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1. Introduction and preliminaries

Consider a springy circle wire in the euclidean space R3. We characterize such a

wire as a closed curve 7 = η(x) with unit line element and fixed length. For such a

curve, its elastic energy is given by

Solutions of the corresponding Euler-Lagrange equation are called elastic curves.

Closed elastic curves in the euclidean space are classified in [7]. We discuss on motion

of a circle wire governed by the elastic energy.

We will see that the equation becomes an initial value problem for 7 = 7(x, t):

(EW)

Ίtt + <9*7 + βΊt = dx{(w ~ Ί\ηxx\
2)Ίχ),

-wxx + \Ίxx\
2w = 2\Ίxx\

4 - \O3

χΊ\
2 + | 7 ί * l 2 ,

7(x, 0) = 70O), Ίt(x, 0) = 71 (*), (7Qχ» 7iχ) = °

Here, μ is a constant which represents the resistance, and the ODE for w corresponds

to the constrained condition (7^,7^) = 0 (i.e., \jx\ = 1.) When the resistance μ is

very large, we can analyze the behavior of the solution replacing the time parameter t

to τ = μ~ιt. Then, (EW) becomes

(EWr)

μ-2

Ίττ 7 r = dx{(w — 2\ΎXX

-wxx + \Ίxx\
2w = 2\Ίxx\

4-\8^\2-

7(JC, 0) = 70CO, 7τ(*> 0) = t , 7iχ) = °

And, when μ -> 00, we get, omitting initial data 7T(JC, 0),
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(EP)

The equation (EP), treated in [4] and [5], has a unique all time solution for any

initial data, and the solution converges to an elastic curve. In this paper, we will prove:

1) The equation (EW) has a unique short time solution for any initial data. (Corol-

lary 3.13.)

2) If μ is large, then the solution of (EWr) exists for long time, and converges to

a solution of (EP) when μ -+ oo. (Corollary 4.10.)

Note that in 2), the derivative ητ(x, 0) = μjι(x) diverges when μ -> oo.

If (EW) contained no 3rd derivatives <937 and was not coupled with ODEs, i.e., if

our equation was ηtt \-dlη+μηt = F(j, j x , ηxx, j t ) , it is standard to show the short time

existence of solutions. (See [9] Section 11.7.) Being coupled is not main difficulty to

solve the equation. We can overcome it by careful estimation similar to [4]. However,

the difficulty due to the presence of 3rd derivatives is essential. We will overcome the

difficulty using the new unknown variable ξ := ηx e S2. As we will see in Lemma

2.2, the equation for ξ does not contain 3rd derivatives Vxξx. Owing to the lack of

the term, we will be able to solve (EW^) by a usual method: perturb to a parabolic

equation and show the solution of the parabolic equation converges to a solution of

the original equation. This will be done in Section 3.

REMARK 1.1. In this paper, we only treat curves in the 3-dimensional euclidean

space R3. But, the result holds also on the case of any dimensional euclidean space,

with no modification of proofs.

By similarity, we may assume that the length of the initial curve 70 is 1. From

now on, a closed curve means a map from Sι = R/Z into the euclidean space R3 or

the unit sphere S2. The inner product of vectors is denoted by (*, *), and the norm

is denoted by |*|. We also use the covariant derivation V on S2. For a tangential

vector field X(x) along a curve η{x) on S2, the covariant derivative is defined by

VXX := (X\x))τ. The covariant differentiation is non-commutative, because the cur-

vature tensor R of S2 is non-zero. For example, if X(x, t) is a tangential vector field

along a family η(x, t) of curves on S2, we have

VxVtX - VtVxX = R(Ίx, Ίt)X = ( 7 f , X)Ίx - ( 7 x , X)Ίt.

