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Abstract
In this paper we show that a uniruled manifold with a splitgamt bundle
admits almost holomorphic fibrations that are related to gphtting. We analyse
these fibrations in detail in several special cases. Thiklyirew results about the
integrability of the direct factors and the universal cavgrof the manifold.
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1. Introduction

A compact Kahler manifoldX has a split tangent bundle T = V. ®V,, whereV;
and V, are subbundles ofy. Initiated by Beauville’s conjecture 1.6 on the universal
covering of these manifolds [2], these manifolds have beedied by several authors
during the last years ([12], [9], [4], [17]). One of the maimemes of these papers
is that uniruled manifolds with split tangent bundle play iatidguished role. For ex-
ample if X is projective and not uniruled, then boWy and V., are integrable [17,
Theorem 1.3], while for uniruled manifolds it is easy to coast examples where this
is not the case.

The goal of this paper is to develop a structure theory foruled Ké&hler man-
ifolds of arbitrary dimension. The main tool in this studyliwbe the rationally con-
nected quotient mafcf. Theorem 2.10 for the definition and properties). We wili-
serve in Proposition 3.16 that & is a general fibre of the rationally connected quotient
map of X, then

Tz = (TzNVilz) @ (Tz N V2|z).

2000 Mathematics Subject Classification. Primary 14F10;o08@ary 14D06, 14E30, 14J40,
32Q30, 57R30.
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In particular Z is a rationally connected manifold with a (maybe trivialjitimg of the

tangent bundle. This “ungeneric position property” (c6]Tor the terminology) puts
us in a much better situation since we have the following wetson for rationally

connected manifolds with split tangent bundle.

Theorem 1.1 ([17, Theorem 1.4]). Let X be a rationally connected projective
manifold such that ¥ =V, & V,. If V; or V, is integrable then there exists an iso-
morphism X~ X; x X, such that Y = p;‘(j Tx, for j =1, 2. In particular both \{ and
V, are integrable

So far there are no examples of rationally connected matsifalith split tangent
bundle where the direct factors are not integrable. In faaml fairly optimistic that
such examples do not exist.

Conjecture 1.2. Let X be a projective manifold with split tangent bundlg
V1 @ V,. If X is rationally connectedV; or V; is integrable

Using Theorem 1.1 we can show the existence of a meromorgiiatibn on X
that is related to the decomposition of the tangent bundlereMecisely we have the

Theorem 1.3. Let X be a uniruled compact Kahler manifold such that=TV; &
V,. Let Z be a general fibre of the rationally connected quotieaipmand suppose
that T N Vi1|z or Tz N V|7 is integrable Then for i= 1, 2 there exists an almost
holomorphic fibration(cf. Definition 2.9)¢;: X --> Y; such that the general fibre; ks
rationally connected and

Tr = (TzNVilZ)lr C VilF-

If we specify to the case where one of the direct factors hak eawe obtain a
more precise statemént

Theorem 1.4. Let X be a uniruled compact Kahler manifold such that=TV; ®
V, andrkV; = 2. Let Z be a general fibre of the rationally connected quotieapm
and suppose thatzIN Vi|z or Tz NVs|z is integrable Then there are three possibili-
ties
1) Tz N Vi|z =Vi|z. Then the manifold X admits the structure of an analytic fibre
bundle X— Y such that the general fibre is rationally connected angyF V;.
2) TzNVy|z is a line bundle Then there exists an equidimensional mapX — Y
such that the generap-fibre F is a rational curve and g C Vi|k.
3) Tz C V7|z.

1The situation where one of the direct factors has rank 1 iy fuhderstood, cf. [4].
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This result is an analogue to the classification of compadiléasurfaces: such
a surfaceS is rationally connected or admits a fibratidh— C with general fibre a
rational curve or is not covered by rational curves.

In the projective case, we then give two applications of 8tisicture theory: the
first application is to try to “contract the obstruction toidag integrable”, that is to
construct a fibrationX — Y such thatY and the general fibr& have a split tangent
bundle withintegrable direct factors. We attain this goal for a splitting in vectam-
dles of small rank by showing a special case of Conjecture(df.2Z.emma 4.21) and
combining it with the structure Theorem 1.4.

Theorem 1.5. Let X be a uniruled projective manifold such that i@'}zl Vi,
where for all je {1,...,k} we haverkV; <2. Let Z be a general fibre of the rationally
connected quotient magf Tz NV;|z # 0, the direct factor Y is integrable

Furthermore the rationally connected quotient map can kadised as a flat fibra-
tion ¢: X = Y on a projective manifold Y such that

k
Tv =P To(V)).

j=1

In particular T¢(V;) is an integrable subbundle ofyTfor every je {1,...,k} (cf. No-
tation 2.13for the precise definition of @(V;)).

