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ON THE CROSS RATIO VARIETY
FROM THE VIEWPOINT OF THE ROOT SYSTEM OF TYPE 3A;
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Abstract
We observe Naruki’'s cross ratio variety from the viewpoifittlee root system
of type 3A;,. We construct some kind of models as moduli space of markéit cu
surfaces on which the action of a Weyl subgroup of tgge and its normalizer can
be easily observed. We describe the structure of our modtlitanrelationship to
the cross ratio variety.
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Introduction

A marked smooth cubic surface means a smooth cubic surfac®szirendowed
with a marking which is an isomorphism of the fixed combinatorial model of 7
lines onto the actual line-configuration on the surface. @hemorphism group of
the model is isomorphic to the Weyl groupy(Eg) of type Es, and thus the moduli
spaceM of marked smooth cubic surfaces admits a natural actiow(Eg) on itself.

In [11], Naruki constructed a smooth equivariant compagttfon of M with respect
to this action. He uses the 270 Cayley’s cross ratios arifiog the quadruplets of
collinear tritangents of the surface, so this compactificais called the cross ratio
variety and is denoted by in [11]. The 270 cross ratios divide themselves into 45
systems to each of which the belonging six cross ratios amayted by simple linear
fractions, so there are essentially 45 of them. These 4®mgstattributed geometrical-
ly to the 45 tritangents, correspond exactly to the 45 rodisgstems of typeD, in
the root system of typdeg for the marked surface. By fixing one root subsystem of
this kind and by using the so-called modified Cayley familyoobic surfaces( is
described as an equivariant modification of the Weyl-charabmpactification of the
adjoint torusT (D4) of type D4 with respect to the action oiV(D,).
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This description ofC is naturally advantageous when observing the actiorCon
of a Weyl subgroup of typeD,4, or of its normalizer which is of typd, and is of
index 45, one of the maximal subgroups \WWi(Eg). There are known some descrip-
tions of C (or of similar compactifications) focusing on the actionssofmne subgroups
of the maximal type. For example, recently E. Colombo and & Geemen have
given a description of this kind by using the projective spassociated with the Cartan
subalgebra of typeéDs, on which the action of a Weyl subgrolyw/(Ds) of W(Esg) is
naturally visible. This subgroup is one of the maximal swlogs of W(Eg) with in-
dex 27 (cf. [4]). A model of the compactified moduli space onichhthe Weyl sub-
group W(As) acts naturally has essentially been known in the classicaks of Coble
[5, 6, 7], this can be described as a double coverin@®nfwhich admits natural ac-
tion of the normalizer ofW(As), one of the maximal subgroups ¥¥(Eg) with index
36 (see for example [8]). There is still missing a compadtifirodel of the moduli
space on which the maximal subgroup of index 40 acts in a alaweay. This group
is the normalizer of the Weyl subgrolW(3A,) associated with a root subsystem of
type 3A, = Ay x Ao x Ay in Eg.

In this article, | will present one of this type of models bynjmg three birational
varieties. Each of the three varieties is described by u@sgentially two) simple re-
lations among the six special cross ratios associated withoasubsystem of typé,,
which define a 4-dimensional variety [ﬂ‘f This variety is already birational t6, so
it is a blowing-down ofC, and our model lies (as the graph) in the direct product of
the three (naturally birational) varieties, each assediatith one of theAy's in 3A,.
This is very near t& in the following sense: There are 27 non-singular rationaves
in C, each of which is the intersection of threfg-divisors associated with root sub-
system of type 3y lying in the fixed 3A,. They are disjoint and can be separately
blown down to 27 singular points. Our model is exactly thiewihg down.

| have received cordial guidance to the subject and manyfiiedplvices from Pro-
fessor I. Naruki. For that | would like to express here my dstmratitude to him.

1. The fixed model of formal lines and the associated notation

We recall several basic facts about marked smooth cubiacesfand the cross
ratio variety for introducing notation.