For functions on Sι and vector fields along a closed curve, we use L2-inner prod-

uct (*, *) and L2-norm || * ||. Sobolev //"-norm is denoted by || * | |π. For a tensor

field along the closed curve on S2, || * ||n is defined using covariant derivation. That

is, Kill = ΈU IIviCII2. We also use Cn norm || * | | ( π ). In particular, || * | | ( 0 ) = max|*|.
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2. The equations

To derive the equation of motion, we use Hamilton's principle. For a moving

curve 7 = η(t, x), the velocity energy is given by ||7ί||2 and the elastic energy is given

by IITJCJCII2- (By rescaling, we omit coefficients.) Therefore, the real motion is a station-

ary point of the integral

That is, the integral

should vanish for all δ = δ(t,x) satisfying δ(t\,x) = δfax) = 0 and the constrained

condition (7*, δx) = 0.

From integration by parts, we see

Ju

On the other hand, the orthogonal complement of the space V := {δ | (7*, δx) = 0}

at each time t is V± = {(wyx)x \ u = u(x)}. Therefore, 7 is stationary if and only if

7ί e V and ηtt + #£7 = (wyx)x for some function u = u(t, x).

REMARK 2.1. Many papers (e.g., [2], [3]) apply Hamilton's principle using |7jcί|2+

l7ί|2 as the kinetic energy, and gets a wave equation. The wave equation is completely

different from (EW). A linear version of our equation can be found, for example, in

[1] p. 246.

This difference can be explained as follows. We characterize a planer thick wire

of length L, of radius R and of unit weight per length as a map u = u(x, y) : [0, L] x

[—/?,/?] —> R2 such that «(JC, y) = η(x) + yJ^fx(x), where 7 is a curve of unit line

element and / is the τr/2 rotation. When u moves, i.e. when we consider a family

u = u(x, y, t) of such curves, the velocity energy becomes

1- ί dx

Hence, our wire is infinitely thin, while previous papers treat thick wires.

In this paper, we treat slightly more general equation, equation with resistance μ.

That is,
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coupled with an ODE for w, which is derived from the constrained condition: I7J = 1.

From

the unknown u satisfies

92

x(uΊx) - μΊtx, Ίx) = - | 7 ί , | 2 .

Using \ηx\
2 = 1, we can rewrite this to

-uxx + \Ίxx\
2u = 2d2\Ίxx\

2 - \d3

χΊ\
2 + | 7 , , | 2 ,

and, putting w := u + 2 |7^ | 2 , we get (EW).

Since the principal part of (EW) is the operator of the plate equation:

utt

we perturb it to a parabolic operator:

utt - 2εutxx + (1 + ε2)dA

xu

= (dt - (ε + ̂ Ϊ)d2)(dt - (ε - V^

with ε > 0. It is possible to show that a perturbed equation of (EW)

Ίtt ~ 2εΊtxx + (1 + ε2)d,47 + μΊt = dx{(w - 2 | 7 ^| 2 )7*K

-wxx + \Ίxx\
2w = 2\Ίxx\

4 - \d3

χΊ\
2 + |7r,|2,

7(x, 0) = 7O(Λ), ηft(x, 0) = 7i(x), (7^, 71^) = 0

has a short-time solution. However, we cannot get uniform estimate when ε -> 0, be-

cause dx{(w—2|7JCJC|2)7JC} contains the third derivative of 7. To overcome this difficulty,

we convert (EW) to an equation on S2, and "remove" the third derivative.

We introduce a new unknown function ξ by ξ = ηx. The function ξ is a family of

closed curves on S2.

Lemma 2.2. The equation (EW) is equivalent to equation

3 .

(EW*)

6c,

6(JC, 0) = 6o(O), ξt(x, 0) = 6I(JC), ί ξo dx = f 61 dx = 0,
Jo */o
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and (EP) is equivalent to equation

C _i_ \7^C — (in \C |2\\7 £ _ι_ 9 i n C _f) \£ |2 c

• J Γ
Proof. It is straightforward to check the following decomposition:

ξxx = VχξX-\ξX\
2ξ, ξtt = Vtξt-\ξt\

2ξ,

Using these formulas, we see that the x-derivatives of (EW) imply (EW^). Con-

versely, (EW^) implies the equation

Under the assumption: f0 ξo dx = f0 ξ\ dx = 0, we see that the closedness condition:

f0 ξ dx = 0 is satisfied. Let 7 be the solution of an ODE:

7(x, 0) = 7o(x), 7,(x, 0) =

Then

Ίxtt + HΊxt = -d4

xξ + d2{(w - 2\ξx\
2)ξ} = ξtt + μξt

and (ηx — ξ)tt + ̂ (7^ — ξ)t = 0. Hence j x = ξ and 7 is a solution of (EW).
A similar calculation gives the equivalence of (EP) and (EP^). •

3. Short time existence

In this section, we fix μ e R.