As a second application we go back to the origin of our studynahifolds with
split tangent bundle which is the

Conjecture 1.6 (A. Beauville). Let X be a compact Kahler manifold such that
Tx = V1 & Vo, where \{ apd \b are vector bundles Let u: X — X be the univer-
sal covering of X Then X >~ X; x X,, where g;ijj ~ w*Vj. If moreover V is
integrable then there exists an automorphism %f such that we have an identity of
subbundles of the tangent bundieV; = p} Tx;.

This will be done in Section 5 where we obtain the

Theorem 1.7. Let X be a uniruled projective manifold such that ¥ V; & V,
andrkV; = 2. Let Z be a general fibre of the rationally connected quotieapnthen
one of the following holds
1) TzNVi|z #0. If V; and b are integrable Conjecturel.6 holds
2) TzNViz =0. ThendetV; is pseudoeffective and,\is integrable

This result generalises and considerably simplifies thefpob [17, Theorem 1.5].
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2. Notation and basic results

We work over the complex fieldC. For standard definitions in complex alge-
braic geometry we refer to [15] or [19], for positivity notis of vector bundles we
follow the definitions from [25]. Manifolds and varieties aaéways supposed to be
irreducible.

A fibration is a proper surjective morphisgn X — Y with connected fibres from a
complex manifold onto a normal complex variety The ¢-smooth locus is the largest
Zariski open subseY* C Y such that for every e Y*, the fibre¢~1(y) is a smooth
variety of dimension dinX —dimY. The ¢-singular locus is its complement. A fibre
is always a fibre in the scheme-theoretic sense, a set-tieeéibre is the reduction of
the fibre.

Let us recall some basic definitions from the theory of ratlozurves.

DEFINITION 2.8. LetX be a compact Kéhler variety. A rational curve is a non-
constant morphisnf : P! — X.

The manifold is uniruled if through a general point ¥f there exists a rational
curve. It is rationally connected if for two general pointete exists a rational curve
through these two points.

REMARK. By a theorem of Campana [6], a rationally connected comidatier
manifold is projective, in particular Theorem 1.1 appliestiie Kéahler situation.

DEFINITION 2.9. A meromorphic mag: X --> Y from a compact Kahler man-
ifold to a normal K&hler variety is almost holomorphic if theexist non-empty open
subsetsX* ¢ X andY* C Y such thatp|x-: X* — Y* is a fibration. In particular for
y € Y a general point, the fibr¢—(y) exists in the usual sense and is compact.

The importance of almost holomorphic maps is due to the faat ¢very compact
Kahler manifold admits such a fibration that separates ttienally connected part and
the non-uniruled part: theationally connected quotient maj21] or MRC-fibration
[23] or rational quotient mag10]:

Theorem 2.10 ([22, Theorem 5.4], [8, Theorem 1.1], [13)]). Let X be a com-
pact Kéhler manifold Then there exists an almost holomorphic fibratipn X --> Y
onto a normal compact Kahler variety Y such that the genelakfis rationally con-
nected and the variety Y is not unirule@his map is unique up to meromorphic equiv-
alence of fibrationqcf. [7, 1.1.2]for the definition), and is called rationally connected
guotient map

°The statement in [22] is in the algebraic setting, but theesanoof goes through in the compact
Ké&hler category: the main technical tool [8, Theorem 1.1[Hkan this larger generality.
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The rationally connected quotient map has the followingversal property let
Y X --> Z be an almost holomorphic fibration such that the generakfisrrationally
connected Theng¢ factors throughys, i.e. there exists an almost holomorphic fibration
t: Z-->Y such thatp =7 o .

2.1. Foliation theory. We recall some basic statements about holomorphic foli-
ations, for more details we refer to [5, 16]. L&t be a compact Kéhler manifold. A
subbundleV C Ty is integrable if it is closed under the Lie bracket. We rec¢h#it
the Lie bracket

[., .]: VxV > Tx

is a bilinear antisymmetric mapping that is n@-linear but induces ad®x-linear map
/\2 V — Tx/V that is zero if and only ifV is integrable. In particular

H°<X, Hom(/z\ Vv, Tx/V>> =0

implies thatV is integrable. In general we will show this vanishing prdpessing a
dominating family of subvarietiesZ()scs of X (i.e. through a general point of passes
at least one member of the family) such that a general membtreofamily satisfies

H°<Zs, Hom</2\ Vv, Tx/V) Z) = H°<ZS, <</2\ V>*®(TX/V)> ZS) =0.

Since an antiample vector bundle does not have any globtibssc we will use this
frequently in the following form.

