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Introduction

Throughout this paper, S will represent a ring extension of a ring R with
common identity 1. Let I be a right ideal of R, and bg(/)={r&R|Rrcl}. I
is called a prime right ideal, provided that if X, Y are right ideals of R with
XYclI, then either XCI or YCI. It is clear that every maximal right ideal
is a prime right ideal. If I is a prime right ideal, then b4(I) is a prime ideal.
Next, let R’ be a ring. An R-R’-bimodule M is called a torsionfree R-R'-
bimodule if 7,/(X)=1,(Y)=0 for every essential ideal X of R and every essential
ideal Y of R’, where r,(X) (resp. [,,(Y)) is the right (resp. left) annihilator of X
(resp. Y) in M, and M is called a finite normalizing R-R’'-bimodule if there
exist elements a,, a,, **-, a, of M such that M=3_,Ra; and Ra;=a;R’ for i=
1,2, --,n. Such a system {a;}; is called a normailzing generating system of M.
Finally S is a finite normalizing extension of R if S is a finite normalizing R-R-
bimodule.

In [1], [2], [3], [4] and [6], “‘cutting down’ theorems for a prime ideals
were studied. In the previous paper [7], we have obtained a “cutting down”
theorem for a prime right ideal of a finite normalizing extension under the hypo-
thesis that the finite normalizing extension considered is torsionfree. The pre-
sent objective is to reprove the same without the hypothesis “torsionfree’’; we
shall prove the following theorem.

Theorem. Let S be an arbitrary finite normalizing extension of R, T a ring
with RCTCS. If ] is a prime right ideal of T, then there exist prime right ideals
K, Ky, -+, K, of Rsuch that Ni.1K;=]JNR. Inthis case, be(J N R)= N i-1bx(K}).

1. Preliminaries

Throughout this paper, S will represent a finite normalizing extension of
R, and T aring with RCTCS.

Let P be a prime ideal of 7. In studying P and 7/P, one can usually
reduce problems to the case in which (1) S is a prime ring, and (2) AN T'¢ P for
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each non-zero ideal 4 of S; this case being described as a standard setting for
P. Actually, in view of [3, Proposition 2.2], there exists a prime ideal O of S
with Q N T'C P such that, with identifications of subrings, R(QNR)CT/(ONT)
cS/Q gives a standard setting for P/(QN T).

To our end, we quote the following results from [1], [2], and [3].

Proposition 1.1 ([1, Theorem 2.11] and [3, Theorem 2.13 and Proposi-
tion 2.14]). Let P be a prime ideal of T for which the case is a standard setting.
Then

(1) R is a semiprime ring,

(2) there exists a set {Py, P,, -+, P,} of at most n (=the number of normalizing
generators of S over R) prime ideals of R such that N7-;P;=0 and the prime rings
R|P; are all isomorphic, and

(3) there exists a subset {P;} of {P,, P,, +-+, P,} such that PN\ R= N P;,.

Proposition 1.2 ([1, Propositions 3.3 and 5.3, and Lemma 5.2]). Let S be
a prime ring. Then

(1) S embeds in the right Martindale quotient ring Q(S) of S,

(2) there exist orthogonal idempotents f,, f,, -+, f in Vo(s)(R) such that f,+
fot o+ fu=1 and rx(f;)=P; for all i=1, 2, -+, m, and,

(3) f:O(S)f; is a torsionfree f; R-f; R-bimodule and f; Sf; is a torsionfree
finite normalizing f; R-f ; R-bimodule.

Proposition 1.3 ([2, Corollary 2.25 and Theorme 4.6]). Let S be a prime
ring, and Q(S) the right Martindale quotient ring of S. Let f; be as in Proposition
1.2 and put

S;; = SNf:Q(8) f; = SNfiSfis
Ti; = TNfO(S) fi = TNfIf,
Si = ;j‘l—fiR,
T; = Ty+fiR, and
Tt = a1 Tii (i:j =12, m) .
Then
(1) T;and S; are rings,

2) fiRCTiCS;Cf; SHCf.OS) fis

() TucSucf; S

@) T,T*TCfT*TCT, RT'C T, fRTMTCS,THT and T,T*Tf,T*T,
(5) T%is an essential R-R-subbimodule of T, and

(6) there exists a non-zero ideal U of S such that 0cUNTC T

2. Proof of Theorem
Let J be a prime right ideal of 7. Then b,(J) is a prime ideal of 7. As
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was claimed at the opening of §1, in order to prove our cutting down theorem,
we may assume that S is prime and the setting is standard for b,(J). Thus
throughout this section, we keep the notations employed in §1. Furthermore,
we set k;(J)={t;= T;|t; f;T*TC J}, which is a right ideal of T:.

Lemma 2.1. 1k, (J)=T; if and only if f;T*TC].

