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Abstract
Let G be a compact connected Lie group axda rational cohomology complex
quadric of real dimension divisible by (wheredim M # 4). The aim of this paper
is to classify pairgG, M) such thatG acts smoothly orM with codimension one
principal orbits. There exist eight such pairs up to esaénsomorphism. The
underlying manifoldM is diffeomorphic to the genuine complex quadric except one
pair.

1. Introduction

One of the central problems in transformation groups is &sgify compact Lie
group actions on a fixed smooth manifdldl such as a sphere and a complex projective
space. Unfortunately the problem is beyond our reach inrgénleut it becomes within
our reach if we put some assumption on the actions. For iostawhen the actions
are transitive,M is a homogeneous space and the problem reduces to finding afpai
a compact Lie grougs and its closed subgroupl such thatG/H = M. As is well
known, there are a rich history and an abundant work in thée da.g. [3], [11]). In
particular, the transitive actions on a sphere are conlplefassified. The complete
list can be found in [2] and [6].

The orbit of a transitive action is of codimension zero. Soawe naturally led to
study actions with codimension one principal orbits. In @38.C. Wang ([19]) initi-
ated the work in this direction. He investigated compact @ieup actions on spheres
with codimension one principal orbits. In 1977 F. Uchidag{jiclassified compact con-
nected Lie group actions on rational cohomology projectpaces with codimension
one principal orbits. The same problem has been studied bdy#ta on rational co-
homology quaternion projective spaces ([7]), on ratior@ianology Cayley projective
planes ([8]) and by T. Asoh o#,-cohomology spheres ([2]).

The purpose of this paper is to classify compact connectedgkdup actions on
a rational cohomology complex quadric with codimension @nicipal orbits. The
complex quadricQ, of complex dimensior is a degree two hypersurface; z2 = 0
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in the complex projective spack +1(C) of complex dimensiorr +1. The linear ac-
tion of SQr + 2) on P..1(C) leavesQ; invariant and is transitive oiQ,. Hence Q;
is diffeomorphic toSQr + 2)/(SAr) x SO2)). Whenr is odd, Q; is a rational co-
homology complex projective space and this case is alresshtetd by Uchida ([16])
mentioned above. Therefore we assume thaPn, i.e., our rational cohomology com-
plex quadric is of real dimensionn4

A pair (G, M) denotes a smootB-action onM and we say that&, M) is essential-
ly isomorphicto (G, M) if their induced effective actions are isomorphic. Our mai
theorem is the following.

Theorem 1.1. Let M be a rational cohomology complex quadric of real dimen-
sion 4n (n > 2) and let G be a compact connected Lie grouy (G, M) has co-
dimension one principal orbitsthen (G, M) is essentially isomorphic to one of the
pairs in the following list

| n | G | M | action |
n>2 SQ2n + 1) Qo SQ2n + 1) > SQ2n + 2)
n>2 U(n+1) Q2 U(n+1)— SQ2n+2)
n>2 SUn + 1) Qan SUn+ 1) — SQ2n + 2)
n=2m-1>3 | SH1) x SAm) Qum_2 Sp(1) x SAm) — SQ4m)
7 Spin9) Qu4 Spin(9) — Sq16)
3 G, Qs G, — SQ7) — Sq8)
G, acts onG, canonically and
3 G, xT? G2 xsyz) Ps(C) | T acts on the first coordinate
of P(C @ C?) = P4(C)
2 SH2) S xsy1) P2(C) | SH2) acts transitively onS’

Here G xsyzs) P3(C) denotes the quotient of G< P3(C) by the diagonal S(B)-action
where SW3) acts on G canonically and on HC) by A(z : z]) = [z : AZ where
[20:2) e P(C® C®) = P5(C) and Ae SUQ3). &' xsy1) P2(C) also denotes the quotient
of S’ x P,(C) by the diagonal S@)-action where S{1) acts on S canonically and on
P,(C) through a double covering b — SQ(3).

REMARK. The manifoldS’ xsg1y P2(C) is not diffeomorphic toQ, (see Propo-
sition 6.2.1). On the other hand, the manifdg xsys) P3(C) is diffeomorphic toQs
(see Section 7.2.2).

Closed connected subgroups ®Qr + 2) whose restricted actions d@; have co-
dimension one principal orbits are classified by Kollros8][1Comparing his result
with our list above, the action 06, x T! on G, xsys) P3(C) = Qe does not arise
through a homomorphism t8Q(8). In this paper we use the notatiéh as a diffeo-
morphism,>~ as an isomorphism ang as a local isomorphism.
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There are some works on compact connected Lie group actidthscadimension
two principal orbits, see [15] and [16], but the actions gemplicated according as
the codimension of principal orbit gets large. The clasaiftm of compact connected
Lie group actions with codimension two principal orbits tadied by Uchida ([17]) on
rational cohomology complex projective space. Nakanifth]j completed the classi-
fication of homology spheres with an action $6(n), SUn) or Sgn).

The organization of this paper is as follows. In Section 2 weiaw a key the-
orem by F. Uchida on compact connected Lie group actiondvlowith codimension
one principal orbits. It says that #1(M; Z,) = 0, then there are exactly two singu-
lar orbits andM decomposes into a union of closed invariant tubular neigidmms of
the singular orbits. In Section 3 we compute the Poincargnuoohials of the singu-
lar orbits. To do this, we distinguish three cases accordingrientability of singu-
lar orbits. In Section 4 we determine the possible transédion groupsG from the
Poincaré polynomials using a well known fact on Lie theor§4{). We also recall
some facts used in later sections and state an outline ofteps $0 the classification.
Sections 5 through 11 are devoted to classifying the p&sM). By looking at the
slice representations of the singular orbits, we completetermine the transformation
groupsG and the tubular neighborhood of singular orbits. Then weckhehether the
G-manifold obtained by gluing those two tubular neighbodi®@long their boundary
is a rational cohomology complex quadric. Finally we giveaations in Section 12.

2. Preliminary

In this section, we present some basic facts on a complexriguadd the key
theorem to solve the classification problem on a rationaboaflogy complex quadric.
Let us recall the definition of complex quadric.

DEFINITION (complex quadricQy).

Q ={zePu(©) | B+Z+ - +7;=0)
¥ SQr +2)/SAlr) x SAR),

wherez=[zp:2z3:--:zZ+] € Pr+1(C). A simply connected closed manifold of dimen-
sion 2 is called arational cohomology complex quadritit has the same cohomology
ring as Q, with Q coefficient. It is well known that the rational cohomologygi of
Q2n is given by

H*(Q2n; Q) = Q[c, X]/(Cn+1 —CX, X2, 02n+1)’
where degf) = 2n, deg€) = 2 for n > 2. Remark Q, = SQ4)/SQ2) x SQ2) =

Spin4)/T? = SU2)/T! x SU2)/T! = S x . Hence H*(Qy; Q) is different from
the above ring. In this paper we will classify the case 2.
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Let us recall the key theorem about the structure &f if1).

Theorem 2.1 (Uchida [16] Lemma 1.2.1). Let G be a compact connected Lie
group and M a compact connected manifold without bound&ssume

HY(M; Z,) =0,

and G acts smoothly on M with codimension one orbifx)G Then Gx) = G/K is
a principal orbit and(G, M) has just two singular orbits ;) = G/K; and G(xp) =
G/K,. Moreover there exists a closed invariant tubular neighlwarth X, of G(xs)
such that

M = X; U X,
and
X1N Xz =9X, =9Xs.
Note thatXs is a ks-dimensional disk bundle oveB/Ks (ks > 2).

3. Poincaré polynomial

Let M be a rational cohomology complex quadric of dimension=2In and G a
compact connected Lie group which acts smoothly Mrwith codimension one prin-
cipal orbits. Then the pairG, M) satisfies the assumptions of Theorem 2.1. Therefore
M is divided into X; and X, where X; is the tubular neighborhood of the singular
orbit G/K; (i =1, 2). Let us calculate the Poincaré polynomial of the dimgorbits
G/K; and G/Ko,.

First we prepare some notations. L&t: H*(M; Q) — H*(Xs; Q) be the homo-
morphism induced by the inclusiofis: Xs — M and ns a non-negative integer such
that f#(c™) # 0 and f#(c™*1) = 0 wherec € H2(M; Q) is a generator. The following
theorem is the goal of this section. The result in the caseavtiee two singular orbits
are orientable is due to an unpublished note by S. Kikuchi.

Theorem 3.1. Two singular orbits GK; and G/K; satisfy one of the following
(H—=(.
() If the two singular orbits are both orientahl¢hen these singular orbits satisfy one
of the following (i)—(iii).

() G/Ks~ Py(C), k1 =2n=ky, n1 =n=n,.

(II) G/Kl ~ Pzn_]_(C), G/K2 ~ SZn’ kl =2, k2 =2n, n1=2n-1, n, =0.

(i) P(G/Kyq;t) = (L+te ) (1 +t2+-..+t) and P(G/Ky;t) = (L+th~1)(1+t2+

- +12") (ng, Nz € (n—1,n}) or P(G/Ky;t) = (L +t2" ) (1 +t%+- - -+t2%2) (ng > n),

ko is odd k; is even and k+k; =2n+ 1.
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(I If G/K; is orientable and GK; is non-orientable then
(iv) G/K1~ Py_1(C), P(G/Ky;t) =1+t2", P(G/K;t) = (1+t")(1+t?"), G/K° ~
Sl n=2n—-1,n,=0, k=2, kp =n.
(1) If the two singular orbits are both non-orientabléhen
(V) P(G/Kgt) =1 +t2+t% P(G/Kt) = (1 +t?)(1 +t2 +t%), P(G/K;t) =
P(G/K%1t) = (1 +t3)(1 +t2 +t% or P(G/K;t) = P(G/K% 1) = (1 +t5)(1 +1?)
n=ki=k,=2andm=ne{l,2 orni =2, np =1.
Here k is a codimension of &g, M ~ N means BPM;t) = P(N;t), P(X;t) is the
Poincaré polynomial of X K is a principal isotropy group and K° is the identity
component of K

To prove Theorem 3.1, we will consider three cases accorttingrientability of
two singular orbits. Before we consider three cases, wd shalw Proposition 3.0.1.
Let us set

P(Im f&;t) =) " tddim(im £)
and
P(Ker f;1) = > t9 dim(Ker fd)

where Kerfg = Ker(f*)NHY(M;Q) and Im(fs') = Im(f)NHI(Xs; Q). First we prepare
the following equations to prove Proposition 3.0.1.

Lemma 3.0.1. Putes =1 if f&(x) # AfS(c") for all A € Q, ¢ = 0 otherwise
Then we have

Pm & t) = 1+t2+. .+t + ¢t
and

P(Ker f&5t) =22+ ...+ 1% + (1 — eg)t™".

We can easily check this lemma because of the isomorphistM ; Q) ~ H*(Qazn; Q).
Let us state a proposition.

Proposition 3.0.1. 1. ni+ny+e;+e=2n.
2. €1 =€ holds if and only if R =n,.

We show the following two lemmas to prove Proposition 3.0.1.
Lemma 3.0.2. We have the equation

P(Xa_s, X3-s; 1) —tP(Xs; t) = P(Ker f&;t) —tP(Im S t).
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Proof. We get dimf9(Xs_s, 4X3_s)) = dim(H%(M, Xs)) by the excision iso-
morphism. From this equality and the cohomology exact secpieof M, Xs)

> HII(Xe Q) 25 HIM, Xs: Q) 5 HIM: Q) 5 HI(Xs: Q) —,
we get
dim(H9(X3_s, 3X3_s)) = dim(Im §9~1) + dim(Ker f)
= dim(H91(Xy)) — dim(Im £3-%) + dim(Ker £3). O

From Lemma 3.0.2, we can show the following lemma.
Lemma 3.0.3. P(Kerf;;t)—tP(Im f;;t) =t*P(Im f5;t 1) —t*"*1P(Ker f,;t1).

Proof. By the Poincaré-Lefschetz duality and the univecsedfficient theorem we
getH9(Xs) >~ H4~9(Xs,dXs). HenceP(Xs;t) =t*'P(Xs, 8 Xs;t™1). From Lemma 3.0.2
we get

P(Ker f;t) —tP(Im f; t) = P(Xz, Xz t) —tP(Xy; t)
=tNP(Xo; t7h) — t9IP(Xq, 39Xt
= —t"MHP(Xy, 0X t ) =t IP(Xo 7))
= —t"™YP(Ker f5; t™Y) —tP(Im f5; t7h).

The last equal can be proved by using Lemma 3.0.2 witbplaced byt 1. Therefore
we get this statement. O

Let us prove Proposition 3.0.1.

Proof of Proposition 3.0.1. From Lemma 3.0.1 and 3.0.3, wete following
equation

t2n1+2(1 +t2 R +t4n_2n1_2) + (l— El)th _ t(l +t2 +... +t2n1) _ 61t2n+1

St At 24 ) bt (2 2+ 124 1) — (L — e)t?M

Putt = 1 then we get the first statement in Proposition 3.0.1.

Whene; = €, =0, compare the degree of this obtained equation by usindirste
statement then we get the equatiopn=n, =n. Whene; = ¢, = 1, similarly we get
n; =n; =n—1. Conversely ifn; = ny, then we haves; + ¢, = 2(n — n;) from the
first statement. Since;, €, = 0 or 1, we gete; = ¢,. Hence the second statement
holds. ]

From the next section we will consider three cases accortbngrientability of
two singular orbits.
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3.1. Both singular orbits are orientable. Suppose the two singular orbi&/K;
and G/K, are orientable. The goal of this section is to prove Theorein(3—(iii).
From now on we puks = codimG/Ks andr =3—sfor s=1,2. The following Poincaré
duality will be used many times in this section.

Theorem 3.2 (Poincaré duality). Let M" be an n-dimensional closed orientable
manifold Then the following isomorphism holds

¢ 1 H'(M"; Q) =~ HomH"(M"™ Q), Q)

by (p(X)(y))u = Xy where xe HY{(M™; Q), y € H"(M"; Q) and u is a generator of
H"(M"; Q) ~ Q. Hence we have HM"; Q) ~ H" Y(M"; Q).

First we prove the following equality.

Lemma 3.1.1. The following equation holds

(1 -t 2)P(G/Ks; 1)
= L+t Y(PUm f5 )+t IP>Im £55 1)) —t XL+t H)P(M; t).

Proof. By the Thom isomorphism, we getP(G/Ks;t) = P(Xs, 3Xs;t). Since
G/Ks is a deformation retract oKs, P(Xs;t) = P(G/Kg;t). Hence by Lemma 3.0.2,
we getth P(G/K;;t) — tP(G/Ks; t) = P(Ker f&;t) — tP(Im fZ;t) and we also get
P(G/K;;t) = t%"1P(G/Kg; t) — t71P(Ker f*; t) + P(Im f*;t). Using these equations
and P(Ker f&;t) = P(M;t) — P(Im f&;t), we can easily check the above equatiohl

Puttingt = —1 in Lemma 3.1.1, we get @ (—1)**)x(G/Ks) = (1—(=1)<)x (M)
where x(X) is the Euler characteristic oK. From this equation, we see

Lemma 3.1.2. If k; +ky is even then k and k are even Hence the case k=
k, =1 (mod 2)does not occur

Let us setgs(t) = (1 — t“™=2)P(G/Ks; 1), which is the left side of the identity
in Lemma 3.1.1. Next we consider two cases égr(s = 1, 2) and prove (i)—(iii) in
Theorem 3.1.

3.1.1. The case%; =¢€,. Let us prove Theorem 3.1 (i) and (iii) occur in these
cases.

If €1 =€,=0thenn;=n,=n and if e =€, =1 thenn; =n, =n—1 by the proof
of Proposition 3.0.1. In both of these cases we have

P(m fJ5t) = 1+t2+. ..+t



28 S. KUROKI

by the definitions ofes andns (s =1, 2). If we puta(n) = P(Im fJ;t) = 1 +t2+- .. +
t>", we haveP(M;t) = (1 +t®a(n). Then by Lemma 3.0.1 and 3.1.1, we have the
following equation

1) gs(t) = (L +t ) (1 — t*"Ha(n).

Let us consider three cases fky (s =1, 2).
Supposek; =k, =0 (mod 2). Dividing both sides of the equation (1) by tland
puttingt = —1, we getx(G/Ks) #0 for s=1, 2. Now we have the following lemma.

Lemma 3.1.3. If the Euler characters((G/Ks) are non-zero for s 1, 2, then the
Poincaré polynomials FG/Kg;t) are even functions for s 1, 2, that is P(G/Kg;t) =
P(G/Ks; —t).

Proof. Because(G/Ks) # 0, we have rankK? = rankG (see [14] Chapter III).
Hence HY(G/K?; Q) = 0 from [14] Theorem 3.21 in Chapter VII. Since the induced
map from the natural inclusion

H*(G/Ks; Q) — H*(G/Kg; Q)

is injective, the Poincaré polynomiaB(G/Ky;t) and P(G/Kj3;t) are even functions.
O

From this lemma, we see (1% 1)(1—t?""1) = (1—tk-1)(1+t?"1) by the equation
(1). Consequentlk; =k, = 2n. By the equation (1), the equatidA(G/Ks;t) = a(n)
holds. Hence we hav&/Kg ~ P,(C) becauseP(P,(C); t) =a(n). This means Theo-
rem 3.1 (i).

Supposek; is even andk; is odd. Then we haveg (G/K1) # 0, dividing both sides
of the equation (1) by £t and puttingt = —1. So P(G/Kj3;t) is an even function by
Lemma 3.1.3. Whers=1 (r = 2) in the equation (1), compare even degree terms and
odd degree terms. Then we hakerk, = 2n+1 and P(G/Ky;t) = (1+t*2~1a(n). When
s =2 in the equation (1), we also ha®(G/Ky;t) = (1 +t“~1)a(n) by k; +k; = 2n+1.
This means Theorem 3.1 (iii). K; is odd andk; is even, then we get a similar result.

By Lemma 3.1.2, there does not exist the case khaand k, are odd. Therefore
in the casee; = €, Theorem 3.1 (i) and (iii) occur. Let us consider the casgé ¢».

3.1.2. The case; # €;. The goal of this section is to prove Theorem 3.1 (ii)
and (iii) occur in the case; # ¢».

If we pute; =0 ande, =1, we haven; +n, =2n—1 by Proposition 3.0.1 and we
also haveP(Im f;;t) = a(ny) and P(Im f;t) = a(ny) +t2" by definitions ofes and ns
(s=1, 2). Hence we easily get

(2) Qu(t) = (1 -t )a(ny) + (1 — ™" a(ng) — " (1 - '2),
3 O2(t) = (1 — t2"*)a(ny) + (471 — 122 )a(ny) +t2(1 — t2)
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by Lemma 3.0.1 and Lemma 3.1.1. Let us consider four caseksf(s =1, 2).
Supposek; =k, = 0 (mod 2). Dividing both sides of (2), (3) by lt+and putting
t = -1, we seeP(G/Kqy;t) and P(G/Kjy; t) are even functions bks > 2 and Lem-
ma 3.1.3. Sdk; = 2n, +2 by comparing the odd degree terms in (3).
Consider the odd degree terms in (2). Then we $&el(—t>"*ha(n,) —t>"~1(1—
t2) = 0. So we have

tkz_la(nz) + t2n+k2—l — t2n1+la(n2) + t2r‘|—1.

