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1. Introduction and preliminaries

Consider a springy circle wire in the euclidean space R3. We characterize such a
wire as a closed curve 7 = y(x) with unit line element and fixed length. For such a
curve, its elastic energy is given by

L
E(y) = / byax P dx.
0

Solutions of the corresponding Euler-Lagrange equation are called elastic curves.
Closed elastic curves in the euclidean space are classified in [7]. We discuss on motion
of a circle wire governed by the elastic energy.

We will see that the equation becomes an initial value problem for v = y(x, ¢):

Yer + Oy + 1y = Oc{(w — 20 yex )
(EW) —Wyxx + |’Yxx|2w = 2|7xx|4 - |63'7|2 + l'thlzq

7(x9 0) = 'Yo(x), ’71(-xa 0) = ’YI (x)’ (70)(’ ’le) = 0
Here, p is a constant which represents the resistance, and the ODE for w corresponds
to the constrained condition (7., ¥x) = 0 (i.e., |v:] = 1.) When the resistance y is

very large, we can analyze the behavior of the solution replacing the time parameter ¢
to 7 = p~'t. Then, (EW) becomes

,U_Z'YTT + 3;"}’ +Yr = ax{(w - 2|'7xx|2)')’x}’
(EWT) —Wer + [Yex PW = 2| vax [* = 103912 + 72| yre 2,
v(x,0) =v(x), 7rx,0)=pyvx), (Yox,71x)=0.

And, when p — oo, we get, omitting initial data ., (x, 0),
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906 N. Koiso

Y-+ 6?7 =0 {(w — 2|'Yxx|2)’)’x},
(EP) —Wyxx + I'Yxxlzw = 2|7xxl4 - |837l2’
v(x, 0) = yo(x).

The equation (EP), treated in [4] and [5], has a unique all time solution for any
initial data, and the solution converges to an elastic curve. In this paper, we will prove:
1)  The equation (EW) has a unique short time solution for any initial data. (Corol-
lary 3.13.)

2) If u is large, then the solution of (EWT™) exists for long time, and converges to
a solution of (EP) when p — oo. (Corollary 4.10.)

Note that in 2), the derivative v,(x, 0) = puy;(x) diverges when p — oo.

If (EW) contained no 3rd derivatives 6;:’7 and was not coupled with ODEs, i.e., if
our equation was "y +8ﬁ'y+u'y, = F(, Yx» Yxx» V1), it is standard to show the short time
existence of solutions. (See [9] Section 11.7.) Being coupled is not main difficulty to
solve the equation. We can overcome it by careful estimation similar to [4]. However,
the difficulty due to the presence of 3rd derivatives is essential. We will overcome the
difficulty using the new unknown variable ¢ := v, € S%. As we will see in Lemma
2.2, the equation for £ does not contain 3rd derivatives V2{,. Owing to the lack of
the term, we will be able to solve (EW%) by a usual method: perturb to a parabolic
equation and show the solution of the parabolic equation converges to a solution of
the original equation. This will be done in Section 3.

RemARk 1.1. In this paper, we only treat curves in the 3-dimensional euclidean
space R3. But, the result holds also on the case of any dimensional euclidean space,
with no modification of proofs.

By similarity, we may assume that the length of the initial curve vy is 1. From
now on, a closed curve means a map from S 1 = R/Z into the euclidean space R? or
the unit sphere S2. The inner product of vectors is denoted by (*, %), and the norm
is denoted by |*|. We also use the covariant derivation V on S2. For a tangential
vector field X(x) along a curve (x) on S2, the covariant derivative is defined by
V.X := (X'(x))T. The covariant differentiation is non-commutative, because the cur-
vature tensor R of S? is non-zero. For example, if X(x,¢) is a tangential vector field
along a family ~y(x, t) of curves on S2, we have

ViViX = ViViX = R(Vx, %)X = (%, X)vx — (s XD

For functions on S! and vector fields along a closed curve, we use Lj-inner prod-
uct (x,*) and Lp-norm || * ||. Sobolev H"-norm is denoted by | * ||,. For a tensor
field along the closed curve on S2, || % ||, is defined using covariant derivation. That
is, [ICII? = Yo IVECHI?. We also use C" norm || * ||(,). In particular, || * ||y = max|x|.
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2. The equations

To derive the equation of motion, we use Hamilton’s principle. For a moving
curve v = 7(t, x), the velocity energy is given by |v;||*> and the elastic energy is given
by [7xx %, (By rescaling, we omit coefficients.) Therefore, the real motion is a station-
ary point of the integral

L(y) = f el = eI .

n

That is, the integral

143
L= [ 0008 = (s B
n
should vanish for all § = §(z, x) satisfying §(¢;, x) = d(¢t;, x) = 0 and the constrained
condition (7, d,) = 0.
From integration by parts, we see

n

L/ = / _(')’tt +8;1’Y, 5) dt.
]

On the other hand, the orthogonal complement of the space V := {§ | (7x,dx) = 0}

at each time ¢ is V4 = {(u7y,)x | u = u(x)}. Therefore,  is stationary if and only if

v € V and v, + Bf’y = (uy,), for some function u = u(t, x).