Lemma 2.11. Let X be a compact Kéhler manifgldnd let VC Tx be a sub-
bundle Let (Zs)scs be a dominating family of X such that for a general member Z
of the family the vector bundlg\?V |z, is ample and(Tx/V)|z. is trivial. Then V is
integrable

By the Frobenius theorem an integrable subbundlef Ty induces a foliation on
X, i.e. for everyx € X there exists an analytic neighbourhobd and a submersion
U — W such thatTy,w = V|y. These submersions are called the distinguished maps
of the foliation and the fibres are the so-called plaques. fohation induces an equiv-
alence relation orX, two points being equivalent if and only if they can be coriedc
by chains of smooth (open) curv&y such thatTe, C V|c,. An equivalence class is
called a leaf of the foliation. A subset of is V-saturated if it is a union of leaves.
The next proposition, which is a corollary of the global gigbtheorem for foli-
ations on Kahler manifold (cf. [27] for a short proof) givediest idea why rationally
connected manifolds are so useful in this context.
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Proposition 2.12. Let X be a compact Kéhler manifold such thgt Vi & V..
Suppose that VC Tx is integrable and that one leaf is compact and rationally -con
nected Then X has the structure of an analytic fibre bundle-XY over a compact
Kahler manifold Y such thatxly = Vi and the fibres are rationally connected

Proof. By [17, Corollary 2.11] there exists a submers¥n-> Y onto a compact
Kahler manifoldY such thatTx,y = V; and the fibres are rationally connected. The
arguments of [17, Lemma 3.19] (which do not use the projentss hypothesis made
there) then establish that the submersion is locally frivia ]

2.2. Pushing forward subsheaves of the tangent bundle.For the applications
in the projective case it will be crucial to track the behaviof the splitting under
certain morphisms. Let us first give a precise definition & push forward of a sub-
sheaf of the tangent bundle, this definition just formalittes idea of looking at the
natural tangent map.

NOTATION 2.13. Let¢: X — Y be a fibration between quasiprojective mani-
folds. The canonical map*Qy — Qx induces a a generically surjective sheaf homo-
morphismT¢: Tx — ¢*Ty. In particular forS C Tx a quasicoherent subsheaf, we
have an inclusionT ¢(S) C ¢*Ty. Since¢ is proper, by Grauert’s theorem the push-
forward ¢.(T¢(S)) C Ty is a quasicoherent subsheaf.

For the convenience of the reader, we will denote by

To(S) C Ty

the saturation ob.(T¢(S)) in Ty [26, Ill, 1.6]. With this notationT ¢(S) is a reflexive
subsheaf ofTy.

Let X be a projective manifold such thdix = V; & V,. Suppose thak is the
blow-up u: X — X’ of a projective manifoldX’ along a smooth submanifold. Since
in the complement of the exceptional locus we have an isonempu*Qx ~ Qx, we
can consider the reflexive sheaveg (Vi) as subsheaves @ik and it is clear that they
induce a splitting in the complement &. Since Z has codimension at least 2, the
splitting extends toX’, that is

Ty = Tu(V1) @ Tu(Va).

Furthermore we have an easy lemma relating the universariogs of X and X'.

Lemma 2.14. Let X be a projective manifold such thai & Vi & V,. Suppose
that X is the blow-upu: X — X’ of a projective manifold Xalong a smooth sub-
manifold Then we have a splittingxT = Tu(Vh) & Tu(Vo). If T (Vi) and Tu(Vz)
are integrable andConjecture 1.6holds for X, then the conjecture holds for.X
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Proof. The proof is exactly the same as in [17, Propositid@}and we refrain
from repeating the lengthy argument. 0

Lemma 2.15. Let X be a projective manifold such thag ¥V ®V,. Letg: X —
Y be a fibration onto a projective manifold Y that makes X inf®t-aor conic bundle
Then for j=1, 2, the reflexive sheaf @(V;) C Ty is a subbundle of v and

Ty =Top(V1) ® To(Va).

Proof. If ¢ is aP-bundle the morphism is smooth, so [17, Lemma 4.22] applies.
If ¢ is a conic bundle it is well-known that the sBtc Y such that fory € D, the fibre
¢~1(y) is not reduced, has codimension at least 2 [28, Propositi8rb]. Therefore
[17, Lemma 4.22] applies again. ]

3. The rationally connected quotient map

In this section we show Proposition 3.16 which is the cruolservation of this
paper. The moral idea behind the statement is that the ediyononnected quotient
map reflects the existence of an ‘positive’ subshgadf the tangent bundl&x. Propo-
sition 3.16 can then be seen as a translation of the basictatta direct sum of
sheaves is ‘positive’ (e.g. ample) if and only if both diréattors are ‘positive’ (e.g. am-
ple). Once we have established this technical statementcameuse Theorem 1.1 to
show Theorem 1.3 and with some extra effort Theorem 1.4.

Proposition 3.16. Let X be a compact Kahler manifold such that ¥V; & V.
Let X-->Y be an almost holomorphic fibration such that the generaéfibrrationally
connected Then the general fibre Z satisfies

Tz = (Tz N V41lz) ® (Tz N Valz).

