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Abstract
Let G be a compact connected Lie group andM a rational cohomology complex

quadric of real dimension divisible by4 (wheredim M 6= 4). The aim of this paper
is to classify pairs(G, M) such thatG acts smoothly onM with codimension one
principal orbits. There exist eight such pairs up to essential isomorphism. The
underlying manifoldM is diffeomorphic to the genuine complex quadric except one
pair.

1. Introduction

One of the central problems in transformation groups is to classify compact Lie
group actions on a fixed smooth manifoldM such as a sphere and a complex projective
space. Unfortunately the problem is beyond our reach in general, but it becomes within
our reach if we put some assumption on the actions. For instance, when the actions
are transitive,M is a homogeneous space and the problem reduces to finding a pair of
a compact Lie groupG and its closed subgroupH such thatG=H = M. As is well
known, there are a rich history and an abundant work in this case (e.g. [3], [11]). In
particular, the transitive actions on a sphere are completely classified. The complete
list can be found in [2] and [6].

The orbit of a transitive action is of codimension zero. So weare naturally led to
study actions with codimension one principal orbits. In 1960 H.C. Wang ([19]) initi-
ated the work in this direction. He investigated compact Liegroup actions on spheres
with codimension one principal orbits. In 1977 F. Uchida ([16]) classified compact con-
nected Lie group actions on rational cohomology projectivespaces with codimension
one principal orbits. The same problem has been studied by K.Iwata on rational co-
homology quaternion projective spaces ([7]), on rational cohomology Cayley projective
planes ([8]) and by T. Asoh onZ2-cohomology spheres ([2]).

The purpose of this paper is to classify compact connected Lie group actions on
a rational cohomology complex quadric with codimension oneprincipal orbits. The
complex quadricQr of complex dimensionr is a degree two hypersurface
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in the complex projective spacePr +1(C) of complex dimensionr + 1. The linear ac-
tion of SO(r + 2) on Pr +1(C) leavesQr invariant and is transitive onQr . Hence Qr

is diffeomorphic toSO(r + 2)=(SO(r ) � SO(2)). When r is odd, Qr is a rational co-
homology complex projective space and this case is already treated by Uchida ([16])
mentioned above. Therefore we assume thatr = 2n, i.e., our rational cohomology com-
plex quadric is of real dimension 4n.

A pair (G, M) denotes a smoothG-action onM and we say that (G, M) is essential-
ly isomorphicto (G0, M 0) if their induced effective actions are isomorphic. Our main
theorem is the following.

Theorem 1.1. Let M be a rational cohomology complex quadric of real dimen-
sion 4n (n � 2) and let G be a compact connected Lie group. If (G, M) has co-
dimension one principal orbits, then (G, M) is essentially isomorphic to one of the
pairs in the following list.

n G M action

n � 2 SO(2n + 1) Q2n SO(2n + 1)! SO(2n + 2)
n � 2 U (n + 1) Q2n U (n + 1)! SO(2n + 2)
n � 2 SU(n + 1) Q2n SU(n + 1)! SO(2n + 2)

n = 2m� 1� 3 Sp(1)� Sp(m) Q4m�2 Sp(1)� Sp(m) ! SO(4m)
7 Spin(9) Q14 Spin(9)! SO(16)
3 G2 Q6 G2 ! SO(7)! SO(8)

3 G2 � T1 G2 �SU(3) P3(C)
G2 acts onG2 canonically and
T1 acts on the first coordinate
of P(C� C3) = P3(C)

2 Sp(2) S7 �Sp(1) P2(C) Sp(2) acts transitively onS7

Here G2�SU(3) P3(C) denotes the quotient of G2� P3(C) by the diagonal SU(3)-action
where SU(3) acts on G2 canonically and on P3(C) by A([z0 : z]) = [z0 : Az] where
[z0 : z] 2 P(C�C3) = P3(C) and A2 SU(3). S7�Sp(1) P2(C) also denotes the quotient
of S7� P2(C) by the diagonal Sp(1)-action where Sp(1) acts on S7 canonically and on
P2(C) through a double covering Sp(1)! SO(3).

REMARK . The manifoldS7 �Sp(1) P2(C) is not diffeomorphic toQ4 (see Propo-
sition 6.2.1). On the other hand, the manifoldG2�SU(3) P3(C) is diffeomorphic toQ6

(see Section 7.2.2).

Closed connected subgroups ofSO(r + 2) whose restricted actions onQr have co-
dimension one principal orbits are classified by Kollross [13]. Comparing his result
with our list above, the action ofG2 � T1 on G2 �SU(3) P3(C) �= Q6 does not arise
through a homomorphism toSO(8). In this paper we use the notation�= as a diffeo-
morphism,' as an isomorphism and� as a local isomorphism.
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There are some works on compact connected Lie group actions with codimension
two principal orbits, see [15] and [16], but the actions get complicated according as
the codimension of principal orbit gets large. The classification of compact connected
Lie group actions with codimension two principal orbits is studied by Uchida ([17]) on
rational cohomology complex projective space. Nakanishi ([15]) completed the classi-
fication of homology spheres with an action ofSO(n), SU(n) or Sp(n).

The organization of this paper is as follows. In Section 2 we review a key the-
orem by F. Uchida on compact connected Lie group actions onM with codimension
one principal orbits. It says that ifH1(M; Z2) = 0, then there are exactly two singu-
lar orbits andM decomposes into a union of closed invariant tubular neighborhoods of
the singular orbits. In Section 3 we compute the Poincaré polynomials of the singu-
lar orbits. To do this, we distinguish three cases accordingto orientability of singu-
lar orbits. In Section 4 we determine the possible transformation groupsG from the
Poincaré polynomials using a well known fact on Lie theory ([14]). We also recall
some facts used in later sections and state an outline of our steps to the classification.
Sections 5 through 11 are devoted to classifying the pairs (G, M). By looking at the
slice representations of the singular orbits, we completely determine the transformation
groupsG and the tubular neighborhood of singular orbits. Then we check whether the
G-manifold obtained by gluing those two tubular neighborhoods along their boundary
is a rational cohomology complex quadric. Finally we give all actions in Section 12.

2. Preliminary

In this section, we present some basic facts on a complex quadric and the key
theorem to solve the classification problem on a rational cohomology complex quadric.
Let us recall the definition of complex quadric.

DEFINITION (complex quadricQr ).

Qr = fz 2 Pr +1(C) j z2
0 + z2

1 + � � � + z2
r +1 = 0g�= SO(r + 2)=SO(r )� SO(2),

wherez = [z0 : z1 : � � � : zr +1] 2 Pr +1(C). A simply connected closed manifold of dimen-
sion 2r is called arational cohomology complex quadricif it has the same cohomology
ring as Qr with Q coefficient. It is well known that the rational cohomology ring of
Q2n is given by

H�(Q2n; Q) = Q[c, x]=(cn+1� cx, x2, c2n+1),

where deg(x) = 2n, deg(c) = 2 for n � 2. Remark Q2 = SO(4)=SO(2) � SO(2) �=
Spin(4)=T2 �= SU(2)=T1 � SU(2)=T1 �= S2 � S2. Hence H�(Q2; Q) is different from
the above ring. In this paper we will classify the casen � 2.
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Let us recall the key theorem about the structure of (G, M).

Theorem 2.1 (Uchida [16] Lemma 1.2.1). Let G be a compact connected Lie
group and M a compact connected manifold without boundary. Assume

H1(M; Z2) = 0,

and G acts smoothly on M with codimension one orbits G(x). Then G(x) �= G=K is
a principal orbit and (G, M) has just two singular orbits G(x1) �= G=K1 and G(x2) �=
G=K2. Moreover there exists a closed invariant tubular neighborhood Xs of G(xs)
such that

M = X1 [ X2

and

X1 \ X2 = �X1 = �X2.

Note that Xs is a ks-dimensional disk bundle overG=Ks (ks � 2).

3. Poincaré polynomial

Let M be a rational cohomology complex quadric of dimension 2r = 4n and G a
compact connected Lie group which acts smoothly onM with codimension one prin-
cipal orbits. Then the pair (G, M) satisfies the assumptions of Theorem 2.1. Therefore
M is divided into X1 and X2 where Xi is the tubular neighborhood of the singular
orbit G=K i (i = 1, 2). Let us calculate the Poincaré polynomial of the singular orbits
G=K1 and G=K2.

First we prepare some notations. Letf �s : H�(M; Q) ! H�(Xs; Q) be the homo-
morphism induced by the inclusionfs : Xs ! M and ns a non-negative integer such
that f �s (cns) 6= 0 and f �s (cns+1) = 0 wherec 2 H2(M; Q) is a generator. The following
theorem is the goal of this section. The result in the case where the two singular orbits
are orientable is due to an unpublished note by S. Kikuchi.

Theorem 3.1. Two singular orbits G=K1 and G=K2 satisfy one of the following
(I)–(III).
(I) If the two singular orbits are both orientable, then these singular orbits satisfy one
of the following(i)–(iii).

(i) G=Ks � Pn(C), k1 = 2n = k2, n1 = n = n2.
(ii) G=K1 � P2n�1(C), G=K2 � S2n, k1 = 2, k2 = 2n, n1 = 2n� 1, n2 = 0.
(iii) P(G=K1; t) = (1 + tk2�1)(1 + t2 + � � � + t2n) and P(G=K2; t) = (1 + tk1�1)(1 + t2 +� � �+ t2n) (n1, n2 2 fn�1,ng) or P(G=K2; t) = (1+t2n+1)(1+t2 + � � �+ t2n2) (n1 > n),
k2 is odd, k1 is even and k1 + k2 = 2n + 1.
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(II) If G=K1 is orientable and G=K2 is non-orientable, then
(iv) G=K1 � P2n�1(C), P(G=K2;t) = 1+t2n, P(G=K o

2 ;t) = (1+tn)(1+t2n), G=K o �
S4n�1, n1 = 2n� 1, n2 = 0, k1 = 2, k2 = n.

(III) If the two singular orbits are both non-orientable, then
(v) P(G=Ks; t) = 1 + t2 + t4, P(G=K o

s ; t) = (1 + t2)(1 + t2 + t4), P(G=K ; t) =
P(G=K o; t) = (1 + t3)(1 + t2 + t4) or P(G=K ; t) = P(G=K o; t) = (1 + t5)(1 + t2)
n = k1 = k2 = 2 and n1 = n2 2 f1, 2g or n1 = 2, n2 = 1.

Here ks is a codimension of G=Ks, M � N means P(M; t) = P(N; t), P(X; t) is the
Poincaré polynomial of X, K is a principal isotropy group, and Ko is the identity
component of K.

To prove Theorem 3.1, we will consider three cases accordingto orientability of
two singular orbits. Before we consider three cases, we shall show Proposition 3.0.1.
Let us set

P(Im f �s ; t) =
X

tq dim(Im f q
s )

and

P(Ker f �s ; t) =
X

tq dim(Ker f q
s )

where Kerf q
s = Ker( f �s )\Hq(M;Q) and Im(f q

s ) = Im( f �s )\Hq(Xs;Q). First we prepare
the following equations to prove Proposition 3.0.1.

Lemma 3.0.1. Put �s = 1 if f �s (x) 6= � f �s (cn) for all � 2 Q, �s = 0 otherwise.
Then we have

P(Im f �s ; t) = 1 + t2 + � � � + t2ns + �st
2n

and

P(Ker f �s ; t) = t2ns+2 + � � � + t4n + (1� �s)t
2n.

We can easily check this lemma because of the isomorphismH�(M;Q)'H�(Q2n;Q).
Let us state a proposition.

Proposition 3.0.1. 1. n1 + n2 + �1 + �2 = 2n.
2. �1 = �2 holds if and only if n1 = n2.

We show the following two lemmas to prove Proposition 3.0.1.

Lemma 3.0.2. We have the equation

P(X3�s, �X3�s; t)� t P(Xs; t) = P(Ker f �s ; t)� t P(Im f �s ; t).



26 S. KUROKI

Proof. We get dim(Hq(X3�s, �X3�s)) = dim(Hq(M, Xs)) by the excision iso-
morphism. From this equality and the cohomology exact sequence of (M, Xs)

! Hq�1(Xs; Q)
Æq�1��! Hq(M, Xs; Q)

j q�! Hq(M; Q)
f �s�! Hq(Xs; Q) !,

we get

dim(Hq(X3�s, �X3�s)) = dim(Im Æq�1) + dim(Ker f q
s )

= dim(Hq�1(Xs))� dim(Im f q�1
s ) + dim(Ker f q

s ).

From Lemma 3.0.2, we can show the following lemma.

Lemma 3.0.3. P(Ker f �1 ; t)� t P(Im f �1 ; t) = t4n P(Im f �2 ; t�1)� t4n+1P(Ker f �2 ; t�1).

Proof. By the Poincaré-Lefschetz duality and the universalcoefficient theorem we
get Hq(Xs)' H4n�q(Xs,�Xs). HenceP(Xs;t) = t4n P(Xs,�Xs;t�1). From Lemma 3.0.2
we get

P(Ker f �1 ; t)� t P(Im f �1 ; t) = P(X2, �X2; t)� t P(X1; t)

= t4n P(X2; t�1)� t4n+1P(X1, �X1; t�1)

= �t4n+1fP(X1, �X1; t�1)� t�1P(X2; t�1)g
= �t4n+1fP(Ker f �2 ; t�1)� t�1P(Im f �2 ; t�1)g.

The last equal can be proved by using Lemma 3.0.2 witht replaced byt�1. Therefore
we get this statement.

Let us prove Proposition 3.0.1.

Proof of Proposition 3.0.1. From Lemma 3.0.1 and 3.0.3, we get the following
equation

t2n1+2(1 + t2 + � � � + t4n�2n1�2) + (1� �1)t2n � t(1 + t2 + � � � + t2n1)� �1t2n+1

= t4n(1 + t�2 + � � � + t�2n2) + �2t2n � t(t4n�2n2�2 + � � � + t2 + 1)� (1� �2)t2n+1.

Put t = 1 then we get the first statement in Proposition 3.0.1.
When �1 = �2 = 0, compare the degree of this obtained equation by using thefirst

statement then we get the equationn1 = n2 = n. When �1 = �2 = 1, similarly we get
n1 = n2 = n � 1. Conversely ifn1 = n2, then we have�1 + �2 = 2(n � n1) from the
first statement. Since�1, �2 = 0 or 1, we get�1 = �2. Hence the second statement
holds.

From the next section we will consider three cases accordingto orientability of
two singular orbits.
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3.1. Both singular orbits are orientable. Suppose the two singular orbitsG=K1

and G=K2 are orientable. The goal of this section is to prove Theorem 3.1 (i)–(iii).
From now on we putks = codimG=Ks andr = 3�s for s = 1, 2. The following Poincaré
duality will be used many times in this section.

Theorem 3.2 (Poincaré duality). Let Mn be an n-dimensional closed orientable
manifold. Then the following isomorphism holds

' : H t (Mn; Q) ' Hom(Hn�t (Mn; Q), Q)

by ('(x)(y))� = xy where x2 H t (Mn; Q), y 2 Hn�t (Mn; Q) and � is a generator of
Hn(Mn; Q) ' Q. Hence we have Ht (Mn; Q) ' Hn�t (Mn; Q).

First we prove the following equality.

Lemma 3.1.1. The following equation holds.

(1� tk1+k2�2)P(G=Ks; t)

= (1 + t�1)fP(Im f �s ; t) + tkr�1P(Im f �r ; t)g � t�1(1 + tkr�1)P(M; t).

Proof. By the Thom isomorphism, we gettks P(G=Ks; t) = P(Xs, �Xs; t). Since
G=Ks is a deformation retract ofXs, P(Xs; t) = P(G=Ks; t). Hence by Lemma 3.0.2,
we get tkr P(G=Kr ; t) � t P(G=Ks; t) = P(Ker f �s ; t) � t P(Im f �s ; t) and we also get
P(G=Kr ; t) = tks�1P(G=Ks; t) � t�1P(Ker f �r ; t) + P(Im f �r ; t). Using these equations
and P(Ker f �s ; t) = P(M; t)� P(Im f �s ; t), we can easily check the above equation.

Putting t =�1 in Lemma 3.1.1, we get (1� (�1)k1+k2)�(G=Ks) = (1� (�1)kr )�(M)
where�(X) is the Euler characteristic ofX. From this equation, we see

Lemma 3.1.2. If k1 + k2 is even, then k1 and k2 are even. Hence the case k1 �
k2 � 1 (mod 2)does not occur.

Let us setgs(t) = (1� tk1+k2�2)P(G=Ks; t), which is the left side of the identity
in Lemma 3.1.1. Next we consider two cases for�s (s = 1, 2) and prove (i)–(iii) in
Theorem 3.1.

3.1.1. The cases�1 = �2. Let us prove Theorem 3.1 (i) and (iii) occur in these
cases.

If �1 = �2 = 0 thenn1 = n2 = n and if �1 = �2 = 1 thenn1 = n2 = n� 1 by the proof
of Proposition 3.0.1. In both of these cases we have

P(Im f �s ; t) = 1 + t2 + � � � + t2n
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by the definitions of�s and ns (s = 1, 2). If we puta(n) = P(Im f �s ; t) = 1 + t2 + � � � +
t2n, we haveP(M; t) = (1 + t2n)a(n). Then by Lemma 3.0.1 and 3.1.1, we have the
following equation

gs(t) = (1 + tkr�1)(1� t2n�1)a(n).(1)

Let us consider three cases forks (s = 1, 2).
Supposek1 � k2 � 0 (mod 2). Dividing both sides of the equation (1) by 1+t and

putting t = �1, we get�(G=Ks) 6= 0 for s = 1, 2. Now we have the following lemma.

Lemma 3.1.3. If the Euler characters�(G=Ks) are non-zero for s= 1, 2, then the
Poincaré polynomials P(G=Ks; t) are even functions for s= 1, 2, that is, P(G=Ks; t) =
P(G=Ks;�t).

Proof. Because�(G=Ks) 6= 0, we have rankK o
s = rankG (see [14] Chapter III).

HenceHodd(G=K o
s ; Q) = 0 from [14] Theorem 3.21 in Chapter VII. Since the induced

map from the natural inclusion

H�(G=Ks; Q) ! H�(G=K o
s ; Q)

is injective, the Poincaré polynomialsP(G=K1; t) and P(G=K2; t) are even functions.

From this lemma, we see (1+tkr�1)(1�t2n�1) = (1�tkr�1)(1+t2n�1) by the equation
(1). Consequentlyk1 = k2 = 2n. By the equation (1), the equationP(G=Ks; t) = a(n)
holds. Hence we haveG=Ks � Pn(C) becauseP(Pn(C); t) = a(n). This means Theo-
rem 3.1 (i).

Supposek1 is even andk2 is odd. Then we have�(G=K1) 6= 0, dividing both sides
of the equation (1) by 1� t and puttingt =�1. So P(G=K1; t) is an even function by
Lemma 3.1.3. Whens = 1 (r = 2) in the equation (1), compare even degree terms and
odd degree terms. Then we havek1+k2 = 2n+1 andP(G=K1;t) = (1+tk2�1)a(n). When
s = 2 in the equation (1), we also haveP(G=K2; t) = (1 +tk1�1)a(n) by k1 +k2 = 2n + 1.
This means Theorem 3.1 (iii). Ifk1 is odd andk2 is even, then we get a similar result.

By Lemma 3.1.2, there does not exist the case thatk1 and k2 are odd. Therefore
in the case�1 = �2, Theorem 3.1 (i) and (iii) occur. Let us consider the case�1 6= �2.

3.1.2. The case�1 6= �2. The goal of this section is to prove Theorem 3.1 (ii)
and (iii) occur in the case�1 6= �2.

If we put �1 = 0 and�2 = 1, we haven1 + n2 = 2n�1 by Proposition 3.0.1 and we
also haveP(Im f �1 ; t) = a(n1) and P(Im f �2 ; t) = a(n2) + t2n by definitions of�s and ns

(s = 1, 2). Hence we easily get

g1(t) = (1� t2n2+k2)a(n1) + (tk2�1 � t2n1+1)a(n2)� t2n�1(1� tk2),(2)

g2(t) = (1� t2n1+k1)a(n2) + (tk1�1 � t2n2+1)a(n1) + t2n(1� tk1�2)(3)
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by Lemma 3.0.1 and Lemma 3.1.1. Let us consider four cases forks (s = 1, 2).
Supposek1 � k2 � 0 (mod 2). Dividing both sides of (2), (3) by 1 +t and putting

t = �1, we seeP(G=K1; t) and P(G=K2; t) are even functions byks � 2 and Lem-
ma 3.1.3. Sok1 = 2n2 + 2 by comparing the odd degree terms in (3).

Consider the odd degree terms in (2). Then we see (tk2�1� t2n1+1)a(n2)� t2n�1(1�
tk2) = 0. So we have

tk2�1a(n2) + t2n+k2�1 = t2n1+1a(n2) + t2n�1.

The minimum degree of the left side isk2 � 1, while that of right side is 2n1 + 1
or 2n � 1. If k2 � 1 = 2n1 + 1, then we gett2n+k2�1 = t2n�1 by this equation. This
contradictsk2 � 2. Hence we havek2�1 = 2n�1, and we also haven1 = n (if n2 6= 0)
and n1 = 2n � 1 (if n2 = 0) by comparing the second lower degree in this equation.
When n1 = n, we seen2 = n� 1 by Proposition 3.0.1 and dimG=K2 = 2n by k2 = 2n.
In particular we haveG=K2 � Pn(C) by the equation (3). Howeverf �2 (c) f �2 (cn2) =
f �2 (cn2+1) = 0 2 H2n(G=K2; Q) by the definition ofn2. This contradicts the Poincaré
duality (Theorem 3.2).