The minimum degree of the left side k& — 1, while that of right side is@ + 1
or2n—1. If k, —1=2n;+1, then we get?"ke—1 = t2"-1 py this equation. This
contradictsk, > 2. Hence we havé&, —1=2n—1, and we also hava; =n (if n, # 0)
andn; =2n — 1 (if n, = 0) by comparing the second lower degree in this equation.
Whenn; =n, we seen, =n— 1 by Proposition 3.0.1 and di@/K, = 2n by k;, = 2n.

In particular we haveG/K; ~ P,(C) by the equation (3). Howevef;(c) f;(c™) =
fr(c"*!) = 0 € H™(G/Ky; Q) by the definition ofn,. This contradicts the Poincaré
duality (Theorem 3.2).

Hencen; =2n—1 andn, = 0. So we sedy =2n,+2 = 2. Hence we hav&/K; ~
Pon—1(C) from the equation (2), and we also ha@' K, ~ S from the equation (3)
andk; = 2n. This result is Theorem 3.1 (ii).

Supposek; is even andk; is odd. Putt = —1 in (2). Then we sed(G/Kj;t) is
an even function by Lemma 3.1.3. So we get from (2)

4 P(G/Ky;t) =a(ng) + tszla(nz) 4201k

Since G/K; is orientable, we have dis/K; = max2ni, ko — 1 +2n,, 2n — 1 +ko}.

If dim G/Ki =2 thenk, — 1 =2n; — (k2 — 1+2r12) or 2n; — (2n — l+k2)
from the Poincaré duality abou®/K;, the inequalityn > 2 (k; — 1 < 2n — 1 +kyp)
and the equation (4). Hende —1=n; —ny, or n; — n. Sincen; +n, = 2n — 1,
Ny — Ny is an odd number. Now, is an odd number. Sk, — 1 =n; —n. Therefore
ko—1=n;—n=n—n,—1 by Proposition 3.0.1. In this cas@21+k, = (kp—1+2n,)+2
from the Poincaré duality abo®/K; and the equation (4). Sm, =n — 1. However
we havek, —1=n—n,—1=n—(n—1)—1=0. This contradictk, > 2. Hence
dimG/Ky # 2n;.

If dim G/K; =k, — 1+ 2n,, then 26, —n) =k, — 1 or np = n; from the Poincaré
duality aboutG/K;, the inequalityk, — 1 < 2n — 1 +k, and the equation (4). Now
ni+ny,=2n—1that isn; #n,. So 26, —n) =k, — 1 and we also have; +1 =n,
by the Poincaré duality abo®/K; and the equation (4). Sinag +n, =2n—1, we
haven, = n. This contradictsk, > 2.

Hence dinG/K; =2n—1+k,. In this case B—1+k, —2 =2n; or k, —1+2n, from
the Poincaré duality and the equation (4). f 21 +k, — 2 =2n;, then dimG/K, =
2n; + 2. However f}(c) f;(c™) = ff(c™™) = 0 € H2*%(G/Ky; Q) by the definition
of n;. This contradicts the Poincaré duality. Therefore we hawe-21 +k, — 2 =
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ko—1+2n,. Son; =n andn, =n—1. Hence we hav®(G/K;t) = (L+tk~1)a(n) from
the equation (4). Moreover we haw(G/Kg;t) = (1 +t“*~Ya(n) by the equation (3)
andk; +k, =2n+1. This result is Theorem 3.1 (iii).

Supposek; is odd andk; is even. In this case we gd®(G/Ky;t) = a(ny) +
t—la(ny) + t2" becauseP(G/K»;t) is an even function and the equation (3) holds.
Hence we have dins/K; = 4n — k, = max{2n,, k; — 1 +2n4, 2n}.

If dim G/K; = 2n, then we havek, = 2n. Because of the odd degree terms in the
equation (3), we hav®(G/Ky;t) = t?m=2125(n,) +t202*3-k-2g(n,)+ 1. So D, —2n+
2>2and 2, +3—-ki—2n>2. From -h=n;+n,+1, we havek; <n, —n; < —1.
This contradictsk; > 2.

If dim G/K; =k, — 1+ 2n;, we have the following cases by making use of the
Poincaré duality for the even functioR(G/K; t) = a(ny) + tk—ta(ny) +t2";

° dimG/Kz—(kl—l):an,

e 2n=(k; —1)—2 and dimG/K; — 2n = 2n,,

e 2n=2n,+2 and dimG/K,; —2n=k; — 1.

When dimG/K; — (k; — 1) = 2n,, we haven; = n,. However this does not occur
becausen; +n, +1 =2n. When 21 = (k; — 1) — 2 and dimG/K; — 2n = 2n,, we have
n=n-—1, no=n because 2=n;+n,+ 1. So we have

dim G/K2 =4n -k,
=(ki—-1)+2n
=@2n+2)+2n—2=4n.
Hencek, = 0. This is a contradiction. Hence we hawve22n,+2. Then we can show
ni=n, np=n—1, k +ky =2n+1 and P(G/Kg; t) = (1L +t%*1)a(n) (s+r = 3) from
the equations (2) and (3). This result is Theorem 3.1 (iii).

If dimG/K, =4n—k; = 2n,, then we have andri2 —2n =k; — 1 from the Poincaré
duality and the above equation 8(G/K;;t). Hencek; =n,—n; and we sed; +kp =
2n+1=n;+ny,+2. So we have

P(G/Kg;t) = a(ny) +t“ta(ng) +t2"

= a(ny) +tta(ny + 1)
— {a(n) + (t2n+2 +... +t2n+k171)} +tk171(1 +t2 +... +t2n+lfk1)
- a(n) +tk1—1(1 +t2 ... +t2n+1—k1) + (t2n+2 +... +t2n+k1—1)
— a(n) +tk171 +tk1+l +... +t2n +t2n+2 +... +t2n+k171
=a(n) +t“1a(n)
= (1 +t“Ha(n).

Moreover we haveP(G/Kq;t) = (1 +t2™Ha(n,) by the equation (2). This result be-

comes the second case in Theorem 3.1 (iii).
By Lemma 3.1.2, there does not exist the case khaind k, are odd.
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We can get a similar result in the case= 1 ande, = 0. Therefore in the case
€1 # €2, Theorem 3.1 (ii) and (iii) occur.

Consequently Theorem 3.1 (i)—(iii) occur in the case b@hK; and G/K, are
orientable.

3.2. Preparation for non-orientable cases. In order to prove two non-orientable
cases in Theorem 3.1 (iv)—(v), it is necessary to show thieviihg proposition.

Proposition 3.2.1. If G/K; is non-orientable then we have

P(G/K3;t) = (1 +t%)P(G/Ky; t),
P(G/K®t) = (1 +t2¢ 1)P(G/Kz; t) — P(n1, Nz t) — ea(1 — en)(1 +t Ht,

where

t2nmtl g 2m+2 4 L 4 t2m (nl < n2)
P(ny, np; t) = {O (n1 > ny)

The goal of Section 3.2 is to prove Proposition 3.2.1. Ouiopis essentially due
to Uchida ([16] 2.4, 2.5 and 2.6).
First we show the following lemma.

Lemma 3.2.1. If ky > 2, then G/K; is simply connectedhence kK is connected

Proof. We seeri(M) = m1(G/K3) from the transversality theorem ([5] (14.7)),
Theorem 2.1 ank; > 2. HenceG/K; is simply connected. S&, = K3 because a
canonical mapG/K3 — G/Kj is a finite covering. O

Next we prepare the following two lemmas (Lemma 3.2.2 and33.&hich just
come from the conditiork; = 2.

Lemma 3.2.2 ([16] Lemma 2.4.1). If k; = 2, then § =id: H*(G/K% Q) —
H*(G/K?%; Q) for all k € K, where R: [g] — [gK] and R is the homomorphism in-
duced from R

From Lemma 3.2.2, we can show the following lemma.
Lemma 3.2.3. If k; = 2, then H(G/K¢; Q) = Im(qZ) + Ker(pd*) (possibly non

direct sum, where the homomorphismg gand [£* are induced from g G/K¢J —
G/Ks and [£: G/K® — G/KQ.
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Proof. The natural maK2/K° — Ks/K is a surjection becausés/K is a ks —
1)-sphere. So we sels = K2K. In particular for eacha € Ks there existsk e
K such thatR, and R¢ are homotopic by the connectedness k§. Hence R} =
Ri: H*(G/K2; Q) — H*(G/KZ; Q). By Lemma 3.2.2 the righR} is an identity map
in the following commutative diagram for afl € K,

H*(G/K?; Q) —— H*(G/K®; Q)
Ri=R Re=id
H*(G/KS Q) —— H(G/K®% Q).
So we havepg*(u) = pZ*(R;(u)) for u € H*(G/K¢; Q) anda € Ks. Ks/K¢ acts on

H*(G/K2; Q) by R* for | € Ks/K2. Then we easily see Igf) = H*(G/KZ; Q)Ks/Xs.
Hence Rf(v) = v for all | € Ks/K¢J and v € Im(q?). Moreover if we putKs/K¢ =

{l,...,li} then R¥ (u) +- - -+ R*(u) € Im(qg) for all u € H*(G/Kg; Q). Therefore there
is w € H*(G/Ks; Q) such thatp* oqi(w) =ipJ*(u). So we see Imgg*) = Im(pg* o qy).
Consequently we get the equatifi*(G/K2; Q) = Im(gZ) + Ker(pZ*). 0

Put J = q;‘Hk(G/Kg; Q) and J = P, k. Next we show properties about this
in the following two lemmas (Lemma 3.2.4 and 3.2.5) by usirgmnima 3.2.3.

Lemma 3.2.4. Let x be the rational Euler class of the orient€ld, — 1)-sphere
bundle 8: G/K° — G/KJ. If k; =2, then x? € J andKer(pS*)=J - x +J - x2.

Proof. From the Thom-Gysin exact sequencepdf G/K° — G/K3 that is,

P HIYG/KS) 2 HI(G/KS) B HIG/KS) 2 HI(G/KY) S,
we see Kerpy!) = HI7k(G/KS; Q) - x. By Lemma 3.2.3H97%(G/KS; Q) = Jyk, +
Ker(pgq’kz). So we have Kerf,") = Jy_k, - x + Jg-2k, - X2+ - -+ Jg_nk, - x ¥ for some
integer N. Because of the following bundle mapping

G/K° —2, G/KO

lpﬁ’ lpg

G/KS L G/KS,

we seeR;(x) = x or —x for k € K. Hence R{(x?) = x2. Since the equatior =
Im(q3) = H*(G/KJS; Q)2 = H*(G/KY; Q)X holds (because oKs = KK), we have
x? € J. So we get the equation Kea{)=J - x +J - x2. O]
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We remark that non-orientability dB/K is not assumed in Lemma 3.2.1 through
3.2.4 unlike Proposition 3.2.1. From now on we assuB)&, is non-orientable. Then
k; =2 from Lemma 3.2.1.

Lemma 3.2.5. The following two properties hold
(1) dim(Ker(p$*)) = dim J +dim(J N Ker(p3*)).
(2 J-xNJ-x?>=0, J-x?=JnKer(p*) and the homomorphism :E] — Ker(p5*)
is injective where E is defined by &) =y - x.

Proof. First we show the property (1) by proving two ineqtiedi. From Lemma
3.2.3 we get

dim H*(G/K3; Q) = dim J + dim(Ker(p3*)) — dim(J N Ker(p5*)).

Since g;: H*(G/K2; Q) — H*(G/K2;Q) is an injective map, we have dith =
dimH*(G/K2;Q). SinceG/Kj is non-orientable, there lse K such thatR: G/K3 —
G/K3 reverses an orientation and an element ingjmis fixed by R;. Because of the
Poincaré duality theorem (Theorem 3.2) abGyK 3, for all u € Img; NHY(G/KY) there
exists some € H2"~%~9(G/K2) such that¢(u)(v))u = uv, whereu € H27k(G/K$;Q)
is the generator angd: HY(G/KJ; Q) ~ Hom(H?"~*%~9(G/K; Q), Q). Now we have

—(pW@)r = Re((p(U)@))) = Re(uv) = R(UR(v) = —uw

and R{(u) = u becauseu € Imq;. Hence we have ¢ Imq;. Consequently there is an
elementv € H*(G/K32; Q)\ Img; for ue Imq;. So we see

2Iimg; =2dimH*(G/Kz; Q) < dim H*(G/K%; Q).
Therefore we get
dim H*(G/Kz; Q) = dim J < dim(Ker(p3*)) — dim(J N Ker(ps*)).

From Lemma 3.2.4 we get? € J and Jx? C Ker(p3*). So J - x? C JnKer(ps).
Moreover we easily see dird( x) < dim J. Hence we get

dim(Ker(p*)) < dim(J - x) + dim(J - x?) < dimJ +dim@ N Ker(ps*)).

So we have the property (1) from the two inequalities above.

Next we show the property (2). From the proof of the equatitp (ve have
dim(J - x) =dimJ (so we get the injectivity o) and dim@ - x?) = dim(J NKer(p5*))
(so we getd - x2=J NKer(pd*)). From Lemma 3.2.4 Ke*)=J - x +J - x? and
dim Ker(p9*) = dim(J - x) + dim(J - x?), we haved N J - x = {0}. Hence we get the
property (2). ]
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From Lemma 3.2.4 and 3.2.5, we can prove the following equnati
Proposition 3.2.2. P(G/KJ3;t) = (1L +t%)P(G/Kz; t).

Proof. From Lemma 3.2.5, we see dihr dim(Ker(p3*)) — dim(J N Ker(ps*)).
Moreover from Lemma 3.2.4 and 3.2.5 we have the equation

Ker(pz") = J - x & (J N Ker(p3")).
Since x € H(G/K2; Q) and dimH*(G/K,;Q) = dimJ, by the equation above we get
(5) P(Ker(pd); t) = t2P(G/Ka; t) + P(J N Ker(pg¥); t).
Comparing the equation (5) with

P(G/K3;t) = P(Im(a3); t) + P(Ker(p3*); t) — P(J N Ker(p3*); t)
= P(G/Kg; t) + P(Ker(ps*); t) — P(J N Ker(p$*); t)

(by Lemma 3.2.3) we geP(G/KZ2;t) = (1 +t*)P(G/K>;t) from the injectivity ofqg;.
0

This result is a part of Proposition 3.2.1.
Next we show the following equation.

Proposition 3.2.3. P(G/K%t) = (1+#tZ2 1) P(G/Kz;t)—(1+t 1) P(INKer(pS);t).

Proof. From the Thom-Gysin exact sequencepdf G/K° — G/KJ that is

LN HI% 1G/K) 5 HIG/KS) 5 HI™(G/KY) LN HI%(G/K) &,
we easily get
(6) P(M(5"); 1) = P(G/K3: 1) — t*P(Ker(p3): 1),
(7 P(G/K®;t) =t tP(Im(5*); t) + P(Im(p3*); t).
From the equation (5) and Proposition 3.2.2, we have
P(Im(p3"); t) = P(G/K3: t) — P(Ker(p3"); 1)

(8) = (1 +t%)P(G/Ky; t) — (2 P(G/Ky; t) + P(J N Ker(pd*); t))
= P(G/Kz; t) — P(J nKer(pg); t).
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Substituting (7) for (6) and (8), we obtain the equation
P(G/K? 1) =t“~TP(G/K3; t) —t ™' P(Ker(p$*); t)
+ P(G/Kz; t) — P(J N Ker(pY); t).

Moreover substituting the equation above for (5) @@ /KJ9;t) = (1 +t*2)P(G/Ky;t),
the identity of the proposition follows. ]

Let us concentrate on the term (t#)P(J NKer(pg*);t). Consider the following
commutative diagram

H*(G/Kz; Q) — 2 H*(G/K; Q)
a4 q*

H*(G/KS: Q) — % H*(G/K®; Q),

where g* is the induced homomorphism from the natural covering maiG/K° —
G/K. Now g; is an injection and moreover we show

Lemma 3.2.6. g*: H*(G/K; Q) —» H*(G/K?; Q) is an isomorphism

Proof. Letq': H*(G/K% Q) — H*(G/K;Q) be the transfer of the covering map
g: G/K° - G/K. From Lemma 3.2.R{ =id: H*(G/K?% Q) — H*(G/K® Q), so
g*oq: H*(G/K®% Q) — H*(G/K% Q) is r times map where is the covering de-
gree ofg. Henceq* is surjective. The injectivity ofg* is well known. Sog* is an
isomorphism. ]

Hence we have Kepf) = Ker(ps* o) 2~ Im(g3) NKer(ps*) = JNKer(pY*). So we
see P(J N Ker(pd*); t) = P(Ker(p}); t). The inclusionis: X; N X; — Xs is homotopy
equivalent tops: G/K — G/Ks, hencei} = pi. Considering the following commuta-
tive diagram from the cohomology exact sequenceshf X;) and (X2, X1 N X3) and
the excision isomorphism

H¥(M, X1) —— > H*(M) — 5 H*(Xy)

o

H*(Xa, X1 N Xz) —— H*(X2) —— H*(Xy N Xy),

we get T (Ker(f;)) = Ker(i3) by this diagram. Hence we obtain the following equa-



36 S. KUROKI
tions from the definition oh; and n,, that is f(c™) # 0 and fs(c™*!) = 0,
P(Ker(i3);t) = t?™*2+ ...+t + e5(L — et (ng < Np)
and forn; > ny
P(Ker(i3); 1) = ea(1 — en)t?".

Because we have the two equations above, Proposition 3023 &) N Ker(pd*); t) =
P(Ker(i3); t), we complete the proof of Proposition 3.2.1.

3.3. G/K; is orientable, G/K; is non-orientable. Let us prove Theorem 3.1
(iv). AssumeG/Kj is orientable ands/K, is non-orientable.
From Proposition 3.2.1, we get the following equation.

Lemma 3.3.1. t*'P(G/Ky;t™1) =tZ2P(G/Ky; 1).

Proof. By Proposition 3.2.1P(G/K3;t) = (1+t)P(G/Ky;t). From the Poincaré
duality of G/K9, we seeP(G/KZ;t™1) = tke=*"P(G/KJ; 1). O

Since G/K; is non-orientable, we sek; = 2 by Lemma 3.2.1. Hence we can
show the following equation.

Lemma 3.3.2. P(G/Ky;t) =tP(G/Ky;t)+a(ny) —t?*la(2n—ny — 1)+t Y(ep +
tez - 1)

Proof. Sincek; = 2, we see dimG/K; = 4n — 2. By the Poincaré-Lefschetz
duality and X; is a deformation retract t& /Ky,

HY(Xy1, X1; Q) = Han_q(X1; Q) = Han_q(G/K1; Q) = HI3(G/Ky; Q).

So we get the equalitP (X1, X1;t) = t2P(G/Kq; t).
From Lemma 3.0.1 and 3.0.2, we have the equation

P(X1, 0X1;t) —tP(Xz;t)
- t2n2+2+ . +t4n + (1_ 62)t2n _ t(l +t2 R +t2n2 +62t2n)

=2 23(2n — ny — 1) — ta(ny) + (1 — €2 — tex)t?".