The standard odd unimodular hyperbolic lattiely of the signature (1, 6) is iso-
morphic to the Picard lattice of a smooth cubic surfé&&e We denote the standard
orthogonal basis bylg; e, ..., €5} and the symmetric bilinear form by ( , ). Then
the corresponding one to the canonical classSa$ given in Hy as

6
ko:=—=3lo+ > &

i=1
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and the set (of divisor classes) of the 27 lines ®is represented iHy as follows:
Lo = {x € Ho | (X, X) = (X, ko) = =1}

which explicitly consists of (formal) linegy, ..., e in the basis and fifteen and six
elements denoted by;; (i 7 j) andg;:

fij :|0—a —ej, i :2I0—Zej.
j#i

The setl, endowed with the intersection product ( , ) on it is a comlwriat model
of the 27 lines, which we will fix in this paper.

The orthogonal complement to the sublatti€k, in Hg is identified with the root
lattice L(Eg) of type Eg by taking a fundamental system of roots as follows:

=€ —&, o =lg—e —e —e3
03 =€ —€63, a4:=€3—€, a5.:=€—65, apg.—6 —6

with its Dynkin diagram:

o a3 (o7} Og 67

(1.1)

a
Then the 36 positive roots are explicitly
rij ==& — € (i <)

ri,-k :=Io—e.—ej—eK (I <j<k)
6

ro::2lo—Za
i=1

whererg is the maximal root. We see that the automorphism grougofs the Weyl
groupW(Eg), and thenW(Eg) acts naturally on the moduli spagel of marked smooth
cubic surfaces.

We have the 45 (formal) ones as corresponding object to fitengents onS,
which are explicitly given, under the (Schléaffi) notations fifteen ones of the type
Taijyaymn and thirty ones of the typd;; (# Tji)Z

Tiiwymn = {6ij, T, Tmnd, Tij = {fij, 91, €}

where all the indices are assumed to be different. This sib dbe assumed for such
notations asAGjk)imn), Aij)(kl(mn) appearing later.
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For each tritangenT (which is a tritangent orS by a marking) and for a line
on T, there are four collinear tritangents, outsifle passing through the line; which
determine four points of?; (as the pencil of planes through the line) and we have six
cross ratios of them. Cayley showed that these only depentl, and they are known
as Cayley’s cross ratios associated with Since the six cross ratios are transitively
permuted among themselves by the simple linear fractiong, aan say that there is
essentially one of them, one for eadh

We have anyway 270 (= 645) cross ratios and they determine an embedding of

M into P$’% The closure of (the image ofM in P3° is the cross ratio variety.
By the reason mentioned above, it is sufficient for obserndngp choose one cross
ratio for each of the tritangents and to embk@dnto P{>; that is, C is embedded also
through the projection oP2’° onto P$° defined by the choice. (We will give and fix
a choice of this kind in the next section.)

The boundaryC — M consists of 36A;-divisors and 40 cusp divisors (called
N-divisors in [11]). These 36 and 40 divisors are associatéd the 36 and 40 root
subsystems of typed; and 3A; in Eg respectively, where B means the union of
three root subsystems of typ&, being orthogonal to each other. The 40 root sub-
systems of type B, are explicitly given to be the ten of the typ&jamn and the

thirty of the type Agjywiymn) (7 Agj)mnw):

£k, EMmn, £hm +rij, %, Ermn
AGjkyimn) = § £k, *fo,  Ein ¢y AG)kmn = 1 T jkis Eimns Eijn
*rij, =£fijk, *rmn Eriki, Efkmn Elijm

We note that the 40 cusp divisors, which all isomorphicIP’@) are contracted to the
40 cusps of the GIT-compactificatioht, and then the 36\;-divisors are contracted to
the 36 boundary divisors aM which are all isomorphic to the Segre cubic threefold

(cf. [8]).
2. Projection of the cross ratio variety and the definition of our model

To observe the cross ratio varie§, we will introduce several projections af
associated with a root subsystem of type 3A;. We chooseAi23y4se) as A, which
seems to be natural for the standard diagram (1.1); for, ithgenerated by the sub-
diagram of type 3. in the extended diagram:

r12 23 34 l45 I'se

(2.1) 123
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For the three root subsystems of type in A, we give their labels as follows:
8y = {Er1o, £ro3, £ri13}, 8, = {Er123, trase, £ro}, 8, 1= {Fra5, £rs6, £ra6).

(Here we have in mind the correspondence to the paramgtersv in [11].)