Hencen1 = 2n�1 andn2 = 0. So we seek1 = 2n2+2 = 2. Hence we haveG=K1 �
P2n�1(C) from the equation (2), and we also haveG=K2 � S2n from the equation (3)
and k2 = 2n. This result is Theorem 3.1 (ii).

Supposek1 is even andk2 is odd. Putt = �1 in (2). Then we seeP(G=K1; t) is
an even function by Lemma 3.1.3. So we get from (2)

(4) P(G=K1; t) = a(n1) + tk2�1a(n2) + t2n�1+k2.

Since G=K1 is orientable, we have dimG=K1 = maxf2n1, k2 � 1 + 2n2, 2n� 1 + k2g.
If dim G=K1 = 2n1 then k2 � 1 = 2n1 � (k2 � 1 + 2n2) or 2n1 � (2n � 1 + k2)

from the Poincaré duality aboutG=K1, the inequalityn � 2 (k2 � 1 < 2n � 1 + k2)
and the equation (4). Hencek2 � 1 = n1 � n2 or n1 � n. Since n1 + n2 = 2n � 1,
n1 � n2 is an odd number. Nowk2 is an odd number. Sok2 � 1 = n1 � n. Therefore
k2�1 = n1�n = n�n2�1 by Proposition 3.0.1. In this case 2n�1+k2 = (k2�1+2n2)+2
from the Poincaré duality aboutG=K1 and the equation (4). Son2 = n� 1. However
we havek2 � 1 = n � n2 � 1 = n � (n � 1)� 1 = 0. This contradictsk2 � 2. Hence
dim G=K1 6= 2n1.

If dim G=K1 = k2 � 1 + 2n2, then 2(n2 � n) = k2 � 1 or n2 = n1 from the Poincaré
duality aboutG=K1, the inequalityk2 � 1 < 2n � 1 + k2 and the equation (4). Now
n1 + n2 = 2n� 1 that isn1 6= n2. So 2(n2 � n) = k2 � 1 and we also haven1 + 1 = n2

by the Poincaré duality aboutG=K1 and the equation (4). Sincen1 + n2 = 2n� 1, we
haven2 = n. This contradictsk2 � 2.

Hence dimG=K1 = 2n�1+k2. In this case 2n�1+k2�2 = 2n1 or k2�1+2n2 from
the Poincaré duality and the equation (4). If 2n� 1 + k2 � 2 = 2n1, then dimG=K1 =
2n1 + 2. However f �1 (c) f �1 (cn1) = f �1 (cn1+1) = 0 2 H2n1+2(G=K1; Q) by the definition
of n1. This contradicts the Poincaré duality. Therefore we have 2n � 1 + k2 � 2 =
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k2�1+2n2. So n1 = n andn2 = n�1. Hence we haveP(G=K1; t) = (1+tk2�1)a(n) from
the equation (4). Moreover we haveP(G=K2; t) = (1 + tk1�1)a(n) by the equation (3)
and k1 + k2 = 2n + 1. This result is Theorem 3.1 (iii).

Supposek1 is odd andk2 is even. In this case we getP(G=K2; t) = a(n2) +
tk1�1a(n1) + t2n becauseP(G=K2; t) is an even function and the equation (3) holds.
Hence we have dimG=K2 = 4n� k2 = maxf2n2, k1 � 1 + 2n1, 2ng.

If dim G=K2 = 2n, then we havek2 = 2n. Because of the odd degree terms in the
equation (3), we haveP(G=K2; t) = t2n1�2n+2a(n2)+ t2n2+3�k1�2na(n1)+1. So 2n1�2n+
2� 2 and 2n2 + 3� k1 � 2n � 2. From 2n = n1 + n2 + 1, we havek1 � n2 � n1 � �1.
This contradictsk1 > 2.

If dim G=K2 = k1 � 1 + 2n1, we have the following cases by making use of the
Poincaré duality for the even functionP(G=K2; t) = a(n2) + tk1�1a(n1) + t2n;
• dim G=K2 � (k1 � 1) = 2n2,
• 2n = (k1 � 1)� 2 and dimG=K2 � 2n = 2n2,
• 2n = 2n2 + 2 and dimG=K2 � 2n = k1 � 1.
When dimG=K2 � (k1 � 1) = 2n2, we haven1 = n2. However this does not occur
becausen1 + n2 + 1 = 2n. When 2n = (k1 � 1)� 2 and dimG=K2� 2n = 2n2, we have
n1 = n� 1, n2 = n because 2n = n1 + n2 + 1. So we have

dim G=K2 = 4n� k2

= (k1 � 1) + 2n1

= (2n + 2) + 2n� 2 = 4n.

Hencek2 = 0. This is a contradiction. Hence we have 2n = 2n2 +2. Then we can show
n1 = n, n2 = n� 1, k1 + k2 = 2n + 1 and P(G=Ks; t) = (1 + tkr�1)a(n) (s + r = 3) from
the equations (2) and (3). This result is Theorem 3.1 (iii).

If dim G=K2 = 4n�k2 = 2n2, then we have and 2n2�2n = k1�1 from the Poincaré
duality and the above equation ofP(G=K2; t). Hencek1 = n2�n1 and we seek1 +k2 =
2n + 1 = n1 + n2 + 2. So we have

P(G=K2; t) = a(n2) + tk1�1a(n1) + t2n

= a(n2) + tk1�1a(n1 + 1)

= fa(n) + (t2n+2 + � � � + t2n+k1�1)g + tk1�1(1 + t2 + � � � + t2n+1�k1)

= a(n) + tk1�1(1 + t2 + � � � + t2n+1�k1) + (t2n+2 + � � � + t2n+k1�1)

= a(n) + tk1�1 + tk1+1 + � � � + t2n + t2n+2 + � � � + t2n+k1�1

= a(n) + tk1�1a(n)

= (1 + tk1�1)a(n).

Moreover we haveP(G=K1; t) = (1 + t2n+1)a(n1) by the equation (2). This result be-
comes the second case in Theorem 3.1 (iii).

By Lemma 3.1.2, there does not exist the case thatk1 and k2 are odd.
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We can get a similar result in the case�1 = 1 and �2 = 0. Therefore in the case�1 6= �2, Theorem 3.1 (ii) and (iii) occur.
Consequently Theorem 3.1 (i)–(iii) occur in the case bothG=K1 and G=K2 are

orientable.

3.2. Preparation for non-orientable cases. In order to prove two non-orientable
cases in Theorem 3.1 (iv)–(v), it is necessary to show the following proposition.

Proposition 3.2.1. If G=K2 is non-orientable, then we have

P(G=K o
2 ; t) = (1 + tk2)P(G=K2; t),

P(G=K o; t) = (1 + t2k2�1)P(G=K2; t)� P(n1, n2; t)� �2(1� �1)(1 + t�1)t2n,

where

P(n1, n2; t) =

�
t2n1+1 + t2n1+2 + � � � + t2n2 (n1 < n2)
0 (n1 � n2).

The goal of Section 3.2 is to prove Proposition 3.2.1. Our proof is essentially due
to Uchida ([16] 2.4, 2.5 and 2.6).

First we show the following lemma.

Lemma 3.2.1. If k1 > 2, then G=K2 is simply connected, hence K2 is connected.

Proof. We see�1(M) = �1(G=K2) from the transversality theorem ([5] (14.7)),
Theorem 2.1 andk1 > 2. HenceG=K2 is simply connected. SoK2 = K o

2 because a
canonical mapG=K o

2 ! G=K2 is a finite covering.

Next we prepare the following two lemmas (Lemma 3.2.2 and 3.2.3) which just
come from the conditionk1 = 2.

Lemma 3.2.2 ([16] Lemma 2.4.1). If k1 = 2, then R�k = id : H�(G=K o; Q) !
H�(G=K o; Q) for all k 2 K , where Rk : [g] ! [gk] and R�k is the homomorphism in-
duced from Rk.

From Lemma 3.2.2, we can show the following lemma.

Lemma 3.2.3. If k1 = 2, then H�(G=K o
s ; Q) = Im(q�s ) + Ker(po�

s ) (possibly non
direct sum), where the homomorphisms q�

s and po�
s are induced from qs : G=K o

s !
G=Ks and po

s : G=K o ! G=K o
s .
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Proof. The natural mapK o
s=K o ! Ks=K is a surjection becauseKs=K is a (ks�

1)-sphere. So we seeKs = K o
s K . In particular for eacha 2 Ks there existsk 2

K such that Ra and Rk are homotopic by the connectedness ofK o
s . Hence R�

a =
R�

k : H�(G=K o
s ; Q) ! H�(G=K o

s ; Q). By Lemma 3.2.2 the rightR�
k is an identity map

in the following commutative diagram for alla 2 Ks,

H�(G=K o
s ; Q) !po�

s

!R�
a=R�

k

H�(G=K o; Q)

!R�
k =id

H�(G=K o
s ; Q) !po�

s
H�(G=K o; Q).

So we havepo�
s (u) = po�

s (R�
a(u)) for u 2 H�(G=K o

s ; Q) and a 2 Ks. Ks=K o
s acts on

H�(G=K o
s ; Q) by R�

l for l 2 Ks=K o
s . Then we easily see Im(q�s ) = H�(G=K o

s ; Q)Ks=K o
s .

Hence R�
l (v) = v for all l 2 Ks=K o

s and v 2 Im(q�s ). Moreover if we putKs=K o
s =fl1, : : : , l i g then R�

l1
(u) + � � �+ R�

l i
(u) 2 Im(q�s ) for all u 2 H�(G=K o

s ; Q). Therefore there
is w 2 H�(G=Ks;Q) such thatpo�

s Æq�s (w) = i po�
s (u). So we see Im(po�

s ) = Im(po�
s Æq�s ).

Consequently we get the equationH�(G=K o
s ; Q) = Im(q�s ) + Ker(po�

s ).

Put Jk = q�2 H k(G=K2; Q) and J =
L

k Jk. Next we show properties about thisJ
in the following two lemmas (Lemma 3.2.4 and 3.2.5) by using Lemma 3.2.3.

Lemma 3.2.4. Let � be the rational Euler class of the oriented(k2 � 1)-sphere
bundle po2 : G=K o ! G=K o

2 . If k1 = 2, then �2 2 J and Ker(po�
2 ) = J � � + J � �2.

Proof. From the Thom-Gysin exact sequence ofpo
2 : G=K o ! G=K o

2 that is,

po�
2�! Hq�1(G=K o

2)
Æ��! Hq�k2(G=K o

2)
���! Hq(G=K o

2)
po�

2�! Hq(G=K o)
Æ��!,

we see Ker(poq
2 ) = Hq�k2(G=K o

2 ; Q) � � . By Lemma 3.2.3Hq�k2(G=K o
2 ; Q) = Jq�k2 +

Ker(poq�k2
2 ). So we have Ker(poq

2 ) = Jq�k2 � � + Jq�2k2 � �2 + � � � + Jq�Nk2 � �N for some
integer N. Because of the following bundle mapping

G=K o !Rk

! po
2

G=K o

! po
2

G=K o
2 !Rk G=K o

2 ,

we seeR�
k (�) = � or �� for k 2 K . Hence R�

k (�2) = �2. Since the equationJ =
Im(q�2) = H�(G=K o

2 ; Q)K2 = H�(G=K o
2 ; Q)K holds (because ofKs = K o

s K ), we have�2 2 J. So we get the equation Ker(po�
2 ) = J � � + J � �2.
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We remark that non-orientability ofG=K2 is not assumed in Lemma 3.2.1 through
3.2.4 unlike Proposition 3.2.1. From now on we assumeG=K2 is non-orientable. Then
k1 = 2 from Lemma 3.2.1.

Lemma 3.2.5. The following two properties hold.
(1) dim(Ker(po�

2 )) = dim J + dim(J \ Ker(po�
2 )).

(2) J � � \ J � �2 = 0, J � �2 = J \Ker(po�
2 ) and the homomorphism E: J ! Ker(po�

2 )
is injective, where E is defined by E(y) = y � � .

Proof. First we show the property (1) by proving two inequalities. From Lemma
3.2.3 we get

dim H�(G=K o
2 ; Q) = dim J + dim(Ker(po�

2 ))� dim(J \ Ker(po�
2 )).

Since q�2 : H�(G=K2; Q) ! H�(G=K o
2 ; Q) is an injective map, we have dimJ =

dimH�(G=K2;Q). SinceG=K2 is non-orientable, there isk 2 K2 such thatRk: G=K o
2 !

G=K o
2 reverses an orientation and an element in Imq�2 is fixed by R�

k . Because of the
Poincaré duality theorem (Theorem 3.2) aboutG=K o

2 , for all u 2 Imq�2\Hd(G=K o
2) there

exists somev 2 H2n�k2�d(G=K o
2) such that ('(u)(v))� = uv, where� 2 H2n�k2(G=K o

2 ;Q)
is the generator and' : Hd(G=K o

2 ; Q) ' Hom(H2n�k2�d(G=K o
2 ; Q), Q). Now we have

�('(u)(v))� = R�
k (('(u)(v))�) = R�

k (uv) = R�
k (u)R�

k (v) = �uv
and R�

k (u) = u becauseu 2 Im q�2 . Hence we havev =2 Im q�2 . Consequently there is an
elementv 2 H�(G=K o

2 ; Q)n Im q�2 for u 2 Im q�2 . So we see

2 Im q�2 = 2 dim H�(G=K2; Q) � dim H�(G=K o
2 ; Q).

Therefore we get

dim H�(G=K2; Q) = dim J � dim(Ker(po�
2 ))� dim(J \ Ker(po�

2 )).

From Lemma 3.2.4 we get�2 2 J and J�2 � Ker(po�
2 ). So J ��2 � J \Ker(po�

2 ).
Moreover we easily see dim(J � �) � dim J. Hence we get

dim(Ker(po�
2 )) � dim(J � �) + dim(J � �2) � dim J + dim(J \ Ker(po�

2 )).

So we have the property (1) from the two inequalities above.
Next we show the property (2). From the proof of the equation (1), we have

dim(J ��) = dim J (so we get the injectivity ofE) and dim(J ��2) = dim(J \Ker(po�
2 ))

(so we getJ � �2 = J \ Ker(po�
2 )). From Lemma 3.2.4 Ker(po�

2 ) = J � � + J � �2 and
dim Ker(po�

2 ) = dim(J � �) + dim(J � �2), we haveJ \ J � � = f0g. Hence we get the
property (2).
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From Lemma 3.2.4 and 3.2.5, we can prove the following equation.

Proposition 3.2.2. P(G=K o
2 ; t) = (1 + tk2)P(G=K2; t).

Proof. From Lemma 3.2.5, we see dimJ = dim(Ker(po�
2 )) � dim(J \ Ker(po�

2 )).
Moreover from Lemma 3.2.4 and 3.2.5 we have the equation

Ker(po�
2 ) = J � � � (J \ Ker(po�

2 )).

Since� 2 H k2(G=K o
2 ;Q) and dimH�(G=K2;Q) = dim J, by the equation above we get

P(Ker(po�
2 ); t) = tk2 P(G=K2; t) + P(J \ Ker(po�

2 ); t).(5)

Comparing the equation (5) with

P(G=K o
2 ; t) = P(Im(q�2); t) + P(Ker(po�

2 ); t)� P(J \ Ker(po�
2 ); t)

= P(G=K2; t) + P(Ker(po�
2 ); t)� P(J \ Ker(po�

2 ); t)

(by Lemma 3.2.3) we getP(G=K o
2 ; t) = (1 + tk2)P(G=K2; t) from the injectivity of q�2 .

This result is a part of Proposition 3.2.1.
Next we show the following equation.

Proposition 3.2.3. P(G=K o;t) = (1+t2k2�1)P(G=K2;t)�(1+t�1)P(J\Ker(po�
2 );t).

Proof. From the Thom-Gysin exact sequence ofpo
2 : G=K o ! G=K o

2 that is

po�
2�! Hq+k2�1(G=K o)

Æ��! Hq(G=K o
2)

���! Hq+k2(G=K o
2)

po�
2�! Hq+k2(G=K o)

Æ��!,

we easily get

P(Im(Æ�); t) = P(G=K o
2 ; t)� t�k2 P(Ker(po�

2 ); t),(6)

P(G=K o; t) = tk2�1P(Im(Æ�); t) + P(Im(po�
2 ); t).(7)

From the equation (5) and Proposition 3.2.2, we have

(8)

P(Im(po�
2 ); t) = P(G=K o

2 ; t)� P(Ker(po�
2 ); t)

= (1 + tk2)P(G=K2; t)� (tk2 P(G=K2; t) + P(J \ Ker(po�
2 ); t))

= P(G=K2; t)� P(J \ Ker(po�
2 ); t).
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Substituting (7) for (6) and (8), we obtain the equation

P(G=K o; t) = tk2�1P(G=K o
2 ; t)� t�1P(Ker(po�

2 ); t)

+ P(G=K2; t)� P(J \ Ker(po�
2 ); t).

Moreover substituting the equation above for (5) andP(G=K o
2 ; t) = (1+tk2)P(G=K2; t),

the identity of the proposition follows.

Let us concentrate on the term (1 +t�1)P(J \Ker(po�
2 ); t). Consider the following

commutative diagram

H�(G=K2; Q) !p�2
!q�2

H�(G=K ; Q)

!q�
H�(G=K o

2 ; Q) !po�
2 H�(G=K o; Q),

where q� is the induced homomorphism from the natural covering mapq : G=K o !
G=K . Now q�2 is an injection and moreover we show

Lemma 3.2.6. q� : H�(G=K ; Q) ! H�(G=K o; Q) is an isomorphism.

Proof. Letq! : H�(G=K o; Q) ! H�(G=K ; Q) be the transfer of the covering map
q : G=K o ! G=K . From Lemma 3.2.2R�

k = id : H�(G=K o; Q) ! H�(G=K o; Q), so
q� Æ q! : H�(G=K o; Q) ! H�(G=K o; Q) is r times map wherer is the covering de-
gree of q. Henceq� is surjective. The injectivity ofq� is well known. Soq� is an
isomorphism.

Hence we have Ker(p�2) = Ker(po�
2 Æq�2) ' Im(q�2)\Ker(po�

2 ) = J\Ker(po�
2 ). So we

see P(J \ Ker(po�
2 ); t) = P(Ker(p�2); t). The inclusionis : X1 \ X2 ! Xs is homotopy

equivalent tops : G=K ! G=Ks, hencei �s = p�s . Considering the following commuta-
tive diagram from the cohomology exact sequences of (M, X1) and (X2, X1 \ X2) and
the excision isomorphism

H�(M, X1) !
!'

H�(M) !f �1
!f �2

H�(X1)

!i �1
H�(X2, X1 \ X2) !H�(X2) !i �2

H�(X1 \ X2),

we get f �2 (Ker( f �1 )) = Ker(i �2) by this diagram. Hence we obtain the following equa-
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tions from the definition ofn1 and n2, that is f �s (cns) 6= 0 and fs(cns+1) = 0,

P(Ker(i �2); t) = t2n1+2 + � � � + t2n2 + �2(1� �1)t2n (n1 < n2)

and for n1 � n2

P(Ker(i �2); t) = �2(1� �1)t2n.

Because we have the two equations above, Proposition 3.2.3 and P(J \ Ker(po�
2 ); t) =

P(Ker(i �2); t), we complete the proof of Proposition 3.2.1.

3.3. G=K1 is orientable, G=K2 is non-orientable. Let us prove Theorem 3.1
(iv). AssumeG=K1 is orientable andG=K2 is non-orientable.

From Proposition 3.2.1, we get the following equation.

Lemma 3.3.1. t4n P(G=K2; t�1) = t2k2 P(G=K2; t).

Proof. By Proposition 3.2.1,P(G=K o
2 ; t) = (1+tk2)P(G=K2; t). From the Poincaré

duality of G=K o
2 , we seeP(G=K o

2 ; t�1) = tk2�4n P(G=K o
2 ; t).

Since G=K2 is non-orientable, we seek1 = 2 by Lemma 3.2.1. Hence we can
show the following equation.

Lemma 3.3.2. P(G=K2; t) = t P(G=K1; t)+a(n2)� t2n2+1a(2n�n2�1)+t2n�1(�2 +
t�2 � 1).

Proof. Sincek1 = 2, we see dimG=K1 = 4n � 2. By the Poincaré-Lefschetz
duality and X1 is a deformation retract toG=K1,

Hq(X1, �X1; Q) ' H4n�q(X1; Q) ' H4n�q(G=K1; Q) ' Hq�2(G=K1; Q).

So we get the equalityP(X1, �X1; t) = t2P(G=K1; t).
From Lemma 3.0.1 and 3.0.2, we have the equation

P(X1, �X1; t)� t P(X2; t)

= t2n2+2 + � � � + t4n + (1� �2)t2n � t(1 + t2 + � � � + t2n2 + �2t2n)

= t2n2+2a(2n� n2 � 1)� ta(n2) + (1� �2 � t�2)t2n.