Putting P(X1, 8X1;t) = t2P(G/Ky; t) and P(Xo;t) = P(G/Kj; t) in this equation, we
get this lemma. O

From Lemma 3.3.1 and 3.3.2, we can get the following projorsit
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Proposition 3.3.1. P(G/Kj;t) is an even function

Proof. Multiplying both sides of the identity in Lemma 3.3.2 71, we get
t*~P(G/Kzt)
=122 P(G/Kq; t) + 2 1a(n,) — 122" 225(2n — np — 1) +t2¢ 2 2(¢, + tep — 1).
Moreover multiplying both sides of the equation which subgit=! for t in Lem-
ma 3.3.2 byt*"~1, we get
t*"P(G/Kz; t ™)
=t 2P(G/Kq; t7h) + 142 1g(n,) — a(2n — Ny, — 1) +t2 (e, + t7lep — 1).

From Lemma 3.3.1, the above two equations are same, that is

122 P(G/Ky; t) + 2 ta(ny) — 12" M2q(2n — ny — 1) +t2¢ 2 2(¢, + tep — 1)

=t 2P(G/Ky; t )+t 2 1g(n,) — a(2n — ny — 1)+t (e, +tLep — 1).
By the Poincaré duality o6G/K;, P(G/Ky;t) =t*"2P(G/Ky; t™1). Hence we get

(1= t*)P(G/Ky; 1)
©9) = (1— e)t™(1 — t%72) — et (1 — t%)

+ t2k2—1 _ t4”_2”2_1)a(n2) + (1 _ t2n2+2kz)a(2n —n,— 1)
So we easily seg(G/K;) #0. HenceP(G/Kj3;t) is an even function. ]

Since P(G/Kjy;t) is an even function, it follows from (9) that

(10) (tZkz—l _ t4n—2n2—l)a(n2) _ 62t2n_1(1 _ tZkz) — 0,
(11) (A —-t2)P(G/Ky;t) = (1 — e)t?(1 — t%e2) + (1 — t22*22)q(2n — n, — 1).

Comparing the minimal degree terms in (10), we ggt= min{2n — ny, n}. If k; =
2n—n,, then we see, =0 from (10) andck, > 2. However we see easily(G/Ky) ¢ Z
from (11) andk, > 2. So this case does not occur.

Hencek; =n. So we see&, =1 from (10).

If n, #0, then we see, =n — 1 from (10). In this case we can also prove
x(G/K1) = —(1/n) (mod Z) from (11). Hencex(G/K31) ¢ Z. This is a contradiction.

Henceko =n, e2=1,n,=0. If ¢ =€, =1, thenn; =n, =0 andn = 1 because
of Proposition 3.0.1. Since we assume> 2, we havee; = 0. Therefore we have
ny = 2n — 1 by Proposition 3.0.1. Consequently we se¢G/Ky;t) = P(Im f;t) =
a(ny) = a(2n — 1), andG/Ky ~ Po,_1(C) from (11). So we getP(G/Ky;t) = 1 +t2"
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from Lemma 3.3.2. By Proposition 3.2.B(G/KJS;t) = (1 +t")(1 +t2") and G/K° ~
S™-1. This is the case thaB/K, is orientable and5/K; is non-orientable in Theo-
rem 3.1 (iv).

3.4. Both singular orbits are non-orientable. Let us prove Theorem 3.1 (v).
SupposeG/K; and G/K, are non-orientable. By Lemma 3.2.1 and Proposition 3.2.1,
we havek; =k, = 2, and

(12)  P(G/Kt) = (1 +tH)P(G/Ks; t),
(13)  P(G/K®%1t) = (1 +t3)P(G/Ks; t) — P(nr, Ns; t) — €s(1 — & )(L +t~ 1t
where

t2p+l+t2p+2 ... +t2q
P(p, 0 1) = {0 ES N g;

From the Mayer-Vietoris exact sequence Mf= X; U X5, we have the following
lemma.

Lemma 3.4.1. The following equation holds

P(G/Ky;t) + P(G/Kz; t)

= P(G/K;t) =t} L +t"M)@Q +t2+ -+t + P(Im f; @ £5t1)(L +t Y
Proof. By the Mayer-Vietoris exact sequence

f* f;k
S HIM) 225 HI(XG) @ HI(X,) = HI(X1 N X2) = HIYM) = - -

where M is a rational cohomology complex quadric, we see
P(X1;t) + P(Xz; 1)
= P(X1 N Xgjt) =t XA+t (A +t2 4. +t2) + P(Im £ @ ;1) (1 +t 7).

Since Xs is a tubular neighborhood o&/Ks, H*(Xs) = H*(G/Ks) and X3 N X, =
G/K. So we get this lemma. ]

3.4.1. The case&; =¢€,. We will prove this case is one of Theorem 3.1 (v). In
this case we sep; = n, from Proposition 3.0.1. So we get the following two equagion
from (13),

P(G/K1;t) = P(G/Kz; 1),
P(G/K%1) = (1 +t3)P(G/Ks; 1).
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Now we have
P(m f&t) = 1+t2+.. .+t

from Lemma 3.0.1 and Proposition 3.0.1. We can get the fatiglemma because of
Lemma 3.4.1 andq = €.

Lemma 3.4.2. The following equation holds
P(G/Kyt) + P(G/Kz 1) = (1 -t (1 +t2+ .- -+ 12" + P(G/K; 1).

Sinceks =2 (s =1, 2), we haveg* : H*(G/K) — H*(G/K?°) is an isomorphism
by Lemma 3.2.6. Henceg(G/K) = x(G/K®°) = 0. Therefore we have((G/Ks) #
0 from P(G/K3;t) = P(G/K5;t) and Lemma 3.4.2. Henc®(G/Kg;t) is an even
function from Lemma 3.1.3. Substituting Lemma 3.4.2 B{G/K;t) = P(G/K?%;t) =
(1+t3)P(G/Ks;t) and comparing the degrees, we have 2, P(G/Ks;t) = 1 +t2 +t%,
and P(G/K;t) = P(G/K©°t) = (1L +t3)(1 +t2 + t*). Moreover we haveP(G/K2;t) =
(1 +t2)(1 +t2 +t*) from the equation (12). This result is Theorem 3.1 (v).

3.4.2. The case&; #Ze€,. We will prove this case is also one of Theorem 3.1 (v).
In this case we see; #n, becausen;+n,+1 =2n (Proposition 3.0.1). We may assume
€1 =0 ande; = 1. From (13), fors=1,

(14) P(G/K%t) = (L +t})P(G/K1; t) — P(nz, ny; 1),
moreover fors = 2

(15) P(G/K%t) = (1 +t3)P(G/Kz; t) — P(ng, ng; t) — (L +t~Ht?".
From (14) and (15) we can show the following two equations;

(L+t)(1 -t +t3){P(G/Ky; t) — P(G/Kz; 1)}
— _t2n1+1(1 +t)(1 +t2 +... +t2(n27n1)72) _ (1 +t)t2n71 (lf n < nZ);
(L+t)(1 -t +t3){P(G/Kz; t) — P(G/Ky; 1)}

= 2L )L A2+ 2072 (1 402 (if Ny > ny).

(16)

17

From these equations (16) and (17), we see

(18) x(G/K1) — x(G/Kz) =m=37Yn; —ny+1) e Z (if ny < ny),
(19) x(G/K2) — x(G/Ky) =m' =3y —ny—1) e Z (if ny > ny).

Hence ifn, > ny thenn, —ny=3m—1 and ifn, < ng thenny —n, =1+ 3.
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Now we seex(G/K) = x(G/K®) =0 by Lemma 3.2.6, (14) and (15).

Hence we have((G/Ki) + x(G/Kz) =2n+2 by Lemma 3.4.1. Therefore we can
easily showx(G/Ks) Z0 (s=1, 2) by (18) and (19). So we see ra@(= rank(K?)
and we haveH%YG/K?; Q) = 0 from [14] Chapter Ill and Theorem 3.21 in Chap-
ter VII. Consequently we have, by the equation (12),

H(G/Ks; Q) =0.
Hence ifn; < ny we have from (16),
P(G/Ky;t) — P(G/Ky; t) = 12" 3M25(3m — 2) +t2"
t3(P(G/K2; t) — P(G/Kq; 1)) = t2=3™15(3m — 2) + 12" L,
Moreover if n; > n, we have from (17),
P(G/Ky;t) — P(G/Ky; t) = t213Ma(3m) — t2
t3(P(G/Ky;t) — P(G/Kg; 1)) = t"=3"~1g(3m') — t*"~1,
From the above equations we have
t2n+3m—1 +t2n+3m+l +t2n+3 - t2n—3m+1 +t2n—3m+3 +t2n—l (if N < n2)
t2n+3m’+l + t2n+3m’+3 _ t2n+3 — t2n—3m’—1 + t2n—3m’+l _ t2n—l (If n > n2)-
From (18), we seen # 0. So the cas@; < n, does not occur by the above equation.

Therefore we see; > n, and m’ = 0 by the above equation. From (19) and 2
ni+ny+1, we haven; =n andn, =n—1. Hence we hav®(G/K;t) = P(G/Kj3;t) and

P(G/K;t) = P(G/K® t) = (1 +t°)P(G/Ks; t) — t*" — 2"

from (14), (15) and Lemma 3.2.6 whese= 1 or 2. Moreover we havé>(Im f; @
fr;t)=a(n) + t2" because of the definition of IM¥, e2=0,e2=1, np=nandny =
n—1. So we have

2P(G/Ks t) = P(G/K;t) + (1 — t2"ha(n — 1) + 2"

by Lemma 3.4.1. Therefore we can show 2, P(G/Kg;t) = 1+t2+t*4 P(G/K2;t) =
(L+t2)(L+t2+t%) and P(G/K®;t) = P(G/K;t) = (1 +t%)(1 +t?), because of the above
two equations and the equation (12). This result is in TheoBel (v).

Therefore we have Theorem 3.1. Next we will exhibit the paifsLie groups
(G, U) whose Poincaré polynomid?(G/U;t) satisfies Theorem 3.1.

4. First step to the classification

Let G be a compact connected Lie group dddbe its maximal rank closed con-
nected subgroup. The aim of this section is to find pa&sy), such that the Poincaré
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polynomial of the quotient spagg/U coincides with a Poincaré polynomiB(G/K¢;t)
in Theorem 3.1, up to local isomorphism.

4.1. Equivalence relation. We will mention some basic notations. First we de-
fine anessential isomorphism

DEFINITION (essential isomorphism). LeiG( M) be a pair of a compact Lie
group G and a manifoldM with G-action. We regardH as an intersection of all
isotropy groups( ),y Gx (we call it a kernel of (G, M)). Then we call the pair
(G/H,M) aninduced effective actiofrom (G, M). We say that two pairs@, M) and
(G’, M’) are essentially isomorphidf their induced effective actions are equivariantly
diffeomorphic.

We will classify (G, M) up to this equivalence relation (essential isomorphism).
Next we define aressential direct product

DEFINITION (essential direct product). Lég,, ..., Gk be compact Lie groups,
and N be a finite normal subgroup @* >~ G; x- - - x Gx. We say that the factor group
G =G*/N is anessential direct producdf Gg,..., Gk and denote iG>~ Gjo- - -0 Gy.

Note that all compact connected Lie groups are construcyednbessential direct
product of some simply connected compact Lie groups and s t(see [14] Corol-
lary 5.31 in Chapter V). Because we would like to classify ags$sential isomorphism,
we can assume that

GGy x: - xGgxT

for some simply connected simple Lie grou@s and a torusT. Moreover we can as-
sume thatG acts almost effectively oM, where we say thaG actsalmost effectively
on M if H ={,.m Gx is a finite group. In this cas& acts almost effectively on the
principal orbit G/K, hence we easily see

Proposition 4.1.1. K dose not contain any positive dimensional closed normal
subgroup of G

4.2. Candidates for G,Ks). Let G be a simply connected compact simple Lie
group andU be its closed connected subgroup of the same ran®,ashere the rank
of a Lie group means the dimension of a maximal torus subgrdine purpose of this
section is to find the pairQ, U) such that the Poincaré polynomiB(G/U;t) is equal
to some Poincaré polynomial in Theorem 3.1.

In Theorem 3.1 we get some even functioR¢G/Ks;t) (or P(G/KS;t)). If
P(G/Kg; t) is an even function, thenr(G/Ks) # 0. So we have rani& = rankKsg
from [14] Chapter Ill. The following lemma is well known.
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Lemma 4.2.1 ([14] Theorem 7.2 in Chapter V).If G ~ Gy x--- x Gy x T then
the same rank subgroup of G is'& G| x --- x G, x T. Here § is the same rank
subgroup of G.

Hence we may only find a simply connected compact simple LoegG and its
same rank closed connected subgradisuch thatP(G/U;t) is one of the factors of
Poincaré polynomials in Theorem 3.1, that s, sif¢&/K2) = P(G1/U1)- - - P(Gk/Uk),
we may only find the pairG;, U;).

To find such G,U), we prepare the following lemma ([14] Theorem 3.21 in Chap-
ter VII).

Lemma 4.2.2 (Hirsch formula). Let G be a connected compact Lie group and U
a same rank connected closed subgroup ofSbppose H(G;Q) >~ A(Xos+1,- .., X2g+1)
and H*(U; Q) >~ A(Xar,+1, - - -+ Xor,+1) Where |=rankG =rankU and X is an element
of the i-th degree cohomologyrhen RG/U;t) satisfies the equation

|
1t
PG/U;t)=]] &
i=1

In particular, from this Hirsch formula, we can ge{G/U;t) if we know H*(G; Q)
andH*(U; Q) only. Let us find G, U).

If G is a classical simple Lie group, the@(U) are known ([18] (9.3)). IfG is
exceptional andJ is maximal, then such pair&(U) are also known ([14] Chapter V).
Hence in these cases we can compB{&/U;t) by the Hirsch formula. So we may
pick up P(G/U;t) which is in the factor of Poincaré polynomials in Theorent.3.

AssumeG is an exceptional Lie group arid’ is not a maximal subgroup, where
rankG =rankU’. Now the maximal subgroup) (which has same rank) d& is con-
structed by the product of the classical Lie groups and astoexcept three cases
(E7, Eg x T1), (Es, Es x SU3)) and Eg, E7 x SU(2)), by [14]. BecausdJ is max-
imal and U’ is not so, they satisfifG > U D U’. Hence, except the above three
cases, we can get aP(G/U’;t) = P(U/U’;t)P(G/U;t) by the above same argu-
ment. Assume @, U) = (E7, Eg x T1), (Es, Es x SU@B)) or (Eg, E7 x SU?2)). For
example we takdJ’ C Eg x T ¢ E7 = G such thatU’ is not maximal. Then there
is someV C Eg such thatU’ ¢ V x T ¢ Eg x T, whereV is a maximal subgroup
of Eg. Moreover we see suck is constructed by the product of the classical Lie
groups and a torus becauskis a maximal subgroup oEg (see [14]). So we can
get P(G/U’;t) = P(G/(Eg x TY); t)P(Eg/V;t)P(V/U’; 1) by the same argument. For
the other cases we can ge(G/U’;t). Therefore we also have(G/U’;t) even if G
is an exceptional Lie group and’ is not a maximal subgroup. So we may pick up
P(G/U;1t) which is in the factors of Poincaré polynomials in Theorerh. 3

From the above argument we get the following propositionsteNhat the first
three propositions were also known by Uchida (Section 4.pL&)).



CoMPLEX QUADRICS WITH CODIMENSION ONE ORBITS 43
Proposition 4.2.1. If P(G/U;t) =1 +t?, then (G, U) is locally isomorphic to
(SQ2a+1),SQ2a)) or (Ggz, SUQ)), a=3.

Proposition 4.2.2. If P(G/U;t) =1+t?+...+t%®, then (G, U) is locally iso-
morphic to one of the following
(SUb + 1), S(U(b) x U(1))),
(SAb +2), SAb) x SO2)), b=2m+1,

CES = s —

(G, U(2)), b=5.

Proposition 4.2.3. If P(G/U;t) = (1+t%2)(1+t%+- . - +t%®), then (G, U) is locally
isomorphic to one of the following

(SQ2m+ 2), SqQ2m) x SQ2)), a=b=m,
(SQ2m+ 3), SAQ2m) x SA2)), a=m, b=2m+1,
(8A7),U(@3), a=b=3,
(SQ9),U4), a=3,b=7,
(SUB), T?), a=1,b=2,
(SQ10),U(5)), a=3,b=7,
(SU5), S(U(2) x UI)), a=2,b=4,
(SA3), Sp1) x SH1) x U(1)), a=2, b=5,
(SH(3),U(3)), a=b=3,
(Sp4),U(4)), a=3,b=7,
(G2, T?), a=1,Db=5,
(Fa, SPiN7) o TY), a=4, b=11,
(F4, SE3) o TY), a=4, b=11.
Proposition 4.2.4. If n is an even number and (B/U;t) = 1 +t"+t2"+t3 then

n=2or 4. The case re 2 is in Proposition 4.2.2.1f n = 4, then (G, U) is locally
isomorphic to

(Sn(4), SH1) x SH3)).

By Theorem 3.1, it is enough to consider the above four caBefore we start
the classification, we outline the proof of the classifigatio
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4.3. Outline of the proof of the classification. We will state the outline for the
classification. To classifyG, M), whereG is a compact Lie group anil is a rational
cohomology complex quadric, we will consider five cases irdrem 3.1 (i)—(v). Let
us recall the following theorem.

Theorem 4.1 (differentiable slice theorem).Let G be a compact Lie group and
M be a smooth G-manifoldThen for all xe M there is a closed tubular neighbor-
hood U of the orbit Gx) = G/Gx and a closed disk @ which has an orthogonal
Gx-action via the representation, : Gx — O(Dy), such that Gxg, Dy = U as a
G-diffeomorphism

We call the representation in this theoremthe slice representationf Gy at x €
M. Since we get candidates of singular isotropy groups ini@eet.2, first we will
compute the slice representation of the singular isotragygoupsK; and K, from
the differentiable slice theorem. Then we will get a cantdidfor the transformation
group G and two tubular neighborhood$; = G x, DX and X, = G xg, D¥ of two
singular orbitsG/K; and G/Ka,.

Next we will construct theG-manifold M up to equivalence by making use of the
structure theorem (Theorem 2.1) and the following lemma.

Lemma 4.3.1 ([16] Lemma 5.3.1). Let f, f": X1 — 9 X, be G-equivariant diffeo-
morphisms Then M f) is equivariantly diffeomorphic to ') as G-manifoldsif one
of the following conditions is satisfieq@vhere M f) = X; Uz Xy):

1. f is G-diffeotopic to f.
2. f~1f’is extendable to a G-equivariant diffeomorphism on X
3. f’f~1is extendable to a G-equivariant diffeomorphism op X

From Theorem 2.1, we can patXs = G/K. Hence we may assume the gluing
map is inN(K; G)/K, because the set of ab-equivariant diffeomorphisms o&/K
is isomorphic toN(K; G)/K where N(K; G) is a normalizer group oK in G.