For the action of the Weyl subgrolfy(A), the 45 tritangents are divided into four
orbits, one of which consists of 27 tritangents and each efatiners of six tritangents
(45=27+6+6+6). The six tritangents of the latter type odnié associated with
a root subsystend of type A, in A, that is, they are the tritangents on which the
Weyl subgroupW(s) acts trivially; more precisely, the ones correspondingh® root
subsystems of typ®, which contains. In particular, the tritangents associated with
81, 8., 8, are explicitly given as follows:

Tas, Tse, Tea
0y &
* [T54, Taes: Tes

PPN [T(14)(26)(35) Te)25)34)y T(15)(24)36)
" Taayes)36) Tae)24)35) T(15)26)34)

Ta1, Tia, To3
8, <>
' [Tsz, Tis, To1.

We note that, for each; (i = A, u,v), the upper part tritangents and the lower part, not
collinear in each part, form so-called Steiner trihedral,pand that the three trihedral
pairs are the complementary ones to each other. Thus we lssmed 18 tritangents
associated withA.

By choosing the 18 cross ratios for the tritangents assatiatith A, we obtain
the projection ofP}°> onto Pig (after some choice of 45 cross-ratio-representatives), an
by restricting this toC, we obtain a projection of into IP%B, whose image will be
denoted byC, and this is exactly our model. Now the objective of this pajseto
describe how neaf, is to the cross ratio variet§. (We will in fact see later that the
projectionC — C, contracts only 27 mutually disjoint non-singular ratioeakves inC
separately, each onto a singular pointCof.) SinceC, is too complicated to describe,
we have to project it further by choosing one root subsysiesh type A; in A and by
extracting the components corresponding to the six trgatgyassociated with. The
image of the projection is then denoted 8y. We have thus obtained three varieties
Cs,, Cs,, Cs,, which support our model together.

To describeCs, (i = A, u, v) explicitly, we actually choose one cross ratio for each
of the tritangents associated wish and we give them labels as follows:

r—1 (A — D pvp? = 1) r—1
u, .= —, vy = . wy =
PADIN Aup —1 (Ao — D)(Apvp — 1) Avp —1
* A—1 (0 — 1)(pvp? — 1) A—1
X = Y= v 4=
Auvp —1 (Ao — D)(Avp — 1) Ao —1
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[ -1
uﬂ:u—l’
v f—
. = n—1
L7 pvp =17 Vi
U = v—1
v T A v
Avp —1
8y &> vf—l
Xy 1= ————,
Apvp —1

"o
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= (k=1)@pvp® = 1)
(np — D)(pvp — 1)
— (= Dpvp? - 1)
- (Ao = )(uvp = 1)
_ (w=1(puvp®—-1)
" (vp — D(pvp — 1)’
_ =D —1)

" (e — D(pvp — 1)’

n—1
Aup —1
_wu—-1
" -1
v—1

Mmoo

w, = ————
uvp — 1

v—1
vo—1

Vo

where the expression of cross ratios above is the one in [W&.have identified here
the Schlafli labels of the tritangents in this paper with @gd ones used in [11] by
putting the following correspondence of mutually skew snes:

e INANPNTNY eel nmnpngnz
&ohNrnfnene el nmNpngnz

s fngnnNnnz

&< WNXNXNXNE.

For the benefit of the reader, we attach the complete list ®fcthrrespondence of the

names of tritangents below:

T12)34)6) <> 0
Ta2)@s)ee)<> h
Ta2)@e)as) <> I
Taz)eayse) < |
Tas)es)ue) <> 9
Ta3)ee)us)<> N
T4)23)56)¢> P
Tasyes)Ee) <> d
Taayee)@s) <> M
Ti15)(23)46) < |
Tas)ayze) <> M
Tas)ee)ea <> 0
Tae)23)us) <> Y
Tue)ea@Es) <> Y
Tae)es)34 > 1

Tt Tael
Tz 2z T3 & n
T14 —Z T4]_ i |_
T15 Sz T51 > [5
T16 W T6]_ > )7
Tz & n Tao & r
T24 —m T42 e H
Tise>q Ts2¢36
T26 o X T62 or
Taae>q Tizeog
T35 o m T53 —f

Tsg<> X Tz n
Tisol Taop
Tag <> X Tea <& I’
Tss > & Tesop

(We remark that the correspondence is a little differenifrthe one of [12] or [3]
though equivalent to it under the action 8f(Eg).)