Putting P(X1, �X1; t) = t2P(G=K1; t) and P(X2; t) = P(G=K2; t) in this equation, we
get this lemma.

From Lemma 3.3.1 and 3.3.2, we can get the following proposition.
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Proposition 3.3.1. P(G=K1; t) is an even function.

Proof. Multiplying both sides of the identity in Lemma 3.3.2 by t2k2�1, we get

t2k2�1P(G=K2; t)

= t2k2 P(G=K1; t) + t2k2�1a(n2)� t2k2+2n2a(2n� n2 � 1) + t2k2+2n�2(�2 + t�2 � 1).

Moreover multiplying both sides of the equation which substitute t�1 for t in Lem-
ma 3.3.2 byt4n�1, we get

t4n�1P(G=K2; t�1)

= t4n�2P(G=K1; t�1) + t4n�2n2�1a(n2)� a(2n� n2 � 1) + t2n(�2 + t�1�2 � 1).

From Lemma 3.3.1, the above two equations are same, that is

t2k2 P(G=K1; t) + t2k2�1a(n2)� t2k2+2n2a(2n� n2 � 1) + t2k2+2n�2(�2 + t�2 � 1)

= t4n�2P(G=K1; t�1) + t4n�2n2�1a(n2)� a(2n� n2 � 1) + t2n(�2 + t�1�2 � 1).

By the Poincaré duality ofG=K1, P(G=K1; t) = t4n�2P(G=K1; t�1). Hence we get

(9)

(1� t2k2)P(G=K1; t)

= (1� �2)t2n(1� t2k2�2)� �2t2n�1(1� t2k2)

+ (t2k2�1 � t4n�2n2�1)a(n2) + (1� t2n2+2k2)a(2n� n2 � 1).

So we easily see�(G=K1) 6= 0. HenceP(G=K1; t) is an even function.

Since P(G=K1; t) is an even function, it follows from (9) that

(t2k2�1 � t4n�2n2�1)a(n2)� �2t2n�1(1� t2k2) = 0,(10)

(1� t2k2)P(G=K1; t) = (1� �2)t2n(1� t2k2�2) + (1� t2n2+2k2)a(2n� n2 � 1).(11)

Comparing the minimal degree terms in (10), we getk2 = minf2n � n2, ng. If k2 =
2n�n2, then we see�2 = 0 from (10) andk2 � 2. However we see easily�(G=K1) =2 Z
from (11) andk2 � 2. So this case does not occur.

Hencek2 = n. So we see�2 = 1 from (10).
If n2 6= 0, then we seen2 = n � 1 from (10). In this case we can also prove�(G=K1) � �(1=n) (mod Z) from (11). Hence�(G=K1) =2 Z. This is a contradiction.
Hencek2 = n, �2 = 1, n2 = 0. If �1 = �2 = 1, thenn1 = n2 = 0 andn = 1 because

of Proposition 3.0.1. Since we assumen � 2, we have�1 = 0. Therefore we have
n1 = 2n � 1 by Proposition 3.0.1. Consequently we seeP(G=K1; t) = P(Im f �1 ; t) =
a(n1) = a(2n � 1), andG=K1 � P2n�1(C) from (11). So we getP(G=K2; t) = 1 + t2n
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from Lemma 3.3.2. By Proposition 3.2.1,P(G=K o
2 ; t) = (1 + tn)(1 + t2n) and G=K o �

S4n�1. This is the case thatG=K1 is orientable andG=K2 is non-orientable in Theo-
rem 3.1 (iv).

3.4. Both singular orbits are non-orientable. Let us prove Theorem 3.1 (v).
SupposeG=K1 and G=K2 are non-orientable. By Lemma 3.2.1 and Proposition 3.2.1,
we havek1 = k2 = 2, and

P(G=K o
s ; t) = (1 + t2)P(G=Ks; t),(12)

P(G=K o; t) = (1 + t3)P(G=Ks; t)� P(nr , ns; t)� �s(1� �r )(1 + t�1)t2n(13)

where

P(p, q; t) =

�
t2p+1 + t2p+2 + � � � + t2q (p < q)
0 (p � q).

From the Mayer-Vietoris exact sequence ofM = X1 [ X2, we have the following
lemma.

Lemma 3.4.1. The following equation holds.

P(G=K1; t) + P(G=K2; t)

= P(G=K ; t)� t�1(1 + t2n)(1 + t2 + � � � + t2n) + P(Im f �1 � f �2 ; t)(1 + t�1)

Proof. By the Mayer-Vietoris exact sequence

� � � ! Hq(M)
f �1 � f �2���! Hq(X1)� Hq(X2) ! Hq(X1 \ X2) ! Hq+1(M) ! � � �

where M is a rational cohomology complex quadric, we see

P(X1; t) + P(X2; t)

= P(X1 \ X2; t)� t�1(1 + t2n)(1 + t2 + � � � + t2n) + P(Im f �1 � f �2 ; t)(1 + t�1).

Since Xs is a tubular neighborhood ofG=Ks, H�(Xs) = H�(G=Ks) and X1 \ X2 =
G=K . So we get this lemma.

3.4.1. The case�1 = �2. We will prove this case is one of Theorem 3.1 (v). In
this case we seen1 = n2 from Proposition 3.0.1. So we get the following two equations
from (13),

P(G=K1; t) = P(G=K2; t),

P(G=K o; t) = (1 + t3)P(G=Ks; t).
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Now we have

P(Im f �s ; t) = 1 + t2 + � � � + t2n

from Lemma 3.0.1 and Proposition 3.0.1. We can get the following lemma because of
Lemma 3.4.1 and�1 = �2.

Lemma 3.4.2. The following equation holds.

P(G=K1; t) + P(G=K2; t) = (1� t2n�1)(1 + t2 + � � � + t2n) + P(G=K ; t).

Since ks = 2 (s = 1, 2), we haveq� : H�(G=K ) ! H�(G=K o) is an isomorphism
by Lemma 3.2.6. Hence�(G=K ) = �(G=K o) = 0. Therefore we have�(G=Ks) 6=
0 from P(G=K1; t) = P(G=K2; t) and Lemma 3.4.2. HenceP(G=Ks; t) is an even
function from Lemma 3.1.3. Substituting Lemma 3.4.2 forP(G=K ; t) = P(G=K o; t) =
(1 +t3)P(G=Ks; t) and comparing the degrees, we haven = 2, P(G=Ks; t) = 1 +t2 + t4,
and P(G=K ; t) = P(G=K o; t) = (1 + t3)(1 + t2 + t4). Moreover we haveP(G=K o

s ; t) =
(1 + t2)(1 + t2 + t4) from the equation (12). This result is Theorem 3.1 (v).

3.4.2. The case�1 6= �2. We will prove this case is also one of Theorem 3.1 (v).
In this case we seen1 6= n2 becausen1+n2+1 = 2n (Proposition 3.0.1). We may assume�1 = 0 and�2 = 1. From (13), fors = 1,

(14) P(G=K o; t) = (1 + t3)P(G=K1; t)� P(n2, n1; t),

moreover fors = 2

(15) P(G=K o; t) = (1 + t3)P(G=K2; t)� P(n1, n2; t)� (1 + t�1)t2n.

From (14) and (15) we can show the following two equations;

(1 + t)(1� t + t2)fP(G=K1; t)� P(G=K2; t)g
= �t2n1+1(1 + t)(1 + t2 + � � � + t2(n2�n1)�2)� (1 + t)t2n�1 (if n1 < n2),

(16)

(1 + t)(1� t + t2)fP(G=K2; t)� P(G=K1; t)g
= �t2n2+1(1 + t)(1 + t2 + � � � + t2(n1�n2)�2) + (1 + t)t2n�1 (if n1 > n2).

(17)

From these equations (16) and (17), we see

�(G=K1)� �(G=K2) = m = 3�1(n2 � n1 + 1) 2 Z (if n1 < n2),(18)

�(G=K2)� �(G=K1) = m0 = 3�1(n1 � n2 � 1) 2 Z (if n1 > n2).(19)

Hence if n2 > n1 then n2 � n1 = 3m� 1 and if n2 < n1 then n1 � n2 = 1 + 3m0.
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Now we see�(G=K ) = �(G=K o) = 0 by Lemma 3.2.6, (14) and (15).
Hence we have�(G=K1) + �(G=K2) = 2n + 2 by Lemma 3.4.1. Therefore we can

easily show�(G=Ks) 6= 0 (s = 1, 2) by (18) and (19). So we see rank(G) = rank(K o
s )

and we haveHodd(G=K o
s ; Q) = 0 from [14] Chapter III and Theorem 3.21 in Chap-

ter VII. Consequently we have, by the equation (12),

Hodd(G=Ks; Q) = 0.

Hence if n1 < n2 we have from (16),

P(G=K2; t)� P(G=K1; t) = t2n�3m+2a(3m� 2) + t2n

t3(P(G=K2; t)� P(G=K1; t)) = t2n�3m+1a(3m� 2) + t2n�1.

Moreover if n1 > n2 we have from (17),

P(G=K1; t)� P(G=K2; t) = t2n�3m0
a(3m0)� t2n

t3(P(G=K1; t)� P(G=K2; t)) = t2n�3m0�1a(3m0)� t2n�1.

From the above equations we have

t2n+3m�1 + t2n+3m+1 + t2n+3 = t2n�3m+1 + t2n�3m+3 + t2n�1 (if n1 < n2)

t2n+3m0+1 + t2n+3m0+3� t2n+3 = t2n�3m0�1 + t2n�3m0+1� t2n�1 (if n1 > n2).

From (18), we seem 6= 0. So the casen1 < n2 does not occur by the above equation.
Therefore we seen1 > n2 and m0 = 0 by the above equation. From (19) and 2n =
n1+n2+1, we haven1 = n andn2 = n�1. Hence we haveP(G=K1;t) = P(G=K2;t) and

P(G=K ; t) = P(G=K o; t) = (1 + t3)P(G=Ks; t)� t2n�1 � t2n

from (14), (15) and Lemma 3.2.6 wheres = 1 or 2. Moreover we haveP(Im f �1 �
f �2 ; t) = a(n) + t2n because of the definition of Imf �s , �1 = 0, �2 = 1, n1 = n and n2 =
n� 1. So we have

2P(G=Ks; t) = P(G=K ; t) + (1� t2n+1)a(n� 1) + 2t2n

by Lemma 3.4.1. Therefore we can shown = 2, P(G=Ks; t) = 1+t2 + t4, P(G=K o
s ; t) =

(1 + t2)(1 + t2 + t4) and P(G=K o; t) = P(G=K ; t) = (1 +t5)(1 + t2), because of the above
two equations and the equation (12). This result is in Theorem 3.1 (v).

Therefore we have Theorem 3.1. Next we will exhibit the pairsof Lie groups
(G, U ) whose Poincaré polynomialP(G=U ; t) satisfies Theorem 3.1.

4. First step to the classification

Let G be a compact connected Lie group andU be its maximal rank closed con-
nected subgroup. The aim of this section is to find pairs (G, U ), such that the Poincaré
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polynomial of the quotient spaceG=U coincides with a Poincaré polynomialP(G=K o
s ; t)

in Theorem 3.1, up to local isomorphism.

4.1. Equivalence relation. We will mention some basic notations. First we de-
fine anessential isomorphism.

DEFINITION (essential isomorphism). Let (G, M) be a pair of a compact Lie
group G and a manifoldM with G-action. We regardH as an intersection of all
isotropy groups

T
x2M Gx (we call it a kernel of (G, M)). Then we call the pair

(G=H , M) an induced effective actionfrom (G, M). We say that two pairs (G, M) and
(G0, M 0) are essentially isomorphicif their induced effective actions are equivariantly
diffeomorphic.

We will classify (G, M) up to this equivalence relation (essential isomorphism).
Next we define anessential direct product.

DEFINITION (essential direct product). LetG1, : : : , Gk be compact Lie groups,
and N be a finite normal subgroup ofG� ' G1�� � ��Gk. We say that the factor group
G = G�=N is anessential direct productof G1, : : : , Gk and denote itG ' G1Æ� � �ÆGk.

Note that all compact connected Lie groups are constructed by an essential direct
product of some simply connected compact Lie groups and a torus (see [14] Corol-
lary 5.31 in Chapter V). Because we would like to classify up to essential isomorphism,
we can assume that

G ' G1 � � � � � Gk � T

for some simply connected simple Lie groupsGi and a torusT . Moreover we can as-
sume thatG acts almost effectively onM, where we say thatG actsalmost effectively
on M if H =

T
x2M Gx is a finite group. In this caseG acts almost effectively on the

principal orbit G=K , hence we easily see

Proposition 4.1.1. K dose not contain any positive dimensional closed normal
subgroup of G.

4.2. Candidates for (G, Ks). Let G be a simply connected compact simple Lie
group andU be its closed connected subgroup of the same rank asG, where the rank
of a Lie group means the dimension of a maximal torus subgroup. The purpose of this
section is to find the pair (G, U ) such that the Poincaré polynomialP(G=U ; t) is equal
to some Poincaré polynomial in Theorem 3.1.

In Theorem 3.1 we get some even functionsP(G=Ks; t) (or P(G=K o
s ; t)). If

P(G=Ks; t) is an even function, then�(G=Ks) 6= 0. So we have rankG = rankKs

from [14] Chapter III. The following lemma is well known.
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Lemma 4.2.1 ([14] Theorem 7.2 in Chapter V).If G ' G1� � � � �Gk � T then
the same rank subgroup of G is G0 ' G0

1 � � � � � G0
k � T . Here G0i is the same rank

subgroup of Gi .

Hence we may only find a simply connected compact simple Lie group G and its
same rank closed connected subgroupU such thatP(G=U ; t) is one of the factors of
Poincaré polynomials in Theorem 3.1, that is, sinceP(G=K o

s ) = P(G1=U1)� � �P(Gk=Uk),
we may only find the pair (Gi , Ui ).

To find such (G,U ), we prepare the following lemma ([14] Theorem 3.21 in Chap-
ter VII).

Lemma 4.2.2 (Hirsch formula). Let G be a connected compact Lie group and U
a same rank connected closed subgroup of G. Suppose H�(G;Q)'V(x2s1+1, : : : , x2sl +1)
and H�(U ; Q) 'V

(x2r1+1, : : : , x2r l +1) where l= rankG = rankU and xi is an element
of the i-th degree cohomology. Then P(G=U ; t) satisfies the equation

P(G=U ; t) =
lY

i =1

1� t2si

1� t2r i
.

In particular, from this Hirsch formula, we can getP(G=U ; t) if we know H�(G; Q)
and H�(U ; Q) only. Let us find (G, U ).

If G is a classical simple Lie group, then (G, U ) are known ([18] (9.3)). IfG is
exceptional andU is maximal, then such pairs (G,U ) are also known ([14] Chapter V).
Hence in these cases we can computeP(G=U ; t) by the Hirsch formula. So we may
pick up P(G=U ; t) which is in the factor of Poincaré polynomials in Theorem 3.1.

AssumeG is an exceptional Lie group andU 0 is not a maximal subgroup, where
rankG = rankU 0. Now the maximal subgroupU (which has same rank) ofG is con-
structed by the product of the classical Lie groups and a torus, except three cases
(E7, E6 � T1), (E8, E6 � SU(3)) and (E8, E7 � SU(2)), by [14]. BecauseU is max-
imal and U 0 is not so, they satisfyG � U � U 0. Hence, except the above three
cases, we can get allP(G=U 0; t) = P(U=U 0; t)P(G=U ; t) by the above same argu-
ment. Assume (G, U ) = (E7, E6 � T1), (E8, E6 � SU(3)) or (E8, E7 � SU(2)). For
example we takeU 0 � E6 � T1 � E7 = G such thatU 0 is not maximal. Then there
is someV � E6 such thatU 0 � V � T1 � E6 � T1, whereV is a maximal subgroup
of E6. Moreover we see suchV is constructed by the product of the classical Lie
groups and a torus becauseV is a maximal subgroup ofE6 (see [14]). So we can
get P(G=U 0; t) = P(G=(E6� T1); t)P(E6=V ; t)P(V=U 0; t) by the same argument. For
the other cases we can getP(G=U 0; t). Therefore we also haveP(G=U 0; t) even if G
is an exceptional Lie group andU 0 is not a maximal subgroup. So we may pick up
P(G=U ; t) which is in the factors of Poincaré polynomials in Theorem 3.1.

From the above argument we get the following propositions. Note that the first
three propositions were also known by Uchida (Section 4.2 in[16]).
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Proposition 4.2.1. If P(G=U ; t) = 1 + t2a, then (G, U ) is locally isomorphic to

(SO(2a + 1), SO(2a)) or (G2, SU(3)), a = 3.

Proposition 4.2.2. If P(G=U ; t) = 1 + t2 + � � � + t2b, then (G, U ) is locally iso-
morphic to one of the following.

(SU(b + 1), S(U (b)�U (1))),

(SO(b + 2), SO(b)� SO(2)), b = 2m + 1,�
Sp

�
b + 1

2

�
, Sp

�
b� 1

2

��U (1)

�
, b = 2m + 1,

(G2, U (2)), b = 5.

Proposition 4.2.3. If P(G=U ; t) = (1+t2a)(1+t2+ � � �+ t2b), then (G, U ) is locally
isomorphic to one of the following.

(SO(2m + 2), SO(2m)� SO(2)), a = b = m,

(SO(2m + 3), SO(2m)� SO(2)), a = m, b = 2m + 1,

(SO(7), U (3)), a = b = 3,

(SO(9), U (4)), a = 3, b = 7,

(SU(3), T2), a = 1, b = 2,

(SO(10), U (5)), a = 3, b = 7,

(SU(5), S(U (2)�U (3))), a = 2, b = 4,

(Sp(3), Sp(1)� Sp(1)�U (1)), a = 2, b = 5,

(Sp(3), U (3)), a = b = 3,

(Sp(4), U (4)), a = 3, b = 7,

(G2, T2), a = 1, b = 5,

(F4, Spin(7) Æ T1), a = 4, b = 11,

(F4, Sp(3) Æ T1), a = 4, b = 11.

Proposition 4.2.4. If n is an even number and P(G=U ; t) = 1 +tn + t2n + t3n then
n = 2 or 4. The case n= 2 is in Proposition 4.2.2.If n = 4, then (G, U ) is locally
isomorphic to

(Sp(4), Sp(1)� Sp(3)).

By Theorem 3.1, it is enough to consider the above four cases.Before we start
the classification, we outline the proof of the classification.
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4.3. Outline of the proof of the classification. We will state the outline for the
classification. To classify (G, M), whereG is a compact Lie group andM is a rational
cohomology complex quadric, we will consider five cases in Theorem 3.1 (i)–(v). Let
us recall the following theorem.

Theorem 4.1 (differentiable slice theorem).Let G be a compact Lie group and
M be a smooth G-manifold. Then for all x2 M there is a closed tubular neighbor-
hood U of the orbit G(x) �= G=Gx and a closed disk Dx, which has an orthogonal
Gx-action via the representation�x : Gx ! O(Dx), such that G�Gx Dx

�= U as a
G-diffeomorphism.

We call the representation�x in this theoremthe slice representationof Gx at x 2
M. Since we get candidates of singular isotropy groups in Section 4.2, first we will
compute the slice representation of the singular isotropy subgroupsK1 and K2 from
the differentiable slice theorem. Then we will get a candidate for the transformation
group G and two tubular neighborhoodsX1

�= G�K1 Dk1 and X2
�= G�K2 Dk2 of two

singular orbitsG=K1 and G=K2.
Next we will construct theG-manifold M up to equivalence by making use of the

structure theorem (Theorem 2.1) and the following lemma.

Lemma 4.3.1 ([16] Lemma 5.3.1). Let f , f 0: �X1!�X2 be G-equivariant diffeo-
morphisms. Then M( f ) is equivariantly diffeomorphic to M( f 0) as G-manifolds, if one
of the following conditions is satisfied(where M( f ) = X1 [ f X2):
1. f is G-diffeotopic to f0.
2. f �1 f 0 is extendable to a G-equivariant diffeomorphism on X1.
3. f 0 f �1 is extendable to a G-equivariant diffeomorphism on X2.

From Theorem 2.1, we can put�Xs = G=K . Hence we may assume the gluing
map is in N(K ; G)=K , because the set of allG-equivariant diffeomorphisms ofG=K
is isomorphic toN(K ; G)=K where N(K ; G) is a normalizer group ofK in G.

Finally we will compute the cohomology of the manifold whichwe constructed.
Then we can decide whether this manifold is a rational cohomology complex quadric
or not. This is a story of the classification.

Let us start to classify (G, M) from the next section.

5. The two singular orbits are non-orientable

In this section, we consider the case two singular orbits arenon-orientable. The
goal of this section is to prove this case does not occur. By Theorem 3.1 (III), we see
P(G=Ks; t) = 1 + t2 + t4 and P(G=K o

s ; t) = (1 + t2)(1 + t2 + t4). So rankG = rankK o
s .

5.1. G=Ko
s is indecomposable. A manifold is calleddecomposableif it is a

product of positive dimensional manifolds. In this sectionwe consider the case where
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G=K o
s is indecomposable. By Proposition 4.2.3 (a = 1, b = 2), we seeG = SU(3)�

G0�Th and K o
s = T2

s �G0�Th. HereT2
s is a maximal torus ofSU(3), G0 is a product

of compact simply connected simple Lie groups andTh is a torus. First we prove the
following lemma.

