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Abstract

In this note we will obtain defining equations of modular @sw,(2>"). The
key ingredient is a recursive formula for certain genesatair the function fields on

Xo(22").

1. Introduction and statements of results

Let I be a congruence subgroup SE;(R) commensurable witlsLy(Z). The mod-
ular curve X(I') is defined as the quotient of the extended upper half-plhe {t €
C: Imt > 0} UPYQ) by the action ofl". It has a complex structure as a compact
Riemann surface (i.e., a non-singular irreducible projectlgebraic curve), and the
polynomials defining the Riemann surface are catlefining equation®f X(I'). The
problem of explicitly determining the equations of modutarrves has been addressed
by numerous authors. For instance, Galbraith [5], MurabayfE?], and Shimura
[17] used the so-called canonical embeddings to find equatid Xo(N) that are non-
hyperelliptic. For hyperellipticXq(N), we have results of Galbraith [5], Gonzélez [6],
Hibino [7], Hibino-Murabayashi [8], and Shimura [17]. In [[LReichert used the fact
that X1(N) = X(I'1(N)) is the moduli space of isomorphism classes of ellipticvear
with level N structure to compute equations ®fi(N) for N =11, 13,..., 18. Further-
more, in [10] Ishida and Ishii proved that for eadh two certain products of the
Weierstrasso -functions generate the function field ox;(N), and thus the relation
between these two functions defing(N). A similar method was employed in [9]
to obtain equations oX(N) = X(I'(N)). Very recently, in [19] the second author of
the present article devised a new method for obtaining daefigiquations ofXy(N),
X1(N), and X(N), in which the required modular functions are constructethgi the
generalized Dedekind eta functions. (See [18] for the defmiand properties of these
functions.)

WhenT; and ', are two congruence subgroups such thatis contained inl';
and a defining equation oX(T";) is known, one may attempt to deduce an equation
for X(I") using the natural coveringX(I";) — X(I'1). Of course, the main difficulty
in this approach lies at finding an explicit description o ttovering map. In this note
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we will prove a recursive formula for the coveringg(22™Y) — Xo(22"), from which
we easily obtain defining equations #%(22") for positive integeran.
To state our result, we first recall the definition of the Jadbbta functions

2
o) = Y s = 12

2 n(r) ’
= n2/2 = L‘E)S
05(t) EZ: q n(r/2)?n(2r)?’
and

6a(r) = Y _(~1)'q"? =

nez

n(r) '

whereq = €'* and

n(r)=q"*[[(1—q"

n=1

is the Dedekind eta function. Now our main result can be dtate follows.

Theorem 1. Let Ry(X,y) = y*—x®—4x, and for n> 7 define polynomials Rx, y)
recursively by

E)TTE S

2 2
e (P2

Then B, (x, y) =0 is a defining equation of the modular curve,(®") for n > 3.
To be more precisefor n > 1, let

_ 293(2”711') _ 62(81’)
T e T e i)

Then

(1) for n> 2, we have ¥ 1 =/(x2+4)/%, and Y1 = Yn//%n;

(2) for n > 6, Py(Xn, Yn) =0, and R(X, y) is irreducible overC;

(3) when n is an even integer greater thdn x, and y, are modular functions on
I'g(2") that are holomorphic everywhere except for a pole of or#fer* and 24 —1,
respectively at co. (Thus they generate the field of modular functions Bg(2") and
the relation R(Xn, ¥n) = 0 between them is a defining equation fog(X).)

We remark that it can be easily shown by induction tRafx, y) is contained in
Z[x, y®] for n > 7 and has a degre"2 — 1 in x and a degree™* in y. We also
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remark that whem is odd, the polynomialP,(x, y) fails to be a defining equation of
Xo(2") because in this case

n(16r)?n(2" 1)

W) = = o)

is not modular onI'g(2"). (Whenn is odd, y, does not satisfy the conditions of

Newman [13, Theorem 1] for a product of Dedekind eta functida be modular on
[p(N). Indeed, one can show that whenis odd,

w(2rd)= (5w (5 5)era@,

where (3) is the Jacobi symbol.)