ReEmMARK 2.1. Many papers (e.g., [2], [3]) apply Hamilton’s principle using [Yee |2+
|v:|“ as the kinetic energy, and gets a wave equation. The wave equation is completely
different from (EW). A linear version of our equation can be found, for example, in
[1] p. 246.

This difference can be explained as follows. We characterize a planer thick wire
of length L, of radius R and of unit weight per length as a map u = u(x, y) : [0, L] x
[—R, R] — R? such that u(x,y) = Y¥(x) + yJv,(x), where v is a curve of unit line
element and J is the 7/2 rotation. When u moves, i.e. when we consider a family
u =u(x,y,t) of such curves, the velocity energy becomes

|2

1

L R
1
7 ] e /_ e, )Py = Il 4 5 Rl

Hence, our wire is infinitely thin, while previous papers treat thick wires.

In this paper, we treat slightly more general equation, equation with resistance .
That is,

Yo + e + Oy = Wye)xs
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coupled with an ODE for u, which is derived from the constrained condition: |7,| = 1.
From

0= 6,2|’7xl2 =2(Veexs Vx) + 2|'th[2

)

the unknown u satisfies
(=03 + F2(uye) — pvies Yx) = =l

Using |v,|> = 1, we can rewrite this to
2 2 2
—Upx + | Yax| "0 = 28§|’Yxx| - |837| + |7txlzv

and, putting w := u + 2|7, |%, we get (EW).
Since the principal part of (EW) is the operator of the plate equation:

Uy + Biu,
we perturb it to a parabolic operator:
Uy — 26Uy + (1 +52)6;1u
= (0 — e+ V=132)(8: — (¢ — vV=1)32)u
with € > 0. It is possible to show that a perturbed equation of (EW)
Yoo = 26%xx + (1 + )0y + pyr = Bx{(w — 2bvex )1},

—Wxx + l')’xxlzw = 2|'Yxx |4 - |83’7|2 + h’txlzv

Y(x,0) =v(x), Y, 0=7), (Yox,7:)=0

has a short-time solution. However, we cannot get uniform estimate when € — 0O, be-
cause O, {(w—2|7xx|*)7x} contains the third derivative of . To overcome this difficulty,
we convert (EW) to an equation on S2, and “remove” the third derivative.

We introduce a new unknown function & by & = v,. The function £ is a family of
closed curves on S2.

Lemma 2.2. The equation (EW) is equivalent to equation
3
Vi + Vi + iy = (W = |6 Vi + 2wl = SOMEN &,
(EWE) —Wyx + |§xl2w = I§,l2 - lvx§x|2 + & |49

1 1
€ 0) = 6(0), &(x, 0) = E1(x), [O fodx = /0 £ dx =0,
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and (EP) is equivalent to equation
3 2 3 2
g‘r + ngx =(w— |£x| )ngx + zwxé:x - Eaxlgxl éx:
(EP%) — Wy + & Pw = _|Vx§x|2 + |'£x|4,

1
£(x, 0) = £(0), fo €odx = 0.

Proof. It is straightforward to check the following decomposition:

Ex = Vil — |76, & = V& — & 1%,
3
0 = Vi — &6 — SOcI& €,

5
B = VU — 6PV — Eaxlixlzéx +H{IVe& P + & I* = 28216 P)E.

Using these formulas, we see that the x-derivatives of (EW) imply (EW¢). Con-
versely, (EW¢) implies the equation

& + OLE + p& = OX{(w — 214 1DE).

Under the assumption: fol &dx = fol & dx = 0, we see that the closedness condition:
Jy €dx =0 is satisfied. Let ~y be the solution of an ODE:

Ve + v = =07 + O {(w — 2|&:1PEY,
Y(x, 0) = v(x), Yi(x,0)=n(x).

Then

Yare + Yar = —OFE + OH(w — 21&1PE) = & + p&

and (yx — )i + u(yx — &) = 0. Hence 7, = £ and +y is a solution of (EW).
A similar calculation gives the equivalence of (EP) and (EP%). a

3. Short time existence

In this section, we fix u € R.

