N(�) \ M(�),
the vector field tangent to the arcsC(a, c, t) is a pull back by f of the radial vector
field on B2� . Hence we can constructR such that its restriction on�N0 = N0 \ M0 is

r . We user Æ n to glue Ñ0 with Mt , and we denote bỹL the result of this gluing.
The identity map onMt and R Æ n on Ñ0 induce a homeomorphism from the gluing
L̃ onto L t . We also consider the manifoldL obtained by the gluing ofN0 with Mt

(constructed with the help ofr ). Then the identity map onMt and R on N0 induce a
homeomorphism fromL onto L t . Let T be the boundary ofN0.



302 F. MICHEL, A. PICHON AND C. WEBER

4.12. Comments. As r identifies each pointP of T with r (P) 2 �Mt , T is also
(in L) the boundary ofMt . On the other hand, for eacht 2 B2� the intersectionMt \Nt

(which is equal to�Mt = �Nt ) is a disjoint union of tori saturated by two transversal
foliations in circles. One of these foliations is given by the intersections withfx = ag
and the other by the intersections withfz = cg. By construction, the homeomorphism
r used for the gluing preserves these two foliations. Hence, the disjoint union of tori
T embedded inL is also saturated by these two foliations in circles.

Proposition 4.13. The trunk and the vanishing zone are both irreducible
3-manifolds.

Proof. The definition of irreducible 3-manifolds is given inthe appendix of this pa-
per. In the appendix (9.1), it is recalled that a Seifert manifold with non empty bound-
ary is irreducible. Then, Theorem 4.7 implies that the vanishing zone is irreducible. As
the trunk has as many connected components asL̃0, it is sufficient to prove that the
connected componentW of the trunk contained in a connected componentW̃ of L̃0 is
irreducible. ButW is obtained by removing an open tubular neighbourhood of thecom-
ponentsKW of K̃ 0. By 9.2 (Corollary J) such a Waldhausen manifold is irreducible.

5. The vertical monodromy

With the notations of (4.1), the linkK0 of the singular locus off hasi0 connected
components. We choosei with 1� i � i0 and we denote byK i the component ofK0

which corresponds to the irreducible factorgi of g. More precisely:

K i = (S\ fz = 0g \ fgi (x, y) = 0g).
Let M(i ) be the connected component of the vanishing zoneM(�) (see (4.6)) which

containsK i . Let �: M(�)! S1� be the projection on thex-axis. Let Mt (i ) = Mt\M(i ).
Let �t be � restricted toMt (i ) with 0< jt j � �.

Lemma 5.1. The projection�t is a fibration. Moreover the Seifert leaves con-
structed inTheorem 4.7are transverse to the fibers of�t .

Proof. The equation of the singular locus of�t is fz = 0g\ f�g=�y = 0g. This curve
does not meetMt (i ) whent 6= 0.

We now choosea with jaj = � and P 2 K i \ fx = ag. Let U (P) be the connected
component of��1(a) \ M(i ) which contains the pointP. Let fP denote f restricted
to U (P). Then fP is a plane curve germ with an isolated singular point atP and
Gt = U (P) \ Mt (i ) is its Milnor fiber.
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DEFINITION 5.2. The vertical monodromy aroundK i is the first return diffeo-
morphismh : Gt ! Gt along the Seifert leaves ofMt (i ).

The conjugacy class ofh does not depend on the choices ofP and a.

REMARK 5.3. Let (sr , w(s)) be a Puiseux expansion of the branchgi (x, y) = 0.
Then G0

t = Mt (i ) \ ��1(a) has r connected components. There exists a monodromy
h0 : G0

t ! G0
t for the fibration�t such that (h0jGt )

r is the vertical monodromyh.

Consider the following decompositiong = gni
i � g00 in Cfx, yg with g00 prime to

gi . Let k be the intersection multiplicity at the origin betweengi and g00. Let d =
gcd(ni , k).

Theorem 5.4. The vanishing zone Mt (i ) around Ki is the mapping torus of
h : Gt ! Gt and we have:
(1) Gt is diffeomorphic to the Milnor fiber of the plane curve germ zm � yni .
(2) The vertical monodromy h is finite of order ni =d.
(3) If d < ni the vertical monodromy h has exactly m fixed points and the action of
h has order ni =d on all other points.
(4) Around a fixed point h is a rotation of angle�2�k=ni .