Lemma 5.1.1. G = SU(3), K o
1 = K o

2 = T2 and K1 = K2.

Proof. Becauseks = 2, we seeK o
s=K o �= S1. HenceG0 � Th�1 � K o from the

assumption ofG0. ThereforeG0 = feg and h = 0 or 1 from Proposition 4.1.1.
To show h = 0, let us consider the slice representation�s : Ks ! O(2). Since

G=Ks is non-orientable, there is an elementgs 2 Ks � K o
s such that

�s(gs) =

�
1 0
0 �1

�
.

Since the centralizer of�s(gs) in O(2) is a finite groupZ2 � Z2 and the centralizer
of gs in Ks containsfeg � Th, we seefeg � Th � Ker(�sjK o

s
) = K o where�sjK o

s
is the

restrictions toK o
s . Henceh = 0 from Proposition 4.1.1. ThereforeK o

s = T2
s which is the

maximal torus ofSU(3). MoreoverK1 = K2 becauseK � K1\K2 and Ks = K K o
s .

Next we construct theSU(3)-manifold. To construct theSU(3)-manifold, we will
attach two tubular neighborhoods along their boundary. So first we consider two tubu-
lar neighborhoods of two singular orbits. Denote the non-trivial slice representation of
Ks by �s : Ks ! O(2) for s = 1, 2. Since we can assume

T2 = K o
s =

8<
:
0
� u 0 0

0 v 0
0 0 w

1
A = (u, v, w) 2 SU(3) u, v, w 2 U (1), uvw = 1

9=
;,

the slice representation restricted toT2 is

(20) �sjT2((u, v, w)) = �(vm)�(wl )

where� : U (1)! SO(2) is a canonical isomorphism andm, l 2 Z. Now we can easily
check N(T2; SU(3))=T2 is8<

:I =

0
� 1 0 0

0 1 0
0 0 1

1
A, A =

0
� 0 0 �1

1 0 0
0 �1 0

1
A, A�1 =

0
� 0 1 0

0 0 �1�1 0 0

1
A,

� =

0
� �1 0 0

0 0 1
0 1 0

1
A, � =

0
� 0 �1 0�1 0 0

0 0 �1

1
A,  =

0
� 0 0 1

0 �1 0
1 0 0

1
A
9=
;.
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This group is isomorphic to the three degree symmetric groupS3. Hence
N(K o

s ; SU(3))=K o
s � Ks=K o

s ' Z2 or S3 (K o
s = T2) by non-orientability ofSU(3)=Ks.

We have the following two lemmas.

Lemma 5.1.2. If � 2 Ks, then f(ū2, u, u) 2 SU(3)g � Ker(�sjK o
s
).

If � 2 Ks, then f(u, u, ū2) 2 SU(3)g � Ker(�sjK o
s
).

If  2 Ks, then f(u, ū2, u) 2 SU(3)g � Ker(�sjK o
s
).

Proof. Assume� 2 Ks. The centralizer of� in Ks containsf(ū2, u, u) j u 2U (1)g.
Then the slice representation is�s(ū2, u, u) = �s(�(ū2, u, u)��1) 2 SO(2). On the other
hand�s(�(ū2,u,u)��1) =�s(�)�s(ū2,u,u)�s(�)�1 =�s(ū2,u,u)�1 because�s(�)2 O(2)�
SO(2). This means�s(ū2, u, u) = feg for all u 2U (1).

Similarly we can show other cases.

Lemma 5.1.3. Ks=K o
s ' Z2.

Proof. If Ks=K o
s ' S3, then Ks = N(K o

s ; SU(3)). Hencef�, �,  , A, A�1g � Ks.
From Lemma 5.1.2,f(ū2, u, u), (u, u, ū2), (u, ū2, u)g � Ker(�sjK o

s
). So we see

f(ū2, u, u), (u, u, ū2), (u, ū2, u)g � K o.

HenceK o = T2 becauseK o is a connected Lie subgroup inK o
s = T2. This contradicts

K o
s=K o �= S1.

BecauseT2 [ �T2, T2 [ �T2 and T2 [  T2 are conjugate, we can consider
Ks = T2 [ �T2 for s = 1, 2. We can check Ker(�sjK o

s
)=K o ' Zm as follows. If we

put Ker(�1jK o
1
)=K o ' Zm and Ker(�2jK o

2
)=K o ' Zm0 where m 6= m0, then the princi-

pal isotropy group ofG-action onX1 is different from the principal isotropy group of
G-action on X2. This contradicts thatX1 and X2 have a same principal orbit because
of X1 \ X2 = G=K . Hence we can put Ker(�sjK o

s
)=K o ' Zm for s = 1, 2. Therefore

we can easily see the following lemma from above lemmas and the equation (20).

Lemma 5.1.4. For m 2 N, we can considerfI , alphag = Ks=K o
s , and we have

K o = f(ū2, u, u)g
and

�sjK o
s
(uv, u, v) = �(um)�(v�m).

Moreover we see�1jT2 = �2jT2. Hence we get the tubular neighborhood

X(m)
s = SU(3)�Ks D2

m
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where Ks acts on the diskD2
m by �s : Ks ! O(2) such that Ker(�sjK o

s
)=K o ' Zm.

Next we consider an attaching map fromX(m)
1 to X(m)

2 . Since the attaching map
f is equivariantly diffeomorphic toG=K , f is in N(K ; G)=K . Now we have

K =

8<
:
0
� uv 0 0

0 u 0
0 0 v

1
A,

0
� �uv 0 0

0 0 u
0 v 0

1
A 2 SU(3) um = vm

9=
;,

for somem 2 N from Lemma 5.1.4.
Hence we see the following lemma.

Lemma 5.1.5. N(K ; SU(3)) = K .

Hence the attaching map is unique up to equivalence by Lemma 4.3.1 (1.). So we
see such anSU(3)-manifold exists for eachm 2 N and

M (m) = SU(3)�Ks S2

where Ks acts on S2 via the linear representation�s : Ks ! O(2) such that
Ker(�sjK o

s
)=K o ' Zm. From the above argument, we have the following proposition.

Proposition 5.1.1. Let M be an SU(3)-manifold which has codimension one orbits
SU(3)=K and two singular orbits SU(3)=Ks (s = 1, 2). Then M is SU(3)-equivariant
diffeomorphic to M(m) (m 2 N).

Finally we show such anSU(3)-manifold M (m) is not a rational cohomology com-
plex quadric.

Proposition 5.1.2. M (m) = SU(3) �Ks S2 is not a rational cohomology complex
quadric.

Proof. The manifoldN = SU(3)�K o
s

S2 is a double covering ofM (m), whereK o
s

acts onS2 by the restricted representation�sjK o
s
. If M (m) is a rational cohomology com-

plex quadric, thenM (m) is simply connected. HenceM (m) �= N. Now N is anS2-bundle
over SU(3)=T2 = SU(3)=K o

s , andSU(3)=T2 is simply connected. HenceH�(M (m); Q) '
H�(N; Q) ' H�(S2; Q)
H�(SU(3)=T2; Q) becauseHodd(S2; Q) = Hodd(SU(3)=T2; Q) =
0. HenceH�(M (m); Q) 6' H�(Q4; Q). This is a contradiction.

Therefore this case does not occur. Next we consider the caseG=K o
1 is decom-

posable.
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5.2. G=Ko
1 is decomposable. Assume G=K o

1 is decomposable. By Proposi-
tion 4.2.1 (a = 1), 4.2.2 (b = 2), we see that

G = SU(2)� SU(3)� G0 � Th,

K o
1 = T1 � S(U (2)�U (1))� G0 � Th.

First we prove the following lemma.

Lemma 5.2.1. G = SU(2)� SU(3) and Ko
1 = T1 � S(U (2)�U (1))' K o

2 .

Proof. If G=K o
2 is indecomposable, then we seeK o

2 = SU(2) � T2 � G0 � Th.
BecauseK o � K o

1 \ K o
2 = T1 � T2 � G0 � Th, we have dimK � 3 + dimG0 + h. But

we also have dimK = 4 + dimG0 + h becauseK o
s=K o �= S1 for s = 1, 2. This is a

contradiction. SoG=K o
2 is decomposable. Hence we haveK o

1 ' K o
2 , G0 = feg and

h = 0 or 1 by Proposition 4.1.1. Moreover we can showh = 0 like Lemma 5.1.1.

Now we haveN(T1; SU(2))=T1 ' Z2 and N(S(U (2)� U (1)); SU(3)) = S(U (2)�
U (1)). Because of the non-orientability ofG=Ks and Lemma 5.2.1, we get

K1 = N(T1; SU(2))� S(U (2)�U (1))' K2.

For the slice representation�s : Ks ! O(2), there existsgs 2 Ks � K o
s such that

�s(gs) =

�
1 0
0 �1

�
.

Here the centralizer of�s(gs) in O(2) is a finite group and the centralizer ofgs in
Ks containsfeg � S(U (2) � U (1)). HenceS(U (2) � U (1)) � Ker(�s). So the slice
representation�s : Ks ! O(2) has a decomposition�s : Ks ! N(T1; SU(2)) ! O(2).
Moreover K o = feg� S(U (2)�U (1)) by Ks=K �= S1. Therefore there is an equivariant
decomposition

M �= ((SU(2)�N(T1) D2) [� (SU(2)�N(T1) D2))� (SU(3)=S(U (2)�U (1)))

where N(T1) = N(T1; SU(2)) and � is an attaching map from�(SU(2)�N(T1) D2) to
itself. As is well knownSU(3)=S(U (2)�U (1))�= P2(C). Hence aG-manifold is M �=
N � P2(C), where N is someSU(2)-manifold (In fact we easily seeN = SU(2)�N(T1)

S2). However this contradictsM is indecomposable. So this case does not occur.

6. One singular orbit is orientable, the other is non-orientable

The goal of this section is to prove this case is one of the exotic case in Theo-
rem 1.1.

AssumeG=K1 is orientable,G=K2 is non-orientable. Thenk1 = 2 from Lemma 3.2.1.
Sincek1 = 2, we haveK1=K �= S1. Let us prove the uniqueness of (G, M).
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6.1. Uniqueness of (G,M). By Theorem 3.1 (II), we seeG=K o � S4n�1, G=K1 �
P2n�1(C), P(G=K o

2 ; t) = (1+tn)(1+t2n) and P(G=K2; t) = (1+t2n). Since P(G=K1; t) =
P(Im f �1 ; t) from Section 3.3, we haveG=K1 is indecomposable. BecauseK1=K �= S1,
we getG = H �Th, K1 = H1�Th (h = 0 or 1) whereH is a simply connected simple
Lie group andH1 is its closed subgroup. First we show the following lemma.

Lemma 6.1.1. k2 = n = 2 or 4.

Proof. We seen = k2 from Theorem 3.1. Moreover we have, from Proposition 4.2.2,

(H , H1) � (SU(2n), S(U (2n� 1)�U (1))),

(SO(2n + 1), SO(2n� 1)� SO(2)),

(Sp(n), Sp(n� 1)�U (1)) or

(G2, U (2)), n = 3.

Assumek2 = n is an odd number.

If ( H , H1) = (SU(2n), S(U (2n�1)�U (1))), then the slice representation�1: K1
��!

U (1)
'�! SO(2) is as follows;

��� A 0
0 det(A�1)

�
, x

�
= det(A�1)l xm 2 U (1)

where A 2 U (2n�1), x 2 Th (h = 0 or 1, if h = 0 thenx = 1) and (l , m) 2 Z2�f(0, 0)g.
Moreover we see Ker(�) = K . Hence we have

K o ' SU(2n� 1) if h = 0

or

K o ' U (2n� 1) if h = 1.

Since k2 = n is an odd number,K o
2=K o (�= Sn�1) is an even dimensional sphere. So

we see rankK o
2 = rankK o by [14] Chapter III. Hence we get, by the argument in Sec-

tion 4.1 and Lemma 4.2.1,

(K o
2 , K o) � (L1, SU(2n� 1)) if h = 0

or

(K o
2 , K o) � (L1 � L2, SU(2n� 1)� T1) if h = 1

where L1 is a simply connected simple Lie group which has a maximal rank subgroup
SU(2n� 1) and L2 is a connected Lie group which has a maximal rank subgroupT1.
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Now we haveK o
2=K o �= Sn�1. If h = 0, then we see (L1, SU(2n � 1)) is locally

isomorphic to one of the following pairs, by Proposition 4.2.1,

(SO(n), SO(n� 1))

or

(G2, SU(3)) if n = 3.

HoweverSU(2n�1) 6� SO(n�1) andSU(5) 6� SU(3) (n = 3). Therefore we haveh = 1.
Moreover we haveL1 = SU(2n � 1) and (L2, T1) is locally isomorphic to one of the
above pairs byK o

2=K o �= L1=SU(2n � 1)� L2=T1 and Proposition 4.2.1. So we can
easily haven = 3 and (L2, T1) � (SO(3), SO(2)). Therefore we have

(G, K1) = (SU(6)� T1, S(U (5)�U (1))� T1)

and

(K o
2 , K o) � (SU(5)� SU(2), SU(5)� T1).

In the representation�, if l = 0 then we have

K o = (Ker(�))o =

���
A 0
0 detA�1

�
, 1

�
A 2 U (5)

�
.

HenceG=K o �= P5(C)�T1. This contradictsG=K o � S11 in Theorem 3.1 (iv). Hence
l 6= 0 and we have

K o =

���
A 0
0 detA�1

�
, (detA�1)�l=m� A 2 U (5)

�
if m 6= 0

or

K o =

���
A 0
0 1

�
, x

�
A 2 SU(5), x 2 T1

�
if m = 0.

Let p: G = SU(6)�T1 ! T1 be a natural projection. Then the restriction mappjK o is
non-trivial homomorphism for allm by the above shape ofK o. Put the natural projec-
tion � : (SU(5)�SU(2), SU(5)� T1) ! (K o

2 , K o). Thenq = pjK o Æ� jSU(5)�T1 : SU(5)�
T1 ! K o ! T1 is a non-trivial homomorphism. Hencêq = pjK o

2
Æ� : SU(5)�SU(2)!

K o
2 ! T1 is also a non-trivial homomorphism becauseq̂jSU(5)�T1 = q. Moreover we

see q̂jSU(2) : SU(2) ! T1 is non-trivial. This contradicts that there is no complex one
dimensional non-trivial representation ofSU(2) (see [20]).
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Hence we seek2 = n is an even number for the case (H , H1) = (SU(2n), S(U (2n�
1) � U (1))). Also for other cases we seek2 = n is an even number by the similar
argument. Thereforek2 = n is an even number.

Consequently we see rankK o
2 = rankG and we can putK o

2 = H2 � Th such that
H2 is a maximal rank subgroup ofH becausen is an even number,P(G=K o

2 ; t) =
(1+tn)(1+t2n) and G = H�Th. ThenG=K o

2 = H=H2 and P(H=H2; t) = (1+tn)(1+t2n).
Therefore we havek2 = n = 2 or 4 by Proposition 4.2.4.

We already haveG = H � Th, K1 = H1 � Th. Moreover we haveK o
2 = H2 � Th

(h = 0 or 1) from Lemma 6.1.1, whereH is a simply connected simple Lie group and
Hs is its connected closed subgroup. By Proposition 4.2.2, 4.2.3 and 4.2.4,

(H , Hs) � (SU(4), S(U (3)�U (1)) (n = 2),

(Sp(2), Sp(1)�U (1)) (n = 2) or

(SO(5), SO(3)� SO(2))� (Sp(2), U (2)) (n = 2),

(H , H1, H2) � (Sp(4), Sp(3)�U (1), Sp(1)� Sp(3)) (n = 4).

Since G=K2 is non-orientable, we seeN(K o
2 ; G) 6= K o

2 . HenceH = Sp(2) andn = 2 =
k2 = k1.

Therefore we conclude that this case has just the following three pairs (H , H1, H2);

(H , Hs) ' (Sp(2), Sp(1)�U (1)),

(H , Hs) ' (Sp(2), U (2))

or

(H , Hs, Hr ) ' (Sp(2), Sp(1)�U (1), U (2))

for s + r = 3. In each case, ifh = 0 then dimK o = 3 and if h = 1 then dimK o = 4 by
K o

1=K o ' S1 ' K o
2=K o. However the above last caseK o

1\K o
2 is included in the (2+h)-

dimensional maximal torus subgroup ofG. So dimK o � 2+h. This is a contradiction.
Hence we have

(G, K o
s ) ' (Sp(2)� Th, Sp(1)�U (1)� Th) or

' (Sp(2)� Th, U (2)� Th)

for s = 1, 2. Let us prove the following lemma.

Lemma 6.1.2. In this case G= Sp(2), K1 = Sp(1)�U (1), K2 ' Sp(1)� (U (1) j [
U (1) j i) and K' Sp(1)�f1,�1, i,�ig wheref1, i, j , kg is the basis ofH and U(1) j =fa + bj j a2 + b2 = 1g.
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Proof. Suppose (G, K o
s ) ' (Sp(2)�Th,U (2)�Th). SinceG=K2 is non-orientable,

we haveK2 ' N(U (2); Sp(2))� Th (K2 has two components). We can assumeK1 =
U (2)� Th without loss of generality. ThenK o = (SU(2)� feg) Æ 1 (where1 ' Th)
since K1=K �= S1. So we haveSU(2)� Th � K o

2 � G = Sp(2)� Th becauseK o
2 '

U (2)� Th. Then we easily seeSU(2)� Th is a normal subgroup ofK o
2 ' U (2)� Th.

ThereforeK o
2 = U (2)�Th because we seeK o

2 � N(SU(2)�Th; G) = N(U (2)�Th; G).
Hence we haveK2 = N(U (2); Sp(2)) � Th. BecauseK � K1 = U (2) � Th, we get
K2=K �= N(U (2); Sp(2))=(F Æ SU(2)) �= S1 [ S1 (disconnected) whereF is a diagonal
finite subgroup ofU (2). This contradictsK2=K �= S1. So this case does not occur.

Therefore (G, K o
s ) ' (Sp(2)� Th, Sp(1)�U (1)� Th). Assumeh = 0. SinceG=K1

is orientable andG=K2 is non-orientable, we haveK1 = Sp(1)� U (1) = K o
1 and K2 =

N(K o
2 ; G). Since Ks=K �= S1, we haveK = Sp(1)� F where F is a finite subgroup

of U (1). If K o
2 = K1 = Sp(1)�U (1), then K2=K �= N(U (1); Sp(1))=F �= S1 [ S1 (dis-

connected). This contradictsK2=K �= S1. Hence we haveK o
2 = Sp(1)�gU(1)g�1 such

that gU(1)g�1 6= U (1) for someg 2 feg�Sp(1)� Sp(2), becauseK o
2 \ (feg�Sp(1)) is a

maximal torus infeg�Sp(1). Moreover we easily havegU(1)g�1\U (1) = f1,�1g. Put
N = N(gU(1)g�1; Sp(1)), then we haveK2 = N(Sp(1)� gU(1)g�1; Sp(2)) = Sp(1)� N.
BecauseK2 \ (feg �U (1))� K \ (feg �U (1)) = F , we seeN \U (1)� F . Here

Z2 ' K2=K o
2 ' N=gU(1)g�1 � (N \U (1))=(gU(1)g�1 \U (1))� F=f1,�1g.

Since S1 �= K2=K �= N=F , we seeF 6= f1,�1g. HenceZ4 ' F � U (1), so we have
F = f1,�1, i, �ig. Therefore we can put

K2 = Sp(1)� (U (1) j [U (1) j i).

If h = 1, then we haveG = Sp(2)�T1, K1 = Sp(1)�U (1)�T1 and K o = Sp(1)�1
where1 ' T1 is a subgroup inU (1)�T1. Let p2: K o ! feg�U (1)�feg be a natural
projection on the second factor ofK1. Then we seep2 is a surjective map because
of Proposition 4.1.1. So we haveK o

2 = Sp(1)� U (1)� T1 = K1 becauseK o � K o
2 ,

T1 � K o
2 and K o

2 ' Sp(1) � U (1) � T1. BecauseG=K2 is non-orientable, we have
K2 = Sp(1)� N(U (1);Sp(1))� T1. However we haveK2=K ' S1[ S1 from K � K1 =
Sp(1)�U (1)� T1. This contradictsK2=K ' S1.

Next we prove the following lemma.

Lemma 6.1.3. Let (Sp(2), M) be an Sp(2)-manifold which has codimension one
principal orbits Sp(2)=Sp(1)�f1,�1, i,�ig and two singular orbits Sp(2)=Sp(1)�U (1)
and Sp(2)=Sp(1) � (U (1) j [ U (1) j i). Then this(Sp(2), M) is unique up to essential
isomorphism.
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Proof. The slice representations ofK1 = Sp(1)�U (1) and K2 = Sp(1)� (U (1) j [
U (1) j i) decompose as follows:

�1 : K1 ! U (1)
�1�! O(2),

�2 : K2 ! N(U (1) j ; Sp(1)) = U (1) j [U (1) j i
�2�! O(2).

Since Ker(�1) = F = f1,�1, i, �ig, we can assume

�1(exp(i�)) =

�
cos(4�) �sin(4�)
sin(4�) cos(4�)

�

up to equivalence. So the slice representation�1 is unique up to equivalence. Since
K2=K �= S1 and Ker(�2jU (1) j ) = f1,�1g, we can put

�2(i) = �2(�i) =

�
1 0
0 �1

�
.