Finally we will compute the cohomology of the manifold whigke constructed.
Then we can decide whether this manifold is a rational cohogyocomplex quadric
or not. This is a story of the classification.

Let us start to classifyG, M) from the next section.

5. The two singular orbits are non-orientable

In this section, we consider the case two singular orbitsrame-orientable. The
goal of this section is to prove this case does not occur. Bgofdm 3.1 (lll), we see
P(G/Kst) = 1+t2+t* and P(G/K2;t) = (1 +t?)(1 +t2 +t*). So rankG = rankK¢.

5.1. G/K¢ is indecomposable. A manifold is calleddecomposabléf it is a
product of positive dimensional manifolds. In this sectisa consider the case where
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G/K? is indecomposable. By Proposition 4.28< 1, b = 2), we seeG = SU3) x
G' xThandK2=T2x G x T". HereT2 is a maximal torus o8U3), G’ is a product
of compact simply connected simple Lie groups antlis a torus. First we prove the
following lemma.

Lemma 5.1.1. G =SU@3), K¢ =K3=T2 and K; = K.
Proof. Becausés = 2, we seeKJ/K® = St HenceG' x T"-1 ¢ K° from the
assumption ofG’. ThereforeG’' = {e} andh =0 or 1 from Proposition 4.1.1.

To showh = 0, let us consider the slice representatmn Ks — O(2). Since
G/Ks is non-orientable, there is an elemapnte Ks — K2 such that

=g %)

Since the centralizer ofs(gs) in O(2) is a finite groupZ, x Z, and the centralizer
of gs in Ks contains{e} x T", we see{e} x T" c Ker(os|ke) = K° whereos|ke is the
restrictions tok2. Henceh =0 from Proposition 4.1.1. Therefo#€? = T2 which is the
maximal torus ofSU3). MoreoverK; = K, becauseK c K;NK; andKs=KK?. [J

Next we construct the&sU(3)-manifold. To construct th&U(3)-manifold, we will
attach two tubular neighborhoods along their boundary. &b fie consider two tubu-

lar neighborhoods of two singular orbits. Denote the naonatr slice representation of
Ks by 0s: Ks — O(2) for s=1, 2. Since we can assume

u 0 0
T2=K?= (o v 0 ]|=(@, v, w)eSU3)|u v, weU@), uvw=1%},
0 0 w

the slice representation restricted T3 is
(20) aslr2((U, v, w)) = pM(w')

where¢: U(1) — SQ?2) is a canonical isomorphism amd,| € Z. Now we can easily

check N(T?; SUQ3))/T? is
0 -1 0 1 0
0 ,AT=l 0 0 -1,

1 00
=10 1 , A=
0 0 -1 0 O

0
1
0
-1 00 0 -1 0 0 0 1
a:(O 01,,8=(—1 0 O ,y:(O -1 0
0 1 0

= O
o

1 0 O
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This group is isomorphic to the three degree symmetric grdip  Hence
N(K2; SUQR))/K?S D Ks/KS =~ Z, or § (K2 = T?) by non-orientability ofSU3)/Ks.
We have the following two lemmas.

Lemma 5.1.2. If a € Ks, then {(U?, u, u) € SU3)} C Ker(os|ko).
If B € Ks, then{(u, u, u?) € SU3)} C Ker(os|ks).
If y € Ks, then{(u, U?, u) € SUB)} C Ker(os|ke).

Proof. Assumex € Ks. The centralizer ofr in K contains{(u?, u, u) | u € U(1)}.
Then the slice representationdg(u?, u, u) = os(a(U?, u, u)a™t) € SQ2). On the other
handos(a (U2, u, u)a 1) = os(a)os(U?, U, U)os(e) L = os(U?, u, u) " becauses(a) € O(2)—
SQ2). This meanss(U?, u, u) = {e} for all u e U(1).

Similarly we can show other cases. O

Lemma 5.1.3. Kg/K2 ~ Z,.

Proof. If Ks/K? >~ S5, then Ks = N(K2; SU3)). Hencefa, B, v, A, A1} C K.
From Lemma 5.1.2{(0?, u, u), (u, u, U?), (u, U2, u)} C Ker(os|ke). So we see

{(U?, u, u), (u, u, U, (u, u%, u)} c K°.

HenceK® = T2 becauseK® is a connected Lie subgroup K2 = T2. This contradicts
Ko/K° = st O

BecauseT? U «T?, T2 U T2 and T2 U yT? are conjugate, we can consider
Ks=T?UaT2 for s=1,2. We can check Ker{|xe)/K® =~ Z, as follows. If we
put Kerpilke)/K® =~ Zy and Kergo|ks)/K® =~ Zy wherem # m', then the princi-
pal isotropy group ofG-action onX; is different from the principal isotropy group of
G-action onX,. This contradicts thaX; and X, have a same principal orbit because
of Xy N X2 =G/K. Hence we can put Kex{|ko)/K® ~ Zy, for s=1, 2. Therefore
we can easily see the following lemma from above lemmas aadetjuation (20).

Lemma 5.1.4. For me N, we can considefl, alpha} = K;/K?2, and we have
K° = {(02, u, u)}
and
oslke(Uv, U, v) = PUT)P(L™™).
Moreover we see|t2 = oz|t2. Hence we get the tubular neighborhood

XM = SU3) xx, D
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where K acts on the diskD?2 by os: Ks — O(2) such that Kexfs|ke)/K® = Zp.

Next we consider an attaching map fro)({m) to Xg“). Since the attaching map
f is equivariantly diffeomorphic t&@5/K, f is in N(K; G)/K. Now we have

uw 0 O -uv 0 O
K= 0 u 0], 0 O u])esus)|um=ymt,
0 0 v 0 v O

for somem e N from Lemma 5.1.4.
Hence we see the following lemma.

Lemma 5.1.5. N(K; SUQ3)) =K.

Hence the attaching map is unique up to equivalence by Lemfa 41L.). So we
see such arsU(3)-manifold exists for eaclm € N and

M™ = SY3) xk, S

where Ks acts on & via the linear representations: Ks — O(2) such that
Ker(os|ke)/K® >~ Z. From the above argument, we have the following proposition

Proposition 5.1.1. Let M be an S\(8)-manifold which has codimension one orbits
SU3)/K and two singular orbits S{B)/Ks (s = 1, 2). Then M is S3)-equivariant
diffeomorphic to M™ (m € N).

Finally we show such asU3)-manifold M(™ is not a rational cohomology com-
plex quadric.

Proposition 5.1.2. MM = SWU3) xx_ S is not a rational cohomology complex
quadric

Proof. The manifoldN = SU3) xxe S is a double covering oM™, whereK?
acts onS? by the restricted representatiog|ko. If M is a rational cohomology com-
plex quadric, therM™ is simply connected. Hendd™ =~ N. Now N is an $*-bundle
over SU3)/T2 = SU3)/K?, andSU3)/T2 is simply connected. Hendd*(M™; Q) ~
H*(N; Q) ~ H*($% Q) ® H*(SU3)/T?; Q) becauseH °94(S?;: Q) = HoYSWU?3)/T?; Q) =
0. HenceH*(M™; Q) 2 H*(Q4; Q). This is a contradiction. O

Therefore this case does not occur. Next we consider the G##€ is decom-
posable.
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5.2. G/K? is decomposable. Assume G/K? is decomposable. By Proposi-
tion 4.2.1 &=1), 4.2.2 b=2), we see that

G =SU2) x SU3) x G’ x TN,
=Tl x SUE)xU@) x G x TN,

First we prove the following lemma.
Lemma 5.2.1. G =SU2) x SU3) and K? =T x SU(2) x U(1)) = K.

Proof. If G/KJ is indecomposable, then we s&& = SU?2) x T2 x G’ x T
BecauseK® C KSNKS =TI x T2 x G’ x T", we have dinK < 3+dimG’+h. But
we also have dinK = 4 + dimG’ + h becauseK?/K° = St for s=1,2. This is a
contradiction. SoG/K3 is decomposable. Hence we hal§ ~ K2, G’ = {e} and
h =0 or 1 by Proposition 4.1.1. Moreover we can show 0 like Lemma 5.1.1. [

Now we haveN(T?1; SU2))/T! ~ Z, and N(S(U(2) x U(1)); SU3)) = S(U(2) x
U(1)). Because of the non-orientability &/Ks and Lemma 5.2.1, we get

K1 = N(T% SUR2)) x S(U(2) x U(1)) ~ Ko.

For the slice representatian: Ks — O(2), there existgs € Ks — K such that

=g )

Here the centralizer ob5(gs) in O(2) is a finite group and the centralizer gf in
Ks contains{e} x S(U(2) x U(1)). HenceS(U(2) x U(1)) C Ker(os). So the slice
representations: Ks — O(2) has a decompositiotis: Ks — N(T?1; SU2)) — O(2).
Moreover K° = {e} x S(U(2) x U(1)) by Ks/K = St. Therefore there is an equivariant
decomposition

M = ((SU2) xnery) D?) Uy (SU2) xnery D)) x (SUB)/S(U(2) x U (1))

where N(T!) = N(T%; SU2)) and d is an attaching map from(SU2) x n¢ry D?) to
itself. As is well knownSU3)/S(U (2) x U(1)) = P,(C). Hence aG-manifold isM =
N x P»(C), whereN is someSU2)-manifold (In fact we easily sedl = SU2) xn(ry
S?). However this contradict is indecomposable. So this case does not occur.

6. One singular orbit is orientable, the other is non-orienable

The goal of this section is to prove this case is one of theieazse in Theo-
rem 1.1.

AssumeG/K, is orientable G/K5 is non-orientable. Thek; =2 from Lemma 3.2.1.
Sincek; = 2, we haveKi/K = S'. Let us prove the uniqueness d&,(M).
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6.1. Uniqueness ofG,M). By Theorem 3.1 (Il), we se&/K° ~ S*"—1 G/K, ~
Pon_1(C), P(G/K2;t) = (L+t")(1+t?") and P(G/Ky;t) = (L +t?). Since P(G/K4;t) =
P(Im f*;t) from Section 3.3, we hav6&/K; is indecomposable. Becausg/K = S,
we getG=H x TN, Ky =H; xT" (h=0 or 1) whereH is a simply connected simple
Lie group andH; is its closed subgroup. First we show the following lemma.

Lemma 6.1.1. ko =n=2 or 4.
Proof. We se@ =k, from Theorem 3.1. Moreover we have, from Proposition 4.2.2,

(H, Hy) =~ (SU2n), YU (2n — 1) x U(1))),
(SQ2n +1),SQ2n — 1) x SQ2)),
(Spn), Sgn — 1) x U(1)) or
(G2, U(2)), n=3.

Assumeks; = n is an odd number.
If (H, Hy) =(SU2n), S(U(2n—1) x U(1))), then the slice representation: K, LN
U(1) > SQ2) is as follows;

(2 ) )

whereAcU(2n—-1), xe T" (h=0or 1, ifh=0 thenx = 1) and {,m) € Z?—{(0, 0)}.
Moreover we see Kep) = K. Hence we have

K°~SuU2n—-1) if h=0
or
K°~U@2n-1) if h=1.
Sincek, = n is an odd numberKS9/K° (= S"1) is an even dimensional sphere. So

we see ranky = rankK® by [14] Chapter Ill. Hence we get, by the argument in Sec-
tion 4.1 and Lemma 4.2.1,

(K, K%~ (L;, SU2n—1)) if h=0
or

(KS, KO~ (L1 x Lo, SU2n—1) x TY if h=1

wherelL; is a simply connected simple Lie group which has a maximak rbgroup
SU2n — 1) and L, is a connected Lie group which has a maximal rank subgibtip
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Now we haveK9/K° = S™1 If h =0, then we seel(;, SU2n — 1)) is locally
isomorphic to one of the following pairs, by Proposition .4,2

(SQn), SAQn - 1))
or
(G, SU3)) if n=3.

HoweverSU2n—1) % SQn—1) andSW5) % SUQ3) (n = 3). Therefore we havla = 1.
Moreover we havel; = SU2n — 1) and (,, T1) is locally isomorphic to one of the
above pairs byKS/K® = L;/SU2n — 1) x L,/T! and Proposition 4.2.1. So we can
easily haven =3 and (., TY) = (SQ3), SQ(2)). Therefore we have

(G, K1) =(SU®B) x T, S(UB) x U(1)) x TH
and

(K3, K° & (SU5) x SUR), SUS5) x T1).

In the representatiop, if | =0 then we have

K° = (Ker(p))° = {((é det(,)A‘l ) l) Ac U(S)}.

HenceG/K° = P5(C) x TL. This contradictsG/K® ~ St in Theorem 3.1 (iv). Hence
| #0 and we have

KO = {(( ’8 de&fl ) (detA—l)—'/m> Ac U(S)} if mz0

or

K°:{<('§ 2),x>AeSU(5),xeTl} if m=0.

Let p: G=SU6)x T! — T be a natural projection. Then the restriction malRo is
non-trivial homomorphism for alin by the above shape d€°. Put the natural projec-
tion 7 : (SU5) x SU2), SUB) x T!) — (K3, K°). Thenq = plko o m|sys)xT2: SUB) x
T! - K°— T'is a non-trivial homomorphism. Hende= Plkgom: SUB)x SU2) —
K9 — T!is also a non-trivial homomorphism becau$iys).t: = g. Moreover we
see(|sur): SU2) — T is non-trivial. This contradicts that there is no complexeon
dimensional non-trivial representation 8f(2) (see [20]).
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Hence we sed&, =n is an even number for the cask (H;) = (SU2n), S(U(2n —
1) x U(1))). Also for other cases we sde = n is an even number by the similar
argument. Therefor&, =n is an even number.

Consequently we see railg = rankG and we can puKs$ = Hy x TN such that
H, is a maximal rank subgroup off becausen is an even numberP(G/K2;t) =
(1+t")(1+t2") andG = H x T". ThenG/K$=H/H, and P(H/Hy;t) = (1 +t")(1+t2").
Therefore we havé, =n =2 or 4 by Proposition 4.2.4. ]

We already haves = H x T", Ky = H; x T". Moreover we haveK? = Hy x TN
(h=0 or 1) from Lemma 6.1.1, wherH is a simply connected simple Lie group and
Hs is its connected closed subgroup. By Proposition 4.2.234apd 4.2.4,

(H, Hs) ~ (SU4), SUR) x U(1)) (n=2),
(SH2), SH1) x U(1)) (h=2) or
(8Q(5), SARB) x SA2)) ~ (Sp2),U(2)) (n=2),
(H, Hi, Hp) &~ (SH4), SH3) x U(1), SH1) x SE3)) (n = 4).
Since G/K; is non-orientable, we sel(K2; G) # K3. HenceH =Sp2) andn=2 =
k2 = kl.
Therefore we conclude that this case has just the followlimget pairs €, Hy, Hy);
(H, He) = (SH2), SH1) x U (1)),

or
(H, Hs, Hy) ~ (SH2), Sp1) x U(1), U(2))

for s+r =3. In each case, ih =0 then dimK°®=3 and ifh =1 then dimK® =4 by
K9/K®~ St~ K9/K°. However the above last cas&’NK?Y is included in the (2+)-
dimensional maximal torus subgroup Gf So dimK®° < 2+h. This is a contradiction.
Hence we have

(G, KO ~ (Sp2) x T", SH1) x U(Q) x T") or
~(Sp2) x TN U@) x TN

for s=1, 2. Let us prove the following lemma.
Lemma 6.1.2. In this case G= SH2), K1 =Sp1)x U(1), Kz = S1) x (U(1); U

U(1);i) and K~ Sp1)x {1, —-1,i, —i} where(1,i,j, k} is the basis ofH and U(1); =
{a+bj|a?+b?=1).
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Proof. Supposeq, K?) >~ (Sp2)x T", U(2)x T"). SinceG/K; is non-orientable,
we haveK, ~ N(U(2); Sp2)) x T (K, has two components). We can assukig=
U(2) x T" without loss of generality. Theik® = (SU2) x {€}) o A (where A ~ TM)
since K1/K = S'. So we haveSU2) x T" ¢ K$ ¢ G = SH2) x T" becauseKs =~
U(2) x T". Then we easily se8U2) x T" is a normal subgroup oK2 ~ U(2) x T,
ThereforeK9 =U(2) x T" because we sel9 C N(SU2)x T";G) = N(U(2) x T"; G).
Hence we haveK, = N(U(2); SH2)) x T". BecauseK c K; =U(2) x T", we get
Ko/K = N(U(2); SH2))/(F o SU?2)) =¥ St U St (disconnected) wher& is a diagonal
finite subgroup ofU(2). This contradictsK,/K = St. So this case does not occur.

Therefore G, K2) =~ (Sp2) x T", SH1) x U(1) x T"). Assumeh = 0. SinceG/K;
is orientable and5/K, is non-orientable, we havis; = Sg(1) x U(1) = K? and K, =
N(K9; G). SinceKs/K = S, we haveK = SH(1) x F where F is a finite subgroup
of U(1). If K9 =Ky =Sq1) x U(1), thenKy/K = N(U(1); Sp1))/F = Stu St (dis-
connected). This contradicts,/K = St. Hence we havek$ = S(1) x gU(1)g~* such
that gU(1)g~! # U(1) for someg € {e} x SH(1) C SH2), because&K9 N ({e} x SH1)) is a
maximal torus in{e} x SH1). Moreover we easily havgU(1)g~*NU(1) ={1,—-1}. Put
N = N(gU(1)g~1; SH1)), then we haveK, = N(SH1) x gU(1)g~%; SE2)) = SH(1) x N.
BecauseK,N({e} x U(L)) D KN ({e} x U@)) =F, we seeNNU(1) > F. Here

Z, >~ Ky/K9 >~ N/gU(L)g ' o (NNU(D)/(gU(D)g *NnU()) D F/{1, -1}

Since S = K,/K = N/F, we seeF # {1, —1}. HenceZ; ~ F c U(1), so we have
F=1{1,-1,i, —i}. Therefore we can put

Ko = SH1) x (U(1); UU(L);i).

If h=1, then we haves = Sp2)x T, K1 =SpL)xU(1)x T and K® = S1)x A
where A ~ T is a subgroup irJ (1) x TL. Let py: K° — {€} x U(1) x {€} be a natural
projection on the second factor &f;. Then we seep, is a surjective map because
of Proposition 4.1.1. So we haw&$ = SH1) x U(1) x T! = K; becauseK® C K3,
T C K$ and K§ ~ Sp1) x U(1) x TL. BecauseG/K; is non-orientable, we have
K, =SH1) x N(U(1); SH(1)) x T!. However we haveK,/K ~ StU S from K ¢ Ky =
Sp(1) x U(1) x TL. This contradictsK,/K ~ S'. O

Next we prove the following lemma.

Lemma 6.1.3. Let (SA2), M) be an S)-manifold which has codimension one
principal orbits Sg§2)/Sp1) x {1, —1,i, —i} and two singular orbits S@)/SH1) x U (1)
and Si§2)/SH(1) x (U(1); U U(1);i). Then this(SH2), M) is unique up to essential
isomorphism
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Proof. The slice representations K = Sg(1) x U(1) and K, = SH1) x (U(1); U
U(1);i) decompose as follows:

o1 Ki—> UQ) S 0(2),
oz Ko = N(U(1);; SH1)) =U(1); UU Q)i 5 0(2).