Proof. The general fibre has a trivial normal bundlg,x and is rationally con-
nected, so

Hom(Tz, Nz/x) = H%(Z, @z ® 0 9mX*-dmZ) = o,

Fix now an arbitraryx € Z, and lett be an element of the vector spadey. The
decompositionTx x = Vix @ Vo x induces a decomposition= vy + vy with v; € Vj «.
Furthermore forj = 1,2 we have a decompositioy = t; + n; with t; € T« and
n; € Nz/x,x. Since Hom{z, Nz,x) = 0, the composition of the mafgs— vj — n; is
zero. Thereforen; =0 for j =1, 2, so we have = t; +t,. Moreover by construction
t; € (Tz,x NV x), this shows the claim. OJ

REMARK. The reader will have noticed that the proof does not realy the ratio-
nal connectedness &, but merely the cohomological condititf(Z, Hom(Tz, Nz,x)) =
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ho%(z, Qz) = 0. In fact the proposition is part of a more “ungeneric fiosl’ theory
describing fibre spaces with split tangent bundle that islbg@ed in [16]. A similar
cohomological condition was used in [2, 4.4.] to show a mgrec&l result.

Proof of Theorem 1.3. LeE be a general fibre of the rationally connected quo-
tient map of X. By Proposition 3.16 we have

Tz = (TzNVilz) @ (Tz N Va|z).

By hypothesis one of the intersectiofig N Vy|z or Tz NV,|z is integrable. Therefore
by Theorem 1.1 the general fib2 is isomorphic to a producZ; x Z, such thatTz N
Vjlz = p;szj for j =1, 2.

If T2 NV, =0 the identity mapX — X satisfies the statement, so we suppose
without loss of generality thatz NV; is not zero. Since this holds for a general fibre,
the submanifoldsz, x z for z € Z, form a dominant family of submanifolds oX.
Let Y; C C(X) be the open subset parametrizing the family in the cycleesggX)
[14, Chapter VIII], letI'y C Y7 x X be the graph of the family, and leg: I'y — Y;
and p;: I't = X be the natural projections. By constructign is dominant and an
isomorphism on its image:(I'1). Sinceq; is a fibration, we have a fibratiop] :=
gio p;lz p:(T'1) — Y;. Let Y1 be the normalisation of the closure ¥f in C(X), then
we obtain the stated almost holomorphic fibratigyit X --> Y;. The general fibre;
of this map is just a member of the famil; x z, so clearlyTg, C Vi|g, and Fy is
rationally connected. The statement fof N V, follows analogously. ]

REMARK. It is clear from examples that in general the constructechfiiin is
not a holomorphic map, so we might think about resolving théeterminacies by
blowing-up X’ — X. It is not obvious and would be interesting to see if this can
be done in a way such that’ has a split tangent bundle.

Proposition 3.17. Let X be a uniruled compact Kahler manifold with split tan-
gent bundle ¥ =V1® V.. Let Z be a general fibre of the rationally connected quotient
map and suppose thatzIN Vi|z or Tz N Vs|z is integrable If Tz NVy|z = Vi|z, the
manifold X has the structure of an analytic fibre bundle-XY such that %,y = Vi.

Proof. By Theorem 1.3 the conditiofi; N Vi|z = V4|7 implies that there exists
an almost holomorphic map;: X --> Y; such that the general fibrE; is rationally
connected and satisfies

Tr = (Tz N Vil2)lr = Vilr,.

It follows that V; is integrable and has a rationally connected leaf. We calecluith
Proposition 2.12. O
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In view of Proposition 3.17 it is clear that Theorem 1.4 falfoas soon as we have
understood the geometry whéi NVi|z is a line bundle. Since we will consider this
situation also in the next section, we state this case as a

Proposition 3.18. Let X be a uniruled compact Kahler manifold with split tan-
gent bundle ¥ = V; & V., whererk V; = 2. Suppose that the general fibore Z of the
rationally connected quotient map satisfiddTz N Vi1|z) = 1. Then there exists an
equidimensional mag: X — Y on a compact Kahler variety such that the general
fibre F is a rational curve that satisfieseTC Vi|k.

Proof. The line bundlel; N Vi|z is integrable, so by Theorem 1.3 there exists
an almost holomorphic map;: X --» Y; such that the general fibrE; is rationally
connected and satisfies

Tr, = (T2 N Vil2)IF C VilF.

Since rk{Tz N V1|z) = 1, the general fibre is a smooth rational curve such that
Tl ~ Op(2) ® O X1,

Since h°(F1, Nf,/x) = dim X — 1 andh(Fy1, Ng,,x) = 0, the corresponding open sub-
variety of the cycle spacé(X) is smooth of dimension difX — 1. We denote byY
its closure inC(X) and endow it with the reduced structure. Denotelby Y x X the
reduction of the graph oveY. Denote furthermore bypx: I' - X andpy: I' = Y
the restrictions of the projections to the graph.