We have to remark here that, under the correspondence atEflextionss;, S in
[11] should be interpreted as the ones with respect to re&tgs, £ris6 SO S, S are
different from the actions of the reflections associatechviitndamental rootsv;, ag
(of this paper). The rootstri,, £rsg are interchanged withtrags, +ris6 respectively
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under the action of the non-trivial central element of theyWsubgroup of typeD4
associated withl;6, the central subdiagram of typB, in (2.1), taken for determin-
ing the parameterg., u, v, p. Thus the reflections, os associated withys, g act
asysy 1, yssy~! where y denotes the central action interchanging 4, v, p) and
(L wt v oY), They are explicitly given as follows:

s _ Mrpvp® = 1) Ao — 1)(uvp — 1)
A—1 (Avo — D)(puvp — 1)
pnp —1)(vp — 1) _, e —1)@vp —1)
o (up = Dpve =1) . (nvp — D(pvp — 1)
. Voo = Dopp—1) v(pvp® — 1)
(hvp — D(pvp — 1) G
p(h — 1) (pvp —1) p(v — L)(Apvp — 1)
(rp = DApvp? — 1) (vo — Dpvp? = 1)

Now, we mention how the normalizer of the Weyl subgradgA) acts on the 18
cross ratios chosen fan, which naturally induces the action on our modg|. We
recall that there is a unique subgroupWfEs) which induces the symmetric grougy
of A, u, v (and fixesp) in the parameter space of [11]. This subgroup, lying ogtin
in the normalizer of the Weyl subgroup of tydg, above, lies also in the normalizer
of W(A), so it is a semi-direct summand; namely, the normalizesdsniorphic to

W(A) % 83 = (W(5;) x W(S,) x W(5,)) % Ss.

Thus one can in principle describe the action of the norraaliz

The action ofS3 is clearly seen, since the 18 cross ratios are given in tefms o
A, w, v, p. For example, the transposition pf and v sendsuy, u,, u, to wy, w,, w,
respectively, while, for the other coordinates, oplyand v in their labels are inter-
changed. We remark that the elements of order Fjmact simply as the cyclic per-
mutations of the indiceg, u, v.

For describing the action ofW(A) = W(5,) x W(8,) x W(é,), it now suffices
to describe the action o#W(8;). The reflectiono;, associated withtry, transforms
Uy, vy, Wi, X, Vi, Z, to their inverses respectively, while the reflectiosy associated
with +£r,3 transforms them ta, /(uy — 1), vy /(v; — 1), etc. respectively. The remaining
12 coordinates (associated wigh, §,) are transposed by, 023 exactly in the same
way as the corresponding tritangents to them are transplmged., o,3; for example
by 012 we haveu, <>y, v, < X,, w, <>z, andu, <> z,, v, < X, W, < Y,.

Now, we will describeCs, in P$ explicitly. We begin with the proposition:

Proposition 2.1. Between the six cross ratios,w;, . . .,z chosen fors;, we have
the following three relations

Uiviwi = XYz,
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(1-u)A—-v)d—w)=1-x)1-y)1-2z),
A-uHA—yHl-w ) =Q-xHA-yHa-z7.

The first relation is immediately checked by the explicit egsion of the cross
ratios. The other two are deduced from this by using the mactib W(s;). But,
from the algebraic point of view, only two of the three retais are independent,
and which two should be chosen as the basis depends on wheobsgeve the sub-
variety of P§ defined by the above three equations. We should rather pasiseto
multi-homogeneous coordinatesJi(: Uy), . . ., (Zo: Z)) for P‘f by putting the iden-
tification u; = Ug/Uw, ..., Z = Zo/Zs. (We have omitted the subscriptfrom the
homogeneous coordinates for short.)