Since Kerp;) = F ={1, —1,i, —i}, we can assume
_ [ cos(#H) -—sin(H)
Pi(exp(9)) = < sin(#) cos(®) )

up to equivalence. So the slice representatigris unique up to equivalence. Since
Kz/K = St and Kerf|u(y,) = {1, —1}, we can put

ot === (5 5.

Therefore the slice representatien is also unique up to equivalence. Moreover
N(K; G)/K ~ U(1)/F has only one connected component. Hence the attaching map
is unique up to equivalence by Lemma 4.3.1 (1). Theref@g2), M) which satisfies

the conditions of this lemma is unique up to essential isqmiem. ]

Consequently the following proposition holds.

Proposition 6.1.1. Let M be an S{2)-manifold which satisfies the conditions of
Lemma 6.1.3.Then M= S’ x g1y P2(C).

Proof. If M = S xgy1) P2(C) where S’ = Sp2)/SH(1), SH2) acts naturally or’
andSp(1) acts onP,(C) = P(R3®g C) through the double covering1) — SQ3) (see
[16] Example 3.2). Then we can easily check this manifoldsBas the conditions of
Lemma 6.1.3. From Lemma 6.1.3, we get this proposition. ]

Hence this case has a uniqug,(M) up to essential isomorphism.

6.2. Topology ofM = S’ x gy P2(C). Inthis section, we study the topology bF.

First we showM is a rational cohomology complex quadric. This maniféldis a
P,(C)-bundle overS’/Sp1) = S*. Since H4Y(S*) = Ho(P,(C)) = 0 and S* is simply
connected, the induced map: H*(S*) — H*(M) is injective wherep: M — S*is a
projection andi*: H*(M) — H*(P»(C)) is surjective wheréd: P»(C) = p~(w) — M
for fixed w € S* by [14] Theorem 4.2 in Chapter lll. Hence there exists a gatoer
x € H4(M) such thatx? = 0 € H8M) and c € H2(M) such thati*(c) € H?(P,(C))
is a generator oH*(P,(C)). Becaused*(x) =0, we seec? # x in H4(M) ~ Q @ Q.
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Next we assumes’ x P,(C) is a Sp(1)-bundle overM. From the Thom-Gysin exact
sequenceH®(M) ~ Q is generated byxc and H8(M) ~ Q is generated bykc?.

Let us show O# c® € H5M). The manifold M has anSp2)-action and the ac-
tion has codimension one principal orbits from Section 6Therefore we can use
the Mayer-Vietoris exact sequence from Theorem 2.1. If weotiethe principal orbit
by G/K, the orientable singular orbit b/K; and the non-orientable singular orbit
by G/K,, then we haveH*(G/K) ~ H*(S') and H*(G/K,) ~ H*(S% from Theo-
rem 3.1. Moreover we see, from Section 6.1, the orientablgu&n orbit G/K; is
diffeomorphic to P3(C). Hence the induced homomorphisji: H2(M) — H2(G/K4)
is isomorphic. Thereforg*(c) is a generator inH?(G/K,) and j*(c®) = j*(c)® # 0
becauseH *(Ps(C)) ~ Q[c]/(c*. HenceM is a rational cohomology complex quadric.

Next we showM does not have a spin structure, we call such a manifold non-
spin. It is easy to show if a fibre is non-spin then its totalcgp#s also non-spin.
Hence M is non-spin becaus®,(C) is non-spin, that is, the second Stiefel-Whiteny
class wy(P2(C)) # 0. By definition, Q4 is a degree 2 non-singular algebraic hyper-
surface inPs(C). So Q4 is a spin manifold (see Section 16.5 in [3] or [10]). Therefor
M is not diffeomorphic t0Q4.

Hence we get the following proposition.

Proposition 6.2.1. The8-dimensional manifold Sxsy1) P»(C) is not diffeomorphic
to Qg, but a rational cohomology complex quadric

From the next section we will consider the case both singuilbits are orientable.

7. G/Ki~Py_1(C), G/Ky ~ "

AssumeG/K;, G/K; are orientable an@®/K; ~ Po,_1(C), G/K, ~ S$?". The goal
of this section is to prove there are three casesNl) up to essential isomorphism. In
this caseG/K1, G/K, are indecomposable. Because of the dimensio®s oK, and
G/Ksz, we havek; = 2 andk; = 2n (n > 2). ThereforeK; = K? from Lemma 3.2.1.

PutG=H xG"”xT" andKy = H; xG” x T" such thatH /H; ~ G/K1 ~ Po,_1(C),
where G” is semi-simple. Then we hav@” = {e¢} andh =0 or 1 because of Proposi-
tion 4.1.1. Hence we have = H x T" and K; = K? = H; x T (h=0 or 1).

By Proposition 4.2.2,

(H, Hp) = (SU2n), S(U(2n — 1) x U(1))) or
(SQ2n+1),SQ2n — 1) x SQ2)) or
(Spn), Spgn — 1) x U(1)) or
(G2, U(2), n=3.

Sincek; = 2, we can use Lemma 3.2.3 and Lemma 3.2.4. So we have

H*(G/K; Q) =1Im(g3) +J - x +J - x* (possibly non direct sum)
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whereq;: H*(G/K2; Q) (~ H*(S*:Q)) — H*(G/KY; Q) is the injective induced homo-
morphism, J = gz HX(G/K2; Q) and J = @, k. Since x € H?(G/KS; Q) by kp =
2n and H'(G/K2; Q) = 0 for i # 0, 2n, we seeH*(G/K2; Q) = H*(S*"; Q). Hence
P(G/K$;t) = P(G/Kz;t) = 1+t

Therefore we seeH, Hy) ~ (SQ2n + 1), SQ2n)) or (G2, SU3)) andn = 3 by
Proposition 4.2.1, wher&3 = Hy x Th. So we have that

(H, Hy, Hy) = (Spin(2n + 1), Spin(2n — 1) o T%, Spir(2n)) or
(G2, U(2),SU3)) and n=3.

7.1. G=Spin(2n+1)x T". AssumeG = Spin(2n+1) x T". We will prove this
case is the one of results. First we show the following lemma.

Lemma 7.1.1. h=0.

Proof. If h =1, thenK? = Spin(2n) x T!. BecauseG/K; is orientable, we get
K2 =K3. Sincek, =2n, we have the slice representatiogpt K, — SQ(2n). Fromn >
2, we see the restricted representatiofipiony i @ natural projection fronspir(2n)
on SQ(2n). Henceo,({e} x T1) c C(SQ2n)) where C(SQ2n)) is the center oSQ2n)
that isC(SQ22n)) = {l2n, —I2n}. Hence{e} x T C Ker(o,) C K. This contradicts Propo-
sition 4.1.1. So we havl = 0. ]

From the above Lemma 7.1.1, we ha8e= Spin(2n+1) andK; = Spin2n—1)o T2,
BecauseG/K; is orientable, we havek, = K9 = Spir(2n). Since K;/K ~ S' and
Ky/K = $2-1 (n > 2), we seeK = K° = Spin(2n — 1). Let us prove the following
lemma.

Lemma 7.1.2. Let (G, M) be a G-manifold which has codimension one orbits
G/K = Spin2n+1)/Spin(2n — 1), two singular orbits GK; ~ Qy,_; and G/K, ~ "
where G= Spin(2n + 1), K = Spin(2n — 1), K; = Spin(2n — 1)o T? and K, = Spin2n).
Then such(G, M) is unique up to essential isomorphism

Proof. Becaus@ > 2, we can decompose the slice representationK; — O(2)
into o1: K1 = Spin2n—1)o T 24 T1 & 0(2). Since Keré1) € K, p is an injection.
So the slice representation is unique up to equivalence. Next we consider the slice
representatiorv,: K, = Spin(2n) — SQ(2n) ¢ O(2n). Now we seeZ, C Ker(oz) C
ogl(S(IZn — 1)) =K whereZ; is a center ofK. Hence we have a natural surjective
map K, = Spin2n) — Spin(2n)/Z, >~ SQ2n). Henceo, decomposes inte,: K, =
Spin2n) kit SQ2n) LN SQ(2n). BecauseSQ(2n) acts transitively onS*~1 (n > 2),
we see thafp is an isomorphism by [6] Section |. Hence the slice repregemt o, is
unique up to equivalence.



56 S. KUROKI

Since N(K, G) has two connected components, fgt E N(K, G)/N(K, G)°, we

can assume
_ _I2n 0
p(y) = ( 0 1)

where p: Spin(2n+1) — SQ(2n+1) is the natural projection angcan be an element of
the center oK, = Spin(2n), which is not in the centeZ, of K = Spin2n—1). It suffices

to prove that the right translatioR, on G/K is extendable to &-diffeomorphism on

X, from Lemma 4.3.1 (3.). Becauseis in the center oK, = Spin2n), we have the

following commutative diagram

G xk, K2/K ——G/K
Ryx1 R,

G xk, K2/K —— G/K.

Here G xk, Ky/K = 9(G xk, D?") = 8X,. It is clear thatR, x 1 is extendable to a
G-diffeomorphism onXa,. O

Consequently G, M) is unique up to essential isomorphism. Such an example of
(G, M) will be constructed in Section 12.1. This is one of the rsii Theorem 1.1.

7.2. G=G, xT". AssumeG = G, x T". We will prove there are two cases
(h=0 andh = 1 cases). The exceptional Lie gro@ is defined by AutQ). Here
O is the Cayley numbers generated Bybasis{1, e, ..., €;}. It is well known that
G, Cc SQ7) andSU3) >~ {A € G, | A(ey) =ey}.

Let us consider the casés=0 and 1.

7.2.1. h=0. Puth=0. In this caseK; >~ U(2), K§ ~ SU3), K° >~ SU(2). We
can putKy ={A e G, | A(e1) =e1}. ThenN(K3, G) has two components. Sinc/K;
is orientable ands,/SU3) = P, K, = K2 and K = K°. Also in this case G, M) is
unique by the following lemma.

Lemma 7.2.1. Let (G,, M) be a G-manifold which has codimension one orbits
G,/SU?2), two singular orbits G/U(2) and $. Then(G,, M) is unique up to essen-
tial isomorphism

Proof. Because&, ~ SU3) acts transitively ork,/K = SU3)/SU(R) = S, the
slice representation,: K, ~ SU3) — SO6) is unique up to equivalence by [6] Sec-
tion I. Then we see that, 1(SQ(5)) = (B € K3 | B(&) = &} = K =~ SU?2).

The slice representatias, decomposes inte;: K; >~ U (2) 5 u() L O(2) where
p is an injection toSQ(2) andx (A) = (detA)™ (m € N), because Kes) = K >~ SU(2).
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We also havem =1 from Ker(;) = Ker(r) = K >~ SU2), and the slice representation
o1 IS unique up to equivalence.

Now N(K; G)/K ~ SO3) is known (Section 7.4 in [16]). Consequenti§,(M)
is unique up to essential isomorphism by Lemma 4.3.1 (1.). O

Hence, in this case,, M) is unique up to essential isomorphism. Such an ex-
ample of G, M) will be constructed in Section 12.5. This is one of the ressin
Theorem 1.1.

7.22. h=1. Puth=1. In this case we hav& = G, x T1, K; ~ U(2) x
T!, Kz~ SU3) x Tt and K ~ (SUQ2) x {€}) o A where A ~ T is a subgroup of
DxTtcU@)xT! (D ~U(1) is a diagonal subgroup &f(2)). We can easily show
A #D x{e},{e} x T! because oK,/K ~ S° and Proposition 4.1.1. From the following
lemma we see this case is unique.

Lemma 7.2.2. Let(Gy x T, M) be a G x T*-manifold which has codimension
one orbits(G, x T1)/K and two singular orbits G/U(2) and $. Then(G, x T, M)
is unique up to essential isomorphism

Proof. First we consider the slice representations. peK, ~ SU3) x T! be an
isomorphism. Then we can put the slice representatiomasp, o p: Kz >~ SU3) x
T1 % 0O(6). BecauseK,/K ~ S5 and pa({e} x T1) C C(p2(SUB) x {€e}); SA6)), where
C(E;F)={be F |ab=bafor all a € E} for E C F, the slice representation: K, >~
SU3) x T A 0(6) is as follows

. - (A -B cosfmd)lz —sin(mo)ls
p2(A+IB, cos +isinf) = < B A )( sin(md)lz;  cosfmh)ls )

for somem € N up to equivalence. Hence
K =0, %(SQE)) = p, (SA5))
_ {(( e—;ie 2 ) em) det(x) = emi@}_
From this equation, we have

Ki~U@2)x T?!

(65 21 oo ]
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Moreover we see the slice representation K, ~ U(2) x T*! 2 u(1) = SQ(2) is as

follows
,01<( e(i)G )(2 )’ ei‘/’> — g gmié

because Ketf;) = K. Therefore there is a unique pair,( o) for eachm € N. Since
we can assume the action ¢& x T! (C G, x T = G) on M is effective (up to
essential isomorphism), we can put=1. Hence there are unique slice representations
o1 and o, up to essential isomorphism.

Next we consider the gluing map. Now we can assune SQ(7)x T? as follows:

1 0 ©0
{((o @(2) 0),2) X € SU2) c SO4), ¢(z) € SQ2), ze T},
0 0 X

whereg: T! — SQ2) is an isomorphism. Becaud¢(K; G) = N(K; SQ7) x T} N
(G, x T1), we have

N(K; G)/N(K; G)° ~ Z,.

We can take one of the element M(K, G) — N(K, G)° as follows

-1 00 0
. 0 0o10],

o 10 07|

0 0 0 Iy

Put the element

1 0 0
(z, X,r):((o 0(2) O),r) € Ky,
0 0 X

wherez,r € T! and X € SU2) c SQ4). Then we have
w-(z, X,r)-wt=(z1 X, r).
So the following diagram is commutative
G xk, Ki/K ——G/K

Ry, xp R,

G xx, Ki/K ——G/K,



COMPLEX QUADRICS WITH CODIMENSION ONE ORBITS 59

where f ([g, kK])= gkK, R,(9)=gw (R,(kK)=kwK) andp((z, X,r)K)=(z"1, X,r)K.
Now p: K;/K — K1/K is the antipodal involution ofk;/K ~ S'. Hencep is extend-
able to aKj-equivariant diffeomorphism oD2. Therefore theG-equivariant diffeo-
morphism R, x p is extendable to &-equivariant diffeomorphisnX; — X;. From
Lemma 4.3.1 (2.), we seBl(R,) = M(id). Consequently®, M) is unique up to es-
sential isomorphism. ]

Consequently the following proposition holds.

Proposition 7.2.1. Let M be an G x T!-manifold which has codimension one
orbits (G, x T1)/K and two singular orbits G/U(2) and $. Then M= G; xsyg)
P3(C).

Proof. If M = G3 xgyg) Ps(C) where SU3) acts onG, naturally andP;(C) by
¢ [20:2Z) — [20: AZ], here Ae SU3) and [ : 7] € P3(C). We can easily check the
SU3)-action onP5(C) has codimension one principal orbfX3)/S(U (1) x U(2)) and
two singular orbitsSWU3)/SU3) and SU3)/SU(2).

This manifold M has an actiorp: (G, x T!) x M — M defined by

o((9, 1), [9', [20: 2]]) = [9d, [tz : Z]]

whereg e G, t e Tt and [0/, [2: Z]] € M. Then this actionp has codimension one
orbit (G2 x TY)/(SU2) x {e}) o A (A ~ T1) and two singular orbitsG, x T1)/(SUB3) x
TH = G,/SU3) and Gox T1)/(U(2)x TY) = G,/U(2). From Lemma 7.2.2, such pair
is unique up to essential isomorphism. Hence this propwsitiolds. ]

We will explain this manifold is diffeomorphic t@e in Section 12.6. Hence this
is one of the results in Theorem 1.1.

8. G/Ks~ Py(C)

AssumeG/Kg is orientable ands/Ks ~ P,(C) (s=1, 2). The goal of this section
is to prove there are two cases up to essential isomorphisrthis case. Because of
ks=2n (n > 2) and Lemma 3.2.1, we haues = K¢.

First we assume tha® = Hy x Hy x G’ x T, Ky = Hpy x Ha x G’ x TN, K; =
Hi x Hp) x G' x Th where Hs is a simply connected simple Lie groups) is its
closed subgroup@’ is a product of simply connected simple Lie groups artlis a
torus. ThenKy N Ky = Hgy x H) x G’ x T, So dimG/K1N Ky) = 4n < dim(G/K)
becauseK c K;i N K,. This contradicts dinis/K =4n — 1. Hence we can put

G=HxG xTN,
Ks=Hg x G x T
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where H is a simply connected simple Lie group ahtj) is its closed subgroup. By
Proposition 4.2.2,

(H, Hg) ~ (SUn +1), S(U(n) x U(1))) or
(SAn +2),sQn) x SO2)), n=2m+1 or

RO

(G2, U(2)), n=5.

Next we prepare the following lemma.

Lemma 8.0.1 (Theorem 1in [11]). Let G; and G, be two compact connected
Lie groups and let G- (G; x G2)/N where N is a finite normal subgroup of;& G».
If G acts transitively on Sthen one of the two subgroups of G corresponding to G
and G; acts transitively on S

Moreover we easily see the following lemma.

Lemma 8.0.2. Let H be a subgroup of Gx G, and p: Gy x G, — G, be a
projection Then the following two conditions are equivalent
1. G; acts transitively on(G; x Gy)/H.
2. p(H)=Ga.

Then we show the following lemma.

Lemma 8.0.3. H =SUn+1), Hg ~ S(U(n) x U(1)) and Hg acts on Kk/K =
§-1 transitively

Proof. If Hgy acts non-transitively orky/K = $"-1, thenV = G’ x T" acts
transitively onK,/K by Lemma 8.0.1 anK;/K = V/V’ whereV' =K NV. So we
see p1(K) = Hpy = pi(Ky) where p;: G — H by Lemma 8.0.2. Henc&/\M is a
mapping cylinder ofV\G/K; = H/H@) = V\G/K — V\G/K; = H/H(z). From the
following commutative diagram

G/Kg—— M
= P

V\G/K; = H/Hg) ——V\M
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wherei is a homotopy equivalent map, we get the induced diagram

H*(V\M) —— H*(V\G/K3) ~ H*(H/Hg)
p* =

H*(M) ——— H*(G/K)).

From this diagram we se@* is an injective map. Denote the generator by
H2(V\M) =~ H%(H/H2). Then p*(c) =u € H*(M) is a generator. Since"!=0, we
see p*(c)™! = u™1 = 0. This is a contradiction ta™?* # 0 from H*(M) = H*(Qan).