To perturb (EW¢), we introduce a function p(x, y). Since &; is the derivative of
a closed curve 7y in the euclidean space, each component of &, takes O at some x.
Therefore, by Wirtinger’s inequality, we have [ l|> > 72||&ll? > 72. (It is known
in fact that ||, )2 = 4n%) Let 6(r) be a C* function on R such that §() = 1 on
Ir| <72/8, 6(r)=0 on m2/4 < |r| and 0 < &(r) < 1 on 7?/8 < |r| < 7?/4. We put

plx, y) = 1 +6(y* — 1€ ()P — 7).
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Fix an interval / such that |§,(x)]*> > 7%/2 for any x € I. If x € I and [y* —
|€0x(x)I?| < 72 /4, then p(x, y) = min{r?, y*} = 7% /4. And if |y* — |€ox ()| = 7% /4,
then p(x, y) = 2. Therefore, for any function u(x),

1 2
/ plx, u(x))dx > —/ dx.
0 4 J;

Remark 3.1. Below, we use the function p only to ensure p > 0 everywhere and
fol p(x, u(x))dx is bounded from below by a positive constant. Note that p(x, y) ==y
satisfies this requirement if £ = v, for some closed curve v in the euclidean space.

Proposition 3.2. Let &(x) be a C*® closed curve on S* with ||l > 7 and
&1(x) a C* tangent vector field along &). Let p be the function defined as above.
Then, equation

Vi€ — 2eV2E + (1 +)VRE, + pé,
3
=(w— nglz)vxfx +2w, & — Eax|§x'2 &

Wy + p(x, & PYw = &P — [Vi&i? + &1,
£(x,0)=£0(0), &(x,0) =& (x)

(EW)

has a C* solution on some interval 0 <t < T.

Proof. We can prove unique short-time existence of (EW$¢) by a similar method
with that used in [4]. Here, we mention only two steps. One is an estimation of the
ODE for w. Lemma 3.3 with the function p ensures estimation of w by £. Another,
Lemma 3.4, is a crucial point to use the contraction principle. O

Lemma 3.3 ([4] Lemma 4.1, Lemma 4.2). Let a and b be L,-functions on S'
such that a > 0 and ||a||, > 0. Then, the ODE for a function w on S!

—w’+aw=">b
has a unique solution w, and the solution w is estimated as

max|w| < 2{1 + lall7'}- I1bL,,

max|w’| < 2{1 + [lallz,} - 1bllz, -

Moreover, there exists universal constants C > 0 and N > 0 depending on n such that

A

lwlleee < C(1+ Nal¥ )16l

lwllwsy < C(1+ llalign) 1Bll-
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Lemma 3.4. We consider a linear PDE for u

U — 2€Upey + (1 +2)0% = f,

u(x,0)=up(x), u/x,0)=u(x).

If f e C¥ uye CH* and uy € C**?%, then there is a unique solution u € C*?.
Moreover, we have an estimation:

lullcana < C{llfllc2e + luolicane + llurllczaal,

where || * ||ci2« means the Holder norm for x-direction, and | * | cr2a means the
weighted Hélder norm (t-derivatives are counted twice of x-derivatives.)

Proof. We decompose the equation to a parabolic equation as
up—(E+~v=Duxx=v, v —(€—~—Dvxx=Ff.

Using the fundamental solution

1 x2
r it S exp(= 4+ J——l)t)

of the parabolic operator 8, — (¢ = v/—1)02, we can estimate as

[(x,t)=

A

[#llcza < C{||lv|crees + ||u0||c;1+2a}
C{ll fllc2e + llvollcze2a + [lugll caaa}

Clll fllcze + llurllczne + lluollcora}. O

IA

IA

When we take the limit ¢ — 0 in (EW%®), we should note that the term V3¢, is
quasi-linear, and contains the third derivative of £. In fact, in local coordinate system,

V3E, = {0%€P + 4T, P, ()¢ 035'}% + [lower order terms].
X

However, when we integrate it by parts, we can treat it as though it contained no third
derivatives.

Lemma 3.5. For any K > 0, there are T > 0 and M > 0 with the following
property:

Let &€ be a solution of (EW¢e) with € € [0, 1] on an interval [0,1,) C [0, T). If its
initial value satisfies ||&1]12 + |éox|I? < K, then ||& |12+ |€c1? < M holds on 0 <t < t;.
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Proof. Put
3
£ = (w = px, [6) Ve + 2wie = SOl 6.