Proof. The fact that the vanishing zone is the mapping torus of h is an immediate
consequence of Lemma 5.1 and Definition 5.2.

We first prove statements (1) to (4) whengi (x, y) = y. In this case,Gt is the
Milnor fiber of f (a, y, z) = zm � yni g00(a, y) with g00 prime to y. Hence f (a, y, z)
has at P = (a, 0, 0) the topological type ofzm � yni . Thus point (1) is proved. A
Seifert leaf of Mt (i ) is in the hyperplanefz = cg with 0 � jcj � � . It is parametrised
by x = aei v with v 2 [0, 2� ]. Moreover, there exists a unityu(a) in Cfag such that
g00(a, y) = aku(a)+y(� � �). Hence, the intersection points (a, y, c) of Gt with this Seifert
leaf satisfy an equation of the following type:

yni = (aku(a) + y(� � �))�1(cm � t).(?)
As y = 0 if and only if cm = t , we havem fixed points forh when z is equal to

eachm-th root of t . But jyj � jaj, then the equation (?) implies thath is conjugate
to a rotation of angle�2k�=ni around each of them fixed points. Asd = gcd(ni , k),
the generic order ofh is ni =d. If d = ni , then h is the identity. If d < ni , then h has
exactly m fixed points.

In the general case, we consider the Puiseux expansion (sr , w(s)) of gi (x, y). If
we make the substitution of variablesx = sr , y0 = y�w(s) and f 0(s, y0, z) = f (sr , y0 +w(s), z) we are back to the preceeding case withf replaced by f 0.
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6. When is the boundary of the Milnor fiber a lens space?

In this section, we assume thatf is irreducible. In particular, this implies that̃L0

and N0 are both connected. In 4.11 we have described the boundaryL t of the Milnor
fiber by gluing the vanishing zoneMt to the trunkN0.

Proposition 6.1. (1) A connected component of Mt is never a solid torus.
(2) When m> 2 a connected component of Mt has m exceptional leaves or has a
basis with non-zero genus or both.

Proof. In Theorem 5.4 we have described a connected component Mt (i ) of Mt

as the mapping torus of the vertical monodromyh acting on a differentiable surface
Gt which is diffeomorphic to the Milnor fiber of the plane curve germ zm � yni with
ni � 2. As m � 2, Gt is always connected and never diffeomorphic to a disc. As a
consequenceMt (i ) is never a solid torus.

When m> 2 the surfaceGt has non-zero genus. Then:
i) If h is the identity, the basis ofMt (i ) is Gt itself which has non-zero genus.
ii) If h is not the identity, we have proved in 5.4 thath has exactlym fixed points
and henceMt (i ) hasm exceptional leaves.

Proposition 6.2. If L t is a lens space, then the trunk N0 is a solid torus, Mt is
connected with a connected boundary and6( f ) is irreducible.

Proof. Let T be a connected component of�N0 = �Mt . As the connected com-
ponents ofMt are irreducible Seifert manifolds none of them being a solidtorus (see
Proposition 4.13 and 6.1), Proposition D in 9.1 implies thatT is incompressible in
Mt . Proposition 4.13 shows also that the trunk is irreducible.If the trunk were not
a solid torus,T would also be incompressible inN0 (see again Proposition D in 9.1).
Then, van Kampen’s theorem and Dehn’s lemma would imply thatT is incompressible
in L t . But a torus embedded in a lens space is always compressible.Hence N0 is a
solid torus.

As the trunk is a solid torus, the vanishing zoneMt is connected with a connected
boundary because�N0 = �Mt . By construction of the vanishing zone, the number of
connected components ofMt is equal to the number of irreducible components of the
singular locus6( f ) of f .

Theorem 6.3. The boundary of the Milnor fiber of an irreducible germ f(x, y,z) =
zm � g(x, y), where m� 2 and g(x, y) = 0 is non-reduced, is a lens space if and only
if f is analytically equivalent to z2 � xyl for some l� 2.