So H acts transitively onKs/K ~ $"-1. By making use of [6] Section I, we
get (H, He)) ~ (SUNn+1), SU(n) x U(1))). Hence we can pub = SUn+1)x G’ x Th
and Ks ~ S(U(n) x U(1)) x G’ x T, O

Consider the slice representation: Ks ~ S(U(n) x U(1)) x G’ x TN X O(2n).
Because the subgroup &5 which is isomorphic td&SU(n) acts transitively orKs/K =
-1 we can assume thads|syny is a natural inclusion up to equivalence. Hence
we can assumes: Ks ~ S(U(n) x U(1)) x G’ x T" X U(n) c O(2n) and ps({e} x
G’ x T") is in the center ofU(n). This impliesG’ C Ker(os) C K. HenceG' = {g}
from Proposition 4.1.1. Then we seg|sum)xu(w)x(e = Tx, fOr some integexs where
Ty . SU(N) x U(1)) »> U(n) is

A 0O .
sz( 0 det(A—1)> = (det(A~1))*A for AeU(n).

Moreover we getk ~ (SUNn — 1) x {€}) o T™! by Ks/K = -1 From Proposi-
tion 4.1.1, we sedr < 1.

Assumeh = 0. Then we can puG = SUn + 1), K; = S(U(n) x U(1)), K, ~
S(U(n) x U(1)) andK ~ (SUn — 1) x {e}) o TL. Because of the slice representation

o1: K1 = S(U(n) x U(1)) = U(n) c O(2n) and t{(U(n — 1)) =K, we have

a™ 0 0

K = [( 0 X o) e (U(N) xU()) | X eU(n —1), detX =ax?t
0 0 a

Since we haveK c K, >~ S(U(n) x U(1)), we easily see the following two cases occur;

1. Ky=Kjandx; =x, or

2. K is as follows andx; = xp = —1;

-1
KZ:{("et(é ) Z)AeU(n)}:S(U(l)xU(n)).
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In each case abovBl(K; G)/K is connected. Hence the attaching map frem
to X, is unique up to equivalence by Lemma 4.3.1 (1.). Theref@g(r{+ 1), M) is
unique in each case above.

If K, =Kji, we construct &G-manifold asM = SUn + 1) x sumxuqy " where
S(U(n) x U(1)) acts onS™ by the representatiom,: S(U(n) x U(1)) — U(n) (x =
X1 = X2) (U(n) canonically acts or5" ¢ C" x R). However this manifoldSUn +
1)x sumxu) " is a S bundle overP,(C). BecauseH °¥(S*";Q) = HO¥(P,(C);Q) =
0, we havec™! =0 for all c € H3(M; Q). Hence the cohomology ring dfl is not iso-
morphic toH*(Q2n; Q). So this caseK, = K;) does not occur.

Consequently this case Is; = S(U(1) x U(n)). Such a pair G, M) will be con-
structed in Section 12.2.

Next we puth =1. Then we can puG =SUn+1)xT!, K;=SU(N)xU(L)xT1,
Kz~ S(U(n) x U(1)) x T and K ~ (SUn — 1) x {e}) o T2. In this case the slice
representation is

0s: Ks~ SU(N) x UL) x T B U(n) c o@n).

Here the representatiopy (s =1, 2) is defined as follows;

ps(( Q det(?A—l) ) Z) = det(A 1)<z™A

wherems € Z, A e U(n) andz € T1. From Proposition 4.1.1, we saes # 0 for
s=1,2
Since p;*(U(n — 1)) =K, we have

axzM™m 0 0
K= 0 X 0],z]|zeT: XeU(n—1), al™z™detX =1}.
0 0 a

Now we seeK C K, >~ S(U(n) x U(1)) x TL. Hence we easily have the following two
cases

Ko=K; and X;=Xp, m =my
or
Ko=SU@L) x U(n) x Tt and x3 =X =41, my = +my.

Moreover we see K, = S(U(1) x U(n)) x T* and x; = X, = —1 thenm; = —m, = 0.
This contradictsm;, m, # 0. Hence there are following two cases in this case;
1. Ky=Kjandx;=x, m=my #0 or

2. Ko=SU@)xUM) xTrandxi =% =1, m=m, #0.



COMPLEX QUADRICS WITH CODIMENSION ONE ORBITS 63

In all cases aboveN(K; G)/K is connected. Therefore the paBWyn + 1) x T, M)
is unique in those cases, because of Lemma 4.3.1 (1.).
If Ky =K4, then we construct such manifod as SUn+1)x TY) X U (M)xU(L)xT?
S where S(U (n) x U (1)) x T! acts S*" by the representatiop; = p,. HoweverM is
a S bundle overP,(C). This is not a rational cohomology complex quadric by the
same argument of the cabe= 0.

ThereforeK, = SU (1) x U(N)) x TL, X1 =%, =1 andm=my =m, #0. Then we
have {Ip+s1} x Zm € K N ({lne1} x T C {Ins1} x TL. Hence 8UN + 1) x T, M) is
essentially isomorphism for ath € Z — {0}. Moreover we can assume the p&i,(M)
as U(n+1), M) up to essentially isomorphism becau8g(n+ 1) xz,., T* ~U(n+1)
andZp1 = {(Zh1, zH) | 2" =1} c KNC(SUNn+1) x T1), whereC(SUN+1)x T1)
means the center 8Un+1)x T (remark whenm; =m, =2, thenZ,.; ¢ K). Hence
we get the unique paitJ(n + 1), M) in this case and such pair will be constructed in
Section 12.2.

9. P(G/Ky;t) = (1 +tk~Da(n), ky is odd: Preliminary

AssumeG/Ki, G/K, are orientable,P(G/Ky;t) = (1 +t*1)a(n) andk, is odd.
The aim of this section is to prove Proposition 9.0.1. But G’ x G” and K1 = K} =
K; x G” (by Lemma 3.2.1). First we prove the following technical tam

Lemma 9.0.1. Let V C G be a subgroup such that
7% H*(V\G/Ks) — H*(V\G/K) is injective
p*: H*(V\G/K;) — H*(G/K;) is injective
g: V\G/K; = V\G/K
where s+r =3, n: V\G/K — V\G/Ks and p: G/K;, — V\G/K, are projections
q: V\G/K; - V\G/K is the inverse of the natural projection\G/K — V\G/K;.

Then f: H*(V\M) — H*(M) is injective where £ M — V\M is a projection and
we have H(V\G/Kg; Q) =0.

Proof. Consider a diagram

G/Ks — M G/K
S
V\G/Ks —2 V\M 2 V\G/K,

1%

= q

V\G/Ks B V\G/K
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whereis, ir, js, jr are natural inclusions. Now\M is a mapping cylinder of
V\G/K; = V\G/K 5 V\G/Ks.

Hence js is a homotopy equivalent map. So the induced map H*(V\G/Ks) —
H*(V\M) is an isomorphic map and the above diagram induces thewfoiip com-
mutative diagram;

H*(G/Ks) < — H*(M) — > H*(G/K,)
e
H*(V\G/Ke) 2 H*(V\M) —— H*(V\G/K,)
= q* ~

H*(V\G/Ks) x H*(V\G/K).

Therefore we havej* is an injection, because of the assumptions (s injective,
g: V\G/K, = V\G/K) and gq* o 7* o j& = j*. Hence f* is an injection because
ifo f*=p*o |’ is an injective map by the assumptiop*(is injective).

Assume H2(V\G/Kg; Q) # 0. Then we can take some non-zero element
H2(V\G/Ks) such thatf*o(j&)"1(c’) =c € H¥(M). Hencec® ={f*o(j&)1(c)}1?" #£0
becauseH*(M) ~ H*(Q2,) wheren > 2. Therefore 0# (¢')>" € H*(V\G/Ks). This
contradicts dimy\G/Kg) < dim(G/Ks) < dim(M) — 2 =4n — 2. ]

Hence we can prove Proposition 9.0.1.
Proposition 9.0.1. Kj acts transitively on K/K.

Proof. If K; acts non-transitively orK;/K = S4-1 then G” acts transitively on
K1/K by Lemma 8.0.1. Hence(K) = K; = p(K1) by Lemma 8.0.2 wherg: G — G’
is the natural projection. Pup(Kz) = Kj. Then K}/K is connected, because the
induced mapp”: Kp/K (= S¢1) — K,/K] from p: G — G’ is continuous. Hence we
seeKj is connected from the fibre bundie; — K, — K}/K; and the connectedness
of K;. Now K7 = p(K) C p(Kz) = K; C G'. Therefore rank; = rankG’ = rankK3.
We also haveK,/K] and G'/K} are simply connected, because connected Lie groups
K1, K5 and G’ have same rank. So we get

(21) P(G/Ky;t) = (1 +t*Ha(n) = P(G'/K1;t) = P(K5/KY; t)P(G'/K5; t)

by G/Ki = G'/Kj, the fibrationK,/K; — G'/K] — G'/K, and H®Y(K}/K}) =0
HOMG'/K}).

Since Ky/K = K2/K° is an even dimensional sphe@:~1 we see ranik =
rankK®. So rankKi N K2) = rankK® because oK° c K1 N K2. We also have{; N
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K2)/K® is connected, because of the homotopy exact sequence—~ w1(K5/K}) —

mo((K1NK32)/K®) — mo(K3S/K®) — - - ) for the fibration K1NKJ)/K® — K2/K° LN
K3/K1 (where p” is the induced map fronp: G — G’) and the simply connected-
ness ofK;/Kj. Now we haveH%((K, N K9)/K°) = HOU(K,/K}) = 0. Therefore the
equation

(22) P(K9/K®t) = 1+t 1 = P(K,/K]; )P((K1 N KY)/K®; t)

holds by KS/K° = S%~1 and the fibration K1 N K2)/K® — K$/K° L4 K;/Ki. From
the equation (22), we hav@(K,/K;;t) = 1 +t~1 or 1. So we seeH?(G'/K)) =
H?(G"\G/K,) # 0 from the equation (21).

On the other hand we have”’\G/K = G"\G/K; = G/K;. Moreover we see
m*: H*(G'/K3) — H*(G"\G/K) = H*(G'/K}) is injective by the fibratiorkK,/K; —
G'/K; 5 G'/K}. So this case satisfies the conditions of Lemma 9.0.1 where
G”, s=2 andr = 1. However the facH?(G’/K}) = H3(G"\G/K3) # O contradicts
Lemma 9.0.1. Therefor&; acts transitively orkK/K. ]

From the next section we will study the case”fG/K1;t) = (1+t*2Da(n), ko is
odd. To classify such case, we will consider two cases wiBetk; is decomposable
or not.

10. P(G/Kq;t) = (1 +tke~Ha(n), k, is odd: G/K; is decomposable

AssumeG/K;, G/K, are orientable,P(G/Ky;t) = (1 +te~1)a(n), ko is odd and
G/K; is decomposable. The goal of this section is to prove theee ugsique G, M)
up to essential isomorphism in this case. In this case we KaveK? becausek, > 2
and Lemma 3.2.1. Because/K; is decomposable, we can p@ = H; x Hy, x G”
and K; = H(l) X H(z) x G” where Hl/H(l) ~ Skz_l, H2/H(2) ~ Pn(C). Then G/Kl =
Hi/H x Ha/Hz). So by Propositions 4.2.1 and 4.2.2,

(H1, Ha)) = (Spinkz), Spirtk, — 1)) or
(G2, SUR)) (k2 =7).
(H2, H) = (SUN + 1), S(U(n) x U(1))) or
(Spir(n +2), Spin) o TY)  (n is odd) or

n+1 n—1 .
(Sp(T>,Sp( 5 )xU(l)) (nis odd) or

(G2,U(2) (n=53).
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10.1. Candidates for G,K;). The goal of this section is to prodg = 2n — 2,
k, = 3 and the pair G, K;) is one of the following

(G, Ky) = (Sp(l) x s;(%l) % G, T x s;(”%l) % U(1) x G”)

orn=29,
(G, K1) = (SH1) x Spin11) x G”, T x Spin9)o T x G”)
orn=2,
(G, K1) = (SH1) x SUB) x G”, T x S(U(2) x U(1))).
First we prove the following proposition.

Proposition 10.1.1. Hyy acts transitively on K/K.

To show Proposition 10.1.1, we prepare some notations.
Let pi: G — H:, p: G — H; xG” be the natural projection, and lbf: H; — G,
h{ : H; x G” — G be the natural inclusion. Put

Lst = pt(Ks), Lt = pe(K), L,st = pt/(Ks), L{ = p{(K),
Nst = h2(Ks), Ny =hi(K), N =hKs), N/ =hK).

Then Ngt < Ls, Ny <Ly, Ng <Ly and N/ <« L; where A< B means a groupA is a
normal subgroup oB. In particularLy = Nyt = Hyy and L}, = Nj, = Hy x G” by the
equality Ky = H(l) X H(z) x G”.

Let us prove Proposition 10.1.1.

Proof of Proposition 10.1.1. IHp) does not act transitively ofk,/K = Sl
then Hgyy acts transitively onK,;/K by Lemma 8.0.1 and Proposition 9.0.1. Hence
Lo = Hp) = L1z by Lemma 8.0.2.

PutV = H; x G”. Now Lx/Hp) (¥ V\K,/K) is connected because the induced
map p,: Ko/K — V\K3/K = La/Hp) is continuous. Hencé; is connected by the
fibration Hiz) — Lo — Loo/Hp). Sincel, = Hpy C Loz C Hy, we have rankdp) =
rank Loz = rankHz and HO%(L 5,/ Hz)) = HO%(H,/L2,) = 0. Becausd.», is connected
and rank_,, = rankH,, we seeH,/L2, = V\G/K; is simply connected. Hence the map

" H*(Hz/L22) (= H*(V\G/K2)) — H*(H2/Hp) (= H*(V\G/K))

is injective from the fibrationLs/H@z) — H2/Hp) 5 Hy/L2,. Moreover we have
G/Ky1 = Hy/H@ x Hao/Hpy and VAG/Ky = Hy/Hp) = V\G/K where the last diffeo-
morphism defines by the natural projection. So we haiueH*(V\G/K;) - H*(G/K})
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is injective wherep: G/K; — V\G/Kj is a natural projection. Thereforé* is an
injective homomorphism from Lemma 9.0.1 (the case 2, r =1, V = H; x G),
where f*: H*(V\M) — H*(M) is an induced homomorphism from the natural pro-
jection f: M — V\M.

Now we seeV\M is a mapping cylinder ofV\G/K — V\G/K3 >~ Hy/L2;.
Hence we can considad*(V\M;Q) C H*(Py(C); Q) by H*(V\M)x H*(Hg/L22)£>
H*(Hz2/Hg) ~ H*(P,(C)). So we can take (&) ae H2"(V\M) C H*(Py(C)) for
some (0Z) m=<n. If m#n, then we can putf*(@@ =ic™ for 0<m<n and
(0% A eQ wherec is a generator inH?(M). However there is arl such that
n<Ilm<2n and f*@)=1'd™#0 in H2M(M) because ofH*(M)~ H*(Qz,). This
contradicts dinH,/Loo<2n. Hencem=n. Then we have *(P,(C))D>) H*(V\M)~
H*(Hp/L22) ~ H*(S?") and dimHy/L,;=2n. On the other hand, by the fibration
L22/H(2)—> Hz/H(z) (N Pn(C)) — H2/L22, we also haVEH(z): L. So Hz/H(z)E
Ha/L2; ~ S".  This contradicts Hy/Hz) ~ Pa(C). Consequently H2™(V\M) ~
H2™(H,/L2) =0 for all m#0, so we havel,, = Hy. Therefore diml,y/L, (=
H>/Hg) =2n by L>=H). From the surjectiorkK,/K =gl 5 V\Ky/K = Lyy/Lo,
we seeky, — 1>2n. This contradictsk; +k,=2n+1 andk; > 2. O

From Proposition 10.1.1H5 acts transitively orK;/K. ThenHg)/N, = K /K =
Sa-1, Since{pt} = H)\K1/K = (Hgy x G”)/L7, we have the following lemma.

Lemma 10.1.1. L; =Hg x G” and Ly = Hpy = L1
Moreover we have the following lemma.
Lemma 10.1.2. dimL}/N; <3.

Proof. Consider the two homomorphisrﬁsql:—m> L; and K BoPelk L,. Then

we seeq; and g, are surjective, Keq; = ({e} x H))NK =Ny = hgl(K) and Kergp =
(fe} x Hy x G”)N K = Nj = (h})}(K) by the definitions. So we have

dmK —dimL} =dimN;, dimK —dimL,=dimN;

Hence dimL}/N; = dimLy/N,. SinceLy/N2 (N2 <Ly C L1z = Hp)) acts freely on
Hiz) /N2 = S~ we have dimi,/N, < 3 by [4] 6.2. Theorem in Chapter IV. [

Let us prove the following lemma.
Lemma 10.1.3. Ly; = Hj.

Proof. First we havel,; is connected becausk,/K is connected,Hiyy = Ly
(Lemma 10.1.1) is connected and the mpgx K»/K — Lz1/L1 = Loy/Hy induced
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by p1: G — Hj is continuous. Consider the fibration
L21/H@ — Hi/Hgy) — Hi/Los.

Then we have rankly) = rankLy; = rankHy by Higy = L1 C Loy € Hi. So we have
H*(Hl/H(l)) ~ H*(Sszl) ~ H*(Hl/L21) [ H*(Lzl/ H(l)). Therefore we se& 1 = H(l)
or Hj.

If we put Loy = Hy =Ly, then Hy x G”)\M = [0, 1] x Hy/H(1y) by Lemma 10.1.1.
Consider the following commutative diagram

Hi/Ha x Ha/Hp = G/Ki ————M
¢ f
Hi/Hw = (Hz x G\G/Kyi —— (H, x G")\M.
Here j1 is a homotopy equivalence. Hence the induced homomorpbjisn); is injec-
tive. Thereforef*: H*((Hy x G”)\M) ~ H*(S2™1) - H*(M) ~ H*(Q,,) is injective.

Hencek, > 2n+1 by the ring structure oH*(Q2,). But this contradictk; +k, =2n+1
andk; > 2. Hence we seé»; = Hj. O

Hence we can prove the following lemma.

Lemma 10.1.4. N; # H.

Proof. SupposeéN: = Hpgy. Then Hgy = N1 € Npi < Lpg = Hy by Lemma 10.1.3.
Since Hy is a simple Lie group, we seB; = H;. Hence we can puK; = H; x X
andK = Hpy x X where X < Hy x G”, because oN; = Hiyy = L1 (by Lemma 10.1.1).
ThereforeH;\M is a mapping cylinder oH;\G/K = (Hz x G”)/X — H;\G/K; =
H,/H). Because of the following commutative diagram

Hi/H@y x Hz/H) = G/Ky ——— M
lQZ J/p
Hz/He) ¥ H1\G/K1 ——— H)\M
wherei is a homotopy equivalent map, we have the following inducedjrdm
H*(Hi\M) ——— H*(Hy/H)
p* a;

H*(M) —— H*(H1/Hq)) ® H*(Hz2/H).
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Hence p*: H*(H1\M) — H*(M) is an injection by the injectivity ofg; o i*. This
contradictsH*(M) ~ H*(Q2,) and H*(H1\M) >~ H*(Hz/H(2)) ~ H*(P,(C)). O

Next we show the following proposition.
Proposition 10.1.2. k; =2n—2, k; = 3 and (H1, H) = (SH1), TY).
Proof. Let us recall,

(H1, Hay) = (Spintkz), Spinkz —1))) or (G2, SUR)): kz = 7.