ExamMPLES. Using Theorem 1, we find that a defining equation)X@{256) is
v — 16x(x + 2)*(x% + 4)y® — x(x + 2)*(x — 2)8(x®> + 4) = 0,
and an equation foXy(1024) is

y84 — 212yy56 _ 28 . 241upy*® — 2Puv(11- 23u+ 22 - 7 170)y*°
— 2*up(31- 1492 — 28 . 2053uv + 216 7. 730?)y*2

— 2%uv(B1® + 27 . 3% 31u%p + 3. 2%0up? + 223 %) y?4

— 2°u3u(47u? — 2° - 5tuw + 215 17. 31?)y?e

— 25uBu(u® + 27 - 4100 + 218 Buw? + 225p%)y8 — Uy = 0,
whereu = (x — 2)% and v = x(x + 2)*(x? + 4).

Our interest in the modular curve$y(22") stems from the following remarkable
observation of Hashimoto. When = 3, it is known that the curveXy(64) is non-
hyperelliptic (see [14]) of genus 3. Then the theory of Riamaurfaces says that it
can be realized as a plane quartic. Indeed, it can be shownthtbaspace of cusp
forms of weight 2 onl"y(64) is spanned by

(8)°
x = n(4c)’n(8)?, y=2n(8t)*n(16c)?, z= m’

and the mapXo(64) — P?(C) defined byt — [x(r) : y(z) : z(r)] is an embedding.
Then the relation
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amongx, Y, z is a defining equation 0Kq(64) in P2. (The Fermat curvéX*+Y*=1is
birationally equivalent toy*—x3—4x =0 in Theorem 1 via the mai = (x—2)/(x+2),

Y = 2y/(x + 2).) Then Hashimoto pointed out the curious fact that themiaé curve
For: x2'+y?' =1 and the modular curvi,(22"*?) have the same genus for all positive
integern. In fact, there are more similarities between these two lfambf curves. For
instance, the obvious coverirfgp: — Fx given by K :y:z] — [x?: y?: Z%] branches
at 3- 2" points, each of which is of order 2. On the other hand, the ma@mre sub-
group I'x(22"*2) is conjugate to

ro@™?) = {(‘2 g) € SL(Z): 2™ | b, c},

and the natural coverind(2"2) — XJ(2") also branches at-2" cusps ofXJ(2"%).
These observations naturally lead us to consider the prolleether the modular curve
X0(22"*2) is birationally equivalent the Fermat cur¥n. It turns out that this problem
can be answered easily as follows.

According to [3, 11, 15], when a modular curvg(N) has genus> 2, any auto-
morphism ofXo(N) will arise from the normalizer of'o(N) in SL(R), with N =37,63
being the only exceptions. Now by [1, Theorem 8], for mlt 7, the index ofl"o(2")
in its normalizer inSLy(R) is 128. Therefore, the automorphism group Xg§(22"*2)
has order 128 for alh > 3. On the other hand, it is clear that the automorphism
group of any Fermat curve contairs. Thus, we conclude that the modular curve
Xo(22"*2) cannot be birationally equivalent to the Fermat cuFge whenn > 3. Still,
it would be an interesting problem to study the exact retatietween these two fam-
ilies of curves.

REMARK. After the paper was finished, Professor M. Zieve has kindfgrined
us that explicit equations foXq(2") have also been obtained by Elkies [2]. Using geo-
metric arguments, Elkies showed that the cukgl") can be embedded iXq(12)" 1.
Whenl =2, the curveXq(2?) is of genus zero and thus possesses a Hauptrigaiu
Then the embedding is explicitly given as

T (6(2), §(20), ..., §(2"20)),

and the equations aXo(2") are defined in terms of the relations betwegi—'7) and
£(217). Elkies' equations and ours are both recursive in natureteNhat, however,
Elkies’ method is a generalization of the classical modelanations where a defining
equation forXg(N) is given in terms ofj(r) and j(Nz), while our method empha-
sizes on explicit construction of generators of the field afdeiar functions. Moreover,
since our starting point is the genus 3 modular cuXg64), our equations are more
comparable to Elkies’ equations foXg(6"), where the starting point is the genus 1
modular curveXy(36).
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2. Proof of Theorem 1

To prove X,—1 = /(X2 +4)/x,, we first verify the casen = 2 by comparing the
Fourier expansions for enough terms, and then the genesal folows sincex,(t) is
actually equal tox;(2"~*z). The proof ofy,_1 = yn//Xs is equally simple. We have

Y21 _ 627102 (2 20)2p(2')t | 6x(27 )
y2 620202 p(lr)b 2627 1t)

1
Xn

This proves the recursion part of the theorem. We now show wheenn > 6 is an
even integerx, andy, are modular functions ofig(2") that have a pole of order"2*
and 2—* — 1, respectively, abo and are holomorphic everywhere.

