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Abstract
The gonality is one of important invariants in the study ofelar systems on
curves. The gonality conjecture which was posed by GreenlLaazdrsfeld predicts
that we can read off the gonality of a curve from any one linadbe of sufficiently
large degree on the curve. This conjecture had been provezuifees on Hirzebruch
surfaces by Aprodu. In this artlcle, we will extend this rdédar curves on certain
toric surfaces.

Introduction

In this article, acurve will always mean a smooth irreducible complex projective
curve unless otherwise stated. For a cukethe gonality of X is defined as

gon(X) = min{k | X carries ag;},

whereg; denotes a 1-dimensional linear system of dedremn X. A curve of gonal-
ity k is calledk-gonal. The gonality is an important invariant in the studylioear
systems on curves, although it is often difficult to detemmiinfor a given curve. It is
well-known that a plane curve of degrekis (d — 1)-gonal. Martens determined the
gonality of curves on Hirzebruch surfaces in [5].

One of the central problems around the gonality is the sleadaonality conjec-
ture (Conjecture 0.2 below) posed by Green and Lazarsfeld in [&f us fix the no-
tation in order to state the gonality conjecture and for #erl use. Letv be a finite
dimensional complex vector spac8yV the symmetric algebra of, and B = @qez Bq
a gradedSV-module. Then, as in [4], one has the Koszul complex

p+l P p—l
dps1.q- d
RN /\V®Bq_1ﬂ> /\V®Bqﬁ> /\V®Bq—1—>"‘,

which yields the Koszul cohomology grouf, (B, V) = Kerdy q/Im dp+1,g-1. In par-
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ticular, for an irreducible complex projective varie® and a line bundleL on Z,
we put

Kpg(Z, L) = Kp,q(@ HOz,iL), HozZ, L)).

ieZ

DeFINITION 0.1 ([3]). LetL be a line bundle on a curv¥, andl a non-negative
integer. We say that the paiX( L) satisfies the propertyM;) (or, simply, L satisfies
the property W) if K, 1(X, L) =0 for any integerp > h%(X, L) — 1 — 1.

It is closely related to the minimal free resolution @ H°(X,iL) when L is
projectively normal. See [3] for the detail. X is a k-gonal curve of genug, then it
is well-known that any line bundle of degree not less thgn+R cannot satisfy ¥).
The gonality conjecture predicts a converse of this fact:

Conjecture 0.2 (The gonality conjecture). Let X be a curve of genus g and k a
positive integer If the property(My) fails for any line bundle L on X witkdegL > 2g,
then X carries a @

Hence we can read off the gonality of a curve from any one linedle of
sufficiently large degree on it if the conjecture is true. As éurves on the Hirzebruch
surfaces, we have not only Martens’ result referred abovealsa an affirmative an-
swer to the gonality conjecture. This was done by Aprodu ih [3o it is a natural
guestion to extend their results to curves on more generédcas, e.g., toric surfaces
obtained from a Hirzebruch surface by a finite successiongafvariant blowing-ups.
Such toric sufaces have finite'-fiorations by toric morphisms. In this paper, we re-
strict ourselves to a class of toric surfaces admitting ajumiP-fibration by a toric
morphism (se&l for the precise description). We determine the gonalitguwfves on
such surfaces, and also show that the gonality conjectuds Hor them. Namely, we
shall show the following:

Theorem 0.3 (Main Theorem). Let S be a toric surface which has a unique
P-fibration ¢ : S — P! by a toric morphismand denote by F a fiber ofy. Let
X be a curve on S and put.K = k. Then one of the following holds
(@) X is a rational curve
(b) X is isomorphic to a non-singlar plane curve of degree k
(c) X is k-gonaJ and the gonality conjecture is valid for.X

The proof owes much to [1] and will go with the induction on thiem of k and
the Picard number of the surface.
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1. Notation and set-up

For many of the theoretical facts about toric surfaces uhetliin this section, we
refer to [7] without further mention. For a non-negativeemgra, we let £, be a
Hirzebruch surface of degres

Ta = {((Xo: X1: X2), (Yo: Y1) | X1Y2 = XoY§} € P? x P,
The ruling mapr of ¥, is defined as the projection to the second factor:

T Ya - P!
((Xo: X1:X2), (Yo:Y1)) = (Yo Ya).