We can estimate
ol

= (&, V&) + (1 + ) (Vieks, Vi)

= (& Vi + (1 +E)VRE) + (1 + D) (R(&, E0)x Vi)

(€, 26 V& + f) — pll&I1* + € max|& P& I Vel

=26V & l* + (&, f) — & l® + CUENTIE N Vi

(A= wIEN + I F 17 + CUENTANEN + [ Vbl

IEN% + (1 + D) Vie )

IN 1A

IA

and,

| =

IENI? = (€c, Vi€e) = —(Vebi, &) < IVREIP + 16117

N -
QU

t

Here, by Lemma 3.3, || f|| < C(1 + [I&]? + |4 |I5)™. Therefore, putting X(¢) :=
L+ [I& 1% + (1 + D& I3, we get

X'(t) < C X",
and, X(t) is bounded from above by a solution of the ODE: y'(t) = C,y(t)™>. O

REMARK 3.6. If we use original equation of v, which contains 87 in the right
hand side, the term (v,, O>y) appears in the estimation. Since we need the term
—2¢||Yix I? to cancel (v;, 337), we cannot get uniform estimate with respect to €, and
the following proof will fail.

Lemma 3.7. For any K > 0 and n > 0, there is M > 0 with the following
property:

Let € be a solution of (EW%®) with € € [0, 1] on [0, T). If its initial value satisfies
I€1llns €oxllnsr < K, and if it satisfies ||& |, 1|} < K on O <t < T, then ||&]|,,
€012, <M holds on 0 <t <T.

Proof. The claim holds for n = 0 by taking M = K. We prove the claim by in-
duction. Suppose that the claim holds for n. In particular, we know bounds of [|& ||(),
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€ ln—1)> lwllns2 and [[w]|ns1y. Therefore, we have

IV VEr'e — Ve Vig = | Y Vi(R(E, EOVETE)

i=0
<C Y Ivalvial] =€ D0 &l &l < Cléllne,
i+j<n i+j<n
n+l
IV VE26, — V6l = | D ViR, £VE )
i=0

n+l
<C (III&:I |V eIl + Z I'Ve&: II> < C A& NN Ex et + 11 llne1)

i=0
< Cli&lins1s
lwllna < CCA+ llpCe, 1EPDIDINE = Vel + 1611

<c| Y nanilanm+ Y IVeElilVeballjor +1

i+j<n itj<n, i<j
< CUE e + 1€ 1Ee sz + 1) < CCE et + [cllnaz + 1).
Put
= 0= POV + 20k — 20,16 PEs.

Then,

A

[fllnet < CA+ Nxllnez + 1€ ln2ll&xll + Nwllnszll€xlly + Nwll2l1€x llns1)
C(+ [[&xllne2 + lwllnaz) < CQA + |€xllnsz + 1€ llns1)-

IA

Using these, we have

S I + (v )

= (Vg VTG + (14 D) (Vg VL)

< (Ve V) + (14 (Ve VI8

+ CQ1E st + 1clln2)(1+ 1 llasr)

(V& Vit (f +2eViEE — p&)) + C(L+ 11& 17, + 1€ 11340)

< (VI 2eVIBE) + C( + 11E 112, + 1€:12,0)
< C{L+IVE&I2 + (1 + D) VE2E %)

IA

913



914 N. Koiso

Lemma 3.8. For any smooth initial data {&,&,}, K >0, T > 0 and m, n > 0,
there is M > O with the following property:

Let ¢ is a solution of (EW&¢) with ¢ € [0,1] on [0, T). If &1, 11l < K on
0 <t < T, then & is smooth on S 1'% [0, T), and the derivatives are bounded as
1V Ellry < M.

Proof. By Lemma 3.7, the claim holds for m < 1. Suppose that the claim holds
up to m. In particular, we have C®° bounds of & and V/"~!¢,. Therefore, using

~@uvofw=0r- 3 (])osol "

0<i<j

for 0 < j <m — 1, we have C° bounds of " lw. Since V™*'€, is expressed as a
polynomial of these lower derivatives, we get the result. |

Proposition 3.9. The equation (EW$) has a short time solution for any smooth
initial data.

Proof. We put K := [|&]|? + [|€o:/I? and take T > O in Lemma 3.5. Then, by
Lemma 3.8, any solution has a priori estimate on 0 <t < T.

Let [0, 7.) be the maximal interval such that a solution exists for . If T, < T,
then & is smoothly and uniformly bounded on [0, 7), hence can be continued beyond
T.. This contradicts to the definition of T, therefore we see that 7. > T. We con-
clude that a solution £ exists on the interval [0, T) for each € > 0, and these £’s have
smooth uniform bounds on S' x [0, T).