Proof. In [18] Section 4 it is proved that the lens spaceL(2l , 1) is indeed the
boundary of the Milnor fiber ofz2 � xyl .
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Conversely, whenL t is a lens space, Proposition 6.2 implies thatN0 is a solid
torus and that6( f ) is irreducible. We have a decomposition ofL t as a gluing of the
Seifert manifoldMt and a solid torus. But a lens space is never a non-trivial connected
sum of two 3-manifolds (i.e. a lens space is prime). Hence by Waldhausen classical
argument (see [27] p. 90–91), the Seifert foliation onMt extends in a Seifert foliation
on L t . Now, we have a Seifert foliation onL t which has at mostm exceptional leaves
or a basis with non-zero genus or both (see Proposition 6.1).Thanks to A. Hatcher (see
[7] p. 31) the only possible case ism = 2 and the genus of the basis is 0.

Therefore, we can writeg(x, y) = g1(x, y)l �g00(x, y) with g1 irreducible, l = n1 � 2,
g00 being either reduced and prime tog1 or a unity.

Let  : (C3, 0)! (C2, 0) be the projection defined by (x, y, z) = (x, y). Let S1

be the boundary of the polydiscB1 = B2� � B2� with 0 < � � � such thatB1 is a
Milnor polydisc for g. Let K1 = S1 \ fg1 = 0g. By construction (M0) is a tubular
neighbourhood ofK1 in S1 and the closureW of its complement inS1 is  (N0).

Let us consider the Milnor fibration� = g1=jg1j: W ! S1 for the plane curve germ
g1. Let G1 be the Milnor fiber of this fibration. Then� Æ  : N0 ! S1 is a fibration
with fiber G0

1 which is a ramified covering ofG1 induced by . The ramification val-
ues of this covering areG1\ fg00 = 0g. Hence the cardinality of the set of ramification
values is equal to the intersection multiplicitym0(g1, g00) of g1 and g00 at the origin
of C2.

As m = 2 this covering has degree 2. Hence

�(G1) = 1� �(g1),

�(G0
1) = 2(1� �(g1))�m0(g1, g00),

where�( ) is the Euler characteristic and�( ) is the Milnor number.
As N0 is a solid torus,G0

1 is a disjoint union of discs. The only solution for the
second equation just above is�(g1) = 0 andm0(g1, g00) equals either 1 or 0.

When g00 is not a unity, i.e.m0(g1, g00) = 1, then we can choose the axis in such a
way that g1(x, y) = y and g00(x, y) = x. As a consequence we obtain thatf (x, y, z) =
z2 � xyl .

Otherwise, we can choose the second axis in such a way thatg1(x, y) = y. Then,
f (x, y, z) = z2� yl with l � 3 as f is irreducible. Then the vertical monodromy is the
identity on a surface which has non-zero genus. Hence the vanishing zone is a Seifert
manifold whose basis has non-zero genus. Then, we can use [7]as above (or compute
the rank of the first homology group ofL t ) to see that we never get a lens space.

REMARK . The reducible casez2 � y2 is treated in [16]. It is proved thatL t is
then diffeomorphic toS2 � S1.
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7. Examples

In this section we apply the method presented above to the singularities with equa-
tion z2 � (x2 � y3)yl = 0 (l � 3) with l odd. The ingredients necessary to get the
Waldhausen structure are stated in Proposition 7.1.

Proposition 7.1. Write l = 2l̄ + 1 (̄l � 1). Then:
(1) The trunk is the Waldhausen manifold Q.
(2) The vanishing zone is connected with one boundary component. More precisely, it
is the mapping torus of an orientation preserving diffeomorphism h of order l acting
on the Milnor fiber of the plane curve singularity z2 � yl = 0. It has two fixed points.
The rotation angle at the fixed points is equal to(�2=l )2� . On the complement of the
fixed points the diffeomorphism h induces a free action of a cyclic group of order l.
(3) The Waldhausen(�, �) for the gluing between the trunk and the vanishing zone is
equal to (l + 3, l + 2).