Step 1. We show that g is finite We argue by contradiction, then by the an-
alytic version of Zariski's main theorem there are fibres okitive dimension. Let
x € X be a point such thap;l(x) has a component of positive dimension. L&tC
py(p)‘(l(x)) be an irreducible component of dimensin> 0. ThenTl, := p;l(A)
has dimensiork + 1. Consider now the foliation induced byiV: on T C Y x X.
Since a generapy-fibre is contained in ap}Vi-leaf and this is a closed condition,
every fibre p;l(y) is contained in ap}Vi-leaf. So fory € A, the set px(pgl(y))
is contained inY%, the Vj-leaf throughx. It follows that S := px(py*(A)) is con-
tained set-theoretically ifj}. Since px is injective on the fibres ofpy, and p;l(A)
has dimensiork + 1 > 2, the subvarietyS has dimension at least 2. Since\fk= 2,
it has dimension 2 an = U7 (at least set-theoretically). S¥} is a compact leaf
and is covered by a family of rational cycles that intersecthie pointx. Hence}
is rationally connected, so by Proposition 2.12 there sxéstsubmersion/: X — Z
such thatTx,z = V; and the fibres are rationally connected. By the universagbguty
of the rationally connected quotient the genegafibre is contracted by the rationally
connected quotient map. This implies Tik(N V1|z) = rk V1, a contradiction.

STeP 2. Construction of¢. Since px is birational by construction and finite,
it is bijective by the analytic version of Zariski's main ttrem. SinceX is smooth
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and I' reduced this shows thatyx is an isomorphism. Sinc@y is equidimensional,
¢ :=pyo p;l: X — Y is equidimensional. O

Proof of Theorem 1.4. By Proposition 3.16, the general fiBref the rationally
connected quotient map satisfies

Tz = Milz N Tz) @ (Valz N Tz).

Since rkV; = 2, there are three cases.

If V1]z N Tz = V4|z, we conclude with Proposition 3.17.

If 0 C Vi|z N Tz € Tz, the intersection has rank 1. Proposition 3.18 shows that
we are in the second case of the statement.

If VijzNTz =0, C|ear|yTz:TzﬁV2|z C Vslz. O]

4. The projective case

The main setback of Theorem 1.4 is that in the second casenitti€lear if the
base of the constructed fibration is smooth, yet the smos¢higecrucial to show that
the splitting of the tangent bundle pushes down to the baseorder to improve our
analysis of this fibration we have to use the theory of Mori caetions, this forces us
leave the Kahler world. In Lemma 4.21 we will then show theegnability of at least
one direct factor for a splitting in vector bundles of rankFor uniruled varieties, the
statement does not generalise to a splitting in vector msndf higher rank. Never-
theless the lemma provides some first evidence for Conjedtlt which it establishes
for manifolds of dimension four.

A Mori contraction of a projective manifolX is a morphism with connected fibres
¢: X = Y to a normal varietyY such that the anticanonical bundieK x is ¢-ample.
We say that the contraction is elementary if the relativeRiciumbero(X/Y) is equal
to one. The contraction is said to be of fibre type if dim< dim X; otherwise it is
birational.

Lemma 4.19. Let X be a projective manifoldand let¢: X — Y be an equi-
dimensional fibration of relative dimensidnon a normal variety Y such that the gen-
eral fibre F is a rational curve Then there exists a factorisatiop = ¢ o u, where
w: X — X is a birational morphism onto a projective manifol and ¢: X — Y
makesX into a P!- or conic bundle Furthermorey is a composition of blow-ups of
projective manifolds along submanifolds of codimenstorand Y is smooth

Proof. We argue by induction on the relative Picard numdiet/Y). If p(X/Y) =
1, the anticanonical divisorKy is ¢-ample and the contraction is elementary, so by
Ando’s theoremy induces aP-bundle or a conic bundle structure. In both ca¥eis
smooth.
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Suppose now thap(X/Y) > 1. Since the general fibre is a rational curve, the
canonical divisor is nop-nef. It follows from the relative contraction theorem [20,
Theorem 4-1-1] that there exists an elementary contractionX — X that is a
Y-morphism, i.e. there exists a morphispn X — Y such that¢ = ¢ o u. Since¢
is equidimensional of relative dimension 1, it follows tlat the u-fibres have dimen-
sion at most 1. Thug is of fibre type of relative dimension 1 or of birational type.

We claim thatu is not of fibre type. We argue by contradiction and suppose tha
dimX = dimX+1. Then dinX = dimY, soé is a birational morphism. Since(X/Y) =
p(X/Y) — 1 > 0, the map¢ is not an isomorphism, so by Zariski's main theorem
there exists a fibrés—(y) of positive dimension. Sincg is of fibre type, we see that
¢ 1(y) = (¢ (y)) has dimension at least 2, a contradiction.