Therefore the slice representation�2 is also unique up to equivalence. Moreover
N(K ; G)=K ' U (1)=F has only one connected component. Hence the attaching map
is unique up to equivalence by Lemma 4.3.1 (1). Therefore (Sp(2), M) which satisfies
the conditions of this lemma is unique up to essential isomorphism.

Consequently the following proposition holds.

Proposition 6.1.1. Let M be an Sp(2)-manifold which satisfies the conditions of
Lemma 6.1.3.Then M�= S7 �Sp(1) P2(C).

Proof. If M = S7�Sp(1) P2(C) where S7 �= Sp(2)=Sp(1), Sp(2) acts naturally onS7

andSp(1) acts onP2(C) = P(R3
R C) through the double coveringSp(1)! SO(3) (see
[16] Example 3.2). Then we can easily check this manifold satisfies the conditions of
Lemma 6.1.3. From Lemma 6.1.3, we get this proposition.

Hence this case has a unique (G, M) up to essential isomorphism.

6.2. Topology ofM = S7 �Sp(1) P2(C). In this section, we study the topology ofM.
First we showM is a rational cohomology complex quadric. This manifoldM is a

P2(C)-bundle overS7=Sp(1)�= S4. Since Hodd(S4) = Hodd(P2(C)) = 0 andS4 is simply
connected, the induced mapp� : H�(S4) ! H�(M) is injective wherep: M ! S4 is a
projection andi � : H�(M) ! H�(P2(C)) is surjective wherei : P2(C) �= p�1(w) ! M
for fixed w 2 S4 by [14] Theorem 4.2 in Chapter III. Hence there exists a generator
x 2 H4(M) such thatx2 = 0 2 H8(M) and c 2 H2(M) such thati �(c) 2 H2(P2(C))
is a generator ofH�(P2(C)). Becausei �(x) = 0, we seec2 6= x in H4(M) ' Q � Q.
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Next we assumeS7 � P2(C) is a Sp(1)-bundle overM. From the Thom-Gysin exact
sequence,H6(M) ' Q is generated byxc and H8(M) ' Q is generated byxc2.

Let us show 06= c3 2 H6(M). The manifold M has anSp(2)-action and the ac-
tion has codimension one principal orbits from Section 6.1.Therefore we can use
the Mayer-Vietoris exact sequence from Theorem 2.1. If we denote the principal orbit
by G=K , the orientable singular orbit byG=K1 and the non-orientable singular orbit
by G=K2, then we haveH�(G=K ) ' H�(S7) and H�(G=K2) ' H�(S4) from Theo-
rem 3.1. Moreover we see, from Section 6.1, the orientable singular orbit G=K1 is
diffeomorphic to P3(C). Hence the induced homomorphismj � : H2(M) ! H2(G=K1)
is isomorphic. Thereforej �(c) is a generator inH2(G=K1) and j �(c3) = j �(c)3 6= 0
becauseH�(P3(C)) ' Q[c]=(c4). HenceM is a rational cohomology complex quadric.

Next we showM does not have a spin structure, we call such a manifold non-
spin. It is easy to show if a fibre is non-spin then its total space is also non-spin.
Hence M is non-spin becauseP2(C) is non-spin, that is, the second Stiefel-Whiteny
classw2(P2(C)) 6= 0. By definition, Q4 is a degree 2 non-singular algebraic hyper-
surface inP5(C). So Q4 is a spin manifold (see Section 16.5 in [3] or [10]). Therefore
M is not diffeomorphic toQ4.

Hence we get the following proposition.

Proposition 6.2.1. The8-dimensional manifold S7�Sp(1) P2(C) is not diffeomorphic
to Q4, but a rational cohomology complex quadric.

From the next section we will consider the case both singularorbits are orientable.

7. G=K1 � P2n�1(C), G=K2 � S2n

AssumeG=K1, G=K2 are orientable andG=K1 � P2n�1(C), G=K2 � S2n. The goal
of this section is to prove there are three cases (G, M) up to essential isomorphism. In
this caseG=K1, G=K2 are indecomposable. Because of the dimension ofG=K1 and
G=K2, we havek1 = 2 andk2 = 2n (n � 2). ThereforeK1 = K o

1 from Lemma 3.2.1.
Put G = H�G00�Th and K1 = H1�G00�Th such thatH=H1 ' G=K1 � P2n�1(C),

whereG00 is semi-simple. Then we haveG00 = feg and h = 0 or 1 because of Proposi-
tion 4.1.1. Hence we haveG = H � Th and K1 = K o

1 = H1 � Th (h = 0 or 1).
By Proposition 4.2.2,

(H , H1) � (SU(2n), S(U (2n� 1)�U (1))) or

(SO(2n + 1), SO(2n� 1)� SO(2)) or

(Sp(n), Sp(n� 1)�U (1)) or

(G2, U (2)), n = 3.

Sincek1 = 2, we can use Lemma 3.2.3 and Lemma 3.2.4. So we have

H�(G=K o
2 ; Q) = Im(q�2) + J � � + J � �2 (possibly non direct sum)
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whereq�2 : H�(G=K2;Q) (' H�(S2n;Q)) ! H�(G=K o
2 ;Q) is the injective induced homo-

morphism, Jk = q�2 H k(G=K2; Q) and J =
L

k Jk. Since� 2 H2n(G=K o
2 ; Q) by k2 =

2n and H i (G=K2; Q) = 0 for i 6= 0, 2n, we seeH�(G=K o
2 ; Q) = H�(S2n; Q). Hence

P(G=K o
2 ; t) = P(G=K2; t) = 1 + t2n.

Therefore we see (H , H2) � (SO(2n + 1), SO(2n)) or (G2, SU(3)) and n = 3 by
Proposition 4.2.1, whereK o

2 = H2 � Th. So we have that

(H , H1, H2) = (Spin(2n + 1), Spin(2n� 1) Æ T1, Spin(2n)) or

(G2, U (2), SU(3)) and n = 3.

7.1. G = Spin(2n + 1)� Th. AssumeG = Spin(2n + 1)� Th. We will prove this
case is the one of results. First we show the following lemma.

Lemma 7.1.1. h = 0.

Proof. If h = 1, then K o
2 = Spin(2n) � T1. BecauseG=K2 is orientable, we get

K2 = K o
2 . Sincek2 = 2n, we have the slice representation�2: K2 ! SO(2n). From n �

2, we see the restricted representation�2jSpin(2n) is a natural projection fromSpin(2n)
on SO(2n). Hence�2(feg�T1) � C(SO(2n)) whereC(SO(2n)) is the center ofSO(2n)
that isC(SO(2n)) = fI2n,�I2ng. Hencefeg�T1 � Ker(�2)� K . This contradicts Propo-
sition 4.1.1. So we haveh = 0.

From the above Lemma 7.1.1, we haveG = Spin(2n+1) andK1 = Spin(2n�1)ÆT1.
BecauseG=K2 is orientable, we haveK2 = K o

2 = Spin(2n). Since K1=K ' S1 and
K2=K �= S2n�1 (n � 2), we seeK = K o = Spin(2n � 1). Let us prove the following
lemma.

Lemma 7.1.2. Let (G, M) be a G-manifold which has codimension one orbits
G=K = Spin(2n+ 1)=Spin(2n�1), two singular orbits G=K1 ' Q2n�1 and G=K2 ' S2n

where G= Spin(2n + 1), K = Spin(2n� 1), K1 = Spin(2n� 1) Æ T1 and K2 = Spin(2n).
Then such(G, M) is unique up to essential isomorphism.

Proof. Becausen � 2, we can decompose the slice representation�1 : K1 ! O(2)

into �1: K1 = Spin(2n�1)ÆT1 proj��! T1 ��! O(2). Since Ker(�1) � K , � is an injection.
So the slice representation�1 is unique up to equivalence. Next we consider the slice
representation�2 : K2 = Spin(2n) ! SO(2n) � O(2n). Now we seeZ2 � Ker(�2) ���1

2 (SO(2n� 1)) = K whereZ2 is a center ofK . Hence we have a natural surjective
map K2 = Spin(2n) ! Spin(2n)=Z2 ' SO(2n). Hence�2 decomposes into�2 : K2 =

Spin(2n)
proj��! SO(2n)

��! SO(2n). BecauseSO(2n) acts transitively onS2n�1 (n � 2),
we see that� is an isomorphism by [6] Section I. Hence the slice representation �2 is
unique up to equivalence.
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Since N(K , G) has two connected components, for [y] 2 N(K , G)=N(K , G)o, we
can assume

p(y) =

� �I2n 0
0 1

�

where p: Spin(2n+1)! SO(2n+1) is the natural projection andy can be an element of
the center ofK2 = Spin(2n), which is not in the centerZ2 of K = Spin(2n�1). It suffices
to prove that the right translationRy on G=K is extendable to aG-diffeomorphism on
X2 from Lemma 4.3.1 (3.). Becausey is in the center ofK2 = Spin(2n), we have the
following commutative diagram

G�K2 K2=K !
! Ry�1

G=K

! Ry

G�K2 K2=K !G=K .

Here G �K2 K2=K = �(G �K2 D2n) = �X2. It is clear thatRy � 1 is extendable to a
G-diffeomorphism onX2.

Consequently (G, M) is unique up to essential isomorphism. Such an example of
(G, M) will be constructed in Section 12.1. This is one of the results in Theorem 1.1.

7.2. G = G2 � Th. AssumeG = G2 � Th. We will prove there are two cases
(h = 0 and h = 1 cases). The exceptional Lie groupG2 is defined by Aut(O). Here
O is the Cayley numbers generated byR-basisf1, e1, : : : , e7g. It is well known that
G2 � SO(7) andSU(3)' fA 2 G2 j A(e1) = e1g.

Let us consider the casesh = 0 and 1.

7.2.1. h = 0. Put h = 0. In this caseK1 ' U (2), K o
2 ' SU(3), K o ' SU(2). We

can putK o
2 = fA 2 G2 j A(e1) = e1g. Then N(K o

2 , G) has two components. SinceG=K2

is orientable andG2=SU(3) �= S6, K2 = K o
2 and K = K o. Also in this case (G, M) is

unique by the following lemma.

Lemma 7.2.1. Let (G2, M) be a G2-manifold which has codimension one orbits
G2=SU(2), two singular orbits G2=U (2) and S6. Then (G2, M) is unique up to essen-
tial isomorphism.

Proof. BecauseK2 ' SU(3) acts transitively onK2=K �= SU(3)=SU(2) �= S5, the
slice representation�2 : K2 ' SU(3)! SO(6) is unique up to equivalence by [6] Sec-
tion I. Then we see that��1

2 (SO(5)) = fB 2 K2 j B(e2) = e2g = K ' SU(2).

The slice representation�1 decomposes into�1: K1 'U (2)
��! U (1)

��! O(2) where� is an injection toSO(2) and�(A) = (detA)m (m 2 N), because Ker(�1) = K ' SU(2).



COMPLEX QUADRICS WITH CODIMENSION ONE ORBITS 57

We also havem = 1 from Ker(�1) = Ker(�) = K ' SU(2), and the slice representation�1 is unique up to equivalence.
Now N(K ; G)=K ' SO(3) is known (Section 7.4 in [16]). Consequently (G, M)

is unique up to essential isomorphism by Lemma 4.3.1 (1.).

Hence, in this case, (G, M) is unique up to essential isomorphism. Such an ex-
ample of (G, M) will be constructed in Section 12.5. This is one of the results in
Theorem 1.1.

7.2.2. h = 1. Put h = 1. In this case we haveG = G2 � T1, K1 ' U (2) �
T1, K2 ' SU(3) � T1 and K ' (SU(2) � feg) Æ 1 where1 ' T1 is a subgroup of
D� T1 � U (2)� T1 (D ' U (1) is a diagonal subgroup ofU (2)). We can easily show1 6= D�feg, feg�T1 because ofK2=K ' S5 and Proposition 4.1.1. From the following
lemma we see this case is unique.

Lemma 7.2.2. Let (G2� T1, M) be a G2� T1-manifold which has codimension
one orbits(G2� T1)=K and two singular orbits G2=U (2) and S6. Then(G2� T1, M)
is unique up to essential isomorphism.

Proof. First we consider the slice representations. Letp: K2 ' SU(3)� T1 be an
isomorphism. Then we can put the slice representation as�2 = �2 Æ p : K2 ' SU(3)�
T1 �2! O(6). BecauseK2=K ' S5 and�2(feg�T1) � C(�2(SU(3)�feg); SO(6)), where
C(E; F) = fb 2 F j ab = ba for all a 2 Eg for E � F , the slice representation�2: K2 '
SU(3)� T1 �2�! O(6) is as follows

�2(A + iB, cos� + i sin�) =

�
A �B
B A

��
cos(m�)I3 �sin(m�)I3

sin(m�)I3 cos(m�)I3

�

for somem 2 N up to equivalence. Hence

K = ��1
2 (SO(5))' ��1

2 (SO(5))

=

���
e�mi� 0

0 X

�
, ei�� det(X) = emi��.

From this equation, we have

K1 ' U (2)� T1

=

���
ei� 0
0 X

�
, ei�� 0� � , � � 2� , det(X) = e�i��.
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Moreover we see the slice representation�1 : K1 ' U (2)� T1 �1�! U (1)
'�! SO(2) is as

follows

�1

��
ei� 0
0 X

�
, ei�� = ei�emi�

because Ker(�1) = K . Therefore there is a unique pair (�1, �2) for eachm 2 N. Since
we can assume the action offeg � T1 (� G2 � T1 = G) on M is effective (up to
essential isomorphism), we can putm = 1. Hence there are unique slice representations�1 and �2 up to essential isomorphism.

Next we consider the gluing map. Now we can assumeK � SO(7)�T1 as follows:

8<
:
0
�
0
� 1 0 0

0 '(z) 0
0 0 X

1
A, z

1
A X 2 SU(2)� SO(4), '(z) 2 SO(2), z 2 T1

9=
;,

where ' : T1 ! SO(2) is an isomorphism. BecauseN(K ; G) = N(K ; SO(7)� T1) \
(G2 � T1), we have

N(K ; G)=N(K ; G)o ' Z2.

We can take one of the element inN(K , G)� N(K , G)o as follows

w =

0
BB�
0
BB�
�1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 I4

1
CCA, 1

1
CCA.

Put the element

(z, X, r ) =

0
�
0
� 1 0 0

0 '(z) 0
0 0 X

1
A, r

1
A 2 K1,

wherez, r 2 T1 and X 2 SU(2)� SO(4). Then we have

w � (z, X, r ) � w�1 = (z�1, X, r ).

So the following diagram is commutative

G�K1 K1=K !f

!Rw��
G=K

! Rw
G�K1 K1=K !f

G=K ,
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where f ([g, kK])= gkK, Rw(g)=gw (Rw(kK)=kwK ) and�((z, X, r )K )= (z�1, X, r )K .
Now �: K1=K ! K1=K is the antipodal involution onK1=K ' S1. Hence� is extend-
able to aK1-equivariant diffeomorphism onD2. Therefore theG-equivariant diffeo-
morphism Rw � � is extendable to aG-equivariant diffeomorphismX1 ! X1. From
Lemma 4.3.1 (2.), we seeM(Rw) = M(id). Consequently (G, M) is unique up to es-
sential isomorphism.

Consequently the following proposition holds.

Proposition 7.2.1. Let M be an G2 � T1-manifold which has codimension one
orbits (G2 � T1)=K and two singular orbits G2=U (2) and S6. Then M�= G2 �SU(3)

P3(C).

Proof. If M = G2 �SU(3) P3(C) where SU(3) acts onG2 naturally andP3(C) by� : [z0 : z] 7! [z0 : Az], here A 2 SU(3) and [z0 : z] 2 P3(C). We can easily check the
SU(3)-action onP3(C) has codimension one principal orbitsSU(3)=S(U (1)�U (2)) and
two singular orbitsSU(3)=SU(3) andSU(3)=SU(2).

This manifold M has an action' : (G2 � T1)� M ! M defined by

'((g, t), [g0, [z0 : z]]) = [ gg0, [tz0 : z]]

where g 2 G2, t 2 T1 and [g0, [z0 : z]] 2 M. Then this action' has codimension one
orbit (G2�T1)=(SU(2)�feg)Æ1 (1 ' T1) and two singular orbits (G2�T1)=(SU(3)�
T1) �= G2=SU(3) and (G2�T1)=(U (2)�T1) �= G2=U (2). From Lemma 7.2.2, such pair
is unique up to essential isomorphism. Hence this proposition holds.

We will explain this manifold is diffeomorphic toQ6 in Section 12.6. Hence this
is one of the results in Theorem 1.1.

8. G=Ks � Pn(C)

AssumeG=Ks is orientable andG=Ks � Pn(C) (s = 1, 2). The goal of this section
is to prove there are two cases up to essential isomorphism, in this case. Because of
ks = 2n (n � 2) and Lemma 3.2.1, we haveKs = K o

s .
First we assume thatG = H1 � H2 � G0 � Th, K1 = H(1) � H2 � G0 � Th, K2 =

H1 � H(2) � G0 � Th where Hs is a simply connected simple Lie group,H(s) is its
closed subgroup,G0 is a product of simply connected simple Lie groups andTh is a
torus. ThenK1 \ K2 = H(1) � H(2) � G0 � Th. So dim(G=K1 \ K2) = 4n � dim(G=K )
becauseK � K1 \ K2. This contradicts dimG=K = 4n� 1. Hence we can put

G = H � G0 � Th,

Ks = H(s) � G0 � Th.
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where H is a simply connected simple Lie group andH(s) is its closed subgroup. By
Proposition 4.2.2,

(H , H(s)) � (SU(n + 1), S(U (n)�U (1))) or

(SO(n + 2), SO(n)� SO(2)), n = 2m + 1 or�
Sp

�
n + 1

2

�
, Sp

�
n� 1

2

��
, n = 2m + 1 or

(G2, U (2)), n = 5.

Next we prepare the following lemma.

Lemma 8.0.1 (Theorem I0 in [11]). Let G1 and G2 be two compact connected
Lie groups and let G= (G1�G2)=N where N is a finite normal subgroup of G1�G2.
If G acts transitively on Sn then one of the two subgroups of G corresponding to G1

and G2 acts transitively on Sn.

Moreover we easily see the following lemma.

Lemma 8.0.2. Let H be a subgroup of G1 � G2 and p: G1 � G2 ! G2 be a
projection. Then the following two conditions are equivalent.
1. G1 acts transitively on(G1 � G2)=H .
2. p(H ) = G2.

Then we show the following lemma.

Lemma 8.0.3. H = SU(n + 1), H(s) ' S(U (n)�U (1)) and H(s) acts on K1=K �=
S2n�1 transitively.

Proof. If H(1) acts non-transitively onK1=K �= S2n�1, then V = G0 � Th acts
transitively onK1=K by Lemma 8.0.1 andK1=K �= V=V 0 where V 0 = K \ V . So we
see p1(K ) = H(1) = p1(K1) where p1 : G ! H by Lemma 8.0.2. HenceVnM is a
mapping cylinder ofVnG=K1 = H=H(1)

�= VnG=K ! VnG=K2 = H=H(2). From the
following commutative diagram

G=K2 !
! =

M

! p

VnG=K2 = H=H(2) !i VnM
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where i is a homotopy equivalent map, we get the induced diagram

H�(VnM) !i �
! p�

H�(VnG=K2) ' H�(H=H(2))

! =

H�(M) !H�(G=K2).

From this diagram we seep� is an injective map. Denote the generator byc 2
H2(VnM) ' H2(H=H(2)). Then p�(c) = u 2 H2(M) is a generator. Sincecn+1 = 0, we
see p�(c)n+1 = un+1 = 0. This is a contradiction toun+1 6= 0 from H�(M) = H�(Q2n).

So H(s) acts transitively onKs=K ' S2n�1. By making use of [6] Section I, we
get (H , H(s)) ' (SU(n+1), S(U (n)�U (1))). Hence we can putG = SU(n+1)�G0�Th

and Ks ' S(U (n)�U (1))� G0 � Th.

Consider the slice representation�s : Ks ' S(U (n) � U (1))� G0 � Th �s�! O(2n).
Because the subgroup ofKs which is isomorphic toSU(n) acts transitively onKs=K �=
S2n�1, we can assume that�sjSU(n) is a natural inclusion up to equivalence. Hence

we can assume�s : Ks ' S(U (n) � U (1))� G0 � Th �s�! U (n) � O(2n) and �s(feg �
G0 � Th) is in the center ofU (n). This implies G0 � Ker(�s) � K . HenceG0 = feg
from Proposition 4.1.1. Then we see�sjS(U (n)�U (1))�feg = �xs for some integerxs where�xs : S(U (n)�U (1))! U (n) is

�xs

�
A 0
0 det(A�1)

�
= (det(A�1))xs A for A 2 U (n).

Moreover we getK ' (SU(n � 1) � feg) Æ Th+1 by Ks=K �= S2n�1. From Proposi-
tion 4.1.1, we seeh � 1.

Assumeh = 0. Then we can putG = SU(n + 1), K1 = S(U (n) � U (1)), K2 '
S(U (n) � U (1)) and K ' (SU(n � 1)� feg) Æ T1. Because of the slice representation

�1 : K1 = S(U (n)�U (1))
�x1! U (n) � O(2n) and ��1

x1
(U (n� 1)) = K , we have

K =

8<
:
0
� a�x1 0 0

0 X 0
0 0 a

1
A 2 S(U (n)�U (1)) X 2 U (n� 1), detX = ax1�1

9=
;.