To perturb (EW^), we introduce a function p(x, y). Since ξo is the derivative of

a closed curve 70 in the euclidean space, each component of ξo takes 0 at some x.

Therefore, by Wirtinger's inequality, we have ||ξθxll2 > τr2llξoll2 ^ π2- (It is known

in fact that ||ξo.*ll2 > 4π2.) Let δ(r) be a C°° function on R such that δ(r) = 1 on

\r\ < π 2 /8, δ(r) = 0 on π 2 /4 < \r\ and 0 < δ(r) < 1 on π 2 /8 < \r\ < π 2 /4. We put

p(x, y) = π2 + δ(y2 - \ξOx(x)\2)(y2 ~ π 2 ) .
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Fix an interval / such that |£OJC(*)I2 > π 2/2 for any x e I. If x e I and \y2 —

\ξθx(x)\2\ < τr2/4, then p(x, y) > min{τr2, y2} > π 2/4. And if \y2 - \ξOx(x)\2\ > τr2/4,

then p(x, y) = π 2 . Therefore, for any function u(x),

ίl π2 f
/ p(x,u(x))dx > — / dx.

Jo 4 ,//

REMARK 3.1. Below, we use the function p only to ensure p > 0 everywhere and

/0 p(jc, w(;t))<ijc is bounded from below by a positive constant. Note that p(x, y) := y

satisfies this requirement if ξ = ηx for some closed curve 7 in the euclidean space.

Proposition 3.2. Let ξoOO be a C°° closed curve on S2 with \\ξox\\ > π

a C°° tangent vector field along ξo ^ ί P ^^ the function defined as above.

Then, equation

3
:ξx+2wxξx - -dx\ξx\

2

has a C°° solution on some interval 0 < t < T.

Proof. We can prove unique short-time existence of (EW^ε) by a similar method

with that used in [4]. Here, we mention only two steps. One is an estimation of the

ODE for w. Lemma 3.3 with the function p ensures estimation of w by ξ. Another,

Lemma 3.4, is a crucial point to use the contraction principle. D

Lemma 3.3 ([4] Lemma 4.1, Lemma 4.2). Let a and b be L\-functίons on Sι

such that a > 0 and \\a\\L{ > 0. Then, the ODE for a function w on Sι

—w" + aw = b

has a unique solution w, and the solution w is estimated as

maxM ^ { l + llαll^HI&Hi,,

max|u/| < 2{1 + \\a\\Lι} • \\b\\Lι.

Moreover, there exists universal constants C > 0 and N > 0 depending on n such that

IMU2 <
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Lemma 3.4. We consider a linear PDE for u

c,O) = κo(*), ut(x,O) =

If f e C2θί, u0 e C4+2a and uι e C2+2a, then there is a unique solution u e C 4 + 2 α .

Moreover, we have an estimation:

l |w|lc4 + 2 α < C { | | / H c 2 α + ||wo||c4+2« + | |MI l l c ^ α } ,

where || * \\cn

x

+2a means the Holder norm for x-direction, and || * \\cn+2a means the

weighted Holder norm (t-derivatives are counted twice of x-derivatives.)

Proof. We decompose the equation to a parabolic equation as

ut — (ε + \/—\)uxx = υ, vt — (ε — \f-Λ)vxx = f.