We denote byA a minimal section ofr (A2 = —a) and by A’ a section ofr which
does not meet\, and putl’g = 7 (1 : 0)), I's = 7~ ((0 : 1)). Recall thatZ, is a
typical example of a toric surface. As is well-known, a namgslar toric surface can
be obtained by a division dR?. In the case ofZ,, it is as in Fig. 1.

By definition, a toric surfacex contains an algebraic toru§ as a non-empty
Zariski open set, and it acts oB. Divisors onX are calledT-invariant if they are
T-stable. When we express by a division ofR?, they correspond to half-lines start-
ing from (0, 0). These half-lines are called (1-dimentigranes. A point on a cone
is called a primitive element if it is th&-lattice point closest to (0, 0). For instance,
let us consider the case of Fig. 1. Theinvariant divisors ofX, are A, A’, I'y and
I's. We putn =(1, 0). Then the cone correspondingItg is

o(To) =Rson ={cn| c e Rxp},

andn is the primitive element o& (I'p). Similarly, n’ = (0, 1) is the primitive element
of the cones(A) =Ron' = {cn | ¢ € R5o} which corresponds ta.
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Intersections ofT -invariant divisors are called -fixed points. A blowing-up ofZ
with center aT -fixed point can be expressed as a subdivision of the origihésion:

Let D; and D, be T-invariant divisors onX. We denote byn; and n, the primitive
elements of the cones correspondingDge and D,, respectively. The blowing-up of

¥ with center D; N D, corresponds to the subdivision obtained by adding the cone
R.o(n1 +ny) to the original division. For instance, in the case of Fig.te blowing-

up of =, with centerA NIy corresponds to the subdivision as in Fig. 2.

We henceforth assume > 1, and letS be a surface obtained from, by a finite
succession of blowing-ups with-fixed points as centers. We assume that sheixed
points do not lie onA’. We denote byp: S— X, this blowing-ups, and calfy = o¢
the ruling map ofS. This surface is expressed by the divisionRf as in Fig. 3.

Let C and C’ be the proper transforms ok and A’ by ¢, respectively. Since
(mro@) X ((1:0) = Uid:l D; is a simple chain of non-singular rational curves, we can
label them in the following way:

D]_.C = 1,
Di.D=1 (I<i<d-1),
Dd.C/ =1.
Similarly, we denote byE,, ..., Ee¢ all the irreducible components contained i

¢)71((0 : 1)), where we define their order as:
E;.C =1,
Ej.Ej+1=1 (1<j<e-1),
Ee.C' = 1.

We denote byn; = (X, yi) the primitive elements of(D;). Similarly, we denote by
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m;j = (zj, wj) the primitive element o& (E;). Then they satisfy the following properties.

1) Ya =0,

zj<-1 (2<j<e-1),
wj>-z;+1 (1<j<e-1),
we = C2.

Note that we haveC’? = A”? =a > 1, since the center of the blowing-up lie outside
A’. Furthermore, we have

Xi—1+ Xi+1

2_ .
" D = X (1<i<ad),
+Zj+ .
'512:‘2]_12 91 1<j<oe),
j

where we putXy = Xg+1 = Zp = Ze+1 = 0.
The Picard group ofS is generated (not freely) by the classes@f D; (1<i <
d), andE; (1 < j <e€). When we take a divisoD on S, the linear equivalence class
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of D can be expressed with integdrdy, c; as

d e
DN|C/+ZbiDi+ZCjEj,
i=1 =1

where ~" means linear equivalence. In particular, a computationgi$2) shows that
we can take non-negative integdrdy, andc; if D is nef onS. A canonical divisor
Ks of Sis

d e
K5~—C—C/—ZDi —ZE,-.
i=1 j=1

A general fiberF of ¢ is
d e
F NZXiDi NZ—Z]‘EJ.
i=1 j=1
Moreover, we have
d-1 e
C~C'=2 %D - > wE.
i=1 j=1

2. Key proposition

We keep the notation in the previous section. ISebe a toric surface as in the
previous section, an&K a curve of genug on S. We putk = X.F. We say that the
pair (S, X) satisfies the property) (or, simply, X satisfies f)) if C2=1 andX ~kC'.