Therefore, taking a sequence ¢; — 0, we get a solution of

3
Vide o Ve + 6 = (w0 = 1)Vl + 2wl — SOcIE s,
—Wex + P, & PDw = 1617 — [Vele* + &%
g(x7 0) = 60(0)7 5!(~x7 0) = gl(x)'
Since p(x, |&1%) = |&|* when &, is sufficiently close to &, we have a solution & of
(EW$) on some time interval. Once we have a short time solution & of (EW?), we

can estimate the solution as Lemma 3.8, and the solution £ can be continued to the
interval [0, T). |

Proposition 3.10. Let & and € be solutions of (EWS) on [0, T). If £ and € have
same smooth initial data, then they identically coincide.

Proof. To express the difference of two solutions, we use local coordinates. We
fix the initial value {£, &}, and take a local coordinate U which contains the initial
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value &. In U, (EW¢) is expressed as:

gtlt’ + aié‘p +4qur(£)€ga)?§r = Fp[gxxa Wy, ft],
—Wyxx + gqr(&){?&;w = G[éxm gt],

where FP[£,, w,, &] is a polynomial of &7, 1., w, w,, &, functions of &9, and
Gl&ix, &] is a polynomial of &, &1, &, functions of £9. (We only note highest
derivatives.)

Let {5, W} be another solution of (EW¢) on [0, #;) (#; < T). Applying Lemma 3.5
and Lemma 3.8 with € = 0, we have smooth bounds of { and Z We put ¢ := E -,
u = w — w. Then, we see that

Ch + (P +4T,P (68103

equals to a sum of terms containing at least one of (., (i, U, Uy, (; or the difference
of the values of a function at £ and &£. Similarly,

—Uxx + gqr(é.)gz ‘f; u

equals to a sum of terms containing at least one of (., (ix, (; or the difference of the
values of a function at £ and €.
Therefore, we can estimate ¢ and u linearly:

Gh +8%¢P + 4T, P(©)E103C"| < C(IC + 1Cel + 1Cux | + [l + lux] +1G ),
| —ttxx + 8gr(©ELEU| < C(ICI + Gl + 1Cax] + 1G1)-

Regarding ¢ as a vector field along &, these inequalities can be written using covariant
derivation along ¢&:

IV2C+ VI < CUICH2 + Nully + V€I,
I = tex + 1Eull < CLUICH2 + IV

Thus we have [lull; < C(lICll2 + V€I, and

SR+ 1C13)

2%, V20) +2(6, ViC) + 2%, M%) + 24V, V)
< 2(%G, VEC+ VHO) + 2%, V%) + CUICIB + I9CI)
CLlV:CI +1ICI3),

IA

from which we see that (|V,¢||? + ||¢ ||§)e‘c" is non-increasing, hence identically van-
ishes.
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This proof applies at any time #, such that g(to) = &(tp). Therefore, the set {z |
&(t) =&(r)} is open and closed in [0, T'), hence agrees to [0, T). O

Combining Proposition 3.9 and Proposition 3.10, we get the following

Theorem 3.11. The equation (EW¢) has a unique short time solution for any
smooth initial data.

ReMARK 3.12. To show this theorem, we did not assume that x> 0. Hence the
result is time-invertible. That is, a unique solution exists on some open time interval
(=T, T) containing ¢t = 0.

Corollary 3.13. The equation (EW) has a unique short time solution for any
smooth initial data.

4. Singular perturbation

In this section, we assume that 4 > 0 and change the time variable ¢ of (EW¢) to
,u_lt.

-2 3 2 3 2
BTV + V2E + & = (w — &1 Vi + 2wy — Eaxlfxl &x

(EW&M) —Wyx + nglzw = ///_2|'£t|2 - |Vx€x|2 + lgx [4,

1 1
£ 0) = £(0),  &(x, 0) = pér(x), /0 €odx = /0 €1 dx =0,

First, we show uniform existence and boundedness of solutions with respect to
large p. Constants T, M below are independent of u.

Lemma 4.1. For any K > 0, there are T > 0 and M > 0 with the following

property:
If € is a solution of (EW*) on an interval [0, t) C [0, T) and if its initial value
satisfies |&oll, €11l < K, then [|Ecll1, p~ " & Il < M holds on 0 <t < 1.