Using the fundamental solution

1 / x2

Γ(x, t) = 7 = = — expf X )
£\J ny ε Hi "V — l γ { "V-" -1- v ± ) L

of the parabolic operator dt — (ε ± V^T)92, we can estimate as

< C{||/||C2« + llυollc?^ ^

+ Hiiillc^α + lliiollc^α}. D

When we take the limit ε -• 0 in (EW^ε), we should note that the term VJ& is

quasi-linear, and contains the third derivative of ξ. In fact, in local coordinate system,

Vj£c = {d4

xξ
p + 4 Γ / Γ ( ξ ) g a ^ Γ } ^ + [lower order terms].

However, when we integrate it by parts, we can treat it as though it contained no third

derivatives.

Lemma 3.5. For any K > 0, there are T > 0 and M > 0 with the following

property:

Let ξ be a solution of (EW^ε) with ε e [0, 1] on an interval [0, h) c [0, T). If its

initial value satisfies \\ξι\\2 + ||ξ(klli < K, then | |&||2 + \\£x\\\ < M holds on 0 < t < t\.
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Proof. Put

f = (w- p(x, \ξxI
2))Vxξx + 2wxξx - h

We can estimate

+ ε2)(Vxξx, V,

+ ε2)V,3ξ,) + (1

< (ξ,, 2εV2ξ, + /> - μ\\ξ, II2 + Cmax|ξx|
2\\ξ,

= (ξt, V,& + (1 + ε2)V,3ξ,) + (1 + ε2){R(ξt, ξx)ξx, Vxξx)

and,

~ ι ι & ι ι 2 = (6.vfeί> = -(vxee,6)<ιιvJ C£cιι2 + ιιeίιι
2.

Here, by Lemma 3.3, | | / | | < C(l + | | ^ | | 2 + H&lli)"1. Therefore, putting X(t) :=

l + ll6ll2 + ( l+e 2 ) l l6l l i . we get

X\t) < CxX(t)N\

and, X(t) is bounded from above by a solution of the ODE: y'(t) = C\y(t)Nl. D

REMARK 3.6. If we use original equation of 7, which contains d^η in the right

hand side, the term (7,, d^η) appears in the estimation. Since we need the term

—2ε||7 ί ;c | |
2 to cancel (7,, ^ 7 ) , we cannot get uniform estimate with respect to ε, and

the following proof will fail.

Lemma 3.7. For any K > 0 and n > 0, there is M > 0 with the following

property:

Let ξ be a solution of (EW^ε) with ε e [0, 1] on [0, T). If its initial value satisfies

Uύn, llfα*IL+i < K, and if it satisfies \\ξt\\, ||£cll? < K on 0 < t < Ί, then | |&|L

\\ξx\\2

n+ι<M holds on 0<t<T.

Proof. The claim holds for n = 0 by taking M = K. We prove the claim by in-

duction. Suppose that the claim holds for n. In particular, we know bounds of ||£χ||(n),
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Σ

n+2 <

Put
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). Therefore, we have

i=0

ξ<\\\<cΣ

n+\

i=0

n+l

i=0

)III6I2 - Wxξx\2+\ξx\4\\n

\\ξχ\\n+i + 1).

913

Then,

^|U+2 + IML+2) <

Using these, we have

= (vr'6. v,vr'6>

Ux\\2

n+2)

D
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Lemma 3.8. For any smooth initial data {ξo> £i}> K > 0, T > 0 and m, n > 0,

there is M > 0 with the following property:

Let ξ is a solution of (EW^ε) with ε e [0, 1] on [0, T). If ||ξ,||, | |6Hi < K on

0 < t < T, then ξ is smooth on Sι x [0, T), and the derivatives are bounded as

livreil(n) < M.

Proof. By Lemma 3.7, the claim holds for m < 1. Suppose that the claim holds

up to m. In particular, we have C£° bounds of ξ and Vt

m~ιξt. Therefore, using

w

for 0 < j < m - 1, we have C™ bounds of d™~ιw. Since Vim+1^ is expressed as a

polynomial of these lower derivatives, we get the result. •

Proposition 3.9. The equation (EW^) has a short time solution for any smooth

initial data.

Proof. We put K := | |ξi | | 2 + \\iox\\\ and take T > 0 in Lemma 3.5. Then, by

Lemma 3.8, any solution has a priori estimate on 0 < t < T.