By the criteria of Newman [13], a product

n

[[n@o)>

k=0

of Dedekind eta functions is a modular function Bp(2") if the four conditions
(1) Y& =0,

(2) > kec=0 mod 2,

(3) Y &2¢=0 mod 24,

(4) Y, &2k =0 mod 24,

are satisfied. Now we have

_ n@to)® _ n(16t)*n(2" 1)
"op@-2n)m20 ) TN p(8r)n(207)?

It is clear that whem is an even integer greater than 2, the four conditions are all
satisfied forx, and y,. We now show thatx, and y, have poles only ato of the
claimed order.

Still assume thah > 4 is an even integer. Since, andy, are n-products, they
have no poles nor zeros IH. Also, it can be checked directly that, and y, have
a pole of order 24 and 2% — 1, respectively, abo. It remains to consider other
cusps. For an odd integer andk € {0, 1,..., n — 1}, the width of the cusm@/2¢ is

1, if k>

22 k<

NS NIS

ab

Choosing a matrix = (2" d

) in SLy(Z), a local parameter ai/2* is

leria’lr/hn‘k.
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Therefore, the order of a functiofi(r) at a/2¥ is the same as the order df(or) at
oo, multiplied by hp k.

Now recall that, fora = (i 3) € Sly(Z), we have

_ Eq]-/8+...7 |f 2|C,
92(T)|0‘_{E+..., if 2¢c,
and
Cfeteen if 2]ac
b(t) | o = qu/8+... , if 2¢tac

where e represents a nonzero complex number, but may not be the sapecha oc-

curence. (Up to multipliers, itv is congruent to the identity matrix r(l) i) mod-

ulo 2, then the action ok fixes 6,. Any other matrices will send, to either6fs or 6.
This explains the fact abou#k. The fact aboub; can be explained similarly.) When
k=n-1, we have

. a b\ _a@-tt)+2  /a 2\ .
2 (2”1 d)" @in+d 1 a )@ O

and

8 a b .= a8r)+8b _ a 8 (87)
-1 d )" 2-4@r)+d \2m* d '

a b _ qu2n74 + ... _ on—4
X”((zn—l d)’)‘T*q T

a b _aq+..
(2 a)r) = S e

wheree, €;, ande, are nonzero complex numbers. That ¥, and y, have a zero of
order 2% and 1, respectively, ai/2"1.

It follows that

and
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Whenk=4,...,n—2, we have

n—k—1
2“(;" g)r i (2 L _ol )(ZZK””f +20M),

8 a b .= a8r)+8b _ a 8 (87)
2 d)  2x3@r)+d \ 22 d '
({2 P _at
" 2k d t _62+~--_€ ’

a b _agt--
y”<<2k d>’>‘ﬁ—€q*“'

wheree, ¢;, ande, are nonzero complex numbers. In other wordg,has no poles

nor zeros ag/2X for k=4,...,n—2, while y, has zeros of ordeh, y at those points.
Whenk =0,..., 3, we have

n—k—-1
2n1<2ak ; )’:(2 L _ol)<22”*1r+2k“+1d),

a b\ _ (2% -1\ _xs ks
8<2k d)r—( 1 0)(2 T +27°d),

and we find thatx, andy, have no zeros nor poles ay2¥, k=0,..., 3.

In summary, we have shown thgt andy, have a pole of order* and 24 —1,
respectively, ato and are holomorphic at any other points. Sinée*2and 2-*—1 are
clearly relatively prime,x, andy, generate the field of modular functions oty(2").
It remains to show thaP, is irreducible overQ and P,(Xn, ¥n) = 0.

Whenn =6, we verify by a direct computation thgg — xg’ — 4% = 0. Then the
recursive formulas fox, andy, implies that P,(x,, y,) = 0 for all n > 6. Finally,
by the theory of algebraic curve (see [4, p.194]), the fieldmafdular functions on
Xo(2") is an extension field ofC(x,) of degree 2-4. In other words, the minimal
polynomial of y, over C(x,) has degree 24. Now it is easy to see tha®,(X, y) is a
polynomial of degree 24 in y with leading coefficient 1. We therefore conclude that
P, is irreducible. This completes the proof of Theorem 1.

Therefore,

and
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