Indications for the computations. 1. The trunk can be obtained by computing
explicitly the normalisation. Sincel is odd, the normalisation of the surfacez2� (x2�
y3)yl = 0 has equationz2 � (x2 � y3)y = 0. As the singularity is of multiplicity two,
the method of Laufer [13] is very efficient. The result is as follows. The boundary
L̃0 of the normalisation is a Seifert manifold with a base space of genusg = 0, Euler
numbere0 = +1 and with 3 exceptional leaves. Their invariants (�, �) are respectively
(2, 1), (2, 1) and (3, 1). The knot̃K 0 of the singular locus off is represented by
the exceptional leaf with invariants (3, 1). Hence the trunkÑ0 is the complement of
a small open tubular neighbourhood of this knot inL̃0. We denote byT the single
boundary component of̃N0.

The referee has remarked that Orlik-Wagreich [24] can also be used to get the
Seifert structure of the boundary of the normalisation, since the equation is weighted
homogeneous.

2. As above in Section 5 we denote byh : Gt ! Gt the vertical monodromy.
The order l of h and the two fixed points with angles (�2=l )2� are obtained from
Section 5. Hence the vanishing zoneMt has two exceptional Seifert leaves with nor-
malised Seifert invariants (l , l̄ ) (see Section 3.1).

3. We now compute Waldhausen’s invariant (�, �) which characterises the gluing
between the trunkÑ0 and the vanishing zoneMt . See [27] p. 109 or [25] p. 342.2 and
p. 366 for the definitions.

We consider the manifold̃L homeomorphic toL t obtained in (4.11) as the gluing
of the trunk Ñ0 and the vanishing zoneMt . Let T be the common boundary of̃N0

and Mt in L̃. The torusT is oriented as the boundary ofMt . Curves onT which
come from Mt will be denoted by a subscript + and those which come fromÑ0 by
a subscript�. As in the classical Seifert’s notations, “H” denotes a regular Seifert
leaf while “Q” denotes a section. Since sections will alwaysbe written with a sub-
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script + or�, there should be no confusion with Waldhausen manifoldQ. Following
Waldhausen we set inH1(T , Z):

H� = �Q+ + �H+.

For the above formula to make sense, one has to orient the Seifert leavesH+ and
H� and the sectionQ+. Here we orient�Gt as the boundary of the Milnor fiber of the
plane curve germf (a, y, z) = 0. We orientH+ such that�Gt �H+ > 0 where� denotes
the intersection pairing inH1(T , Z). A section Q+ is oriented from the orientation
chosen onH+ by the rule Q+ � H+ = +1. From an orientation ofH+ one traditionally
obtains an orientation ofH� by requiring thatH� � H+ = � > 0.

Claim 1. With the above orientations, we have� = l + 3 and �Gt � H+ = l .

Proof. The leafH+ has for equationz = c with c 2 S1� . On the other hand the
intersectionT \ fx2� uy3 = 0g for someu 2 C� provides two leavesH� of the Seifert
structure of the trunkN0. Indeed there exist two non-zero complex numbersv,w such
that one of these leaves is parametrised by (s3, vs2, wsl+3) with s3 2 S1�. Of course
this subscript� has nothing in common with Seifert’s or Waldhausen’s�. We have to
prove thatH� � H+ = l + 3. With the chosen orientationsH� � H+ is positive. From
the equation ofH+ and the given parametrisation ofH� we directly obtain that the
absolute value of� is l + 3. With the chosen orientations the intersection�Gt � H+ is
positive and the order of the vertical monodromy beingl , its absolute value isl .

Lemma 7.2. There exists a section Q+ such that�Gt = l Q+ � H+.

Proof. Let Ḡt be the closed surface obtained fromGt by gluing a disk along
its boundary and let̄h : Ḡt ! Ḡt be the periodic extension ofh. As the sum of the
Nielsen quotients of̄h is an integer (Proposition 3.3.2), the Nielsen quotient ofh on��Gt (i.e. �Gt with the opposite orientation) equals 1=l . Applying Proposition 3.3.1,
there then exists a sectionQ+ on T (i.e. Q+ � H+ = +1 in H1(T , Z)) such that

�Gt = l Q+ � H+.

Claim 2. We have� = �1.