Let [0, Tε) be the maximal interval such that a solution exists for ε. If Tε < Γ,

then ξ is smoothly and uniformly bounded on [0, Γε), hence can be continued beyond

Tε. This contradicts to the definition of Γε, therefore we see that Tε > Γ. We con-

clude that a solution ξ exists on the interval [0, T) for each ε > 0, and these £'s have

smooth uniform bounds on Sι x [0, T).

Therefore, taking a sequence ε? —> 0, we get a solution of

V = I6I2 -

Since p(x, I6I2) = \ξx\
2 when ξΛ is sufficiently close to ξox, we have a solution ξ of

(EW^) on some time interval. Once we have a short time solution ξ of (EW^), we

can estimate the solution as Lemma 3.8, and the solution ξ can be continued to the

interval [0, Γ). D

Proposition 3.10. Let ξ and ξ be solutions of (EWξ) on [0, Γ). If ξ and ξ have

same smooth initial data, then they identically coincide.

Proof. To express the difference of two solutions, we use local coordinates. We

fix the initial value {ξo>£iK a n d take a local coordinate U which contains the initial
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value £o In U, (EW^) is expressed as:

where Fp[ξxx,wx,ξt] is a polynomial of ξf, ξxx, w, wx, ξ?, functions of ξq, and

G[ξχX,ξt] is a polynomial of £?, ξxx, ξ?, functions of ξq. (We only note highest

derivatives.)

Let {ξ, w] be another solution of (EW*) on [0, tγ) {t\ < T). Applying Lemma 3.5

and Lemma 3.8 with ε = 0, we have smooth bounds of ξ and ξ. We put ζ := ξ — ξ,

u := u) — w. Then, we see that

equals to a sum of terms containing at least one of ζx, ζxx, w, ux, ζt or the difference

of the values of a function at ξ and ξ. Similarly,

equals to a sum of terms containing at least one of ζx, ζxx, ζ, or the difference of the

values of a function at ξ and ξ.

Therefore, we can estimate ζ and u linearly:

\-uxx + gqr(ξ)ξq

xξ
r

xu\ < C(\ζ\ + \ζx\ + ICcxI + 101).

Regarding ζ as a vector field along ξ, these inequalities can be written using covariant

derivation along ξ:

Thus we have ||u||i < C(||CI|2 + I|V,CII), and

- 2<V(C, Vr

2C) + 2(C, V,C> + 2{Vxζ, W,Wxζ) + 2{V2C, Vr

< 2<v,c v,2c

from which we see that ( | |V rζ| | 2 + IICII 2 )^ 0 1 ' is non-increasing, hence identically van-

ishes.



916 N. Koiso

This proof applies at any time to such that ξ(to) = ξ(ίo) Therefore, the set {t |

ξ(t) = ξ(t)} is open and closed in [0, Γ), hence agrees to [0, T). D

Combining Proposition 3.9 and Proposition 3.10, we get the following

Theorem 3.11. The equation (EW^) has a unique short time solution for any

smooth initial data.

REMARK 3.12. To show this theorem, we did not assume that μ > 0. Hence the

result is time-invertible. That is, a unique solution exists on some open time interval

(-Γ, T) containing / = 0.

Corollary 3.13. The equation (EW) has a unique short time solution for any

smooth initial data.

4. Singular perturbation

In this section, we assume that μ > 0 and change the time variable t of (EW^) to

-wXχ + \ξx\2w = μ"2 |6l2 - lY^I 2 + \ξx\\

ξ(x, 0) = ξo(O), &(x, 0) = μξύx), f ξodx= [ ξλdx= 0.

Jo Jo

First, we show uniform existence and boundedness of solutions with respect to

large μ. Constants T, M below are independent of μ.

Lemma 4.1. For any K > 0, there are T > 0 and M > 0 with the following

property:

If ξ is a solution of (EW^μ) on an interval [0, t\) C [0, Γ) and if its initial value

satisfies \\ξo\\, \\ξι\\ < K, then ||edli, μ'1116II < M holds on 0 < t < tx.