Hencep is a birational contraction such that all the fibres have disitn at most 1.
Recall now the lonescu-\8fiewski inequality [18, Theorem 0.4], [29, Theorem 1.1]

dim E +dimG > dim X,

where E is the exceptional locus of the birational contractiprand G is any u-fibre.
It follows that the contraction is divisorial, i.e. dil=dim X — 1 andall the fibres
have dimension at most 1. By Ando’s theorem [1, Theorem 2.4]know thatX is
smooth andu is the blow-up of X along a smooth submanifold of codimension 2.
Now p(X/Y) = p(X/Y) — 1 and¢ is equidimensional of relative dimension 1 ovér
so the statement follows by the induction hypothesis. ]

REMARK. In order to generalise the proof to the compact Kahler caseould
be necessary to establish a relative contraction theorenprfijective morphisms be-
tween compact Kahler varieties. Unfortunately the Mori tiyefor compact Kahler
manifolds is not yet at this stage, in particular there seerbe no statements for the
relative situation.

Corollary 4.20. Let X be a uniruled projective manifold such that ¥V, & V.
andrk V; = 2. Let Z be a general fibre of the rationally connected quotieap,mand
suppose that 7N V;|z or Tz N V|7 is integrable Suppose that 7N Vy|z # 0. Then
X admits a flat fibrationp: X — Y onto a smooth projective manifold Y such that

Ty =To(V1) & To(Va).

Proof. If Tz N V1]z = V1|z we conclude with the first case of Theorem 1.4.

If 0 C TzNV4lz C Tz we are in the second case of Theorem 1.4, so there exists an
equidimensional fibratiorK — Y such that the general fibre is a rational curve. Since
X is projective, there exists by Lemma 4.19 a factorlsal;bonq)ou, whereu: X — X
is birational morphism onto a projective manifoil and ¢: X — Y makesX into a
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P!- or conic bundle. Sincgw is a composition of smooth blow-ups a repeated appli-
cation of Lemma 2.14 shows that

Ty = Tu(Va) & Tu(V2).
We can now apply Lemma 2.15 i to see that foii = 1, 2
TH(T (V) = TH(Vi)
is a subbundle offy such thatTy = T¢(V1) ® T (Vo). L]

Lemma 4.21. Let X be a uniruled projective manifold such that 1@']‘:1 Vi,
where for all j=1,...,k we haverkV; < 2. Then one of the direct factors is integrable
In particular if dim X < 4, one of the direct factors is integrable

Proof. The statement is trivial if one direct factor has rdnkso we suppose that
all the direct factors have rank 2. Ldt: P* — X be a general minimal rational curve
on X [10, Chapter 4], then

k
P V) = F*Tx = 0p(2) & O (1)* ® O
i=1

We may suppose up to renumbering tHétV; ~ Op:(2) ® Opi(c) wherec=0 or 1. It
follows that fori > 2, we havef*V; ~ Op(1)® Op: or f*Vi ~ Op(1)®? or f*V; ~

O, in particular

HYPY, f*Vv*) =0, Vi>2.

By [9, Lemma 0.4], we have;(Vi) € HY(X, Vi*), soci(f*Vj) e HL(PL, f*V/*) is zero
fori > 2. So f*detV, >~ Op, since f*V; is nef this impliesf*V, ~ 0;‘,?12 fori > 2.
This shows that/\? Vilt ey is ample and Tx/Vi)l ¢ ey = @js2 Vil 1y is trivial. By
Lemma 2.11 this implies the integrability &f;. O

Proof of Theorem 1.5. LeZ be a general fibre of the rationally connected quo-
tient map, then an application of Proposition 3.16 to all pussible decompositions
Wi =V and W, = @i, 4 V; implies

k

T2 = EP(TznVjlz).

j=1

Moreover we have riz NVj|z) <2 for all j € {1,...,k}, so one of the direct factors
is integrable by Lemma 4.21. We can now apply Theorem 1.lcigkly to see that
all the direct factorsTz N V;|z are integrable and splits in a product.
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Step 1. Integrability of the direct factors Suppose thai; N V;|z is not zero,
then there are two possibilities. Eith@&s N Vi|z = Vi|z, so the integrability ofV; is
immediate from the integrability ofz NVi|z; or Tz NVi|z € Vi|z, thenV, has rank 2
and the splitting ofZ in a product yields a dominant family of rational curves such
that a general membeC satisfiesTc C Vi|c and the normal bundléNc,x is trivial.
Since

k
Txlc =Vilc® @ Vilc =Tc & Ne/x
j=1,j7i

and rkV; = 2, this implies that{\? Vi) | is ample and Tx/Vi)lc =~ @'-1 4 Vilc is
trivial. By Lemma 2.11 this implies the integrability &f.

STeEP 2. Structure of the rationally connected quotient maye proceed by in-
duction on the dimension oK, the case dinX =1 is trivial. Up to renumbering we
can suppose that the intersectidp N Vi|z is not empty.