In this section, we shall prove the following proposition.

Proposition 2.1. If k > 2 and X is nef but does not satisff), then Os(X)|x
satisfies(Mg_1).

To prove this proposition, we need several lemmas. We egpheslinear equivalence
class of X as

d e
©) X ~KkC'+> pDi+ > qE
i=1 j=1

with some integers;, q;.

Lemma 2.2. Suppose that k 2 and X is nef on SThen X is a rational curve
if and only if C2=1,k=2and X~ 2C’.
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Proof. The sufficency is easy: €2 =1 and X ~ 2C’, by a computation, we
have X.(X + Kg) = —2. Theng = (1/2)X.(X+ Kg)+1 =0. To prove the necessity, we
assumeg = 0. Thenh?(S, X + Kg) = 0 becausen®(S, Ks) = h%(X, Kx) = 0. On the
other hand, we have

d e
X+Ks~ (k=2)C+> ((k—1)y +p —1)D; + D> ((k — Dw; +qj — 1)E;.

i=1 =1

SinceX is nef, we can take non-negative integersa; in the expression in (3). Further-
more, we haveC’? > 1. Hence (1) shows that

k=1)yi+p-1>0 (1<i<d-1),
(k—1Nw;+g;—1>0 (A<j<e).

The equationh?(S, X + Ks) = 0 implies thatX + Ks is not linearly equivalent to an
effective divisor. Thenpy must be zero, and we haw€.Dyq = pg_1 + k > k. Since
X.F = X.(ZL, x D) =k, we obtain

0 (1<i<d-1),

X.Di = [k (i =d).

On the other hand, we have
d e
X+Ks=X+Ks+F—F~X+Ks+> xDj+> zE;
i=1 j=1
d
~(k=2)C+> ((k—1)yi +x +p — 1)D;

i=1

e
+ > (k= Dwj +7 +0; — DEj.
i=1

Since this is not an effective divisork £ 1)we+2Ze+ge— 1 = (K— 1)we+Qge — 2 must be
less than zero. Noting that. = C?> > 1, we havek = 2, we = 1, andge = 0. Hence
X.Ee = Qe_1 +2 > 2. Then, by the equatioiX.F = X.(Z‘f:1 —2z;E;j) = 2, we obtain

0 (I<j<e-1),
X.Ej = .
J [2 (j =e).
Moreover, we haveX.C' = pg +KkC? +ge = kwe = 2, andX.C = X.(C' = X' yi Dj —
> wjEj) = X.C' = X.Ee = 0. In sum, we obtain tha€? =1, k=2, and X is
numerically equivalent to @. Since S is simply connected, we also havé ~ 2C’.
O
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Let | be a non-zero effective divisor o8, and putH = X —I.

Lemma 2.3. If HY(S, —1) =0, then for any integer p> h%(S, H — 1) +1,
val(S, H) =~ val(X, H|X)

Proof. The short exact sequence of sheaves Os(H—X) =Og(—1) - Os(H) —
Os(H)|x — 0 induces the cohomology long exact sequence

0 HS —1) = HYS H) > HYX, H|x) > HXS, =1) > - -.

Since HY(S, —1) = HX(S, —=1) = 0, we haveH?(S, H) ~ HO(X, H|x). We putV =
HO(S, H), B = D=0 HO(S,qH), B = D=0 HO(S, qH — X), and A= B/B’. By
considering the short exact sequences0B’ —» B — A — 0, we obtain the Koszul
cohomology long exact sequence

s = prl(B/, V) —> Kp’l(B, V) —> prl(A, V) —> Kp_lyZ(B/, V) e RN
It is shown in [4, Theorem (3.a.1)] that

Kp1(B,V)=0 if p>hoS H—X)=0,
Kp12(B,V)=0 if p>hoS 2H — X)+1=h%S H — 1) +1.

We thus haveK, 1(S, H) =~ K 1(A, V) for any integerp > h%S, H — 1)+ 1. On the
other hand, let us consider the short exact sequence ofdj@denodules

0> A P HUX, gqH|x) > C ::(@ HO(X,qH|X))/A—> 0.

q=0 q>0

The isomorphismsAg ~ C and A; ~ HO(X, H|x) imply Co = C; = 0. Thus we can
apply [1, Remark 1.1] to obtain

Kp,l(A! V) = Kp,l(@ HO(Xr (q H)lX)! HO(X! HlX)) = Kp,l(xl HlX)
q=0
for any integerp. O

For the proof of Lemma 2.6 below, we need the following twootleens.