Now the above equations are rewritten as follows:

UOVOWOXooYoo Zoo = UoovooWoo XOYOZOy
XooYoo Zoo(Uoo - UO)(Voo - VO)(Woo - WO) = UoovooWoo(xoo - XO)(Yoo - YO)(Zoo - ZO):
XoY0Zo(Uoo —Uo) (Voo — Vo) (Woo — Wo) = UgVoWo(Xao — X0)(Yeo — Y0)(Zoo — Zo)-

An equivalent condition is obviously given by requiring

ran UoovooWoo UOVOWO (Uoo - UO)(VOO - VO)(WOO - WO) <1
XooYoo Zoo XOYOZO (Xoo - XO)(YOO - YO)(ZOO - ZO) -

so the subvariety is a kind of determinantal varieties. Thasnogeneous reformula-
tion of the equations is of importance since there lie siagploints of the subvariety
outside the patciC® of IE"‘l3 on whichu;, ..., z are given. Since there are locally two
independent equations, the subvariety is 4-dimensionakeb@r, as we will see later,
this is irreducible and birational t6; so it coincides withCs, .

For proving the birationality, it suffices to show that thénext cross ratios are all
expressed rationally by the six cross ratigs. . ., z associated witt;. We need the
following lemma:

Lemma 2.2. For a quintuplet of collinear tritangentsve can arrange the cross-
ratio-representatives associated with them in the folleyvform

B a(l-p)

l-«
“ P 155 Ba—w)

More preciselythey are determined by the choice of cross-ratio-p@ir 8) such that
the ratio B/« is also a cross ratio

One can check this easily. We note that the three cross ratles thana, 8 have
been chosen such that the product of them is equal to 1.
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Notice that one cross ratio ifu;, vi, wj} and another one ifx;, yi, z;} form such
a pair ¢, 8) as is characterized in the above lemma. Since there arechiviees of
such pairs, we obtain 27 (=-®B) cross ratios from them. These cross ratios are the
ones belonging to the tritangents other than the 18 onesAforor example in the
casei = A, we obtain from the pairuj, x,) three cross ratios

Xo_ aup—1  1-u_(up—1)Gpvp—1) u(l—x) _pp-1
W Auvp—1" 1-x  (uo—-Dlup—1)" x@A-u) wpp—1

as ones belonging to tritangentsz)s)as) T(16)23)@s) T(13)26)@s5) respectively.

We can also express the remaining 12 (= 6 + 6) cross ratioiagso with the
orthogonal complements t§. Since we have seen that the cyclic permutation of the
indicesA, i, v is in the normalizer ofW(A), we discuss only the case= A. The result
is summarized in the following:

Proposition 2.3. By the six cross ratios ;y vy, ..., z, chosen fors,, the other
12 cross ratios associated with,, 5, are all expressed rationally as follows

U = X, (Ux — 23) v = Y. (w;, — X3) _ Z,.(vi. — Ya)
u — )’ Twi(y - w) o uz - wy)
. = w; (s — v3) _ V(2 — Uy) _ U (X, — w;)
Yoy —z) Tz - X)) "% (un — va)
_ Z,(vx — Y1) - Ya(Un — X2) w. = X (wy — 2)
vz — W)’ ' up(yr — wy)’ ! w; (X, — vy.)

_ Wby — ) _ vz —ws) _ wa(X —Uy)

' Va(ur — )’ ' z (v — %) ' X (wi — Y3)

Proof. We have already obtained the expression of the 2% aaifs belonging
to the tritangents except the 18 ones for Then, by applying Lemma 2.2 to suitable
pairs of cross ratios in the 27 tritangents, one can find tigremsion in this propo-
sition. For example, the first relation of Proposition 2.lagntees that the ratio of
cross ratiosz, /u, andv; /x; is the cross ratiav, /y,, SO0 by Lemma 2.2 the ratio

sie - (70)/ (%)
Up (X — vz) u;, Xy
is a cross ratio, and we can immediately check that it comeiith u, itself by using

Naruki's (A, u, v, p)-expression of the cross ratios. The other expressionslaaned
similarly. ]

To sum up the discussions above, we have already proved tagobality of Cj,
andC (i = A, u, v). This implies also the birationality af, andC.
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Theorem 2.4. The varietie<C, andCs (i =A,u,v) are all birational to the cross
ratio variety C.

We add here some remarks about cross ratios. From the sig catiss chosen
for &, we have obtained the 27 cross ratios belonging to the ¢réats other than the
18 ones associated with. We remark here that the set of them does not depend on
the indexi = A, u, v. It means that we have chosen the 45 cross-ratio-repréisesta
These coincide, up to the powerl, with those given in [11]. Also, in the construc-
tion of the 27 representatives, the product of the crossgassociated with any triplet
of collinear tritangents in the 27 ones is equal to 1.