If V1 has rank 1, we havé; NVi|z =Vi|z, soV; is integrable and the general leaf
is rationally connected. Thus by Proposition 2.12 therstexd submersiog: X — Y’
such thatTx,y = V1. HenceTy = @‘j‘zsz(Vj). If Y’ is not uniruled we are done,
otherwise apply the induction hypothesis Yo

If Vo has rank 2, we apply Corollary 4.20 to obtain a flat fibration X — Y’
onto a projective manifold’’ such that the general fibre is rationally connected and

k k
Tv=Ty(M)eTv| PV | =P Tv(V)).
j=1

i=2

If Y"is not uniruled we are done, otherwise apply the inductiopotiyesis toY’.
STeP 3. Integrability of the images Let ¢: X — Y be the map constructed in
Step 2. Then

k
Tv =D Te(v))
=1
and Y is not uniruled. Apply Lemma 5.22 below to all the possibleatapositions
Wi 1= T(Vi) andWs := B | Te(V)) to see that for all & (1,..., k], the subbundle
To(V;) is integrable. B

5. An application to the universal covering

This section is essentially devoted to the proof of Theoreth T'he basic strat-
egy is to prove Conjecture 1.6 by a reduction to the case ofumimuled varieties and
induction on the rank of the direct factors. Before we comehi proof we have to
show a refinement of [17, Theorem 1.3].
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Lemma 5.22. Let X be a projective manifold with split tangent bundle TV, &
V,. Suppose that a general fibre Z of the rationally connectedignbmap satisfies
Tz C Vo|z. Then V is integrable anddetV;" is pseudo-effective

Proof. SrEp 1. Suppose that det" is pseudoeffective. Sincé;" is a direct fac-
tor of Qx, the vector bundle d&f ® /\”‘V1 Qx has a trivial direct factor. I €
HO(X, detv; ® A Qx) is the associated nowhere-vanishing \devalued form, and
¢ a germ of any vector field, a local computation shows ihét= 0 if and only if ¢
is in V,. An integrability criterion by Demailly [11, Theorem] shewhatV, is inte-
grable.

STEP 2. detV; is pseudoeffectiveWe argue by contradiction, then by [3] there
exists a birational morphism: X’ — X and a general intersection curée:= D; N
-+ N Dgimx—1 of very ample divisorsDy, ..., Dgimx—1 Where D; € |[m;H| for some
ample divisorH such thatg* detV;" - C < 0. Let

O=EqCcEiC---CE =¢*Vs

be the Harder-Narasimham filtration with respect to the jsdtéion H, i.e. the graded
piecesE;.;/E; are semistable with respect té. Sincem;, ..., Mgmx_1 can be arbi-
trarily high, we can suppose that the filtration commuted wéstriction toC. Further-

more sinceC is general ande; a reflexive sheaf, the curv@ is contained in the locus
where E; is locally free. Since

o* detV;-C

0
rk ¢*V; ~

u(Eilc) = n(@*Vilc) =

and E;|c is semistable, it is ample by [24, p.62]. By [21, Corollarp]lthis implies
that E; is vertical with respect to the rationally connected qudtimap of X', that is
a general fibreZ’ of the rationally connected quotient satisfieg|z' N Tz = E1|z. In
particular the intersectiofizy N¢*V;|z is not zero. SinceX’ and X are birational, this
implies thatTz N V;|z is not zero, a contradiction. O

Proof of Theorem 1.7. IfTz NV;|z =0, Proposition 3.16 shows thay c V,|z.
Therefore we can conclude with Lemma 5.22.

If TzNV1|z = V4|7 there exists a submersiok — Y such thatTx,y = V;. Further-
more V, is an integrable connection on the submersion, so we coaclith the
Ehresmann theorem [17, Theorem 3.17].

If TNV1|z C V1|7 is a line bundle there exists an equidimensional maX — Y
of relative dimension one such that the generdlbre F is a rational curve andr C
Vile. Since X is projective there exists by Lemma 4.19 a factorisatjor ¢ o u,
wherepu: X — X is birational morphism onto a projective manifoiland¢: X — Y
makesX into a PX- or conic bundle. Furthermorg is a composition of blow-ups of
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projective manifolds along submanifolds of codimensiors@,Lemma 2.14 implies
T = Tu(V1) & T(uVa).

By the same lemma it is sufficient to show the conjecture Xorso we can replace
without loss of generalityX by X and suppose that the fibratigh makes X into a
P!- or conic bundle over the projective manifold SetW; := T¢(V;), then

Ty =W & W,

by Lemma 2.15 andV; has rank 1. Furthermore by ([17, Proposition 4.23.], see als
[16, Corollary 4.3.9]) all the fibres op are reduced.