Proof. It is similar to the proof of Lemma 3.5. We put
2 3 2
f=w- ng[ YWVeés +2wx€x - 5 e 1Ex1“x,
and we have

1d
E{M_zll& 1P+ IVENPY + 16117 = (&, £) + (Vebs, R, E0)x)

N

1 1
< (GeDer+ 1+ caemiveny.
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Here, || f||? is bounded by a polynomial of X := = 2|& |12+ || Ve&i ||> + [|£« |2, Com-
bining it with d|&,||?/dt < ||&]? + || V& ||?, we have a u-independent estimate of time
derivative of X by a polynomial of X. Therefore, there is a p-independent time 7 > 0
such that ||&]| < Cu and |||y < C on [0, T). O

Lemma 4.2. For any K > 0 and n > 0, there are M > 0 and po > 0 with the
following property:

Let € be a solution of (EW&*) on [0, T) with > po. If its initial value satisfies
I€ollnsr, I€1lln < K and if it satisfies ||Ell1, p~ "€l < K on [0, T), then it holds that
1€cllnst, 1wllnst, = €l < M on [0, T).

Proof. It is similar to the proof of Lemma 3.7. Suppose that we have bounds:
1€cllnsts ™ 1€ N < M. They imply that [|€, /i, tHE -1y < C, and,

A

Iwlnsz, 1 llner < CA+p7 1 et + 1Ecllne2)
C(L+ p VI E N+ 1IVE2ED.

IA

Using this, we have

%E{u‘znv;’“ét 1%+ ||v:+2§x||2] + Vg
= (VP& w2V VI E) + (V26 VVEPE) + | VG |12
< (VP pTIVETIVG) + (VIR VIR + |V
+Cu 2V - pllé et + CllExlnazllEllner
< (g, v )+ (Cu + %)(uv;’“@n2 + 161 + CllE N7

1
< (Con™ 4 ) AVEIE + 161D + CL+ V226D,

Assuming that 4 > 4C; and combining it with the first estimation:

1d( _ 1
Sp e v} < —Sar?+ c.

we can estimate
X(0) = p 2 (IVEENR + 1E1P) + AIVERENR + V&)

by X'(#) < C(1+ X(¢)). Hence we have ||&|lus2 < C, |1 |lne1 < Cu. Substituting it to
the estimate of ||w]|,+2, we get ||wllp2 < C. O

Proposition 4.3. For any initial data &y and &, there is T > O such that (EW¢H)
has a solution on [0, T) for each p > 0. Moreover, for any n > 0, there are py > 0
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and M > 0 such that the solution with u > pg satisfies & |ln, |wll, < M and ||& ], <
My on [0, T).

Proof. Using Lemma 4.1 and Lemma 4.2, the proof is similar to that of Propo-
sition 3.9. 0

Let {n, v} be a solution of the limiting equation (ux — oo) of (EW%#) omitting
initial data & (x, 0).

3
M+ Vine = (v — e ))Vier + 20,7, — Eaxlnxlznm

(EP") U + 10 PU = = Ve 2 + [ |4,

n(x, 0) = £(0).

In [4] (Theorem 7.5), we know that the corresponding equation for closed curves
in the euclidean space has a unique all time solution. Therefore, (EP7) has a unique
all time solution, via Lemma 2.2.

We regard function 7 as the O-th approximation of £ for y — oco. To compare &
and 7, we divide the interval [0, 00) so that the image n(S! x I) of each subinterval I
is contained in a local coordinate U of S2. For a solution ¢ and an interval [to, ;) C I
such that & (S U [to, tl)) is contained in U, we denote by {(, u} the difference between
¢ and 7 in the local coordinate, i.e., (P := &7 — 0P, u = w — v. We use the local
expression of (EW&H):

P2 (ER + TyP (OEIED) + 0P + 4T P ((O)ELO3E + EF = FP[€yy, wi],
—Wyxx + gqr(g)gg&:w = N_zgqr(€)§;1§; + G[gxx]»

1 1
£(x,0)=£(0), &(x,0)=p&(x), /(;fodx=/0 §1dx =0,

where FP[€,,, w,] are polynomials of &, &, w, w,, functions of £, and G[&,,] is
a polynomial of &, &, functions of £&. (We only note highest derivatives.) Since the
local expression of (EP7) is given by the above equations substituting ~! = 0, {¢, u}
satisfies

WA (Gl + 2T i §7) + OFCP + 4Ty (M 83" + ¢
= FP[Exx, Wel = FPux, 0] — 40,7 /() BIE — 4(Ty? 1 (€) — TP ()i o€
1 — w2 mh + TP Enf ] + TP r(EG G +2(Cg P (&) — TP (i ¢,
—tx + 8ar(©EIELU = 7280 (O)EEL + Gl€xx] — Glnw],
((x,0)=0, G(x,0) = p&i(x).
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We regard ¢ as a vector field along 7. Then, we can rewrite the above expression
as