In the above argument, the relations between the 18 cross re@tosen forA are
deduced through their relationship with the other 27 cred®s. For example, as the
expressions of the cross ratio belonging Ty 3456y We obtain the equality:

5 _m_a (ol
Auvp? —1

Here these expressions are all in the same form, but thigheraxceptional. In fact,
we have forTzs

z _1l-u, u(1-x) _Aup—l)
wo 1-y, x@-u) \ rp-1)

We can see in principle what forms of cross ratios are idedtithrough each of the
27 tritangents. One can observe this by attaching the footbed intersection points
in the latticed cubebelow.

We close this section by explaining this latticed cube. Weodtuce it as the fol-
lowing cube constructed by the 27 lines:

fa4

f12>\ .._._/<fo)
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All the 27 (formal) lines appear in the cube, nine by nine ia three different direc-

tions; they are indicated over the three front faces of theecuNow one can clearly
observe the 27 intersection points at each of which theret theee lines of different

directions, and any two of these three lines intersect effodr @ctually on the surface,
so we can observe already 27 tritangents in the cube. We sanredd the remaining
18 tritangents from the cube, that is, they divide themseimto three classes, each
being observed in one of the three directions for the cubefadt, two lines in one

direction should intersect each other if and only if they placed in neither of the

other two directions of the cube. Thus we have 6 (= 3 + 3) tgéants for each direc-

tion, which form one of the three trihedral pairs associatéith A.

3. Structure of our model and its relationship to the cross rdio variety

We begin by observing the three variet@s (i = A, u, v). They have been repre-
sented in one and the same way to be the 4-dimensional setyvaniP¢, so they are
isomorphic to each other. Thus we discuss maiflyin the following.

We first observe the singular locus €. One can easily determine it by using the
multi-homogeneous equation [Pﬁ In fact, we see that the locus consists of 36 iso-
lated singular points and of 28 (= 1+27) one-dimensiona&diucible components each
of which is naturally isomorphic t®;. Each of the 36 isolated singular points is ob-
tained by giving a pair of bijective correspondences of this &4, vy, wi}, {X., Ya, Zu}
to {0, 1,00}; for example,

(31) U}L:X)L:O, U)L:y)hzl, w) =27, =00

where the given bijections ame;, — 0, v; > 1, wy, — oo and x;, — 0, y, — 1,
z, — oo. Among the 28 one-dimensional components, there is thep&roal one
which is the diagonal curve dF:

(3.2) Up =0 =wp =X =Y. =2

Each of the other 27 components is determined by a triplet rofeeement from
{uy, vy, wy}, an element fromx;, v;, 2.} and an element fronf0, 1, cc}; we have for
example,

(3.3) BEWLE=Y ==l u=Ex

whereu;, x,, 1 are chosen.

Now we describe the relationship @, to the cross ratio variety. Since the
canonical (birational) projection of onto C;; can be seen in principle through the
(A, i, v, p)-expression of the six cross ratios chosen fprand sinceC is thus an ex-
plicit desingularization ofCs,, we can describe the appearing exceptional set over the
singular locus by using the geometry @fin [11].
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The 27 components of the singular locus divide themselvestimee classes, each
containing nine of them. The nine components in one clasg meenly one point on
the diagonal curve, so there are three special points oncthige & P,); they corre-
spond to 0, 1po (under this natural isomorphism). This suggests that weilghfirst
blow up these three points (i]ﬁ?) separately. Then we obtain the proper transform
of Cs. Now there appear the three exceptional sets to be someactafrs E the
Segre cubic) of threé\;-divisors which are special t8,. They correspond exactly to
the root subsystems of typA; contained in§, (of type Az). In this case, the three
points 0, 1po on the diagonal curve correspond {thros}, {£rio}, {£ri3} respectively;
in particular, the first two correspond #o=1 andA =0 of [11].