Theorem 2.4 ([4, Theorem 3.c.1]). Let L be a line bundle on a curve X and
put m=dimg(X). Then for any integer p> h°(X, L) —m,

Kp1(X, L) =0.
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Theorem 2.5 ([1, Theorem 1]). Let X be a curve of genus g 1, L a non-
special and globally generated line bundle on &1d k > 0 an integer such that L
satisfies(Mg). Then for any effective divisor D on XL + D also satisfies the prop-

erty (My).

Lemma 2.6. Suppose X is nef on S and>gl. If all of the following (i)—(v)
hold, then Og(X)|x satisfies(My).
(i) H is globally generated
(i) H2>0,
(i) H|x is non-special
(iv) h%(S, H)—h%S, H —1) >3,
(v) HYS -1)=0.

Proof. SinceH is globally generated andH? > 0, by Bertini's theorem, we
can take a non-singular irreducible curWee |H|. Then Theorem 2.4 shows that
Kp1(Y, Hly) = 0 for any integerp > h°(Y, H|y) — dimgu;,(Y) = h°(Y, H|y) — 1. The
short exact sequence of sheaves>00s(H — Y) =~ Os —» Os(H) —» Os(H)ly —» 0
induces the cohomology long exact sequence

0— HYS, 0g) —» HYS, H) = HOY, Hly) = HY(S, 0g) = - - -.

Since HY(S, Os) = C and H(S, Os) = 0, we geth®(Y, Hly) = HY(S, H) — 1. We
thus have

4) Kpa(Y, Hly) =0

for any integerp > h%(S, H) — 2. On the other hand, by [1, Remark 1.3], we have
Kp (Y, Hly) = Ky 1(S, H) for any integerp. Besides, we obtain thaf, 1(S, H) =~
Kp,1(X, H|x) for any integerp > ho(S,H —1)+1 by Lemma 2.3. Hence, by combining
these facts with (4) and (iv), we have

Kpi(X, H|x) =0
for any integerp > h9(S, H) — 2.
The short exact sequence® Og(H — X) = Og(—1) > Os(H) - Os(H)|x —» 0
induces the cohomology long exact sequence

0— HYS, —1) = H%S H) = HYX, HIx) » HY(S =1) > - - -.

The equalityHO(S, —1) = H(S, —1) = 0 implies h%(S, H) = h%(X, H|x). In sum, we
conclude

Kp1(X, HIx) =0



122 R. KAWAGUCHI

for any integerp > h9(X, H|x) — 2, that is, H|x satisfies M1). Now, H|x is non-
special and globally generated. MoreoveP(X, I|x) > h%(S, 1) > 0. Therefore, by
Theorem 2.5,05(X)|x also satisfies Nly). O

In the rest of this section, we suppoke> 2 and X is nef, and put
d’ = min{i | D? > -1},
e =min{j | Ef > -1},
d-1 ¢-1
| =C+> Di+> Ej+F,
i=1 j=1
H=X-1.
Lemma 2.7. If X.Dg > 1 and XEg > 1, then the following hold
(i) H is globally generated
(i) H2>0,

(i) H|x is non-special and globally generated

Proof. By [6], it is sufficient for (i) to verify thatH has non-negative intersection
numbers withC, C’, D;, and E;. Firstly, for 1<i <d' —2, we have

H.D; = X.D; — 1.D; = X.Dj — Di2—22 X.Di > 0.

Next, we seeH.Dg_1 = X.Dg_1—D3_;—1>—-D3_,—1>1, andH.Dg = X.Dg —
1> 0. Moreover, ford’+1<i <d, we haveH.D; = X.D; > 0. In sum, we obtain

[0 (#d-1),
H'D'z[l (=d-1).
Similarly,
0 (7e-1),
H'Elzll (j=¢—1).