Proof. If h(J)=T;, then we have f;T*TCT,;f,T*Tc]. Conversely, if
fiT*Tc], then T;T*TCf;T*TCJ (by Proposition 1.3). Hence T;Chy(J), and
SO h‘(])z T,'.

Lemma 2.2. The set {¢|h,(J)+T;} is not empty.

Proof. If h(J)=T; for all i=1, 2, ---, m, then we have T*Cf,T*T-f,T*T
+ oo 4fT¥T C J (Lemma 2.1). But, by Proposition 1.3, there exists a non-zero
ideal U of S such that UNTcCT*C J, which contradicts the setting being
standard for b4(J).

We now reorder, if necessary, so that AT*T ¢ J fori = 1, 2, ---, 5, and f;T*T
c J for i=s+1, -+, m.

Lemma 2.3. b (J)NRCNi..P;.

Proof. By Proposition 1.3, there exists a non-zero ideal U of S such that
0=UNTcCT*! Therefore, since the setting is standard for b,(J), for i=1, 2,
-+, 5, we have (UNT)f;T*T £ b(]), and so TTHf; f;T¥T £ b,(J). Let us set
Oly=1t:T;|TT¥f; ¢, f;T*T Cby(J)} for each i=1, 2, --;s. Then, as is well
known, by the correspondence of prime ideals in a Morita context

o= )

Ol is a prime ideal of T; corresponding to the prime ideal b;(J) of T. By [3,
Proposition 2.11], we have Q(;)Nf;R=0. Since TT*f;-(bx())NR)-£;T*T C
Tbh ()T <b(J), we obtain f;(b-(J) N R) f; Cf;RN Q(;y=0, and hence b,(J)NRC
rx(fi)=P;. Hence b (J)NRC N;..P;.

Lemma 2.4. If i<s, then hy(]) is a prime right ideal of T; and AN T; &
hi(J) for each non-zero ideal A of S;.

Proof. Let a, b be elements of T; with aT;bCh,(J) and be&h,(J). By
Proposition 1.3, there exists a non-zero ideal U of S such that 0=UNTcCT*
Then, since a-f; T*T(UNT) f;-bf; T*T Caf, TTTHf;bf; T¥T CaT;bf; T*TC ], we
have either af; T*TCJ or (UNT)bf;T*TCJ. But, noting that UN T'¢J and
bf; T¥T & J, we get (UNT) f;bf; T*T ¢ J. Hence af; T*T C J, and so achy(]).
We have thus seen that Z;(J) is a prime right ideal of 7;. Next we claim that
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br ()N fiR=0. Let fr&by(h(]))NfiR(rER). Then f;T*TT*f;+f,T*T
CTifirf; T¥TC ], and so, f; T*T & J implies TT* f;rf; T*TC J, and therefore
TT? firf, T*TCby(J). Hence fireQ{;NfiR=0, by the proof of Lemma 2.3
([3, Prop. 2.11]). We have thus seen that b.,(%;,(J)) Nf;R=0. Finally, if 4 is a
non-zero ideal of S; such that AN T;Ch(J), then 0=ANf;R=(ANT;)Nf;RC
br(h(J)) NfiR by [2, Proposition 2.20], But this contradicts b,(k;(J)) Nf; R=0.
This proves that AN T;d A J) for each non-zero ideal 4 of S;.

Lemma 2.5. If I is a non-zero ideal of f;R, then there exists a non-zero
ideal A of S such that ANf; Af;NT;,CIT;.

Proof. If M is an R-R-subbimodule of T; with IT; N M=0, then IM C
IT;NM=0. Since f;R is a prime ring and 7T} is f;R-f;R-torsionfree (Proposi-
tion 1.1 and 1.2), we have M=0, and therefore I7; is an essential R-R-
subbimodule of 7;. Now, choose a relative complement T'¥ of T; in the R-R-
bimodule Q(S). Noting that IT; is R-R-essential in T;, we see that IT;DTF
is R-R-essential in Q(S), so that (IT;@T¥)NS is R-R-essential in S. Then,
by [3, Corollary 2.25], there exists a non-zero ideal 4 of S such that AC(IT;®
THNS(CIT:T¥). Now, it is easy to see that ANf; Af;N T;CIT;.

Corollary 2.6. If i<s, then h(J)Nf;R is a prime right ideal of f;R and
bix(hi(J) Nf:R)=0.