Proof. As �Gt is the intersection ofx = a with T , from the parametrisation of
H� given in Claim 1 we obtain that the absolute value of (�Gt ) � H� is 3. We write
(�Gt ) � H� = 3� where� 2 f+1,�1g. On the other hand, by Lemma 7.2 we havel Q+ =�Gt + H+. Then:

l� = l Q+ � H� = 3� � l � 3 = 3(� � 1)� l .
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As l is odd, whenl > 3 the only solution of the above equality (in the integers)
is � = +1 and� = �1. When l = 3 the equation implies� = (� � 2). Then, we still
have the solution� = +1 and� = �1. Again it is the only one because we can exclude� = �3 by the following argument: there exists a sectionQ0

+ (for example one of the
two connected components ofT \ fy = bg, whereb is any suitable constant) such that
there is a unique intersection point betweenH� and Q0

+. Of course this last argument
can be used (for anyl = 2l̄ + 1 (̄l � 1)) to show that� is +1 or�1.

4. Now, let us compute the Euler numbers ofMt and Ñ0 corresponding to the
choices of sections on their common boundary componentT and around their excep-
tional Seifert leaves.

As the rational Euler number of the mapping-torus ofh̄ is zero (see Proposition
3.3.3), the Euler numbere of Mt corresponding to the above choices of sectionQ+

on T and around the two exceptional leaves is given by:e0 = 0 = e� (1=l + l̄=l + l̄=l ).
Then e = 1. As this choice of sections leads to the non-normalized Waldhausen pair
(�, �) = (l + 3,�1), one has to replace the sectionQ+ by Q0

+ = Q+ � H+ in order to
obtain the normalized Waldhausen pair (l + 3, l + 2). For Mt , the corresponding Euler
number is thenenorm = e+ 1 = 2.

Now, we compute the invariants of̃N0. The equalityH� = (l + 3)Q+ � H+ leads
to Q+ � H� = �1 (always withT oriented as the boundary ofMt ). Therefore,�Q+

can be used as a section onT , and we setQ� = �Q+. HenceH+ = �(l + 3)Q�� H�.
By Lemma 7.2, we also haveH+ = �l Q� � �GT , then �Gt = 3Q� + H�. Recall
that �Gt is glued along the meridianm of the knot K̃ 0 in L̃0. Hence we havem =
3Q� + H�. As the orientation onT coincides with the orientation of the boundary
of the oriented tubular neighbourhood̃M0 of K̃ 0, our choice of sectionQ� gives the
normalized Seifert invariant (3, 1) iñL0. Hence the corresponding Euler numbere0 is
the same as iñL0 i.e.e0 = 1. To compute the normalized Waldhausen pair for the trunk
Ñ0, we must consider the torusT with the opposite orientation, we denote it byT 0.
Then T 0 is oriented as the boundary of̃N0. But asH+ =�(l + 3)Q�� H�, we have to
replace the sectionQ� by Q0� =�Q��H� in order to obtainH+ = (l +3)Q0�+(l +2)H�.
This sectionQ0� on T 0, gives the normalized Waldhausen pair (l +3, l +2) for Ñ0. The
corresponding normalized Euler number forÑ0 is e0norm = e0 + 1 = 2.

5. Summary. The Waldhausen graph for the boundary of the Milnor fibre is the
following. There are two vertices (each representing a Seifert manifold) joined by an
edge. Each vertex has Seifert weightsg = 0 and e = +2. At one vertex there are
two exceptional leaves with invariants (l , l̄ ); at the other vertex there are two excep-
tional leaves with invariants (2, 1). Along the edge the Waldhausen gluing invariant is
(l + 3, l + 2) (there is no need to put an orientation on the edge, since the inverse of�1 is �1).

From the process described in ([22], Theorem 5.6) (see also Sections 3.2 and 3.4
i) of the present paper) we can compute a plumbing graph ofL t from this Waldhausen
graph. The resulting plumbing graph is shown in Fig. 1. The plumbing graph of the
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Fig. 1.

Fig. 2.

mapping torusMt = T(h) and that of the pair (̃L0, K̃ 0) are also shown in Fig. 1. When
we proceed from the graphs ofMt and (L̃0, K̃ 0) to the graph ofL t , the Euler numbers
at the rupture vertices have to be changed in order to take into account the normalisa-
tion of the Waldhausen pair (�, �).