Next we perform the blowing up separately by taking as ceeéah of the proper
transforms of the 28 one-dimensional components, whichnare disjoint from each
other; we then obtain, as the exceptional sétg,x P1-bundles over the components
(= P;) which are all product bundles. In fact, they are each to @aomorphic to
the corresponding cusp divisor&{divisors in [11]) by the natural projection af.
The cusp divisor corresponding to the diagonal curve is the associated withA
(= Ap23)use) itself, which is exactly the one defined y= 0 in [11]. The other 27
cusp divisors are associated with the 27 (333) root subsystems (of typeA3) each
of which contains a root subsystem of typé&;3in A as the intersection with it. For
example, over the component (3.3), there appears the cugmdivhich corresponds
to A(126)345)y This divisor is obtained from the exceptional set over p = 1 of [11].

The remaining 36 isolated singular points are (locally)msophic to each other.
This singularity germ is in a sense of determinantal charadt is in fact described in
the space of X 3 matrices by requiring

rank( E, ?7/ {)51.
& n ¢

The zero matrix is clearly the unique singular point of thiglihensional variety; the
complement of this point is the union of two open patches,ahe in which &, n, ¢)

is non-zero and the one in whicl’(rn’, ¢’) is non-zero. In the first patchg’(n/, ¢’) =

c(&, n, ¢), and in the second,&(n, ¢) =c/'(¢, n, ¢’) for some scalarg, ¢'. In the
intersection of patches, we haeg = 1. To sum up these relations, we see that the
complement is represented as a rank-3 vector bundle Byvaninus the zero section
(since €,n,¢), (¢’,n',¢’) are not allowed to be zero). But we can obviously consider
the natural mapping of this vector bundle onto the matrixcepahich only contracts
the zero-section onto the singular point, so this is a degmgation.

In the following, every isolated singularity which is logaisomorphic to this sin-
gularity of the space of 3 matrices with rank at most 1 is said to be of thex@ 1)-
determinantal typeso the 36 singular points are all of this type. We can resthie
type of singularity by the way mentioned above. We say thext the singular point
is modified to a non-singular rational curve.



ON THE CROSSRATIO VARIETY 103

Now we see explicitly that the cross ratio variety is obtdif®y resolving all the
remaining isolated singular points separately in this wafe shall explain what are the
36 non-singular rational curves appearing over the simguénts. Each of them is the
intersection of three;-divisors to which the corresponding root subsystems oé #p
are orthogonal to each other, that is, they form a subsysteilype 3A;. In this paper,
we mean, by a B;-curve any intersection of threéy-divisors whose associated root
subsystems form a subsystem of typ&;3

We now explain what kinds of &-curves are the appearing 36 ones. The root
subsystems of type A corresponding to them have special meaning, not directly fo
8, itself, but through its orthogonal complemerdis, §,; this means that they are di-
vided into two classes, each corresponding,tar §, and consisting of 18 subsystems.
It will suffice to explain the class corresponding dp. This is now characterized by
the root subsystems of typeA3 each of which has no common roots i but the
roots orthogonal to it are id,.

For example, over the singular point (3.1), there appeas3#-curve which cor-
responds to the B;: {%rie, £r3ss £ri136}. Then the orthogonal roots to it aterss and
there is a unique root subsystem of type containing the union of these roots which
is of type 4A;. This root subsystem is exactly the one corresponding taritangent
T3, Which is associated with the cross ratio coordingtefor §,. We have thus ob-
tained the root subsystefatrss) in 6, and the root subsystem of tyde, containing
8,. Now we see that we can reverse this process: Given a rooystebs of typeA; in
8, and a root subsystem of tyf®, containings,, we obtain a unique root subsystem
of type 3A; which is orthogonal to the first and is contained in the secauasystem.
This is the characterization of the above class correspgnth §,, so there are ob-
tained 18 (= 3 6) 3A;-curves in total as the exceptional sets over the half ofatsadl
singular points ofCs,. The other half is obtained frord,.