Since we haveK � K2 ' S(U (n)�U (1)), we easily see the following two cases occur;
1. K2 = K1 and x1 = x2 or
2. K2 is as follows andx1 = x2 = �1;

K2 =

��
det(A�1) 0

0 A

�
A 2 U (n)

�
= S(U (1)�U (n)).
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In each case aboveN(K ; G)=K is connected. Hence the attaching map fromX1

to X2 is unique up to equivalence by Lemma 4.3.1 (1.). Therefore (SU(n + 1), M) is
unique in each case above.

If K2 = K1, we construct aG-manifold asM = SU(n + 1)�S(U (n)�U (1)) S2n where
S(U (n) � U (1)) acts onS2n by the representation�x : S(U (n) � U (1)) ! U (n) (x =
x1 = x2) (U (n) canonically acts onS2n � Cn � R). However this manifoldSU(n +
1)�S(U (n)�U (1)) S2n is a S2n bundle overPn(C). BecauseHodd(S2n;Q) = Hodd(Pn(C);Q) =
0, we havecn+1 = 0 for all c 2 H2(M; Q). Hence the cohomology ring ofM is not iso-
morphic to H�(Q2n; Q). So this case (K2 = K1) does not occur.

Consequently this case isK2 = S(U (1)�U (n)). Such a pair (G, M) will be con-
structed in Section 12.2.

Next we puth = 1. Then we can putG = SU(n+1)�T1, K1 = S(U (n)�U (1))�T1,
K2 ' S(U (n) � U (1)) � T1 and K ' (SU(n � 1) � feg) Æ T2. In this case the slice
representation is

�s : Ks ' S(U (n)�U (1))� T1 �s�! U (n) � O(2n).

Here the representation�s (s = 1, 2) is defined as follows;

�s

��
A 0
0 det(A�1)

�
, z

�
= det(A�1)xszms A

where ms 2 Z, A 2 U (n) and z 2 T1. From Proposition 4.1.1, we seems 6= 0 for
s = 1, 2.

Since��1
1 (U (n� 1)) = K , we have

K =

8<
:
0
�
0
� a�x1z�m1 0 0

0 X 0
0 0 a

1
A, z

1
A z 2 T1, X 2 U (n� 1), a1�x1z�m1 detX = 1

9=
;.

Now we seeK � K2 ' S(U (n)�U (1))�T1. Hence we easily have the following two
cases

K2 = K1 and x1 = x2, m1 = m2

or

K2 = S(U (1)�U (n))� T1 and x1 = x2 = �1, m1 = �m2.

Moreover we see ifK2 = S(U (1)� U (n))� T1 and x1 = x2 = �1 thenm1 = �m2 = 0.
This contradictsm1, m2 6= 0. Hence there are following two cases in this case;
1. K2 = K1 and x1 = x2, m1 = m2 6= 0 or
2. K2 = S(U (1)�U (n))� T1 and x1 = x2 = 1, m1 = m2 6= 0.
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In all cases aboveN(K ; G)=K is connected. Therefore the pair (SU(n + 1)� T1, M)
is unique in those cases, because of Lemma 4.3.1 (1.).

If K2 = K1, then we construct such manifoldM as (SU(n+1)�T1)�S(U (n)�U (1))�T1

S2n where S(U (n)�U (1))� T1 acts S2n by the representation�1 = �2. HoweverM is
a S2n bundle overPn(C). This is not a rational cohomology complex quadric by the
same argument of the caseh = 0.

ThereforeK2 = S(U (1)�U (n))� T1, x1 = x2 = 1 andm = m1 = m2 6= 0. Then we
have fIn+1g � Zm � K \ (fIn+1g � T1) � fIn+1g � T1. Hence (SU(n + 1)� T1, M) is
essentially isomorphism for allm 2 Z�f0g. Moreover we can assume the pair (G, M)
as (U (n + 1), M) up to essentially isomorphism becauseSU(n + 1)�Zn+1 T1 ' U (n + 1)
and Zn+1 = f(z In+1, z�1) j zn+1 = 1g � K \C(SU(n + 1)� T1), whereC(SU(n + 1)� T1)
means the center ofSU(n+1)�T1 (remark whenm1 = m2 = 2, thenZn+1 � K ). Hence
we get the unique pair (U (n + 1), M) in this case and such pair will be constructed in
Section 12.2.

9. P(G=K1; t) = (1 + tk2�1)a(n), k2 is odd: Preliminary

AssumeG=K1, G=K2 are orientable,P(G=K1; t) = (1 + tk2�1)a(n) and k2 is odd.
The aim of this section is to prove Proposition 9.0.1. PutG = G0�G00 and K1 = K o

1 =
K 0

1 � G00 (by Lemma 3.2.1). First we prove the following technical lemma.

Lemma 9.0.1. Let V � G be a subgroup such that

�� : H�(VnG=Ks) ! H�(VnG=K ) is injective,

p� : H�(VnG=Kr ) ! H�(G=Kr ) is injective,

q : VnG=Kr
�= VnG=K

where s+ r = 3, � : VnG=K ! VnG=Ks and p: G=Kr ! VnG=Kr are projections,
q : VnG=Kr ! VnG=K is the inverse of the natural projection VnG=K ! VnG=Kr .
Then f� : H�(VnM) ! H�(M) is injective where f: M ! VnM is a projection and
we have H2(VnG=Ks; Q) = 0.

Proof. Consider a diagram

G=Ks !is

!
M

!f
G=Kr

!i r

!p

VnG=Ks

!=

!js
VnM VnG=Kr

!q �=
!jr

VnG=Ks VnG=K! �
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where is, i r , js, jr are natural inclusions. NowVnM is a mapping cylinder of

VnG=Kr
�= VnG=K

��! VnG=Ks.

Hence js is a homotopy equivalent map. So the induced mapj �s : H�(VnG=Ks) !
H�(VnM) is an isomorphic map and the above diagram induces the following com-
mutative diagram;

H�(G=Ks) H�(M)! i �s !i �r H�(G=Kr )

H�(VnG=Ks)

!
H�(VnM)!j �s !j �r

!
f �

H�(VnG=Kr )

!
p�

H�(VnG=Ks)

!
=

!��
H�(VnG=K ).

!
q� '

Therefore we havej �r is an injection, because of the assumptions (�� is injective,
q : VnG=Kr

�= VnG=K ) and q� Æ �� Æ j �s = j �r . Hence f � is an injection because
i �r Æ f � = p� Æ j �r is an injective map by the assumption (p� is injective).

Assume H2(VnG=Ks; Q) 6= 0. Then we can take some non-zero elementc0 2
H2(VnG=Ks) such that f �Æ( j �s )�1(c0) = c 2 H2(M). Hencec2n = f f �Æ( j �s )�1(c0)g2n 6= 0
becauseH�(M) ' H�(Q2n) wheren � 2. Therefore 06= (c0)2n 2 H4n(VnG=Ks). This
contradicts dim(VnG=Ks) � dim(G=Ks) � dim(M)� 2 = 4n� 2.

Hence we can prove Proposition 9.0.1.

Proposition 9.0.1. K 0
1 acts transitively on K1=K .

Proof. If K 0
1 acts non-transitively onK1=K �= Sk1�1 then G00 acts transitively on

K1=K by Lemma 8.0.1. Hencep(K ) = K 0
1 = p(K1) by Lemma 8.0.2 wherep: G ! G0

is the natural projection. Putp(K2) = K 0
2. Then K 0

2=K 0
1 is connected, because the

induced mapp0: K2=K (�= Sk2�1) ! K 0
2=K 0

1 from p: G ! G0 is continuous. Hence we
seeK 0

2 is connected from the fibre bundleK 0
1 ! K 0

2 ! K 0
2=K 0

1 and the connectedness
of K 0

1. Now K 0
1 = p(K ) � p(K2) = K 0

2 � G0. Therefore rankK 0
1 = rankG0 = rankK 0

2.
We also haveK 0

2=K 0
1 and G0=K 0

2 are simply connected, because connected Lie groups
K 0

1, K 0
2 and G0 have same rank. So we get

P(G=K1; t) = (1 + tk2�1)a(n) = P(G0=K 0
1; t) = P(K 0

2=K 0
1; t)P(G0=K 0

2; t)(21)

by G=K1
�= G0=K 0

1, the fibrationK 0
2=K 0

1 ! G0=K 0
1 ! G0=K 0

2 and Hodd(K 0
2=K 0

1) = 0 =
Hodd(G0=K 0

2).
Since K2=K �= K o

2=K o is an even dimensional sphereSk2�1, we see rankK o
2 =

rankK o. So rank(K1 \ K o
2) = rankK o because ofK o � K1\ K o

2 . We also have (K1 \
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K o
2)=K o is connected, because of the homotopy exact sequence (� � � ! �1(K 0

2=K 0
1) !

�0((K1\K o
2)=K o)! �0(K o

2=K o) ! � � � ) for the fibration (K1\K o
2)=K o ! K o

2=K o p00�!
K 0

2=K 0
1 (where p00 is the induced map fromp : G ! G0) and the simply connected-

ness ofK 0
2=K 0

1. Now we haveHodd((K1\ K o
2)=K o) = Hodd(K 0

2=K 0
1) = 0. Therefore the

equation

P(K o
2=K o; t) = 1 + tk2�1 = P(K 0

2=K 0
1; t)P((K1 \ K o

2)=K o; t)(22)

holds by K o
2=K o �= Sk2�1 and the fibration (K1 \ K o

2)=K o ! K o
2=K o p00! K 0

2=K 0
1. From

the equation (22), we haveP(K 0
2=K 0

1; t) = 1 + tk2�1 or 1. So we seeH2(G0=K 0
2) =

H2(G00nG=K2) 6= 0 from the equation (21).
On the other hand we haveG00nG=K = G00nG=K1 = G=K1. Moreover we see�� : H�(G0=K 0

2) ! H�(G00nG=K ) = H�(G0=K 0
1) is injective by the fibrationK 0

2=K 0
1 !

G0=K 0
1

�! G0=K 0
2. So this case satisfies the conditions of Lemma 9.0.1 whereV =

G00, s = 2 and r = 1. However the factH2(G0=K 0
2) = H2(G00nG=K2) 6= 0 contradicts

Lemma 9.0.1. ThereforeK 0
1 acts transitively onK1=K .

From the next section we will study the case ofP(G=K1; t) = (1 +tk2�1)a(n), k2 is
odd. To classify such case, we will consider two cases whereG=K1 is decomposable
or not.

10. P(G=K1; t) = (1 + tk2�1)a(n), k2 is odd: G=K1 is decomposable

AssumeG=K1, G=K2 are orientable,P(G=K1; t) = (1 + tk2�1)a(n), k2 is odd and
G=K1 is decomposable. The goal of this section is to prove there isa unique (G, M)
up to essential isomorphism in this case. In this case we haveK1 = K o

1 becausek2 > 2
and Lemma 3.2.1. BecauseG=K1 is decomposable, we can putG = H1 � H2 � G00
and K1 = H(1) � H(2) � G00 where H1=H(1) � Sk2�1, H2=H(2) � Pn(C). Then G=K1 =
H1=H(1) � H2=H(2). So by Propositions 4.2.1 and 4.2.2,

(H1, H(1)) = (Spin(k2), Spin(k2 � 1)) or

(G2, SU(3)) (k2 = 7).

(H2, H(2)) = (SU(n + 1), S(U (n)�U (1))) or

(Spin(n + 2), Spin(n) Æ T1) (n is odd) or�
Sp

�
n + 1

2

�
, Sp

�
n� 1

2

��U (1)

�
(n is odd) or

(G2, U (2)) (n = 5).
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10.1. Candidates for (G, K1). The goal of this section is to provek1 = 2n� 2,
k2 = 3 and the pair (G, K1) is one of the following

(G, K1) =

�
Sp(1)� Sp

�
n + 1

2

�� G00, T1 � Sp

�
n� 1

2

��U (1)� G00�

or n = 9,

(G, K1) = (Sp(1)� Spin(11)� G00, T1 � Spin(9) Æ T1 � G00)
or n = 2,

(G, K1) = (Sp(1)� SU(3)� G00, T1 � S(U (2)�U (1))).

First we prove the following proposition.

Proposition 10.1.1. H(2) acts transitively on K1=K .

To show Proposition 10.1.1, we prepare some notations.
Let pt : G ! Ht , p0t : G ! Ht �G00 be the natural projection, and letht : Ht ! G,

h0t : Ht � G00 ! G be the natural inclusion. Put

Lst = pt (Ks), L t = pt (K ), L 0st = p0t (Ks), L 0t = p0t (K ),

Nst = h�1
t (Ks), Nt = h�1

t (K ), N 0
st = h0�1

t (Ks), N 0
t = h0�1

t (K ).

Then Nst ⊳ Lst, Nt ⊳ L t , N 0
st ⊳ L 0st and N 0

t ⊳ L 0t where A ⊳ B means a groupA is a
normal subgroup ofB. In particularL1t = N1t = H(t) and L 01t = N 0

1t = H(t) �G00 by the
equality K1 = H(1) � H(2) � G00.

Let us prove Proposition 10.1.1.

Proof of Proposition 10.1.1. IfH(2) does not act transitively onK1=K �= Sk1�1,
then H(1) acts transitively onK1=K by Lemma 8.0.1 and Proposition 9.0.1. Hence
L2 = H(2) = L12 by Lemma 8.0.2.

Put V = H1 � G00. Now L22=H(2) (�= VnK2=K ) is connected because the induced
map p02 : K2=K ! VnK2=K �= L22=H(2) is continuous. HenceL22 is connected by the
fibration H(2) ! L22 ! L22=H(2). Since L2 = H(2) � L22 � H2, we have rankH(2) =
rankL22 = rankH2 and Hodd(L22=H(2)) = Hodd(H2=L22) = 0. BecauseL22 is connected
and rankL22 = rankH2, we seeH2=L22

�= VnG=K2 is simply connected. Hence the map

�� : H�(H2=L22) (' H�(VnG=K2)) ! H�(H2=H(2)) (' H�(VnG=K ))

is injective from the fibrationL22=H(2) ! H2=H(2)
�! H2=L22. Moreover we have

G=K1 = H1=H(1) � H2=H(2) and VnG=K1 = H2=H(2)
�= VnG=K where the last diffeo-

morphism defines by the natural projection. So we havep�: H�(VnG=K1)! H�(G=K1)
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is injective wherep : G=K1 ! VnG=K1 is a natural projection. Thereforef � is an
injective homomorphism from Lemma 9.0.1 (the cases = 2, r = 1, V = H1 � G0),
where f � : H�(VnM) ! H�(M) is an induced homomorphism from the natural pro-
jection f : M ! VnM.

Now we seeVnM is a mapping cylinder ofVnG=K ! VnG=K2 ' H2=L22.

Hence we can considerH�(VnM;Q)�H�(Pn(C);Q) by H�(VnM)'H�(H2=L22)
���!

H�(H2=H(2)) ' H�(Pn(C)). So we can take (06=) a 2 H2m(VnM) � H�(Pn(C)) for
some (06=) m � n. If m 6= n, then we can put f �(a) = �cm for 0< m < n and
(0 6=) � 2 Q where c is a generator inH2(M). However there is anl such that
n< lm< 2n and f �(al ) = �l clm 6= 0 in H2lm(M) because ofH�(M)' H�(Q2n). This
contradicts dimH2=L22�2n. Hencem=n. Then we have (H�(Pn(C))�) H�(VnM)'
H�(H2=L22) ' H�(S2n) and dimH2=L22 = 2n. On the other hand, by the fibration
L22=H(2) ! H2=H(2) (� Pn(C)) ! H2=L22, we also haveH(2) = L22. So H2=H(2)

�=
H2=L22 � S2n. This contradicts H2=H(2) � Pn(C). Consequently H2m(VnM) '
H2m(H2=L22) = 0 for all m 6= 0, so we haveL22 = H2. Therefore dimL22=L2 (=
H2=H(2)) =2n by L2 = H(2). From the surjectionK2=K �= Sk2�1!VnK2=K �= L22=L2,
we seek2 � 1�2n. This contradictsk1 + k2 = 2n + 1 and k1�2.

From Proposition 10.1.1,H(2) acts transitively onK1=K . Then H(2)=N2
�= K1=K �=

Sk1�1. Sincefptg = H(2)nK1=K �= (H(1) � G00)=L 01, we have the following lemma.

Lemma 10.1.1. L 01 = H(1) � G00 and L1 = H(1) = L11.

Moreover we have the following lemma.

Lemma 10.1.2. dim L 01=N 0
1 � 3.

Proof. Consider the two homomorphismsK
q01=p01jK����! L 01 and K

q2=p2jK����! L2. Then

we seeq01 and q2 are surjective, Kerq01 = (feg � H2) \ K = N2 = h�1
2 (K ) and Kerq2 =

(feg � H1 � G00) \ K = N 0
1 = (h01)�1(K ) by the definitions. So we have

dim K � dim L 01 = dim N2, dim K � dim L2 = dim N 0
1

Hence dimL 01=N 0
1 = dim L2=N2. Since L2=N2 (N2 ⊳ L2 � L12 = H(2)) acts freely on

H(2)=N2
�= Sk1�1, we have dimL2=N2 � 3 by [4] 6.2. Theorem in Chapter IV.

Let us prove the following lemma.

Lemma 10.1.3. L21 = H1.

Proof. First we haveL21 is connected becauseK2=K is connected,H(1) = L1

(Lemma 10.1.1) is connected and the mapp̄1 : K2=K ! L21=L1 = L21=H(1) induced
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by p1 : G ! H1 is continuous. Consider the fibration

L21=H(1) ! H1=H(1) ! H1=L21.

Then we have rankH(1) = rankL21 = rankH1 by H(1) = L1 � L21 � H1. So we have
H�(H1=H(1)) ' H�(Sk2�1) ' H�(H1=L21)
 H�(L21=H(1)). Therefore we seeL21 = H(1)

or H1.
If we put L21 = H(1) = L1, then (H2�G00)nM �= [0, 1]�H1=H(1) by Lemma 10.1.1.

Consider the following commutative diagram

H1=H(1) � H2=H(2)
�= G=K1 !i1

! q1

M

! f

H1=H(1)
�= (H2 � G00)nG=K1 !j1

(H2 � G00)nM.

Here j1 is a homotopy equivalence. Hence the induced homomorphismq�1 Æ j �1 is injec-
tive. Therefore f � : H�((H2�G00)nM) ' H�(Sk2�1) ! H�(M) ' H�(Q2n) is injective.
Hencek2 � 2n+1 by the ring structure ofH�(Q2n). But this contradictsk1+k2 = 2n+1
and k1 � 2. Hence we seeL21 = H1.

Hence we can prove the following lemma.

Lemma 10.1.4. N1 6= H(1).

Proof. SupposeN1 = H(1). Then H(1) = N1 � N21 ⊳ L21 = H1 by Lemma 10.1.3.
Since H1 is a simple Lie group, we seeN21 = H1. Hence we can putK2 = H1 � X
and K = H(1)� X where X < H2�G00, because ofN1 = H(1) = L1 (by Lemma 10.1.1).
Therefore H1nM is a mapping cylinder ofH1nG=K = (H2 � G00)=X ! H1nG=K1 =
H2=H(2). Because of the following commutative diagram

H1=H(1) � H2=H(2)
�= G=K1 !

! q2

M

! p

H2=H(2)
�= H1nG=K1 !i H1nM

where i is a homotopy equivalent map, we have the following induced diagram

H�(H1nM) !i �
! p�

H�(H2=H(2))

! q�2
H�(M) !H�(H1=H(1))
 H�(H2=H(2)).
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Hence p� : H�(H1nM) ! H�(M) is an injection by the injectivity ofq�2 Æ i �. This
contradictsH�(M) ' H�(Q2n) and H�(H1nM) ' H�(H2=H(2)) ' H�(Pn(C)).

Next we show the following proposition.

Proposition 10.1.2. k1 = 2n� 2, k2 = 3 and (H1, H(1)) = (Sp(1), T1).

Proof. Let us recall,

(H1, H(1)) = (Spin(k2), Spin(k2 � 1))) or (G2, SU(3)): k2 = 7.

If the odd numberk2 > 6, then H(1) is a simple Lie group. We haveN 0
1 is a nor-

mal subgroup ofL 01 = H(1) � G00 and dimL 01=N 0
1 � 3 by Lemma 10.1.2. HenceN 0

1 =
H(1)� X where X is a normal subgroup ofG00. ThereforeN1 = H(1). This contradicts
Lemma 10.1.4. Hencek2 = 3 or 5.