Theorem 7.3. The boundary Lt of the Milnor fiber of the non-isolated singular-
ity with equation z2� (x2� y3)yl (l � 3) with l odd is not orientation preserving diffeo-
morphic to the boundary of a normal surface singularity.

Proof. The normalized form of the graph ofL t is given in Fig. 2 above, where
the genus on the vertex on the right is< 0. This contradicts Neumann’s theorem [22],
8.2 p. 335.
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Fig. 3.

REMARK 7.4. If we reverse the orientation ofL t , we obtain a Waldhausen
3-manifold which is orientation preserving diffeomorphicto the boundary of a normal
surface singularity. Indeed, if we apply the recipe given by[22] in bottom p. 310 and
top p. 311 we have to reverse the sign of the Euler numbers. Observe that we do not
need to worry about edge signs, since the graphs we consider are trees. Then we ap-
ply the procedure of p. 313 to obtain a graph which satisfies N2. From this graph the
normalisation process of Neumann’s Section 3 (especially N3) produces the graph in
normal form of Fig. 3. The intersection form of this graph is negative definite.

8. The homology of the boundary of the Milnor fiber

Theorem 8.1. Let f(x, y, z) = zm � xkyl = 0 be the equation of a Hirzebruch
singularity. Assume thatgcd(m, k, l ) = 1, that 1 � k < l and that m� 2. Let d =
gcd(k, l ) and write k̄ = k=d and l̄ = l=d. Then H1(L t , Z) is isomorphic to the direct
sum of a free abelian group of rank2(m� 1)(d� 1) and a torsion group. The torsion
subgroup is the direct sum of(m� 1) cyclic factors. One of them is of order m̄kl̄ and
the other(m� 2) factors are of orderk̄l̄ .

The proof is a consequence of the description we give forL t in [18]. The main
ingredient is the determination of the monodromyZ[t , t�1] module associated to the
vanishing zone. As we proved in [18] thatL t is in fact a Seifert manifold, one can
check that the result fits with [2].

Theorem 8.2. When l is odd, the group H1(L t , Z) for the singularity z2� (x2�
y3)yl is cyclic of order4l .
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9. Appendix

There are two questions which need clarification in our use of3-manifold theory:
irreducibility and normal forms for plumbing graphs. Sincethe relevant statements are
somewhat scattered through the literature, we group them inthis appendix. Recall that
3-manifolds are supposed to be compact, oriented, with boundary a disjoint union of
tori. We work in the differentiable category.

9.1. Irreducible 3-manifolds.

DEFINITION. A 3-manifold M is irreducible if every (embedded) 2-sphere inM
bounds a 3-ball inM.

Alexander proved thatR3 is irreducible and that a 2-sphere inS3 bounds two
3-balls.

Lemma A. Suppose that the3-manifold M is fibered over the circle S1 with a
connected and orientable fibre F not diffeomorphic to the2-sphere. Then M is ir-
reducible.

Proof. Consider the universal cover̃M of M. Observe that its interior is diffeo-
morphic toR3, which is irreducible by Alexander. By the “going down argument” we
deduce thatM is irreducible.

Theorem B (Going up and down). Let p: M̂ ! M be a covering map. Then M
is irreducible if and only ifM̂ is.

Comments. M̂ irreducible) M irreducible is classical. It is proved in Hatcher’s
notes [7, Proposition 1.6]. The reverse implicationM irreducible) M̂ irreducible is
much harder. It is proved in [7, Theorem 3.15]. See also the introduction to [7].

Waldhausen’s Satz (1.8). Let F be a system of incompressible surfaces inM.
Let U be a small neighbourhood ofF . Let M̆ = M n Ů . Then M is irreducible if and
only if M̆ is.

Theorem C. Except S1 � S2 and P3(R) ℄ P3(R) every Seifert manifold is ir-
reducible. In particular, every Seifert manifold with boundary is irreducible.

For a proof see Jaco’s book [10] p. 88 and Hatcher’s notes [7] p. 18.
We denote by�M the boundary ofM.
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Proposition D. Let M be an irreducible and connected3-manifold such that a
component6 of �M is compressible. Then M is a solid torus. In particular, �M is
connected.