Proof. It is similar to the proof of Lemma 3.5. We put

f = (V ~ \ξx\2Wxξx

and we have

1 d ,
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Here, | | / | | 2 is bounded by a polynomial of X := μ-2H6ll2 + IIV*6ll2+II6II2- Com-

bining it with d\\ξx\\2/dt < | |6II2 + HY^H2, we have a μ-independent estimate of time

derivative of X by a polynomial of X. Therefore, there is a μ-independent time T > 0

such that ||f, || < Cμ and \\ξx\\χ < C on [0, T). D

Lemma 4.2. For any K > 0 and n > 0, ί/zere are M > 0 tmd μ0 > 0 w/ί/ί ί/ze

following property:

Let ξ be a solution of (EW^μ) on [0, T) with μ > μo If its initial value satisfies

H£oL+i» 116IL < X and if it satisfies \\ix\\\, μ"1116II < K on [0, Γ), ί/ẑ π ϊί holds that

II6IU, Niu+ 1, /χ-Ml6IU < M on [0, Γ).

Proof. It is similar to the proof of Lemma 3.7. Suppose that we have bounds:

II6IU+1, μ~l\\ξt\\n < M. They imply that | |&| | ( n ), μ- 1 | |6 | | ( π-i) < C, and,

l|u;|U+2, ll/IU+i <

Using this, we have

?+I&ιι2+ιιv?+26ciι2) + y v r ' ^ i

^ f + i^iiVcσ + iivr^ii2).

Assuming that μ > 4C\ and combining it with the first estimation:

we can estimate

by X'{f) < C(l +X(f)). Hence we have ||^|U+2 < C, ||6IU+i < Cμ. Substituting it to

the estimate of IML+2, we get ||u;|U+2 < C. D

Proposition 4.3. For any initial data ξo and ξ\, there is T > 0 such that

has a solution on [0, T) for each μ > 0. Moreover, for any n > 0, ί/zere are μo > 0
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and M > 0 such that the solution with μ > μo satisfies \\ξx\\n> l |w |U < Λf β W ^ 116IU <

Mμ on [0, Γ).

Proof. Using Lemma 4.1 and Lemma 4.2, the proof is similar to that of Propo-

sition 3.9. D

Let {η, v} be a solution of the limiting equation (μ —• oo) of (EW^) omitting

initial data £/(JC, 0).

= (υ - \ηx\
2)Vxηx+2vxηx - -dx\ηx\

2ηx,

(EP7?)

In [4] (Theorem 7.5), we know that the corresponding equation for closed curves

in the euclidean space has a unique all time solution. Therefore, (EP77) has a unique

all time solution, via Lemma 2.2.

We regard function η as the 0-th approximation of ξ for μ -+ oo. To compare ξ

and η, we divide the interval [0, oo) so that the image ^(S1 x /) of each subinterval /

is contained in a local coordinate U of S2. For a solution ξ and an interval [ίo, ίi) C /

such that ξ(Sι x [to, t\)) is contained in U, we denote by {ζ\ u} the difference between

ξ and η in the local coordinate, i.e., ζp := ξp — ηp, u := w — v. We use the local

expression of

^ V ) / χχ, wx],

-wxx + gqr(ξ)gξr

xw = μ-2g

ξ(x, 0) = ξo(O), ξt(x, 0) = μξ^x), f ξ0 dx = f 6 Jx = 0,

where Fp[ξxx, wx] are polynomials of ξx, ξxx, w, wx, functions of ξ, and G[ξxx] is

a polynomial of £*, ^ x , functions of ξ. (We only note highest derivatives.) Since the

local expression of (EP77) is given by the above equations substituting μ~ι = 0 , {ζ\ u\

satisfies

μ-2(ζf, + 2Γqer(η)ηKί) + %ζ" + 4Γ/ r(» 7)ι 7«^C r + Cf

xx, wx] - FP[ηxx, vx] - 4ΓqPr(ξ)ζq

xd
3

xξ
r - 4 ( Γ / r ( £ ) - ΓqPr(η))4d2

xξ
r

C(x,0) = 0,
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We regard ζ as a vector field along η. Then, we can rewrite the above expression

as

, ux; V|C, «χ] " μ^ίV^, + L2[C1

μ-2{|r7x | 2 + L3[VrC] + β3[V,C; V,C]} + L4[V?C]

2 = tel2

C(*,0) = 0,

where L; are linear, |βι(α;/?)| < C\a\ \β\. (We only note highest derivatives.)