We haveH.C' = X.C' —1.C’ = pg +kC?+0ge— 1> k—1> 1. Finally, let us consider
H.C. We have

1 (d=€¢=1),
I.C=C%+ [3 d > 2 andée > 2),
2 (otherwise),
-1 (d'=¢€=1),
C? < [—3 d > 2 andée > 2),
—2 (otherwise)
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to obtain1.C < 0. Hence we haveH.C > X.C > 0 since X is nef. (ii) SinceH is
globally generated, it is nef and we can find non-negativegirtsh;, c;j such that

d e
H~(k-1)C'+> bDi+> cEj.

i=1 j=1

Then we haveH? > (k—1)H.C’ > k—1 > 1. (iii) is verified by a simple computation:

d e
degH|x — 2g = X.(—I —KS)—Z:X.(C’+Z Di+> Ej— F)—Z

i=d j=e
> X.(C'+Dg+E¢ —F)—2> X.(C' - F)
= pg+kC?+0e—k > 0. O

Lemma 2.8. Suppose that X does not satigfy). If X.Dg > 1 and XE¢ > 1,
then P(S, H) —h%(S, H — 1) > k+1.

Proof. By Lemma 2.7 H is globally generated an#i? > 0. Then, by Bertini’s
theorem, we can take a non-singular irreducible curve |H|. We denote byg(Y)
its genus. As we saw in the proof of Lemma 2.6, we ha%S, H) = hO(Y, H|y) +1,
and h%(S, H — 1) = h%Y, (H — 1)]y). Hence it is sufficient for the claim to verify
ho(Y, Hly) — ho(Y, (H = 1)|y) > k. Since

d e
degH|Y—Zg(Y):Y.(—KS)—Z:H.(C+C’+Z Di+>] Ej)—z

i=1 j=1
>H.C —-2> -1,

Hly is non-special. On the other hand, we have
degH — DIy —29(Y) =Y.(-1 = Kg) -2
d e
= H.(C’+Z Di+> Ej— F)—Z
i=d j=e
>H.(C' —F)—2=pg+kC?+ge—k—2.
If ps=0e=0 andC’?=1, then we can show that satisfies f) by the same argument

as in the proof of Lemma 2.2. Hence we can assumephat 1 orge > 1 or C2 > 2.
It follows that degd — )|y —2g(Y) > —1. Thus H —I)|y is also non-special. Hence

h°(Y, Hiy) = h°(Y, (H = )ly)

=degH|y +1—g(Y) — (degH — 1)y +1—g(Y))
=Y.H=Y.(H=1)=H.I.
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We consider the case al’ > 2. Then, as we saw in the proof of Lemma 2.7,
H.Dg_1 > 1. We thus have

d-1 -1 d-1 [
H.l = H.(C+Z Di + > E; +F):k—1+H.(C+Z Di+> E,—)
i=1 j=1 i=1 j=1
>k—1+H.Dg_1 > k.

Hence the claim is true ifl’ > 2. We can argue similarly in the case &f> 2. Let
us assuma’ =€ =1. ThenH.| =k—1+H.C=k+p+qu—2—C2 If p>1 or
g1 > 1 or C? < —2, then we obtairH.l > k. On the other hand, ip, =, =0 and
C2= -1, thenC”? =1, and X would saisfy f). O]

Now, we show Proposition 2.1.

Proof of Proposition 2.1. We havg > 1 by Lemma 2.2. We denote by(S)
(> 2) the Picard number of. We will show the claim by the induction ok+ p(S).

If k=p(S =2, then we haveX.Dy > 1 and X.E¢ > 1. Hence Lemma 2.7 and
Lemma 2.8 allow us to apply Lemma 2.6 ¥. Therefore, the claim is true in this
case. Then, let us consider the cas&kafp(S) > 5. Assume that X', Os(X')|x/) sat-
isfies My _1) if K+ p(S) < k+ p(S), when we takeS and X’, and definek’ in the
similar way as in the case @& and X.