If the odd numberk; > 6, then H;) is a simple Lie group. We havél; is a nor-
mal subgroup ofL; = Hgy x G” and dimL’/N; < 3 by Lemma 10.1.2. Henchl; =
Hy x X where X is a normal subgroup o&”. ThereforeN; = H(1y. This contradicts
Lemma 10.1.4. Henck, = 3 or 5.

If ko =5, then Hy, Hy) = (Spin5), Spin4)). Because of dinhj/N; < 3 (Lem-
ma 10.1.2) and.} = Spin4) x G” (Lemma 10.1.1), we have dify Z 0. So dimNy; >
dimN; > 0. Now Hj is a simple Lie group andN,; < Lo; = Hy from Lemma 10.1.3.
Hence No; = H;. This implies K, = Hy x Y whereY is a subgroup ofH, x G”.
BecauseK; = Hpy x Hp) x G”, we seeK C K1 N Kz =Hy x (YN (Hp x G") C Ka.
Consider the fibrationK; N K7)/K — Ky/K — K,/(K1 N Ky) that is

(Ho x (YN (Hg x G"))/K = K2/K = Kz/(H) x (Y N (He) x G"))).
BecauseK,/K ~ Se-1 ~ Hi/Ha), K2 =H; x Y and H; acts onKy/K non-trivially
(because of the relatiod C KiNH; = Hy)), we haveYN(Hz)xG”) =Y andK = KN
K2 = Hg) x Y. HenceN; = Hyy. This also contradicts Lemma 10.1.4. Consequently
ko =3. Henceky =2n -2 by ky +ko =2n+ 1, and Hi, Hy) = (Spin3), Spin(2)). In

particular we can considetg, Hy) = (SH1), T1) by (Spin(3), Spin2)) ~ (SH1), T1).
O]

So H) acts transitively onK;/K ~ $*"~2 from Proposition 10.1.1 and 10.1.2.
Hence by Proposition 4.2.2 and [6] Section I, we have theofahg three cases where
ky=2n—2, ky =3,

n+1

G=SH1) xS x G”,

1
Ky=T!x Sp(”7> x U(1) x G,

andn =9,
G = SH1) x Spin11) x G”,
Ki=T!x Spin9)oT! x G,
andn =2,
G =S{1) x SU3) x G,
Ki=T!x S(UE)x U®L)) x G”.
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So we see the above three cases occur in this case.

In the above two caseK; = K3 becausen is an odd number and Lemma 3.2.1.
HenceK = K° becauseK,/K = S is simply connected.

In next three sections we will discuss slice representatimmd attaching maps in
each case.

10.2. G=95p(1) x Sp((n+1)/2) x G”. If G =5SH1) x SH(n + 1)/2) x G”, then
Ki=T! x S(n —1)/2) x U(1) x G”. Now Sf(n — 1)/2) x U(1) acts transitively
on Ki/K = S3 pecause of Proposition 10.1.1. So we can assume the redtrict
slice representation |sgn—1)2) IS a natural inclusion t&Q2n — 2) for n > 3, be-
causeSp(n — 1)/2) acts transitively orky/K = =3 througho1|sgn-1)2. Then we
have o1(T* x {€} x U(1) x G”) C C(o1(SH(n — 1)/2)); SO2n — 2)) ~ SK1) where
C(E;F)={g e F | gk=kg for all k € E}. Therefore we have

G"=S[1), T, or {e
by Proposition 4.1.1 and we can assume the slice reprementx

n—1
o1 Ky LA Sp(1) x Sp(T) L SQ2n—-2)c O(2n —2)

such thate|sgn-1)2): SH(n — 1)/2) — {e} x SH(n — 1)/2) is isomorphic, p(T* x
U(1l) x G”) ¢ SH1) x {e}, wherep is a canonical representation induced $g1) x
SH(n — 1)/2)-action onH"~D/2 (~ R2"=2) for n > 3, that iSp|exsgn-1)/2) IS the nat-
ural inclusion.

Moreover we have the following lemma.

Lemma 10.2.1. G” ={e} or T! and we can assume the slice representation as

n—1
o1 Ky AR U(l) x Sp<7> LA SQ2n—-2)c O(2n—2)

where ¢|sqn-1)2): SH(N — 1)/2) — {e} x SH(n — 1)/2) is isomorphi¢c (T x {e} x
U(l) x G”) c U(1) x {e}.

Proof. SupposeG” = SH1). Then the restricted representatigf, yi)xe IS
r: T! x {e} x U(1) x G” — SH1). BecauseSp1) is a simple Lie group/|sqy) is
an isomorphism or a trivial map. H|sg1) is an isomorphism, then we have Kerg
T1x {e} x U(1) x {e} becauseC(r (SH1));SH1)) ={1, —1}. Since Ker() C K, we have
Ha =T! C K. This contradicts the facHy) = T! ¢ K from Lemma 10.1.4. So we
seer |sy1) is trivial and S(1) C Ker(r) C K. But this contradicts Proposition 4.1.1]
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AssumeG” = T, Then we can define the representatioriK; = T x S{(n—1)/2) x
U(1) x Tt = U(1) x SE(n — 1)/2) as follows;

go(x, <'§ 8) z) — (xPyiZ', A)

where p, g, r are inZ. Now we can assume the (1) x S(n — 1)/2)-action p on
S8 ¢ H-D/2 a5 p((t, X), h) = Xht (n > 3). Hence we have

xPydz" 0 O n_3
K=131x, 0 B 0],z BeSp(—),x,y,zeTl
2
0 0 vy

where p #0 by N; # T (by Lemma 10.1.4) because ofl‘l(SQZn —3)=((po
¢)~1(SQ2n — 3)) = K. Moreover we can assump > 0 up to equivalence for the
slice representation;: K3 — O(2n — 2).

SinceK,/K = &, p> 0 andL,; = SH1) (by Lemma 10.1.3), we have

h 0 0 n—3
KZ:[(h,(O B 0),2) BGSF(T>,heSF(1), y,zele,
0 0 vy

that isq =r = 0. Therefore we have” = T! c Ker(o2) C K by the slice representation
02: K, — SQ3). This contradicts Proposition 4.1.1. Hence we h&/e= {e}.
Moreover, from the same argument, we can put 1, g =0 and we have

n—1
Ki=T!x s;(T) x U(1),

0

o)) BeS ),hesm),yeTl},
y

)) BeS T),x,yeTll

(o8 ) em

We also see the slice representatign K, — SQ(3) is unique up to equivalence.
Next we see

w

n_

N

-~
I
rm——
Y
X
Y
O O X
O WO oo
< O o
>
|
w

and

N(K; G)/K =~ (N(A; SH1) x SH1))/A) x (N(U(1); Sp(1))/U (1)),
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whereA ~ T is a diagonal subgroup i81)x SH1). If we denote bya the generator
of N(A;SH1) x SH1))/(N(A; SHL) x SH1)))° 2 N(A; SH1) x SHL))/(TL x TY) ~ Z,,
then xa=ax for all x € T1. Hence we can consider the following diagram

G xx, Ka/K ——G/K

IxRy Ry

G xx, K2/K ——G/K.
Here f([g, kK]) = gkK and

00
a= (a, ( | o)) e N(K; Ka).
0 1

We havegkKa = gkaK for all g € G and k € K,. So this diagram is commuta-
tive. In this caseR, is the antipodal involution orK,/K = S, HenceR, is ex-
tendable to aK,-equivariant diffeomorphism orD3. Hence M(R,) = M(id) from
Lemma 4.3.1 (3.). Sinc&N(U(1); Sp1))/U(1) ~ Z,, there are just two manifolds up
to essential isomorphism. Hence we get the following prijoos

o oL

Proposition 10.2.1. Let (G, M) be a G-manifold which has codimension one or-
bit G/K and two singular orbit GK; and G/K; where G= Sp1) x SH(n + 1)/2),
Ki=T!xSa(n—1)/2) x UQD),

h 0 0 n_3
KZ:[(h,(O B o)) BeSp(T>,heS[:(l),yeT1]
0O 0 vy

0

o)) BeSp(n_j),x,yeTll_

y

and

-~
1
rm——
Y
X
—
o O X
o W o

Then there are just two sudiG, M) up to essential isomorphism which are MQz,
and M= (S1) x Spk + 1)) X SH1)x SHK)xU (1) S**2 where k= (n—1)/2.

Proof. By the above argument, this case has just two types ugsdential iso-
morphism. IfM = Q2,, then this case will be realized in Section 12.3.Mf= (SH1) x
SHk + 1)) xsyxspr<u) S¥*2 such thatk = (n — 1)/2 and S**2 ¢ R® x HX has the
trivial U(1)-action, the canonicabp(1)-action onR® and the canonicaBp(1) x SpKk)-
action onHK. Then this manifold has th8p(1) x Sk +1)-action. We can easily check
this manifold satisfies the assumption of this proposition. ]
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M =(SH(1) x SpK+ 1)) X sy« spiy<u 1) S**2 is the fibre bundle oveBp(k+1)/U (1) x
SHK) = Py.1(C) with the fibreS**2. We see easily chedk °4( Py, 1(C)) = H4d(S*+2) =
0 and Px.1(C) is simply connected. Hencp*: H*(Px+1(C)) — H*(M) is injective
wherep: M — Py.1(C) is a projection. Hence thek2 2 times cup product af e H2(M)
is vanishing inH**4(M). Hence this is not a rational cohomology complex quadric. S
this case is unique up to essential isomorphism and s@¢htM() will be constructed in
Section 12.3.

10.3. G =Sp(1) x Spin(11)x G”. If G =SH1) x Spin(11) x G”, then we have
Ki=T!x Spin9)oT! x G”

and G” = {e} or TL. Leto;: Ky — O(16) be the slice representation. Then the re-
stricted representation |spirg) iS the spin representation ®Q16) and we can easily
show C(o1(Spin(9)); SQ(16)) is a finite group. So we have (T x {e}) = {I16} because
T! x {€} C C(Spin9); K1), wheree e Spin9) o T! x G” and 15 € O(16) are identity
elements. Therefore we sée > Ker(oy) D T x {€}. So N; =h7}(K) =T =Hy), re-
call h; denotes the natural inclusiod; — G. This contradicts Lemma 10.1.4. Hence
this case does not occur.

10.4. G=95p(1) x SU(3) x G”. If G=S[H1) x SU3) x G”, then we have
Ki=T!x S(U(2) x U(1)) x G”

and G” = {e} or T. Put the element irK; by

(x, (yOA y?z )) =(x,yA) for h=0,

(x,(yOA y02>z>=(x, yA z) for h=1

wherex,y e T!, Ae SU2) andze T for h=1. We can assume the slice represen-
tation o1 K1 > T — 0O(2) by

kX, YA =xPy?® for h=0, «(x, yA z)=xPy?Z for h=1.

Because of Proposition 10.1.1, we haye# 0. Especially we can assunge> 0 up to
equivalence. Whein =1, we see # 0 from Proposition 4.1.1.
Now K = Ker(o1). So we have

K={(x yAIxPy*1=1 (h=0) or {(x,yA 2)|xPy*Z =1} (h=1)

and K° >~ SU2) o T™1. Moreover we se&$ ~ SU2) o X o T" where ¥, T?) ~
(S(1), T1) because oK9/K° = S?. Hencep,(X) ~ SQ3), SU2) or {e} wherepy: G —
SUQ3).
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If pa(X) # {e} then we seeSU2) o pa(X) = p2(K3) C p2(G) = SU3). Hence we
have p2(X) >~ (p2(X) o SU2))/SU2) ¢ N(SU?2); SU3))/SU?2) ~ T*. But this contra-
dicts dim(p(X)) = 3.

Therefore po(X) = {e}. Consequently we haviX = SH1), K, = X x K; and K =
T x K, = Hguy x Kj, whereK) ¢ SU3) x G”. HoweverN; = T! = H(;) contradicts
Lemma 10.1.4. Hence this case does not occur.

11. P(G/Kq;t) = (1 +tke—Ya(n), ky is odd: G/K; is indecomposable

AssumeG/Ki, G/K; are orientable,P(G/Kjy;t) = (1 +te~ha(n), k. is odd and
G/Kj is indecomposable. In this case = K{ by k; > 2 and Lemma 3.2.1. Because
G/K1 is indecomposable, we can p@ = G’ x G” and K1 = K] x G” whereG' is
a simple Lie group ands” is a direct product of some simple Lie groups and a toral
group. The pair @, K}) which satisfies

P(G/K1;t) = P(G'/K;t) = (L +t2)(L+t7+. - - +%)

where 2 =k, — 1 andb = n is locally isomorphic to one of the pairs in Proposi-
tion 4.2.3.
In the beginning, we will find the candidates fo&’( K7).

11.1. Candidates for G’,K]). The goal of this section is to prove the pair
(G, K}) is one of the following

(Spin9), Spin6) o TY) (ky =8, kn=n=7)
or
(SUB), T?) (k1=2, k=3, n=2).

Now k; > 2 andk; +k, =2n+1. So we can easily see the following three cases
in Proposition 4.2.3 do not satisty = 2(b — a) > 2.

(SQ2n+2),S02n) x SQ2)), a=b=n,
(8A7),U(@d), a=b=3,
(SH3),U(3)), a=b=3.
Moreover we see the following six cases in Proposition 4.26tradict Proposi-
tion 9.0.1 by the paper [6] Section I.
ko —1

(SQkz +2), SQk» — 1) x SA2)), a=
(SO10),U(5)), a=3, b=7,

,b=ky, (k2 #7)
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(SH3), SH1) x SH1) x U(1)), a=2, b=5,
(G2, T?), a=1,b=5,

(Fs, Spin7) o TY), a=4, b=11,

(Fa, SA3)0 TY), a=4, b=11.

Therefore in this case we have that

(G', K}) = (Spin(9), Spir(6) o T*) ~ (SQ9),U(4)) (=8, ko=n=7) or
(SU3), T?) (=2, k;=3,n=2) or
(SUGB), S(UB)x U(R))) (ki=4, k=5, n=4) or
(SH4),U(4)) (i=8,kr=n=7)

by Proposition 4.2.3.

If (G, Kj) = (SU5), (UB) x U(2))), thenk, = 4. HenceK;/K = S*. Since
U(2) (c K}) acts transitively orK1/K by Proposition 9.0.1, we can assume the slice
representation as;: K; — U(2) - SQ4). Therefore we se&” = T" (h < 1) and
K ~ S(U(3) x {e}) o T"?! by Proposition 4.1.1 and Proposition 9.0.1. In particular w
seeK,; D K D SUB3). SinceKy/K = S* (K, K)= (Ao N, Bo N) where @A, B) ~
(SQ5), SO4)) by Proposition 4.2.1. S& ~ SU3) x T"*! containsSQ4) ~ SH1) x
SH1) as a normal subgroup. But this is a contradiction. Herig tase does not
occur.

If (G, K7) = (SH(4), U(4)), thenk, =8 andK;/K = S’. From Proposition 9.0.1,
we can assume the slice representatiorvgsK; — U(4) — SQ@8). SoG” ={e} or
T! by Proposition 4.1.1. Sinc&,/K = S* and K; = U(4) or U(4) x T!, we have
(K2, K) & (G20 T, SUB)oTY) or (GooT?,SUB)oT?) by Proposition 4.2.1. Therefore
we getSp4) D G,. However the following proposition holds.

Proposition 11.1.1. SH4) » G..

Proof. AssumeSp4) D G,. Let V be theSg4)-C irreducible 8-dimensional rep-
resentation space (complex dimensional). Then we can @enSg4) acts effectively
on V by the natural representatign: Spg4) — U(8). We see the restricted represen-
tation to G, plg, is not trivial. As is well known the least dimension of noivial
complex representation @b, is 7, and there is no 8-dimensional irreducible represen-
tation of G, (by Section 5 in [20]; the representation ring @ is Z[A1, A2] where
dimi; =7, dimA, = 21). SinceV is an 8-dimensional space, there is an irreducible
decompositionV =V’ @W whereV’ is a complex seven dimension@h-space which
has a representatiop|c, and W is a complex one dimensional space which has triv-
ial Gy-action. ThenV has the structure mag: V — V such thatJ is an Sg4)-
map, J?(v) = —v and J(zv) = zJ(v) for ze C andv € V (see [1] 3.2). Moreover
J(w) € W for w € W becausel] is a G, (C SH4)) map. HoweveW is a complex
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one dimensional space, so this contradMIsdoes not have such map. Therefore we
seeSH4) 2 G.. L]

Hence the following two cases remain.

11.2. @,K}) =(Spin(9),Spin(6)o TY). If (G', K;) = (Spin(9), Spin6)o T1), then
ki =8. SoKy/K = &, henceG” = T" (h < 1) from Proposition 4.1.1 and Proposi-
tion 9.0.1.

Assumeh = 1. SinceK,/K = S5, we see Kz, K) =(G20T2,SU3)oT?). Consider
the slice representatios,: G,o0 T? — SQ(7). BecauseK, acts transitively ork,/K =
S°, the restricted representatian|g, is a natural inclusion. S&(02(G2); SQ7)) =
{e} whereC(E; F) ={g € F | gk=kg for all k € E}. ThereforeG” C Ker(o,) =
T2 K. Now G” =T is a normal subgroup oB. This contradicts Proposition 4.1.1.
Henceh = 0.

We getG” = {e} and G, K1) = (Spin(9),Spin(6)o T1). Sinceh=0 andK,/K = S°,
we see Ko, K) = (G, o T%, SU3) o TY). Hence we can easily show that the slice
representationr,: K, — SQ7) is unique up to equivalence (especialyit: is trivial)
and the slice representatien: K; — SQ@8) is decomposable as follows

K1 =Spin6)o T % U@) S sqE),

where ¢ is a canonical inclusion ang(Spin(6)) = SU4) (¢lspine is isomorphism).
Then there are two slice representatians where areg|t: is trivial or non-trivial.

If ¢|t1 is non-trivial then we seep(T!) = A where A ~ T! is a diagonal scaler
matrix in U(4) becausep(Spin6)) = SU4) and C(SU4);U(4)) = A. So we have
a{l(sq7)) =K =SU3)oT! C Spin6)oT! (= SU4)oT?). Let V be theSpin9)-R ir-
reducible 9-dimensional representation space. Then wecoasiderSpin9) acts onV

by the natural representatign Spin9) — SQ9). So we see the restricte®lf4)o T1-
representatiors; = plsyayr: iS non-trivial ands;: SU4)o Tt — SQB) c SQ) is the
natural inclusion. Moreover from the restrictel)3) o T1—representatiorsl|sq3)oT1
we have an irreducible decomposition = V8 @ W3, where V6 ~ C2 is a SU3) o
T-irreducible 6-dimensional space ami® is a 3-dimensional space who$ti3) o
Tl-action is trivial. On the other hand from the restrict&p o T!-representation
S = Ple,.Tt, We have the decompositiodf = X’ @ Y? where X’ is a Gy-irreducible
7-dimensional space and? is a T!-irreducible 2-dimensional space. Hence from the
restricted SU3) o T!-representation, we have the decompositdr= X® @ R @ Y2.
SinceK € K1NKz=SU4)o TN G,0 T, we seesi|sysyt: = Selsyz)t:. However
two decompositions/8 @ W?* and X® & R @ Y? are different decompositions because
the former one has triviaWw® and the other has triviaR. Henceoy|t: is trivial.
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Moreover we see
N(K; G)/N(K; G)°
= N(SU@3) o T*; Spin(9))/N(SUB) o T*; Spin9))°
~ N(SU3) x SQ2); SA9))/N(SU3) x SQ2); SQ9))°
~Zo®Zo.