Proof. Let X, Y be right ideals of f; R such that XY Ch(J)Nf;R and Y&
h(J)Nf;R. Then f;RY is a non-zero ideal of f; R, and so there exists a non-zero
ideal 4 of S such that ANf; Af;NT;Cf; RYT; (Lemma 2.5). Since A Nf;Af; is
a non-zero ideal of S; ([2, Proposition 2.22]), ANf; Af; N T;Eh(J) by Lemma
2.4. Therefore, since XT(ANT;)CX(f;iRYT;NTy)CXf;RYT;Chy(]J), we
see that XT;Ch,([J), and therefore X Ck;(J)Nf;R. This proves that z,(J) Nf;R
is a prime right ideal of f; R. Next, suppose, to the contrary, that b, (k:(J)N
fiR)=0. Then, again by Lemma 2.5 and [2, Proposition 2.22], there exists a
non-zero dideal B of S such that BNf; Bf;N T;Cb(h;(J)Nf;R) T;Chy(J) and
BN f;Bf; is a non-zero ideal of S;. But this contradicts Lemma 2.4.

Now, we shall prove the final Lemma which implies our Theorem.

Lemma 2.7. There exist prime right ideals K,, K,, +++, K, of R such that
n ;-1 K,=JnR and bR(K,')z.P,'. In thls case, bR(]nR)r—- n ,s'=1 P,-.

Proof. We now set K;={reR|fireh(J)Nf;R} (i=1,2, --+,s). Then, by
Corollary 2.6, we can easy seen that K; is a prime right ideal of R and bg(K;)=
re(f)=P;. If r€JNR, then firf,T*T CrT*T C ], and so fireh,(J)N fiR.
This implies that J NRC Nj.; K;. Conversely, let r be arbitrary element of
Ni-1 K;. Then, for each i<s, fireh (J)N f;R, and so f;rf; T*T C J. On the
other hand, noting that f;T*TCJ for i=s+1, it follows that »T*TC
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S it T T 20 i fir i TAT C J+ 3001 f; T*T C J. In view of Proposi-
tion 1.3, there exists a non-zero ideal U of S such that UNT 7% 'Then
r«(UNT)crT*TcJ and UNTd J. (Note that the setting is standard for
bx(J).) Hencere JNR. We have thus seen that ] NR=Nj.; K;. Further-
more bg(J NR)C N1 be(K;)C Ni1 K;=J NR. This implies that bg(J N R)=
N%.10x(K;)= N{.1 P;, and our proof is complete.

3. Examples

In §2, we have proved a “cutting down” theorem for a prime right ideal of
a finite normalizing extension. On the other hand, from Heinicke and Robson
[3, Theorem 2.12], we obtain another “cutting down” theorem for a prime right
ideal. That is, if J is a prime right ideal of 7, then there exist right ideals
H,, H,, -+, H, of R such that N%., H;=]JNR and each H;/(JNR) is a prime
right R-module, where a right R-module N is called prime, provided that if
uI=0 for 0y N and an ideal I of R then NI=0. In this section, we give
some examples which show that these two expressions are essentially different.

In advance of giving examples, we claim the following: Let k& be a field,
U=k[x,, x,, ---] a polynomial ring over k in countable many indeterminate x;,
and B=(,, x,, -**) the maximal two-sided ideal of U generated by x;, x,, ---. Let

us set V=U|B?, W=B|B?, D=<V V) and A:(W W> Then the unique
|8 4 ww

maximal non-zero two-sided ideal A4 of D is neither left nor right D-finitely
generated.

ExampLe 3.1. Let D be a ring containing a non-zero unique maximal two-
sided ideal 4 of D which is neither left nor right D-finitely generated. Let M
be a maximal right ideal of D with by(M)=A. Let

D D D- DO0O DD A MM A
S=(D D D), Rz( 0D O), T=<D D A) and ]=(M M A) .
D DD 00D DD D \D D D

Then S is a finite normalizing extension of R, T is not a finite normalizing exten-
sion of R, and J is a prime right ideal of 7. Let us set

MO 0 D 00
K= ( 0D 0) and Kzz( 0 MO). Then K, and K, are prime right ideal of R
00D 00D
with ] N R=K,N K,, and K;/(J N R) are prime right R-modules.

ExampLE 3.2. Let D, A and M be as in Example 3.1. Let us set

DDDD DOOO DDDA MMMA
DDDD 0D00 DDDA MMMA
S=\pppp|R= 0000)’T* DDDA)and J=\mmmal
DDDD 000D DDDD DDDD



480 T. NAKAMOTO

Then S is a finite normalizing extension of R, T is not a finite normalizing ex-
tension of R, and J is a prime rightideal of 7. Let us put

MO 00 DOOO D00 O
0D00 0MO0 0 0DO0 0
K=loopo]” E=loopo] ™ K=y om0
000D 000D 000D

Then K,, K, and K; are the prime right ideals of R such that JNR=
K,NK,NK;. But the K;/(J NR) are not prime right R-modules. Next, we
consider the following ideals:

DO OO MO0 0 MO0OO
0MO 0 0D 0 0 0MO 0
H=gomol ®=\oomo| ™ H=|lgopo/
000D 000D 000D

Then HyNH,NH;=] NR and H;/(J N R) are prime right R-modules. But it is
easy to see that none of H, is a prime right ideal.
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