(i) SupposeX.Dy > 1 and X.E¢ > 1. If k = 2, then the claim is verified by
Lemma 2.6. Assume thd& > 3. We take a non-singular irreducible curYee |H|.
ThenY is nef, andY.F =k — 1. Now, let us assume that satisfies £), that is,
C?=1 andY ~ (k — 1)C’. Then we have

d-1 e-1
X~Y+1~(Kk=—1C'+C+> D+ Ej+F.
i=1 j=1

If d > 2, thenX.Dg_1 = Dg,_l +1 < 0. It contradicts the fact thaX is nef. Hence
d’ = 1. Similarly, we obtaine = 1. Hence,X ~ (k —1)C'+C + F. Since X.C =

C2+1>0, we seeC2=—1. Then we haveC’ ~ C+F and X ~ kC'. It contradicts
the assumption thakK does not satisfyf]. HenceY does not satisfyf). Then, by
the hypothesis of the inductionY (H|y) satisfies Mx_,). That is,

Kpa(Y, Hly) =0
for any integerp > h°(Y, H|y)—k+1. Now, h°(Y,H|y) =h%(S,H)—1=h%X, H|x)—1.
Moreover, by [1, Remarkl1.3], we haue, 1(Y, Hly) = K, 1(S, H) for any integerp.

Then we have

(5) Kp1(S H)=0
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for any integerp > hO(X, H|x) — k.
On the other hand, the short exact sequence of sheaves@s(—I1) - Os —
O, — 0 induces the cohomology long exact sequence

0 HYS, =1) > HYS, 0s) > Ho(I, 0)) = HY(S, =1) > HYS 0g) > - - -.

Since HO(S,—1) = H(S,0s) =0 andHY(S,0s) = HO(I,0,) =C, we haveH(S,—1) =
0. Hence, by Lemma 2.3, we have, 1(S, H) = K 1(X, H|x) for any integerp >
h(S,H —1)+1. We remark thah®(S, H) —h%S, H — 1) > k+1 holds by Lemma 2.8.
In sum, combining these facts with (5), we obtain

Kpa(X, HIx) =0

for any integerp > h°(X, H|x)—k, thatis, (X, H|x) satisfies Mx_1). Now, H|x is non-
special and globally generated by Lemma 2.7. Hence, by Ened.5, &, Os(X)|x)
also satisfies Nlx_1).

(i) SupposeX.Dyg = 0. In this case, it is obvious that > 2, p(S) > 3, and
D3 = —1. Let S be a surface obtained fror8 by blowing Dy down, andF’ be a
general fiber of the ma$ — P!. Then we can regark c S. We denote byp(S)
the Picard number o8. We havep(S) = p(S) — 1 and X.F’ = k. Hence, by the
hypothesis of the induction, X[ Og(X)|x) satisfies Mx_1). Therefore, the claim is
verified.

(i) If X.Ee¢ =0, then we can show the claim by the same argument as in (ii).

O

3. Proof of Main Theorem

For the proof of the Main Theorem, we need the following result

Theorem 3.1 ([1, Corollary 2]). Let X be a curve of genus g 1, which car-
ries a ¢. If there is a non-special and globally generated line bundfe X satisfing
(Mk_1), then X is k-gonaland the gonality conjecture is valid for.X

Proof of Theorem 0.3. (a) Ik=0, thenX is contained in a fiber. HencX is
rational. Ifk =1, theny induces a morphism fronX to P! of degree 1. Henc& is
rational. If X is not nef onS, then X? < 0. We thus have

d e
X.(X+Kg) = X2+X.(—C—C/—Z D; —Z Ej) < 0.
i=1 i=1

It follows that X is rational. So we may assume thHat- 2 and X is nef onS. Since
X.F =k, then gonality ofX is at mostk.
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(b) SupposeX satisfies f). Then we can regarK as a curve which is lin-
early equivalent tokA” on ¥; by a finite succession of blowing-downs aloiy or
E; which has the self-intersection numbef. and disjoint fromX. Then, by blowing-
down along the minimal section, X can be regarded as a plane curve of dedeee

(c) SupposeX does not satisfyfff. Then we haveg > 1 by Lemma 2.2. More-
over, Proposition 2.1 shows théls(X)|x satisfies Mk-1). On the other hand, since

degOs(X)|x — 2g = X.(~Ks) =2 > X.C' =2 =pg +kC?+ Qe — 2 > 0,

Os(X)|x is non-special and globally generated. Therefore, it fadlédrom Theorem 3.1
that X is k-gonal and the gonality conjecture is valid fir. ]
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