(EW¢)
pEVEC+ VEC + Vi
= Li[V2(, ux] + Q1[VEC, s V3C, ue] — p=2(Vime + Lo[C] + Q2[ViC: Vi€l
—Uex + | Pu
= 2{|ne 12 + La[ViCl + Q3[ViC; ViCl) + La[ V(T + Qa[V2C; VA(I,
(&* = Ime|? + Ls[ViCl + Q5[ViG; ViCD),
((x,00=0, V((x,0)=p&x),

where L; are linear, |Q;(«; 3)| < Cla||B]. (We only note highest derivatives.)
To get estimate of {(, u}, we need following

Lemma 4.4 ([5] Lemma 1.5). For any K, K; > 0 and any T > O, there are
M > 0 and po > 0 with the following property:
If u> po and X(t), Y(t) and Z(t) are non-negative functions on [0, T) such that

XO0) <Ky IXO <K, YO0 <K, Z0) <Ky
and that
pX"O+ X' (1) < KX+ pT2Z@0) + p72) — KoY (1),
YY) +u?Z' (1) < Ki(Y(1) +1) — K2 Z(2),
on [0, T), then they satisfy
X <Mp™% Y@)<M and Z(t) < Mu*

on [0, T).

Lemma 4.5. For any n > 0 and any K > 0, there are M > 0 and po > 0 with
the following property:

Let {C,u} be the solution of (EW¢) with u > po, defined on [ty,t;) C [0, T). If
(¢l < Kp™" at t =1, then ||C|ln < Mp~™" holds on [tg, 1;).

Proof. Note that we have bounds of {£, w} and {7, v} by Proposition 4.3. There-
fore, we know |||, < C, |Vi{ll, < Cu and [lull, < C. We may assume that
K = po = 1. For

h = p72 (0 + La[ViCl + Q3¢5 ViCl) + LalVZC] + Q4 V2(; VEC,
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we have

A

Al < Clu™A +1%Cll + 1% IVEC ) + 1€ Hnsz + 1€ 1 lne2)
< Cu2 4+ 7 NIViClln + 1 lns2),

and, [ullosz < Cllhlla < C(u™2+ 1 ViClln + Cllns2)- And, for
f = LilVEC, uxl + QiIVEC, ux; VG, ux] — p=2(Vim, + Lo[¢1 + Q2[V2G; ViCD),
we have

Il < CUICHns2 + Nullner + w21 + 1% 11 ViC 1)}
< Cll¢lnsz + 52 + 7 1ViClln )

Put X, () := ||VEC|| and Z,(t) := ||V Vi(||. Then, we see that

(Xo®Y =2(¢, ViC) < 2X0Zo,
(X1 = 2(%(, ViViC) < —2(V%(, Vi Vi) + CIICIL I
< 2X2Zo+ C(Xo* + X1%),
wHZA +2Z2 + (Xia®)
= 2(ViVi(, uT Vi ViViC + Vi VEC) + 2(VAH2(, Y, Vi)
< 2ViViC, Vi f) + CIVEViCI (2 Vi lli=1 + IS Ni—1) + CHVECI I N
< CZi{Xia+ Xo+ ™2+ u™N(Zi + Zo)} + C(Xid® + Xo).

Therefore,

1 2AVCI2Y + K2, + 210112

< ClCIZ 2 + Cu M IViCIE + Cu™ + C Y ZiXina + Xo)
i=0

IViClIZ + ClICIZ,, + Crp~ IVICH2 + Cu2,

=

N —

P2 UIVCIZY + UICI2,,) < CUICHZ, + 172 — 1VRCII2

if u>2C.
We also have,

LX)+ (X2 +2X0407
= 2uT 2|V VACIP + 2(Vi¢, w2 VAVEC + V, V¢ + VEH()
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< 3uIVEVACI? + 2(ViC, Vi f)
+Cp 2 ICH7y + CIVECI{B T2 AV llimt + G lli—2) + G Tli—1)
<3u72Z% + CXi{Xiwa + Xo+ 72 + =N (Zi + Zo))
+CU (X2 + X2+ CXi{p 2(Zi + Zo) + Xi + Xo)
< Xi? + C{X2 + Xo® + 222 + ZoH) + 7%,
H2ACID" + ISR < CUICHE + w2 IViCHE + 7% = 1<,

Setting X := [IC||2, ¥ := ||V2**C||> and Z := |V,¢||?> in Lemma 4.4, we have
¢l < Cut. 0

Lemma 4.6. For any n, m > 0 and K > 0, there are M > 0 and po > 0 with
the following property:

Let {(,u} be the solution of (EWS) with p > g, defined on [ty,t;) C [0, T). If
V7¢Il < K™~ 1 at t =to, then

A

IV7Clly < M(u™" + p2m~ e 1/,

167" u )y M(,u—l + Mzme_#z,/z)

IA

hold on [1y, t1).
Proof. We put V; := u~'+ u/e #"/2, Note the log-convexity:
V2 <ViiVim and ViV < VoViu < A+ pg" )V for  j, k> 0.