Recall that we have already desingularizgdto C. This desingularization process
is essentially the same faf;, andC;,. By reversing the process, we see hGy (i =
A, 4, V) is obtained as a contraction 6f We summarize this as the following theorem:

Theorem 3.1. By the projection ofC onto Cs,, there occur exactly the following
contractions
(1) Each of the36 isolated singular points is the contraction of 3A;-curve whose
associated root subsystem is disjoint Aobut the roots orthogonal to it lie imA — §;,
(2) Each of the28 (=1 +27)one-dimensional components of the singular locus is the
contraction of a cusp divisor whose associated root subksystither coincides with
or has a root subsystem of ty3; as the intersection witl,
(38) Each of the three intersection points of the one-dimensioomponents is the con-
traction of an A-divisor whose associated root subsystem lies;in

Now we will observe our modef, itself. Since this is the image of the projection
of C to Cs, x Cs, x Cs,, we see in principle how is contracted ont@,. This variety
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C, is much nearer t@ itself. How nearC, is to C is now summarized in the following
main result:

Theorem 3.2. C, has only 27 isolated singular points of the(2 x 3, 1)
determinantal type Through the resolution ofC,, there appear the twenty-seven
3A;-curves onC which are in one-to-one correspondence with the root subgys of
type 3A; in A.

Proof. Recall that there are the eighteefy, 2urves onC associated with; (i =
A, 1, v), so we have the 54 (= 18 + 18 + 18A3-curves associated withy, §,,, 8,. As
is mentioned in Theorem 3.1, the 36 (= 18 + 18) curves exceptl®h curves fors;
are contracted onto the 36 isolated singular points by tlegegtion C — Cs, but the
18 curves fors; themselves are all isomorphically mapped. This means thétea 54
curves are mapped isomorphically infg.

Now recall that every cusp divisor is (canonically) isomdgpto P; x Py x Pj.
We see then that the second contraction of Theorem 3.1 foptbgctionC — Cs,
is regarded, when restricted to each of the 28 cusp divisassthe projection onto
one component of the product representation of the cuspativiwe now leti run
over the whole index sefi, i, v}; then each of the 28 divisors remains the same, but
the above projection ont®; is replaced by the others, so that each cusp divisor is
mapped isomorphically b¢ — C,. For example, the cusp divisor correspondingAo
is obtained byp =0 in [11], and then we have on it

UL =u=w, =X ==z =1-4,
Up S0 T Wy =X =Y =2, = 1= p,
U =v,=w,=X=Y,=2,=1—v.
Thus this cusp divisor remains alive @ty as the direct product of three diagonal curves
of Cs,,Cs,,Cs,. Next we check, as an example, the cusp divisor defined Hyo which
means the one defined hy = 0 on the patchX(, ', v/, p’) = (A7, u=1, v™1, p2) of
Naruki’'s toroidal construction of the moduli in [11]. Thisugp divisor exactly corre-
sponds to the root subsysteme)23)4s5, SO it is special taA. Its image is defined by
u,\:w,\:XA:Z,\:O, U;\:y;\:].—}\./,
U, =w, =X, =2,=0, v, =y, =1—u,
u=w,=Xx,=2=0, v,=y,=1-v.
Thus the divisor is also alive isomorphically &4. Now, we can let the normalizer

of W(A) act on this. To sum up, we conclude that all the 28 cusp disiswe alive
isomorphically inCa.
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It still remains to be checked how the 9 (= 3 + 3 +8)-divisors corresponding to
the root subsystems of typ&; in é&,, §,, 6, (i.e. in A) are mapped int€,. Accord-
ing to Theorem 3.1, each of them are contracted onto a pomsdme of the three
projectionsC — Cs (i = A, u, v), but we see that it remains éﬁ for the other pro-
jections. In fact, theA;-divisor corresponding td=ri,} (in A), which is obtained by
A =0 in [11], has the following:

Thus the nineA;-divisors remain almost isomorphically ifi,. By checking up it in
detail, one can see that the contraction occurs, as is nmection this theorem, only
along the twenty-seven/g-curves onC corresponding to the root subsystems of type
3A; in A. By the action ofW(A), we can check this through one example.

The 3A;-curve corresponding to theA3: {#£rq,, &£ro, £rsg} is covered by two
patches of Naruki's model, one is= u=v =0 in (A, u, v, p) and the other is.” =
w =v=0in Q, u', v, p") = (ko, up, vp, p~1). Thus this curve is contracted to an
isolated singular point of the ( 3, 1)-determinantal type:

rank()):, M, v,)gl.
JVAY)

Now note that all the 18 cross ratios associated witthave the same value 1 on the
curve, so there is a local morphism of this contraction to ight®rhood of a point on
C4. By using the £, u, v, p)-expression of the 18 cross ratios, we can check directly
that this morphism is an local isomorphism. 0
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