If k2 = 5, then (H1, H(1)) = (Spin(5), Spin(4)). Because of dimL 01=N 0
1 � 3 (Lem-

ma 10.1.2) andL 01 = Spin(4)�G00 (Lemma 10.1.1), we have dimN1 6= 0. So dimN21�
dim N1 > 0. Now H1 is a simple Lie group andN21 ⊳ L21 = H1 from Lemma 10.1.3.
Hence N21 = H1. This implies K2 = H1 � Y where Y is a subgroup ofH2 � G00.
BecauseK1 = H(1)� H(2)�G00, we seeK � K1\ K2 = H(1)� (Y \ (H(2)�G00)) � K2.
Consider the fibration (K1 \ K2)=K ! K2=K ! K2=(K1 \ K2) that is

(H(1) � (Y \ (H(2) � G00)))=K ! K2=K ! K2=(H(1) � (Y \ (H(2) � G00))).
BecauseK2=K ' Sk2�1 ' H1=H(1), K2 = H1 � Y and H1 acts onK2=K non-trivially
(because of the relationK � K1\H1 = H(1)), we haveY\(H(2)�G00) = Y and K = K1\
K2 = H(1) � Y. HenceN1 = H(1). This also contradicts Lemma 10.1.4. Consequently
k2 = 3. Hencek1 = 2n� 2 by k1 + k2 = 2n + 1, and (H1, H(1)) = (Spin(3), Spin(2)). In
particular we can consider (H1, H(1)) = (Sp(1), T1) by (Spin(3), Spin(2))� (Sp(1), T1).

So H(2) acts transitively onK1=K ' S2n�3 from Proposition 10.1.1 and 10.1.2.
Hence by Proposition 4.2.2 and [6] Section I, we have the following three cases where
k1 = 2n� 2, k2 = 3,

G = Sp(1)� Sp

�
n + 1

2

�� G00,
K1 = T1 � Sp

�
n� 1

2

��U (1)� G00,
and n = 9,

G = Sp(1)� Spin(11)� G00,
K1 = T1 � Spin(9) Æ T1 � G00,

and n = 2,

G = Sp(1)� SU(3)� G00,
K1 = T1 � S(U (2)�U (1))� G00.
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So we see the above three cases occur in this case.
In the above two casesK2 = K o

2 becausen is an odd number and Lemma 3.2.1.
HenceK = K o becauseK2=K �= S2 is simply connected.

In next three sections we will discuss slice representations and attaching maps in
each case.

10.2. G = Sp(1)� Sp((n + 1)=2)� G00. If G = Sp(1)� Sp((n + 1)=2)� G00, then
K1 = T1 � Sp((n � 1)=2) � U (1) � G00. Now Sp((n � 1)=2) � U (1) acts transitively
on K1=K �= S2n�3 because of Proposition 10.1.1. So we can assume the restricted
slice representation�1jSp((n�1)=2) is a natural inclusion toSO(2n � 2) for n � 3, be-
causeSp((n� 1)=2) acts transitively onK1=K �= S2n�3 through�1jSp((n�1)=2). Then we
have �1(T1 � feg � U (1) � G00) � C(�1(Sp((n � 1)=2)); SO(2n � 2)) ' Sp(1) where
C(E; F) = fg 2 F j gk = kg for all k 2 Eg. Therefore we have

G00 = Sp(1), T1, or feg
by Proposition 4.1.1 and we can assume the slice representation as

�1 : K1
'�! Sp(1)� Sp

�
n� 1

2

� ��! SO(2n� 2)� O(2n� 2)

such that'jSp((n�1)=2) : Sp((n � 1)=2) ! feg � Sp((n � 1)=2) is isomorphic,'(T1 �
U (1)� G00) � Sp(1)� feg, where� is a canonical representation induced bySp(1)�
Sp((n� 1)=2)-action onH(n�1)=2 (' R2n�2) for n � 3, that is�jfeg�Sp((n�1)=2) is the nat-
ural inclusion.

Moreover we have the following lemma.

Lemma 10.2.1. G00 = feg or T1 and we can assume the slice representation as

�1 : K1
'�! U (1)� Sp

�
n� 1

2

� ��! SO(2n� 2)� O(2n� 2)

where'jSp((n�1)=2) : Sp((n � 1)=2) ! feg � Sp((n � 1)=2) is isomorphic, '(T1 � feg �
U (1)� G00) � U (1)� feg.

Proof. SupposeG00 = Sp(1). Then the restricted representation'jT1�U (1)�G00 is
r : T1 � feg � U (1) � G00 ! Sp(1). BecauseSp(1) is a simple Lie group,r jSp(1) is
an isomorphism or a trivial map. Ifr jSp(1) is an isomorphism, then we have Ker(r ) =
T1�feg�U (1)�feg becauseC(r (Sp(1));Sp(1)) = f1,�1g. Since Ker(r ) � K , we have
H(1) = T1 � K . This contradicts the factH(1) = T1 6� K from Lemma 10.1.4. So we
seer jSp(1) is trivial andSp(1)� Ker(r ) � K . But this contradicts Proposition 4.1.1.
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AssumeG00 = T1. Then we can define the representation': K1 = T1�Sp((n�1)=2)�
U (1)� T1 ! U (1)� Sp((n� 1)=2) as follows;

'�x,

�
A 0
0 y

�
, z

� 7! (xpyqzr , A)

where p, q, r are in Z. Now we can assume theU (1) � Sp((n � 1)=2)-action � on
S2n�3 � H(n�1)=2 as �((t , X), h) = Xht̄ (n � 3). Hence we have

K =

8<
:
0
�x,

0
� xpyqzr 0 0

0 B 0
0 0 y

1
A, z

1
A B 2 Sp

�
n� 3

2

�
, x, y, z 2 T1

9=
;

where p 6= 0 by N1 6= T1 (by Lemma 10.1.4) because of��1
1 (SO(2n � 3)) = (� Æ')�1(SO(2n � 3)) = K . Moreover we can assumep > 0 up to equivalence for the

slice representation�1 : K1 ! O(2n� 2).
Since K2=K �= S2, p > 0 and L21 = Sp(1) (by Lemma 10.1.3), we have

K2 =

8<
:
0
�h,

0
� h 0 0

0 B 0
0 0 y

1
A, z

1
A B 2 Sp

�
n� 3

2

�
, h 2 Sp(1), y, z 2 T1

9=
;,

that isq = r = 0. Therefore we haveG00 = T1 � Ker(�2) � K by the slice representation�2 : K2 ! SO(3). This contradicts Proposition 4.1.1. Hence we haveG00 = feg.
Moreover, from the same argument, we can putp = 1, q = 0 and we have

K1 = T1 � Sp

�
n� 1

2

��U (1),

K2 =

8<
:
0
�h,

0
� h 0 0

0 B 0
0 0 y

1
A
1
A B 2 Sp

�
n� 3

2

�
, h 2 Sp(1), y 2 T1

9=
;,

K =

8<
:
0
�x,

0
� x 0 0

0 B 0
0 0 y

1
A
1
A B 2 Sp

�
n� 3

2

�
, x, y 2 T1

9=
;

and

'�x,

�
A 0
0 y

�� 7! (x, A).

We also see the slice representation�2 : K2 ! SO(3) is unique up to equivalence.
Next we see

N(K ; G)=K ' (N(1; Sp(1)� Sp(1))=1)� (N(U (1); Sp(1))=U (1)),
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where1' T1 is a diagonal subgroup inSp(1)�Sp(1). If we denote bya the generator
of N(1; Sp(1)�Sp(1))=(N(1; Sp(1)�Sp(1)))o ' N(1; Sp(1)�Sp(1))=(T1� T1) ' Z2,
then xa = ax̄ for all x 2 T1. Hence we can consider the following diagram

G�K2 K2=K !f

! 1�R�
G=K

! R�
G�K2 K2=K !f

G=K .

Here f ([g, kK]) = gkK and

� =

0
�a,

0
� a 0 0

0 I 0
0 0 1

1
A
1
A 2 N(K ; K2).

We have gkK� = gk�K for all g 2 G and k 2 K2. So this diagram is commuta-
tive. In this caseR� is the antipodal involution onK2=K �= S2. Hence R� is ex-
tendable to aK2-equivariant diffeomorphism onD3. Hence M(R�) �= M(id) from
Lemma 4.3.1 (3.). SinceN(U (1); Sp(1))=U (1) ' Z2, there are just two manifolds up
to essential isomorphism. Hence we get the following proposition.

Proposition 10.2.1. Let (G, M) be a G-manifold which has codimension one or-
bit G=K and two singular orbit G=K1 and G=K2 where G= Sp(1)� Sp((n + 1)=2),
K1 = T1 � Sp((n� 1)=2)�U (1),

K2 =

8<
:
0
�h,

0
� h 0 0

0 B 0
0 0 y

1
A
1
A B 2 Sp

�
n� 3

2

�
, h 2 Sp(1), y 2 T1

9=
;

and

K =

8<
:
0
�x,

0
� x 0 0

0 B 0
0 0 y

1
A
1
A B 2 Sp

�
n� 3

2

�
, x, y 2 T1

9=
;.

Then there are just two such(G, M) up to essential isomorphism which are M= Q2n

and M = (Sp(1)� Sp(k + 1))�Sp(1)�Sp(k)�U (1) S4k+2 where k= (n� 1)=2.

Proof. By the above argument, this case has just two types up to essential iso-
morphism. If M = Q2n, then this case will be realized in Section 12.3. IfM = (Sp(1)�
Sp(k + 1))�Sp(1)�Sp(k)�U (1) S4k+2 such thatk = (n � 1)=2 and S4k+2 � R3 � Hk has the
trivial U (1)-action, the canonicalSp(1)-action onR3 and the canonicalSp(1)� Sp(k)-
action onHk. Then this manifold has theSp(1)�Sp(k+1)-action. We can easily check
this manifold satisfies the assumption of this proposition.
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M =(Sp(1)�Sp(k+1))�Sp(1)�Sp(k)�U (1) S4k+2 is the fibre bundle overSp(k+1)=U (1)�
Sp(k)�= P2k+1(C) with the fibreS4k+2. We see easily checkHodd(P2k+1(C))= Hodd(S4k+2)=
0 and P2k+1(C) is simply connected. Hencep� : H�(P2k+1(C)) ! H�(M) is injective
wherep: M! P2k+1(C) is a projection. Hence the 2k+2 times cup product ofc2H2(M)
is vanishing inH4k+4(M). Hence this is not a rational cohomology complex quadric. So
this case is unique up to essential isomorphism and such (G, M) will be constructed in
Section 12.3.

10.3. G = Sp(1)� Spin(11)� G00. If G = Sp(1)� Spin(11)� G00, then we have

K1 = T1 � Spin(9) Æ T1 � G00
and G00 = feg or T1. Let �1 : K1 ! O(16) be the slice representation. Then the re-
stricted representation�1jSpin(9) is the spin representation toSO(16) and we can easily
show C(�1(Spin(9));SO(16)) is a finite group. So we have�1(T1�feg) = fI16g because
T1 � feg � C(Spin(9); K1), wheree 2 Spin(9) Æ T1 � G00 and I16 2 O(16) are identity
elements. Therefore we seeK � Ker(�1) � T1�feg. So N1 = h�1

1 (K ) = T1 = H(1), re-
call h1 denotes the natural inclusionH1 ! G. This contradicts Lemma 10.1.4. Hence
this case does not occur.

10.4. G = Sp(1)� SU(3)� G00. If G = Sp(1)� SU(3)� G00, then we have

K1 = T1 � S(U (2)�U (1))� G00
and G00 = feg or T1. Put the element inK1 by�

x,

�
y A 0
0 y�2

��
= (x, y A) for h = 0,

�
x,

�
y A 0
0 y�2

�
z

�
= (x, y A, z) for h = 1

where x, y 2 T1, A 2 SU(2) andz 2 T1 for h = 1. We can assume the slice represen-

tation �1 : K1
��! T1 ! O(2) by

�(x, y A) = xpy2q for h = 0, �(x, y A, z) = xpy2qzr for h = 1.

Because of Proposition 10.1.1, we haveq 6= 0. Especially we can assumeq > 0 up to
equivalence. Whenh = 1, we seer 6= 0 from Proposition 4.1.1.

Now K = Ker(�1). So we have

K = f(x, y A) j xpy2q = 1g (h = 0) or f(x, y A, z) j xpy2qzr = 1g (h = 1)

and K o ' SU(2) Æ Th+1. Moreover we seeK o
2 ' SU(2) Æ X Æ Th where (X, T1) �

(Sp(1),T1) because ofK o
2=K o �= S2. Hencep2(X)' SO(3), SU(2) or feg wherep2: G!

SU(3).
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If p2(X) 6= feg then we seeSU(2) Æ p2(X) = p2(K o
2) � p2(G) = SU(3). Hence we

have p2(X) ' (p2(X) Æ SU(2))=SU(2)� N(SU(2); SU(3))=SU(2)' T1. But this contra-
dicts dim(p2(X)) = 3.

Therefore p2(X) = feg. Consequently we haveX = Sp(1), K2 = X � K 0
2 and K =

T1 � K 0
2 = H(1) � K 0

2, where K 0
2 � SU(3)� G00. However N1 = T1 = H(1) contradicts

Lemma 10.1.4. Hence this case does not occur.

11. P(G=K1; t) = (1 + tk2�1)a(n), k2 is odd: G=K1 is indecomposable

AssumeG=K1, G=K2 are orientable,P(G=K1; t) = (1 + tk2�1)a(n), k2 is odd and
G=K1 is indecomposable. In this caseK1 = K o

1 by k2 > 2 and Lemma 3.2.1. Because
G=K1 is indecomposable, we can putG = G0 � G00 and K1 = K 0

1 � G00 where G0 is
a simple Lie group andG00 is a direct product of some simple Lie groups and a toral
group. The pair (G0, K 0

1) which satisfies

P(G=K1; t) = P(G0=K 0
1; t) = (1 + t2a)(1 + t2 + � � � + t2b)

where 2a = k2 � 1 and b = n is locally isomorphic to one of the pairs in Proposi-
tion 4.2.3.

In the beginning, we will find the candidates for (G0, K 0
1).

11.1. Candidates for (G0, K 0
1). The goal of this section is to prove the pair

(G0, K 0
1) is one of the following

(Spin(9), Spin(6) Æ T1) (k1 = 8, k2 = n = 7)

or

(SU(3), T2) (k1 = 2, k2 = 3, n = 2).

Now k1 � 2 andk1 + k2 = 2n + 1. So we can easily see the following three cases
in Proposition 4.2.3 do not satisfyk1 = 2(b� a) � 2.

(SO(2n + 2), SO(2n)� SO(2)), a = b = n,

(SO(7), U (3)), a = b = 3,

(Sp(3), U (3)), a = b = 3.

Moreover we see the following six cases in Proposition 4.2.3 contradict Proposi-
tion 9.0.1 by the paper [6] Section I.

(SO(k2 + 2), SO(k2 � 1)� SO(2)), a =
k2 � 1

2
, b = k2, (k2 6= 7)

(SO(10), U (5)), a = 3, b = 7,
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(Sp(3), Sp(1)� Sp(1)�U (1)), a = 2, b = 5,

(G2, T2), a = 1, b = 5,

(F4, Spin(7) Æ T1), a = 4, b = 11,

(F4, Sp(3) Æ T1), a = 4, b = 11.

Therefore in this case we have that

(G0, K 0
1) = (Spin(9), Spin(6) Æ T1) � (SO(9), U (4)) (k1 = 8, k2 = n = 7) or

(SU(3), T2) (k1 = 2, k2 = 3, n = 2) or

(SU(5), S(U (3)�U (2))) (k1 = 4, k2 = 5, n = 4) or

(Sp(4), U (4)) (k1 = 8, k2 = n = 7)

by Proposition 4.2.3.
If (G0, K 0

1) = (SU(5), S(U (3) � U (2))), then k1 = 4. HenceK1=K �= S3. Since
U (2) (� K 0

1) acts transitively onK1=K by Proposition 9.0.1, we can assume the slice
representation as�1 : K1 ! U (2) ! SO(4). Therefore we seeG00 = Th (h � 1) and
K ' S(U (3)� feg) Æ Th+1 by Proposition 4.1.1 and Proposition 9.0.1. In particular we
see K2 � K � SU(3). SinceK2=K �= S4, (K2, K ) = (A Æ N, B Æ N) where (A, B) �
(SO(5), SO(4)) by Proposition 4.2.1. SoK ' SU(3)� Th+1 containsSO(4) � Sp(1)�
Sp(1) as a normal subgroup. But this is a contradiction. Hence this case does not
occur.

If (G0, K 0
1) = (Sp(4), U (4)), thenk1 = 8 and K1=K �= S7. From Proposition 9.0.1,

we can assume the slice representation as�1 : K1 ! U (4) ! SO(8). So G00 = feg or
T1 by Proposition 4.1.1. SinceK2=K �= S6 and K1 = U (4) or U (4) � T1, we have
(K2, K ) � (G2ÆT1, SU(3)ÆT1) or (G2ÆT2, SU(3)ÆT2) by Proposition 4.2.1. Therefore
we getSp(4)� G2. However the following proposition holds.

Proposition 11.1.1. Sp(4) 6� G2.

Proof. AssumeSp(4)� G2. Let V be theSp(4)-C irreducible 8-dimensional rep-
resentation space (complex dimensional). Then we can consider Sp(4) acts effectively
on V by the natural representation� : Sp(4) ! U (8). We see the restricted represen-
tation to G2 �jG2 is not trivial. As is well known the least dimension of non-trivial
complex representation ofG2 is 7, and there is no 8-dimensional irreducible represen-
tation of G2 (by Section 5 in [20]; the representation ring ofG2 is Z[�1, �2] where
dim �1 = 7, dim�2 = 21). SinceV is an 8-dimensional space, there is an irreducible
decompositionV = V7�W whereV7 is a complex seven dimensionalG2-space which
has a representation�jG2 and W is a complex one dimensional space which has triv-
ial G2-action. ThenV has the structure mapJ : V ! V such that J is an Sp(4)-
map, J2(v) = �v and J(zv) = z̄ J(v) for z 2 C and v 2 V (see [1] 3.2). Moreover
J(w) 2 W for w 2 W becauseJ is a G2 (� Sp(4)) map. HoweverW is a complex
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one dimensional space, so this contradictsW does not have such map. Therefore we
seeSp(4) 6� G2.

Hence the following two cases remain.

11.2. (G0,K 0
1) = (Spin(9),Spin(6)ÆT1). If (G0, K 0

1) = (Spin(9),Spin(6)ÆT1), then
k1 = 8. So K1=K �= S7, henceG00 = Th (h � 1) from Proposition 4.1.1 and Proposi-
tion 9.0.1.

Assumeh = 1. SinceK2=K �= S6, we see (K2, K ) = (G2ÆT2,SU(3)ÆT2). Consider
the slice representation�2: G2ÆT2 ! SO(7). BecauseK2 acts transitively onK2=K �=
S6, the restricted representation�2jG2 is a natural inclusion. SoC(�2(G2); SO(7)) =feg where C(E; F) = fg 2 F j gk = kg for all k 2 Eg. ThereforeG00 � Ker(�2) =
T2 � K . Now G00 = T1 is a normal subgroup ofG. This contradicts Proposition 4.1.1.
Henceh = 0.

We getG00 = feg and (G, K1) = (Spin(9),Spin(6)ÆT1). Sinceh = 0 andK2=K �= S6,
we see (K2, K ) = (G2 Æ T1, SU(3) Æ T1). Hence we can easily show that the slice
representation�2 : K2 ! SO(7) is unique up to equivalence (especially�2jT1 is trivial)
and the slice representation�1 : K1 ! SO(8) is decomposable as follows

K1 = Spin(6) Æ T1 '�! U (4)
c�! SO(8),

where c is a canonical inclusion and'(Spin(6)) = SU(4) ('jSpin(6) is isomorphism).
Then there are two slice representations�1 where are'jT1 is trivial or non-trivial.
If 'jT1 is non-trivial then we see'(T1) = 1 where 1 ' T1 is a diagonal scaler
matrix in U (4) because'(Spin(6)) = SU(4) and C(SU(4); U (4)) = 1. So we have��1

1 (SO(7)) = K = SU(3)ÆT1 � Spin(6)ÆT1 (' SU(4)ÆT1). Let V be theSpin(9)-R ir-
reducible 9-dimensional representation space. Then we canconsiderSpin(9) acts onV
by the natural representationp: Spin(9)! SO(9). So we see the restrictedSU(4)ÆT1-
representations1 = pjSU(4)ÆT1 is non-trivial ands1: SU(4)Æ T1 ! SO(8)� SO(9) is the
natural inclusion. Moreover from the restrictedSU(3) Æ T1-representations1jSU(3)ÆT1

we have an irreducible decompositionV = V6 � W3, where V6 ' C3 is a SU(3) Æ
T1-irreducible 6-dimensional space andW3 is a 3-dimensional space whoseSU(3) Æ
T1-action is trivial. On the other hand from the restrictedG2 Æ T1-representation
s2 = pjG2ÆT1, we have the decompositionV = X7 � Y2 where X7 is a G2-irreducible
7-dimensional space andY2 is a T1-irreducible 2-dimensional space. Hence from the
restrictedSU(3) Æ T1-representation, we have the decompositionV = X06 � R � Y2.
Since K � K1 \ K2 = SU(4) Æ T1 \ G2 Æ T1, we sees1jSU(3)ÆT1 = s2jSU(3)ÆT1. However
two decompositionsV6�W3 and X06�R�Y2 are different decompositions because
the former one has trivialW3 and the other has trivialR. Hence�1jT1 is trivial.
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Moreover we see

N(K ; G)=N(K ; G)o

= N(SU(3) Æ T1; Spin(9))=N(SU(3) Æ T1; Spin(9))o

' N(SU(3)� SO(2); SO(9))=N(SU(3)� SO(2); SO(9))o

' Z2 � Z2.