To get estimate of (C, w}, we need following

Lemma 4.4 ([5] Lemma 1.5). For any K\, K^ > 0 and any T > 0, //zere

M > 0 and μo > 0 vWfΛ ί/ẑ  following property:

if μ > /̂ o β ί̂/ X(0> ^ ( 0 flwd ^ ( 0 β r ^ non-negative functions on [0, Γ) 5wc/z

X(0) < Kιμ~\ \Xf(0)\ < Ku Y(0) < Ku Z(0) <

and that

μ~2X"(t) + X\t) < Kλ (X(t) + μ~2Z(t) + μ'2) - K2Y(t),

Y'{t) + μ-2Z\t) < Kι (7(0 + 1) - K2Z(t),

on [0, T), then they satisfy

X(t) < Mμ~2, Y(t) < M and Z(t) < Mμ2

on [0, Γ).

Lemma 4.5. For any n > 0 and any K > 0, ί/zere are M > 0 ana7 μo > 0 w * ^

ί/ze following property:

Let (C, w} ^^ ί/ί̂  solution of (EWC) wiϊή μ > μo> defined on [t0, h) C [0, Γ). If

IICII/i < ^ M " 1 β ί ^ = ̂  ^ « IICIU < Mμ~ι holds on [ί0, ίi).

Proof. Note that we have bounds of {ξ, w;} and {77, v} by Proposition 4.3. There-

fore, we know ||C||Λ < C, [|V̂ CIU < Cμ and | |u| |n < C We may assume that

μ > μo > 1. For

h := μ- 2 ( |%| 2 + L3[V,C] + β3[VrC; V,C1) + L4[V,2CI 2 ί
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we have

\\ + ||V,CI|B + l|V(Clhl|V(CL) + IICL+2 + IICIbllCllπ+2}

and, HiιL+2 < C\\h\\n < C{μ~2 + μ-χ\\Vtζ\\n + \\ζ\\n+2). And, for

/ := LitViC, ux] + βi[V?C, ux; V?C ux] - μ-\Vtη, + L2[ζ]

we have

II/IU < ^

Put Xn(t) := H^CII and Zn(t) := | |^V,CI|. Then, we see that

(Xo2)' = 2(C, V,C) < 2XoZo,

(Z,2)' = 2(V,C, ^V.O < -2<VXC, V,V,C> + CHCII1IICII

< 2X2Z0 + C(X0

2

< CZi{Xi+2 + Xo + μ~2 + μ~\Zi + Zo)} + C(Xi+2

2 + X0

2).

Therefore,

' 1 IIVCH2 + Cμ~2< C||CII^+2 + Cμ-1|V tζt n + Cμ
i=0

' + C|ICII2

+2 + Ciμ-1||V fCH2 + C μ - 2 ,

: + 2 ) ' < C(||CH2

+2 - "- 2 λ I1V7'"112

if μ>2Ci .
We also have,

= 2μ-2|| V,VίCH2 + 2(ViC, μ-2V2ViC + V,Vί
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+C/χ- 2 | |CII 2_ 1 + C||ViCI|{μ-2(||V,CII, - i + |ICII.-2)+ l ld l i- i l

< 3μ- 2 Z, 2 + CXi{Xi+2 + Xo + μT1 + μΓ\Zi + Zo)}

+Cμ-\Xi2 + Xo2) + CXi {μ-2(Z, + Zo) + Xt + Xo}

< Xi+2

2 + C{Xt

2 + Xo2 + μ-2(Zi2 + Z 0

2 ) + μ~4},

μ- 2(IIClD" + (IICII2)' < Q u e l l 2 + M~2IIMCII2 + μ~4} - IICIlL

Setting X := ||CII2, Y := I|V?+2CII2 and Z := ||VrCH2 in Lemma 4.4, we have

IICL < Cμ~ι. D

Lemma 4.6. For any n, m > 0 and K > 0, there are M > 0 and μo > 0 with

the following property:

Let {C, u) be the solution of (EWC) with μ > μ0, defined on [ί0, h) C [0, T). If

IIVΛCIU < Kμ2m-1 at t = t0, then

Halloo <

hold on [to, t\).