Here we can puZ, ® Z, ={l, «, 8, a8} where

s 0 0 O 0 13 0 O
o o1 o0 11z 0 0 o0
0 00 -1 0 0 0 -1

for the natural projectiomp: Spin(9) — SQ9). Thena satisfiesa[ A, t] =[A, t~Ya for
an element A, t] in Ky = Spin6) o T (A € Spin(6) andt € T'). Hence the diffeo-
morphism

RaXid:GXKl K]_/K —)GXK1 K]_/K

defined by R, x id([g, [A, 1]K]) = [ge, [A, 1]K] is well-defined (remark A, t]1K =
[A 1]K by the relationT! ¢ K c K; where 1e T?! is the identity element). Now
the following diagram is commutative;

G xx, Ki/K ——G/K
R, xid Ry

G x, Ki/K ——G/K

where f (g, kK) = gkK and R,: G/K — G/K is defined byR,(gK) = gaK. There-
fore R,: (3(G xk, D8) =)G/K — G/K is extendable toR,: G xk, D& — G xy, D®
becausdd: K;/K = S’ — S’ = K;/K is extendable tad: D8 — D8 So we see two
manifolds constructed by attaching mapsand « are equivariantly diffeomorphic by
Lemma 4.3.1. We also have two manifolds constructed by ltigcmapsg and oS
are equivariantly diffeomorphic, becausg - 8 = « and the abover, is extendable to
R,. Hence in this case there are just t@manifoldsM up to essential isomorphism.
Hence the following proposition holds.

Proposition 11.2.1. Let(Spin9), M) be a Spif9)-manifold which has codimension
one orbits SpifB)/SU3)o T and two singular orbits Sp{®)/K1 and Spirf9)/ K, where
K1 =Spin6)o Tt and K, = G, o TL. Then there are just two sudspin(9), M) up to
essential isomorphisythat is M = Q14 and M = Spin(9) X spirzyt: SH.
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Proof. From the above argument this case has just two sBp(9), M) up to
essential isomorphism. 1M = Qq4, then we will be constructed in Section 12.4. Put
M = Spir(9) x spirzytr S such thatT* acts S ¢ R® x R’ trivially and Spir(7) acts
canonically onR” and acts onR® through the spin representati®pin(7) — SQ@8).
Then this manifold has a canonic8pin(9) action and satisfies the assumption of this
case. O

But M = Spin9) xspinz)t: S* is the fibre bundle oveSpin9)/Spin(7) o Tt =
Q7 (~ Pw(C)) with the fibre S'*. Hence this is not a rational cohomology complex
quadric. So this case is unigue up to essential isomorphisinsach G, M) will be
constructed in Section 12.4.

11.3. @,K)=(SU(),T?). If (G, K})=(SUB),T?), thenk, =2. HenceG" =
Th andh < 1. FromK,/K = & and Proposition 4.2.1, we haw€d = Ao N and
K° = A’ o N such thatA, N are connected normal subgroups i¥§ and (A, A) ~
(SU?2), Th).

If h =0 then we haveN = {e} and K° ~ T! becauseK,/K° = Sl. Therefore we
have K9 ~ SU?2) or SO3) by (K3, K°) = (A, A) ~ (SU2), Th).

Assume A = SQO(3). Because the representation $63) to C3 is unique up to
conjugation, we can conside8Q3) (= K§ c SU3)) by the canonical subgroup of
SU3). ThenN(SQ3); SUQI)) =Z3 x SA3) whereZsz is the center ofSU3). Hence
K, = SQ3) or Z3 x SO3). Moreover we can easily show the slice representation
02: Ko = (Z3x)SQ3) — SO3) is canonical where,(Z3) = {lI3}. So we have

_i(1 0 _

K—{(O X>x€sqz)}_sq2) or
5 0V tezy xesazl=2z;,xs02)
0 £X 3 3 .

SinceK; N K, D K, we can putK; as follows;

-2
Ky = {(to &) @ X) [teTl Xe sq2)} = T165QQ).
So we have the slice representation: K; — SQ2) ¢ 0O(2). Since Kew; = K and
we can identifyo; up to conjugate inO(2), we haveK, = SQ3) or K, =Z3 x SO3).
Let us construct a manifold. Becaudg(K; SU3))/N(K; SU3))° = Z, and a gener-
ator of Z, can be taken fronK,, two manifolds constructed by two attaching maps
in Z, are diffeomorphic by the similar argument of Section 10.2nkk G, M) with
codimension one orbit&/K and two singular orbit$s /K1, G/K5 is unique for each
K, =Z3 x SQ3) andK;,; = SQ3). So the following proposition holds.
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Proposition 11.3.1. Let (SU3), M) be a SW3)-manifold which has codimension
one orbits SIB)/K and two singular orbits GK; = SU3)/(T*0SQ2)) and SU3)/Ko.

If (Ko, K) =(Z3 x SA3), Z3 x SA2)), then (SUQ3), M) is essential isomorphic to
(SUA3), A\G3(R®)) where Si3) c U(3) and the diagonal subgrous* ~) A c U(3) C
SQ6) (A is the center of 3)) are commutative and SB) acts on

A\G3(R®) = A\SO6)/SA3) x SA3)

by the canonical representation 8) — SQ6).

If (K2, K) =(SQO3),502)), then(SW3), M) is essential isomorphic to the natural
induced S\(3)-action on the threefold branched covering manifdi# of A\G3(R®),
that is there exists an S@3)-equivariant map p N& — A\G3(R®) such that the re-
stricted map |/, is isomorphic and the restricted mapgp_g k, is threefold cov-
ering.

Proof. Assume K, K) = (Z3 x SQ3), Z3 x SQ2)). Because the uniqueness of
(SU3), M) has been proved before this proposition, we may only finch sexam-
ple. Now U(3) acts onG3(R®) = SQ6)/(SQ3) x SQ3)) by the natural representa-
tion U(3) — SQ6) and this action has codimension one orbits and two samgoi-
bits U(3)/SQ3) and U(3)/T2 where T2 does not contain the diagonal subgroup in
U(3). Let A c U(3) be the diagonal subgroup. Thencommutes withSW(3) c U (3)
and acts onG3(R®) freely. So we have the 8-dimensional manifoid\ G3(R®) and
the SU(3)-action with codimension one principal orbi®J3)/Z; x SO2), two sin-
gular orbitsSU3)/Z3 x SQ3), SU3)/T2. Hence this $U3), A\G3(R®)) is the case
(K2, K) =(Z3 x SA3), Z3 x SQ2)).

Assume K, K) = (SQ3),SO2)). Because the uniqueness &J3), M) has been
proved before this proposition, we only need to find such e@tamPutM = X; U
X, = N® where X; and X, are tubular neighborhoods &U3),T2 and SU{3)/SQQ3).
Then we can easily show thag is the threefold branched covering manifaitf of
A\G3(R®) along SU3)/T2. Therefore the casekp, K) = (SQ3), SO2)) were proved.

Hence we get this proposition. ]

Now we can easily proveH?(A\G3(R®); Q) ~ Q @ Q and dimA\G3(R®) = 8.
HenceA\G3(R®) is not a rational cohomology complex quadric. IpetN8 — A\G3(R®)
be a natural projection. Then we can prove that H2(A\G3(R%); Q) — H2(N®;Q) is
an injective homomorphism by two Mayer-Vietoris exact semes for tubular neigh-
borhoods ofG/K1, G/K; in A\G3(R®) and N8 and the five lemma. Hench?® is also
not a rational cohomology complex quadric. Therefore weeh&w SU(2).

Now we can put
) = (%, ) x,yeTll

xty7l 0
Ky = 0 X
0 0

< O O
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and the slice representatien: K; = T2 5 T1 5 0(2) is

(X, y) = xPyd

wherep;: T — O(2) is a natural inclusion and # 0 without loss of generality. Then
Kert = K = {(x,y) € T? | xPy9 = 1}. Let us consider the restricted slice representa-
tion o2lke: K9 ~ SUR2) % O(3). Then we seg,: SU2) — SA3) c O@3) is a natu-

ral homomorphism andr2|E2%(8q2)) =K° So we haveK®={(x,x 1) eT?cK =

{(X, y) € T2 | xPy4 = 1}. Therefore we gep =q (p # 0).

Hence we have the slice representat'ml%: Ky=T? A ECY 0O(2), such that
(X, ¥) = x9y4, is unique for eacty # 0. Since it is easy to showf and ol’q are
equivalent representation, we can assume 0 up to equivalence. Becauge=q > 0
and 02|R2%(Sq2)) =K°, we have

-1
K, = {(Ao 2) AcU(2), detA:,\ezq} ~ Zoq x2, SU2)

and
K={(x,x ) I xeT & eZq)Zy xz, T .

HereZ,q xz, SU2) ~ Ko € S(U(1)xU(2)) >~ Tt xz,SU2) andZ, ={x € T | xP =1}.
Put such a slice representation @%: Ko >~ Zyq xz, SU2) - O(3). Then we see
o, ({e} x SU2)) = p2(SU2)) =SQ3). For the generata of Z,,, we haves, (a) € O(2)
becausea € K >~ Zy; xz, TL Moreovercrg(a) =3 becauseog(a) commutes with
0,(SU2)). Henceo,(Zyq x {12}) = {l3}. Soo, is unique for eacty > 0.

Moreover we can pulN(K; G)/N(K; G)° =Z, ={l3, [«]} and

1 0 O
a=|0 0 —-1].
01 O

Since we can take € K, the SU3)-manifold M is unique up to essential isomorphism
by Lemma 4.3.1 for each > O.

Put the quotient manifold = SU3) x suxu() S* by the U (1) x U(2))-action
on S* c C x R® as follows

_2
(‘) )@=z 0000

where p: SU2) — SQ@3) is a natural projectionX € SU2), t € T and , a) €
S* ¢ C x R%. Now SU3) acts onM by the canonicaSU(3)-action onSU3) and it
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has codimension one principal orbi®J)3)/K and two singular orbitSU3)/K; and
SU3)/K,. However this manifoldM is a S*-bundle overP,(C). Hence this is not a
rational cohomology complex quadric.

So we haveh =1, G=SUB3) x T! andK; = T2 x T1. Moreover we seN = T1,
K9=AoT!andK®= A o T! becauseK;/K = S' where @A, A) ~ (SU2), T1).
Now we can put

xlyt 0 0
Ky= 0 x 0],z|=(x,y,2)|x vy, zeT!
0 0O vy

and the slice representation: K; =T2x T1 5 Tt 5 0(2) is
(X, Y, 2) = xPyiZ

wherep: T — O(2) is a natural inclusion. Since we have Ker K, we can assume
r > 0 up to equivalence by Proposition 4.1.1. Hence we have

xlyt 0 0
K = 0 x 0], x Py 9y |xyeT! rezt.
0 0 vy

Therefore we havep(K9) = Ao Tt € SU@3), wherep;: G =SU3) x Tt — SUQ) is
a natural projection. AssumA = SQ3). Then we seeN(SQ3); SU3)) =Z3 x SA3).
However this is a contradiction, because all element$irc p;(K9) and A C p1(KY)
commute. Hence we havA = SU2). So we can put the singular isotropy grolg

2 O tX ’ ! !

for somem € Z. SinceK; N K9 > gK°g~! ~ K° for someg € G, we have

t2 0
[(( 0 ts O ),t‘m) t,seT1]
0 0 tst
xy1l 00
K°:[(( 0 X 0),x‘p/ry‘q/r) x,yeTll
0 0 vy

KiN K3

[



82 S. KUROKI

(a conjugationK; N K9 ~ K° is known by their dimensions). Hence we can put

xlyt 0 0
K°:K1ﬂK2:[(( 0 X o),x—P/fy—q/f) x,yeTl}
0 0 vy
t2 0
:[(( 0 ts O ),t—”‘) t,seTl}
0 0 tst

without loss of generality. Since=ts, y=ts™!, we havep =g, m=2p/r. Now the

slice representation;|cs decomposes intoz|kg: K LT LN SQ3) where

(((5 5)3)) =~

and p’ is a canonical double covering, and we haxﬁ;zﬁ(SQZ)) = K?°. Consequently
we have

t2 0 0
K = 0 ts O |,tt™]|t,seT! reZ § ~K°xZ,
0 0 ts?

t=2 0 ~
(3 8 revnsz

Moreover we haven # 0 because of Proposition 9.0.1, amg{{Is} x Z;) C {l3, —I3} C
O(3) because ob,(K) = SQ3). Becauser, 1(0(2)) = K and C(02(SU2)); O(3)) N
0(2) ={l3, =13} N O(2) = {l3}, we also have{ls} x Z, C Keroyp. Since we classify
up to essential isomorphism arits} x Z, C Kero; for i =1, 2, we can put =1 that
is Kz = K9 and K = K°. Therefore there exists unique; (K;, K) (i =1, 2) for the
integerm # 0. Then we haveN(K; G)/N(K; G)° >~ Z, = {l, «}. Since we can take
a € Ky, this case is unique up to essential isomorphism.

Put the quotient manifoldVl = (SU3) x T1) xsu@xu@)<Ty S* by the SU (1) x
U(2)) x TH-action onS* ¢ C x R® as follows

-2
((tO t(>)< ) Z> -(w, @) = (t"zw, p(X)a)

where p: SU2) — SQQ3) is a natural projectionX € SU_2), t € T and @, a) € S*.
Now SU(3) x T! acts onM by the canonical §U(3) x T1)-action onSU3) x T! and it

and
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has codimension one principal orbitSW3) x T1)/K and two singular orbitsU(3) x
T1/K; and B8UB) x T1)/K,. However this manifoldM is a S*-bundle overP,(C).
Hence this is not a rational cohomology complex quadric.

12. Compact transformation groups on rational cohomology omplex quadrics
with codimension one orbits

All the pairs G, M) which have codimension one principal orbits are exhibited
this last section.

12.1. 80(2n+1),Qzn). In this caseM = Q,, and SQ2n+1) acts onM through
the canonical representation 80(2n + 2). Then there are two singular orbig" and
Q2an—1. The principal orbit type iRVane1 2 = SQ(2n + 1)/SQ2n — 1).

Remark that we can easily show the paBpi(2n + 1), M) in Section 7.1 and
the above exampleSQ(2n + 1), Q2,) are essentially isomorphic and we also have the
following proposition by this example and [16]

Proposition 12.1.1. For n > 3, Qn/Z, = P,(C).

Proof. Putz, = {Imz, <_01 |01> € O(n+2)}. This group canonically acts

on Qn, >~ SAn + 2)/SAn) x SQ?2) and commutes with the action &Qn + 1) ~
[(é 2) ‘ A e SQ2n + 1)]. The pair §Q(n+1),Qn/Z>) has two singular orbit&,,(R)
and Q,_1 and the principal orbit iRRVy41,2/Z>. From [16] Section 9.6, such manifold

(SQn+1),M) is unique up to essential isomorphism that is we can reda@h(*1), M)
as SQn + 1), P,(C)). Hence we get this proposition. ]

12.2. 8U(n+1),Q2,). In this caseM = Q,, and SUn + 1) acts by the natural
representation o6Q(2n + 2) that is

. A —B
Sun+1)9A+B|H»(B A

)esqm+a.

Then there are two singular orbits, both orbit types Bf€C). The principal orbit type
is SUn +1)/(SQ2) x SYn — 1)).

For G=U(n+1) we get a similar result.

12.3. ©p(1) x Sp(m), Qam-2), m> 2. In this caseM = Q4m_» (n=2m—1) and
the action ofSH1) x SEm) on H™ is defined byAxﬁ where f, A) € S1) x Sgm) and
x € H™. So there is a natural representationSg1) x SEm) — SQ4m). Hence we
have an action oSH1) x Sgm) on Q4m_» through the representation. Then there
are two singular orbitss? x Py,(C) and SEm)/(SEm — 2) x U(1)). The principal orbit
type is SH1) x11 SEm)/(SAm — 2) x U(1)).
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12.4. Epin(9),Q14). In this caseM = Qq4. It is well known thatSpin9) acts on
St transitively by the spin representatign Spin9) — SQ16) ([20]). HenceSpin(9)
acts onQ14 through this representation. Then the principal orbit tigo8Bpin(9)/SWU3)o
T?! and two singular orbits ar8pin(9)/Spin6) o T* and Spin(9)/G, o TL.

12.5. G2,Qe). In this caseM = Qg and the exceptional Lie groufs, acts
through the canonical representation$6(7). Then there are two singular orbi&
and G,/S(U (1) x U(2)). The principal orbit type iRV7 2 = G2/SU2).

12.6. (32 X Tl, G, XsU(3) P3(C)). In this caseM = G, Xsya3) P3(C) and Gy x T!
acts byg: (Go x TY) x M — M as follows,

¢((9, 1), [0, [20: Z]]) = [9d, [tz : Z]]

whereg e G,, t e T and [¢/, [z : Z]] € M. The manifoldM is a quotient manifold
of G, x P3(C) by the actionSU(3) whereSU3) acts onG, canonically and orP3(C)
by ¢: [20: 2] — [2p: AZ], here A e SU3) and o : Z] € P3(C). Then the actiory has
codimension one orbitQ, x T1)/(SU2) x {e}) o A (A ~ T1) and two singular orbits
(G2 x TH/(SUB) x TH = S and G2 x T1)/(SUR) x T1) = G,/SUQ2).

Moreover we have the following proposition.

Proposition 12.6.1. G xsyz) P3(C) = Q.

Proof. Consider the restricteGy-action on G, xsysz) P3(C). Then it has co-
dimension one principal orbit&,/S(U (1) x U(2)) and two singular orbit$s,/SU3)
and G,/SU(2). Hence we havés; xsyz) P3(C) = Qg because of Lemma 7.2.1 and
Section 12.5. O

12.7. 6p(2),S xgpa)P2(C)). In this caseM = S’ x g1y P2(C) and SK2) canon-
ical acts onS’ = Sp2)/SH1). The manifoldM is a quotient manifold ofS’ x P,(C)
by the actionSp(1) where S(1) acts onS’ = S2)/Sp(1) canonically and orP,(C)
by the double coveringSH1) — SQ3). Then theSH1) action on P,(C) has co-
dimension one principal orbitSH1)/{1,—1,i, —i} and two singular orbitsSg1)/U (1)
and S(1)/U(1); U U(1)ji whereU(1); = {a+bj | a® +b? = 1}. Hence theSp2) ac-
tion on M has codimension one principal orbi&12)/S1) x {1, —1,i, —i} and two
singular orbitsSH2)/SH(1) x U (1) and SH2)/SH(1) x (U (1); U U(1);i).
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