Here we can putZ2 � Z2 = fI , �, �, ��g where

p(�) =

0
BB�

I6 0 0 0
0 0 1 0
0 1 0 0
0 0 0 �1

1
CCA, p(�) =

0
BB�

0 I3 0 0
I3 0 0 0
0 0 I2 0
0 0 0 �1

1
CCA

for the natural projectionp: Spin(9)! SO(9). Then� satisfies�[ A, t ] = [ A, t�1]� for
an element [A, t ] in K1 = Spin(6) Æ T1 (A 2 Spin(6) and t 2 T1). Hence the diffeo-
morphism

R� � id : G�K1 K1=K ! G�K1 K1=K

defined by R� � id([g, [A, 1]K ]) = [g�, [A, 1]K ] is well-defined (remark [A, t ]K =
[ A, 1]K by the relationT1 � K � K1 where 12 T1 is the identity element). Now
the following diagram is commutative;

G�K1 K1=K !f

! R��id

G=K

! R�
G�K1 K1=K !f

G=K

where f (g, kK) = gkK and R� : G=K ! G=K is defined byR�(gK) = g�K . There-
fore R� : (�(G �K1 D8) =)G=K ! G=K is extendable toR̃� : G �K1 D8 ! G �K1 D8

becauseid: K1=K �= S7 ! S7 �= K1=K is extendable toid: D8 ! D8. So we see two
manifolds constructed by attaching mapsI and � are equivariantly diffeomorphic by
Lemma 4.3.1. We also have two manifolds constructed by attaching maps� and ��
are equivariantly diffeomorphic, because�� � � = � and the aboveR� is extendable to
R̃�. Hence in this case there are just twoG-manifolds M up to essential isomorphism.
Hence the following proposition holds.

Proposition 11.2.1. Let (Spin(9),M) be a Spin(9)-manifold which has codimension
one orbits Spin(9)=SU(3)ÆT1 and two singular orbits Spin(9)=K1 and Spin(9)=K2 where
K1 = Spin(6) Æ T1 and K2 = G2 Æ T1. Then there are just two such(Spin(9), M) up to
essential isomorphism, that is, M = Q14 and M = Spin(9)�Spin(7)ÆT1 S14.



78 S. KUROKI

Proof. From the above argument this case has just two such (Spin(9), M) up to
essential isomorphism. IfM = Q14, then we will be constructed in Section 12.4. Put
M = Spin(9)�Spin(7)ÆT1 S14 such thatT1 acts S14 � R8 � R7 trivially and Spin(7) acts
canonically onR7 and acts onR8 through the spin representationSpin(7) ! SO(8).
Then this manifold has a canonicalSpin(9) action and satisfies the assumption of this
case.

But M = Spin(9) �Spin(7)ÆT1 S14 is the fibre bundle overSpin(9)=Spin(7) Æ T1 �=
Q7 (� P14(C)) with the fibre S14. Hence this is not a rational cohomology complex
quadric. So this case is unique up to essential isomorphism and such (G, M) will be
constructed in Section 12.4.

11.3. (G0,K 0
1) = (SU(3),T2). If (G0, K 0

1) = (SU(3), T2), thenk1 = 2. HenceG00 =
Th and h � 1. From K2=K �= S2 and Proposition 4.2.1, we haveK o

2 = A Æ N and
K o = A0 Æ N such thatA, N are connected normal subgroups ofK o

2 and (A, A0) �
(SU(2), T1).

If h = 0 then we haveN = feg and K o ' T1 becauseK1=K o �= S1. Therefore we
have K o

2 ' SU(2) or SO(3) by (K o
2 , K o) = (A, A0) � (SU(2), T1).

Assume A = SO(3). Because the representation ofSO(3) to C3 is unique up to
conjugation, we can considerSO(3) (= K o

2 � SU(3)) by the canonical subgroup of
SU(3). Then N(SO(3); SU(3)) = Z3 � SO(3) whereZ3 is the center ofSU(3). Hence
K2 = SO(3) or Z3 � SO(3). Moreover we can easily show the slice representation�2 : K2 = (Z3�)SO(3)! SO(3) is canonical where�2(Z3) = fI3g. So we have

K =

��
1 0
0 X

�
X 2 SO(2)

�
= SO(2) or

�� � 0
0 �X

� � 2 Z3, X 2 SO(2)

�
= Z3 � SO(2).

Since K1 \ K2 � K , we can putK1 as follows;

K1 =

��
t�2 0
0 t X

�
= (t , X) t 2 T1, X 2 SO(2)

�
= T1 Æ SO(2).

So we have the slice representation�1 : K1 ! SO(2) � O(2). Since Ker�1 = K and
we can identify�1 up to conjugate inO(2), we haveK2 = SO(3) or K2 = Z3�SO(3).
Let us construct a manifold. BecauseN(K ; SU(3))=N(K ; SU(3))o = Z2 and a gener-
ator of Z2 can be taken fromK2, two manifolds constructed by two attaching maps
in Z2 are diffeomorphic by the similar argument of Section 10.2. Hence (G, M) with
codimension one orbitsG=K and two singular orbitsG=K1, G=K2 is unique for each
K2 = Z3 � SO(3) and K2 = SO(3). So the following proposition holds.
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Proposition 11.3.1. Let (SU(3), M) be a SU(3)-manifold which has codimension
one orbits SU(3)=K and two singular orbits G=K1 = SU(3)=(T1ÆSO(2)) and SU(3)=K2.

If (K2, K ) = (Z3� SO(3), Z3� SO(2)), then (SU(3), M) is essential isomorphic to
(SU(3),1nG3(R6)) where SU(3)�U (3) and the diagonal subgroup(S1 ') 1�U (3)�
SO(6) (1 is the center of U(3)) are commutative and SU(3) acts on

1nG3(R6) �= 1nSO(6)=SO(3)� SO(3)

by the canonical representation SU(3)! SO(6).
If (K2, K ) = (SO(3), SO(2)), then (SU(3), M) is essential isomorphic to the natural

induced SU(3)-action on the threefold branched covering manifoldÑ8 of 1nG3(R6),
that is, there exists an SU(3)-equivariant map p: Ñ8 ! 1nG3(R6) such that the re-
stricted map pjG=K1 is isomorphic and the restricted map pjÑ8�G=K1

is threefold cov-
ering.

Proof. Assume (K2, K ) = (Z3 � SO(3), Z3 � SO(2)). Because the uniqueness of
(SU(3), M) has been proved before this proposition, we may only find such exam-
ple. Now U (3) acts onG3(R6) = SO(6)=(SO(3) � SO(3)) by the natural representa-
tion U (3) ! SO(6) and this action has codimension one orbits and two singular or-
bits U (3)=SO(3) and U (3)=T2 where T2 does not contain the diagonal subgroup in
U (3). Let1 � U (3) be the diagonal subgroup. Then1 commutes withSU(3)� U (3)
and acts onG3(R6) freely. So we have the 8-dimensional manifold1nG3(R6) and
the SU(3)-action with codimension one principal orbitsSU(3)=Z3 � SO(2), two sin-
gular orbitsSU(3)=Z3 � SO(3), SU(3)=T2. Hence this (SU(3),1nG3(R6)) is the case
(K2, K ) = (Z3 � SO(3), Z3 � SO(2)).

Assume (K2, K ) = (SO(3), SO(2)). Because the uniqueness of (SU(3), M) has been
proved before this proposition, we only need to find such example. Put M = X1 [
X2 = Ñ8 where X1 and X2 are tubular neighborhoods ofSU(3)=T2 and SU(3)=SO(3).
Then we can easily show that̃N8 is the threefold branched covering manifold̃N8 of1nG3(R6) along SU(3)=T2. Therefore the case (K2, K ) = (SO(3), SO(2)) were proved.

Hence we get this proposition.

Now we can easily proveH2(1nG3(R6); Q) ' Q � Q and dim1nG3(R6) = 8.
Hence1nG3(R6) is not a rational cohomology complex quadric. Letp: Ñ8 !1nG3(R6)
be a natural projection. Then we can prove thatp�: H2(1nG3(R6);Q)! H2(Ñ8;Q) is
an injective homomorphism by two Mayer-Vietoris exact sequences for tubular neigh-
borhoods ofG=K1, G=K2 in 1nG3(R6) and Ñ8 and the five lemma. HencẽN8 is also
not a rational cohomology complex quadric. Therefore we have A = SU(2).

Now we can put

K1 =

8<
:
0
� x�1y�1 0 0

0 x 0
0 0 y

1
A = (x, y) x, y 2 T1

9=
;
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and the slice representation�1 : K1 = T2 ��! T1 �1�! O(2) is

� (x, y) = xpyq

where�1: T1 ! O(2) is a natural inclusion andq 6= 0 without loss of generality. Then
Ker � = K = f(x, y) 2 T2 j xpyq = 1g. Let us consider the restricted slice representa-

tion �2jK o
2
: K o

2 ' SU(2)
�2�! O(3). Then we see�2 : SU(2)! SO(3)� O(3) is a natu-

ral homomorphism and�2j�1
K o

2
(SO(2)) = K o. So we haveK o = f(x, x�1) 2 T2g � K =

f(x, y) 2 T2 j xpyq = 1g. Therefore we getp = q (p 6= 0).

Hence we have the slice representation� q
1 : K1 = T2 �q�! T1 �1�! O(2), such that�q(x, y) = xq yq, is unique for eachq 6= 0. Since it is easy to show� q

1 and ��q
1 are

equivalent representation, we can assumeq > 0 up to equivalence. Becausep = q > 0
and �2j�1

K o
2
(SO(2)) = K o, we have

K2 =

�� ��1 0
0 A

�
A 2 U (2), detA = � 2 Zq

� ' Z2q �Z2 SU(2)

and

K = f(x, x�1�) j x 2 T1, � 2 Zqg ' Z2q �Z2 T1.

HereZ2q�Z2 SU(2)' K2 � S(U (1)�U (2))' T1�Z2 SU(2) andZ p = fx 2 T1 j xp = 1g.
Put such a slice representation as� q

2 : K2 ' Z2q �Z2 SU(2) ! O(3). Then we see� q
2 (feg�SU(2)) =�2(SU(2)) = SO(3). For the generatora of Z2q, we have� q

2 (a) 2 O(2)
becausea 2 K ' Z2q �Z2 T1. Moreover � q

2 (a) = I3 because� q
2 (a) commutes with� q

2 (SU(2)). Hence� q
2 (Z2q � fI2g) = fI3g. So � q

2 is unique for eachq > 0.
Moreover we can putN(K ; G)=N(K ; G)o = Z2 = fI3, [�]g and

� =

0
� 1 0 0

0 0 �1
0 1 0

1
A.

Since we can take� 2 K2, theSU(3)-manifold M is unique up to essential isomorphism
by Lemma 4.3.1 for eachq > 0.

Put the quotient manifoldM = SU(3)�S(U (1)�U (2)) S4 by the S(U (1)�U (2))-action
on S4 � C� R3 as follows

�
t�2 0
0 t X

� � (z, a) = (t2qz, �(X)a)

where � : SU(2) ! SO(3) is a natural projection,X 2 SU(2), t 2 T1 and (z, a) 2
S4 � C � R3. Now SU(3) acts onM by the canonicalSU(3)-action onSU(3) and it
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has codimension one principal orbitsSU(3)=K and two singular orbitsSU(3)=K1 and
SU(3)=K2. However this manifoldM is a S4-bundle overP2(C). Hence this is not a
rational cohomology complex quadric.

So we haveh = 1, G = SU(3)� T1 and K1 = T2� T1. Moreover we seeN = T1,
K o

2 = A Æ T1 and K o = A0 Æ T1 becauseK1=K �= S1 where (A, A0) � (SU(2), T1).
Now we can put

K1 =

8<
:
0
�
0
� x�1y�1 0 0

0 x 0
0 0 y

1
A, z

1
A = (x, y, z) x, y, z 2 T1

9=
;

and the slice representation�1 : K1 = T2 � T1 ��! T1 ��! O(2) is

� (x, y, z) = xpyqzr

where� : T1 ! O(2) is a natural inclusion. Since we have Ker� = K , we can assume
r > 0 up to equivalence by Proposition 4.1.1. Hence we have

K =

8<
:
0
�
0
� x�1y�1 0 0

0 x 0
0 0 y

1
A, x�p=r y�q=r �

1
A x, y 2 T1, � 2 Zr

9=
;.

Therefore we havep1(K o
2) = A Æ T1 � SU(3), where p1 : G = SU(3)� T1 ! SU(3) is

a natural projection. AssumeA = SO(3). Then we seeN(SO(3); SU(3)) = Z3 � SO(3).
However this is a contradiction, because all elements inT1 � p1(K o

2) and A� p1(K o
2)

commute. Hence we haveA = SU(2). So we can put the singular isotropy groupK o
2

is as follows

K o
2 =

���
t�2 0
0 t X

�
, t�m

�
X 2 SU(2), t 2 T1

�
,

for somem 2 Z. Since K1 \ K o
2 � gKog�1 ' K o for someg 2 G, we have

K1 \ K o
2 =

8<
:
0
�
0
� t�2 0

0 ts 0
0 0 ts�1

1
A, t�m

1
A t , s 2 T1

9=
;

' K o =

8<
:
0
�
0
� x�1y�1 0 0

0 x 0
0 0 y

1
A, x�p=r y�q=r

1
A x, y 2 T1

9=
;
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(a conjugationK1 \ K o
2 ' K o is known by their dimensions). Hence we can put

K o = K1 \ K o
2 =

8<
:
0
�
0
� x�1y�1 0 0

0 x 0
0 0 y

1
A, x�p=r y�q=r

1
A x, y 2 T1

9=
;

=

8<
:
0
�
0
� t�2 0

0 ts 0
0 0 ts�1

1
A, t�m

1
A t , s 2 T1

9=
;

without loss of generality. Sincex = ts, y = ts�1, we havep = q, m = 2p=r . Now the

slice representation�2jK o
2

decomposes into�2jK o
2
: K o

2
��! SU(2)

� 0�! SO(3) where

���� 1 0
0 X

�
, 1

��
= X

and � 0 is a canonical double covering, and we have�2j�1
K o

2
(SO(2)) = K o. Consequently

we have

K =

8<
:
0
�
0
� t�2 0 0

0 ts 0
0 0 ts�1

1
A, t�m�

1
A t , s 2 T1, � 2 Zr

9=
; ' K o � Zr

and

K2 =

���
t�2 0
0 t X

�
, t�m�� X 2 U (2), � 2 Zr

� ' K o
2 � Zr .

Moreover we havem 6= 0 because of Proposition 9.0.1, and�2(fI3g�Zr ) � fI3,�I3g �
O(3) because of�2(K o

2) = SO(3). Because��1
2 (O(2)) = K and C(�2(SU(2)); O(3)) \

O(2) = fI3, �I3g \ O(2) = fI3g, we also havefI3g � Zr � Ker �2. Since we classify
up to essential isomorphism andfI3g � Zr � Ker�i for i = 1, 2, we can putr = 1 that
is K2 = K o

2 and K = K o. Therefore there exists unique (�i , K i , K ) (i = 1, 2) for the
integer m 6= 0. Then we haveN(K ; G)=N(K ; G)o ' Z2 = fI , �g. Since we can take� 2 K2, this case is unique up to essential isomorphism.

Put the quotient manifoldM = (SU(3)� T1)�(S(U (1)�U (2))�T 1) S4 by the (S(U (1)�
U (2))� T1)-action onS4 � C� R3 as follows

��
t�2 0
0 t X

�
, z

� � (w, a) = (tmzw, �(X)a)

where� : SU(2)! SO(3) is a natural projection,X 2 SU(2), t 2 T1 and (w, a) 2 S4.
Now SU(3)�T1 acts onM by the canonical (SU(3)�T1)-action onSU(3)�T1 and it
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has codimension one principal orbits (SU(3)�T1)=K and two singular orbits (SU(3)�
T1)=K1 and (SU(3)� T1)=K2. However this manifoldM is a S4-bundle overP2(C).
Hence this is not a rational cohomology complex quadric.

12. Compact transformation groups on rational cohomology complex quadrics
with codimension one orbits

All the pairs (G, M) which have codimension one principal orbits are exhibitedin
this last section.

12.1. (SO(2n+1),Q2n). In this caseM = Q2n andSO(2n+1) acts onM through
the canonical representation toSO(2n + 2). Then there are two singular orbitsS2n and
Q2n�1. The principal orbit type isRV2n+1,2

�= SO(2n + 1)=SO(2n� 1).
Remark that we can easily show the pair (Spin(2n + 1), M) in Section 7.1 and

the above example (SO(2n + 1), Q2n) are essentially isomorphic and we also have the
following proposition by this example and [16]

Proposition 12.1.1. For n � 3, Qn=Z2
�= Pn(C).

Proof. Put Z2 =
n

In+2,
� �1 0

0 In+1

� 2 O(n + 2)
o
. This group canonically acts

on Qn ' SO(n + 2)=SO(n) � SO(2) and commutes with the action ofSO(n + 1) 'n�
1 0
0 A

�
A 2 SO(2n + 1)

o
. The pair (SO(n+1),Qn=Z2) has two singular orbitsP2n(R)

and Qn�1 and the principal orbit isRVn+1,2=Z2. From [16] Section 9.6, such manifold
(SO(n+1),M) is unique up to essential isomorphism that is we can regard (SO(n+1),M)
as (SO(n + 1), Pn(C)). Hence we get this proposition.

12.2. (SU(n + 1),Q2n). In this caseM = Q2n and SU(n + 1) acts by the natural
representation ofSO(2n + 2) that is

SU(n + 1) 3 A + Bi 7! �
A �B
B A

� 2 SO(2n + 2).

Then there are two singular orbits, both orbit types arePn(C). The principal orbit type
is SU(n + 1)=(SO(2)� SU(n� 1)).

For G = U (n + 1) we get a similar result.

12.3. (Sp(1)� Sp(m), Q4m�2), m � 2. In this caseM = Q4m�2 (n = 2m� 1) and
the action ofSp(1)�Sp(m) on Hm is defined byAxh̄ where (h, A) 2 Sp(1)�Sp(m) and
x 2 Hm. So there is a natural representation� : Sp(1)� Sp(m) ! SO(4m). Hence we
have an action ofSp(1)� Sp(m) on Q4m�2 through the representation�. Then there
are two singular orbitsS2� Pm(C) and Sp(m)=(Sp(m� 2)�U (1)). The principal orbit
type is Sp(1)�T1 Sp(m)=(Sp(m� 2)�U (1)).
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12.4. (Spin(9),Q14). In this caseM = Q14. It is well known thatSpin(9) acts on
S15 transitively by the spin representation� : Spin(9) ! SO(16) ([20]). HenceSpin(9)
acts onQ14 through this representation. Then the principal orbit typeis Spin(9)=SU(3)Æ
T1 and two singular orbits areSpin(9)=Spin(6) Æ T1 andSpin(9)=G2 Æ T1.

12.5. (G2, Q6). In this caseM = Q6 and the exceptional Lie groupG2 acts
through the canonical representation toSO(7). Then there are two singular orbitsS6

and G2=S(U (1)�U (2)). The principal orbit type isRV7,2
�= G2=SU(2).

12.6. (G2�T1,G2�SU(3) P3(C)). In this caseM = G2�SU(3) P3(C) and G2�T1

acts by' : (G2 � T1)� M ! M as follows,

'((g, t), [g0, [z0 : z]]) = [ gg0, [tz0 : z]]

where g 2 G2, t 2 T1 and [g0, [z0 : z]] 2 M. The manifoldM is a quotient manifold
of G2� P3(C) by the actionSU(3) whereSU(3) acts onG2 canonically and onP3(C)
by � : [z0 : z] 7! [z0 : Az], here A 2 SU(3) and [z0 : z] 2 P3(C). Then the action' has
codimension one orbit (G2 � T1)=(SU(2)� feg) Æ1 (1 ' T1) and two singular orbits
(G2 � T1)=(SU(3)� T1) �= S6 and (G2 � T1)=(SU(2)� T1) �= G2=SU(2).

Moreover we have the following proposition.

Proposition 12.6.1. G2 �SU(3) P3(C) �= Q6.

Proof. Consider the restrictedG2-action on G2 �SU(3) P3(C). Then it has co-
dimension one principal orbitsG2=S(U (1)� U (2)) and two singular orbitsG2=SU(3)
and G2=SU(2). Hence we haveG2 �SU(3) P3(C) �= Q6 because of Lemma 7.2.1 and
Section 12.5.

12.7. (Sp(2),S7�Sp(1) P2(C)). In this caseM = S7�Sp(1) P2(C) and Sp(2) canon-
ical acts onS7 �= Sp(2)=Sp(1). The manifoldM is a quotient manifold ofS7� P2(C)
by the actionSp(1) whereSp(1) acts onS7 �= Sp(2)=Sp(1) canonically and onP2(C)
by the double coveringSp(1) ! SO(3). Then theSp(1) action on P2(C) has co-
dimension one principal orbitsSp(1)=f1,�1, i,�ig and two singular orbitsSp(1)=U (1)
and Sp(1)=U (1) j [ U (1) j i where U (1) j = fa + bj j a2 + b2 = 1g. Hence theSp(2) ac-
tion on M has codimension one principal orbitsSp(2)=Sp(1)� f1,�1, i, �ig and two
singular orbitsSp(2)=Sp(1)�U (1) and Sp(2)=Sp(1)� (U (1) j [U (1) j i).
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