Proof. We put V) := μ" 1 + μie~μltl2. Note the log-convexity:

V7

 2 < V; _i Vj+ι and V, VΛ < V0Vj+k < (1 + ̂ o " 1 ) ^ f o r 7. * > °

We know that HV/CIUΛ) < Cμ, \\u\\(n) < C by Proposition 4.3, and ||CII(n) < Cμ~ι

by Lemma 4.5. In particular, ||CII(«) < CV_i holds. We prove the estimate of d™u and

the estimate of Vt

m+ιζ, assuming the estimate of d\u and Vj+ιζ for j < m.

First, we estimate d™u. Put

Λ := μ~2(\ηx | 2

It is estimated as



922 N. Koiso

where V3* appears only if m > 2. Therefore, we have

7=1

m

< C{μΓx\\Vrlζ\\(n) + V2m] + C £ ( 1 +

Now, we estimate Vt

m+ιζ. Put

/ := Li[VίC, «,] + βi[VίC, «x; V|C, ux] - μ-2(V,η, + L 2 [0 + β2[V,C; V,C».

Then,

+ μ-\\ + y2 m_i + ιιv,eιio,)iιv,m+1eιi(B)

where V3* appears only if m > 2. Therefore,

Thus,

= 2(v; v,m+1ζ, μ'\v"y,m+ιζ + vί vr

m+1c)

< 2(yt" v t

m + 1c, v?(μ-2vt

m+2ζ + v , B + 1 o)

From this, for X(ί) := ||V,m+1CI|2n), we have

where X'(ί) = lim sup^+ 0{X(ί + δ) - X(t)}/δ.

We set μ0 < 2C\. Then,

μ'2X'(t) + X(t)<
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X(t) < X(to)e-μ2t + C 2 ( μ " 2 + μ4m+2e~μ2t)

that is, HVr^ll'n) < CV2m+ι.
Substituting it to the estimate of ||<9r

mM||(rt+2), we get the estimation of d™u. D

Proposition 4.7. For any initial data {£o,£i}> any interval [to,h) C [0, T) and

any local coordinate U of S2 such that the image η(Sι x [to, t\)) is contained in U,

there exists μo > 0 with the following property:

If ξ is a solution of (EW^μ) on [0, T), then the image ξ(Sι x [/0, h)) is contained

in U. Moreover, ξ uniformly converges to η on [0, T) when μ —> oo.

Proof. We divide the interval [0, T) so that the image η(Sι x /) of each subin-

terval / is included to a local coordinate £//. D

Note that ζ is defined only on each short time interval.

Starting from t = 0 and applying this Lemma on each time interval where {ζ, u}

is defined, we see that \\ζ\\n is small for large μ.

We sum up these results, and get the following

Theorem 4.8. For any non-negative integers m, n and any positive number T,

there are positive numbers μo and M with the following properties'.

For each μ > μo, there exists a solution ξ of (EW^μ) on [0, T), and ξ uniformly

converges to η when μ -> oo. More precisely,

\d™dn

x(ξp - ηp)\ < M(μ-ι+μ2m-ιe-μ2t/2)

holds on each local coordinate.

REMARK 4.9. In general, we cannot expect uniform estimation on the whole time

[0, oo). The limit 77(00) can be an unstable elastic curve, and in that case, £(00) and

77(00) discontinuously depend on the initial data.

Corollary 4.10. For any positive number T, there exists a unique solution 7 of

(EWr) on [0, T) for sufficiently large μ > 0. Moreover, the solution converges to a

solution η of (EP) when μ —> 00.
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