The manifoldY can't have the structure of Bl-bundleY — M such thatTy,m =
Wi this would yield a morphisnK — M such thatTx,u = Vi and the general fibre is
rationally connected. This contradicts N Vy|z € Vi|z. Therefore by [4, Theorem 1]
the subbundla\, is integrable, and the universal coveripgY — Y satisfiesY ~ Y; x
Y2 such thatu*Wy = p§ Ty, and w*W, = pg, Ty,. Furthermore we have a commutative
diagram

where i X := X xy Y — X is étale. By construction the set-theoretical fibresqof
are ;i*V;-leaves. Since has no multiple fibres, the fibratiofi has no multiple fibres.
Henceq = py, o ¢ does not have any multiple fibres, so the scheme-theordtimais
are ;*Vh-leaves. This shows thaf is a submersion with integrable connectigiiVs.
Since

TH(R*Va) = W Wa = i, Ty,

there exists for everyg*V,-leaf U, ay; € Y1 such that[a(mz) =y; x Yo. By Lemma 5.23
below the restriction of] to a ii*V, leaf is an étale covering, so we conclude with the
Ehresmann theorem [17, Theorem 3.17]. O

REMARK. Note that Theorem 1.7 generalises immediately to the cotrigahler
case if we show that the map in the second case of Theorem flat.is

Lemma 5.23. Let¢: X — Y1 x Yo be a proper surjective map from a complex
manifold X onto a product ofnot necessarily compgctomplex manifolds such that
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the morphism g= py, o ¢: X — Y, is a submersion that admits an integrable con-
nection VC Tx. Suppose that for every V-le@f, there exists a y<€ Y; such that
¢(V) = y1 X Yo. Then the restriction of q to every V-leaf is an étale covering

The proof consists merely of rephrasing the classical poddhe Ehresmann theo-
rem as in [5, V.,§2, Proposition 1]. For the convenience of the reader we tlesiess
include this technical exercise.

Proof. In this proof all fibres and intersections are sebtbgcal.

Let U be aV-leaf, and lety; € Y1 such thatp(U) = y1 x Yo. Since py, |y, xv,: Y1 X
Y, — Y, is an isomorphism, it is sufficient to show thaty: U — y1 x Y2 is an étale
map. Furthermore it is sufficient to show that fgr x y» € y; x Ys, there exists a
disc D C y; x Y, such that fory € D, the fibre¢~1(y) cuts each leaf of the restricted
foliation V|4-1py exactly in one point. Granting this for the moment, we show ho
this implies the result. The connected componentiofp—1(D) are leaves oV [4-1(p)
Let 2’ be such a connected component. Sinceyfar D, the intersectior?d’ N ¢=1(y)
is exactly one point, the restricted morphigiy : %' — D is one-to-one and onto, so
it is a biholomorphism. This shows thétyng-1(p): VWN¢~1(D) — D is a trivialisation
of ¢la.

Let us now show the claim. S&t:=rkV andn :=dimX, and setZ := ¢ 1(y1 x Ya).
Since everyV-leaf is sent on somé x Y,, the complex spac& is V-saturated. In
particular if G C Z is leaf, the restriction of a distinguished mdg W, — D" to Z
which we denote byfi|wnz: W NZ — D", is a distinguished map for the foliation
V|z and a plaque off; is contained inY if and only if it is a plaque off; |wnz.

STEP 1. The local situation Let x € ¢ Y(y1 x y,) be a point. Sinceg is a
submersion with integrable connectidh there exists coordinate neighbourhorde
W, c X with local coordinatesy, ..., z, Zu1, - .., Z, and a coordinate neighbourhood
Y2 € Ux C Y2 with coordinatewsy, . . ., wx such thatq(W;) = Uy and glw; : Wy — Uy
is given in these coordinates by

(ze, ..., zZ0) =~ (z0, . . -, Z).

Furthermore there exists a distinguished migp W, — D" given in these coordi-
nates by

(ze, .-+ Zn) = (Zks1y - - -5 Zn)-

Sincex € ¢~Y(y1 x y2) and ¢ is equidimensional over a smooth base, so opy,)
is a neighbourhood of; x y, in Y1 x Ya. Since py, |y, xu, : Y1 X Ux = Uy is an iso-
morphism we can suppose that up to restrictiigand W; a bit that

d(W) N (Y1 x Y2) = y1 x Uy.

Set Wy =W, N Z, theng|z(Wy) = y1 x Uy. It then follows from this local descrip-
tion that ¢|w, : Wy — y1 x Uy has the property that foy € y; x Uy the fibre ¢ =1(y)
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intersects each plaque of the distinguished niigjp,, : Wy — DK in exactly one point.

STEP 2. Using the propernessSince the fibrep~1(y; x y,) is compact, we can
take a finite cover of the fibre bW := W, wherei =1,...,1 andW, is as in Step 1.
For eachi € {1,...,1}, the image¢(W,) is a neighbourhood of; x y, € y; x Ya.
Let D C ﬂ:zl #(W) be a disc that containg, x y,. If U’ is a leaf of V|41 p), it is
contained in some plague of W, for somei € {1,...,1}. Since the plaques intersect
each fibre at most in one poin|o: U — D is injective. The equalityP N¢~(D) =
5’ then implies that

$(V) = ¢p(PN¢ YD) =¢(P)ND =D,
S0 ¢ly 1 U — D is surjective. SAYU’ intersects each fibre exactly in one point.[]
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