We know that || V,(|lsy < Cu, ||lullny < C by Proposition 4.3, and ||[|(sy < Cp~!
by Lemma 4.5. In particular, |||y < CV_; holds. We prove the estimate of 0;"u and
the estimate of V/"*!(, assuming the estimate of 8u and V/*'¢ for j < m.

First, we estimate 07"u. Put

= (el + La[ViCl + Q3[Vi G ViCD) + LalVEC] + QalVEG; VECL.
It is estimated as

10"kl ey < CLu™2(1 + IV Cllmy + Vam—1
+ IV IV Cllmy + V5 Vam—1) + Vam—1)
Cle™ IV ¢y + Vam),

IA
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where V;* appears only if m > 2. Therefore, we have

m
10" ullnen) < 10 hllmy + C Y 10 1€ Pl 107"~ wllny

Jj=1

IA

m
CUT NV Clliny + Vam} + € Y (1 + Vaj_)Vam— )
j=1

IA

Clu™ IV Cllny + Vam)-
Now, we estimate V/**!(. Put
fi= LilVEC, ul + QilVEC, uy; Vi€, uy] — > (Vimy + La[¢] + Q2[ViC: ViCD).
Then,
IV flloy < C{Vam—1 + 110 ull ety + Nl ne) 1O || s

+ 1721+ Va1 + 1YLy IV ¢y + V5 Vam—1)}
L IV ¢y + Vam},

IA

where V3 appears only if m > 2. Therefore,

A

IV (w22 + ViOlly < IV Cllgnray + 1V £ llny
Cle IV iy + Vam)-

IA

Thus,

0
u’zg;!V;'Vt”‘”Clz +2|VEVmie?
= 2(V;l VthCa u—-ZVtV;VthC + V;lvthC)
< 2(VVMIC VTR V)
+ Cu VIV IV ey
< CIVEV I IV Cll iy + Vo)

From this, for X(¢) := HVr’"“Cll(z,,), we have

1
P2X(1) +2X(1) < Cru~ X (1) + CVan X (1) < (5 + Clu_1>X(t)2 +CV2,

where X'(¢) = limsup;_, ,o{X( + ) — X (8)}/4.
We set py < 2Cj. Then,

pTX (1) + X (1) < Co(u2 + p*me ),
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X(t) < X(t)e ™" + Co(u=2 + 20

< C(M—Z +/.L4m+2e_“2t),

that is, [|V/"'CI12,) < CVaper.
Substituting it to the estimate of |07 u||(,+2), we get the estimation of 9" u. O

Proposition 4.7. For any initial data {£y, &1}, any interval [ty, t;) C [0, T) and
any local coordinate U of S* such that the image n(S' x [ty, t1)) is contained in U,
there exists o > 0 with the following property:

If € is a solution of (EW®*) on [0, T), then the image £(S' x [to, 1)) is contained
in U. Moreover, £ uniformly converges to n on [0, T) when p — o0.

Proof. We divide the interval [0, T) so that the image n(S! x I) of each subin-
terval I is included to a local coordinate Uj;. O

Note that ¢ is defined only on each short time interval.

Starting from ¢ = 0 and applying this Lemma on each time interval where {(, u}
is defined, we see that ||(||, is small for large u.

We sum up these results, and get the following

Theorem 4.8. For any non-negative integers m, n and any positive number T,
there are positive numbers poy and M with the following properties:

For each 1 > o, there exists a solution ¢ of (EW*) on [0, T), and & uniformly
converges to 1 when u — 0o. More precisely,

187 3YEP =) < M(u" + P e )
holds on each local coordinate.

ReEMARK 4.9. In general, we cannot expect uniform estimation on the whole time
[0, 00). The limit n(co) can be an unstable elastic curve, and in that case, £(co) and
n(oco) discontinuously depend on the initial data.

Corollary 4.10. For any positive number T, there exists a unique solution vy of
(EW7) on [0, T) for sufficiently large p > 0. Moreover, the solution converges to a
solution n of (EP) when p — oo.
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