Proof. Let D be a compressing disc for6. Let U be a small tubular neigh-
bourhood of D. Consider M̆ = M n Ů . By construction the boundary� M̆ contains
a 2-sphere. Hence it bounds a 3-ballB in M. Now V = B [U is a solid torus since
U is attached along�B as a 1-handle. Being compact,V is closed in M and it is
easy to see that it is also open. SinceM is connected, we haveM = V .

Corollary E. Let M be an irreducible and connected3-manifold and suppose
that �M is not connected. Then each connected component of�M is incompressible.

General Principle. Let fMi g i = 1,:::,k be a finite collection of Seifert manifolds
with non-empty boundary, none of them being a solid torus. Let M be constructed by
gluing the Mi ’s along boundary tori. ThenM is irreducible.

Comments. 1) The proof is an easy consequence of Waldhausen’s Satz (1.8) in
[27] and from the fact that a Seifert manifold with boundary is irreducible and with
incompressible boundary if it is distinct from a solid torus.

2) We wish the manifoldsM constructed this way to be orientable (even ori-
ented). This requirement is achieved as follows: EachMi is oriented; hence each of
its boundary component is also oriented. For the gluing it isrequired that the diffeo-
morphisms are orientation reversing.

3) It is allowed that two boundary components of the sameMi are glued together.
4) The image of a boundary component of a submanifoldMi is an incompress-

ible torus in M (a short proof uses van Kampen’s theorem and Dehn’s lemma).

9.2. Irreducibility and plumbing graphs. We consider plumbed 3-manifolds as
in Neumann [22] with oriented bases. To begin with, we consider plumbing graphs
which produce closed manifolds (there are no arrows).

DEFINITION. The valency(also called the degree) of a vertex is the number of
edges attached to the vertex (a loop counts for 2). Arupture vertexis a vertex which
has genus� 1 or valency� 3 (or both as Waldhausen says). Adead branchis a bam-
boo (always of curves of genus 0) attached to a rupture vertexand ending at a vertex
of valency 1 and genus 0. Along edgeis a bamboo attached to rupture vertices (which
may coincide). In Neumann [22], dead branches and long edgesare called maximal
chains.
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Let M be the 3-manifold produced by a plumbing graph. The submanifold pro-
duced by a dead branch is a solid torus, while the one producedby a long edge is a
thickened torus. In both cases there is an invariant essentially defined by Waldhausen
[27] on p. 109 (and earlier by Seifert) and denoted by�. We propose to define it as the
absolute value of the intersection number on some torus between two canonical curves.
In the case of a solid torus� is the intersection number on its boundary between a
meridian curve and a Seifert leaf from the rupture vertex. Inthe case of a thickened
torus � is the intersection number on an intermediate torus betweenthe Seifert leaves
which come from both sides. Note that� = 0 means in both cases that the two curves
are isotopic.

Consider a dead branch (i.e. the submanifold is a solid torus). Then: 1)� = 0
means that the core of the solid torus is a “singular leaf” (wecan’t extend the Seifert
foliation inside the solid torus); 2)� = 1 means that the Seifert foliation of the rupture
vertex can be extended through the solid torus with the core as a regular leaf; 3)� � 2
means that the Seifert foliation can be extended through thesolid torus with the core
as an exceptional leaf.

For each kind of bamboo there is a formula which computes the invariant � (it
is a continued fraction). The formula is given in Neumann [22] top p.318 and bottom
p. 323.

By Conditions N1, . . . ,N6, we refer to the Neumann’s conditions stated in [22]
p. 311 and p. 312.

Neumann’s Condition N2. A plumbing graph satisfies Condition N2 if each ver-
tex on a bamboo has Euler number� �2. Equivalently: each vertex of genus 0 and
valency� 2 has Euler number� �2.

Fact. If a plumbing graph satisfies condition N2, then all�’s are� 2. This is
an easy consequence of the continued fraction formula.

Neumann’s Corollary 5.7. Closed Seifert manifolds have a plumbing graph sat-
isfying N2 which is either a bamboo or is star-shaped. For a given Seifert manifold
this plumbing graph is unique if we require that graphs are tree-like and satisfy N2. It
is Neumann’s canonical star-shaped plumbing graph for Seifert manifolds.

Conversely a star-shaped plumbing graph satisfying N2 produces a Seifert mani-
fold. At the rupture vertex, there is no condition on the genus (it may be� �1 in
general; however we consider here only oriented bases) or onthe Euler number. Dead
branches are in bijection with exceptional leaves. This is important: Condition N2 im-
plies that� � 2 for a dead branch. Recall also that 3-manifolds are oriented. A change
of orientation induces a change in the canonical graph.

Let us now turn towards Seifert manifolds with boundary and plumbing graphs
which produce manifolds with boundary. Let0 be some plumbing graph (always con-
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nected with oriented base spaces, but we do not suppose that0 satisfies other condi-
tions). Suppose that we select a finite number of fibres in theS1-bundles represented
by the vertices of0 and that we remove the interior of a small tubular neighbourhood
of each fibre (without loss of generality, we may assume that the neighbourhood is a
union of S1 fibres). We represent each selected fibre (indeed its little tubular neigh-
bourhood) by an arrow attached to the corresponding vertex.This graph with arrows
contains all the instructions to construct a plumbed manifold with boundary.

Our former vocabulary can easily be modified to cope with thisnew situation. The
valency of a vertex is now the sum of the number of edges and of the number of
arrows attached to it. A graph with arrows satisfies Condition N2 if each vertex with
genus 0 and valency� 2 has Euler number� �2. A rupture vertex has a basis of
genus� 1 or has valency� 3 (or both!).

Lemma F. Let 0 be a connected plumbing graph(possibly with arrows) satisfy-
ing Condition N2. Suppose that0 is star-shaped(i.e. tree-like with exactly one rupture
vertex). Then0 produces a Seifert manifold which is not a solid torus.

Proof. Without loss of generality, we may assume that the number of arrows is
1. Since0 is star-shaped it represents a Seifert manifold with one boundary compo-
nent. Fundamental group considerations imply that the genus of the rupture vertex is 0.
Since there is a rupture vertexV and only one arrow, the number of dead branches at
V is at least 2. Since0 satisfies Condition N2, each dead branch produces an excep-
tional leaf (� � 2). But a Seifert foliation of a solid torus has at most one exceptional
leaf. For a proof of this last assertion see Hatcher’s notes [7] bottom p. 19.

Theorem G. Let 0 be a connected plumbing graph(possibly with arrows) with
dead branches satisfying Condition N2. Then0 produces an irreducible manifold.

Proof. If 0 contains no rupture vertex, it is either a bamboo or a circuit. Bam-
boos with no arrows produce lens spaces which are irreducible by the going down the-
orem. Note thatS1 � S2 is excluded because0 satisfies N2. Bamboos with possibly
one arrow at extremities clearly produce irreducible manifolds. Circuits produce torus
bundles overS1 which we already know to be irreducible (see the first part of this
addendum).

We may assume therefore that0 contains rupture vertices. Split each long edge
in the middle of some of its edges. Add an arrowhead at each open extremity of the
split edges. We obtain a disjoint union of star-shaped plumbing graphs which satisfy
Condition N2. By Lemma F each of them produces a Seifert manifold which is not
a solid torus. Each such manifold is irreducible with incompressible boundary. The
General Principle achieves the proof.
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Corollary H ([22], Theorem 1). The boundary of a normal surface singularity is
an irreducible3-manifold.

Corollary J. Let (6, P) be a normal surface singularity atP and let
 be a germ
of analytic curve atP in 6. Let M be the boundary of (6, P) and let M̆ be equal to
M minus a small open tubular neighbourhood ofM \ 
 . Then M̆ is irreducible.

Proof of Corollaries H and J. We accept that
 may be empty; this covers the
first corollary. Consider a resolution� : 6̃! 6 for which the total transform of
 has
normal crossings. By the du Val-Mumford theorem all Euler numbers are� �1. After
possibly some blowing downs, we may further assume that eachirreducible (!) com-
ponent of the exceptional locus with genus 0 and with valency� 2 has self-intersection� �2. Condition N2 is satisfied everywhere in the plumbing graph.
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