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1. Introduction

During the past years, theory of measure perturbations of Dirichlet forms and the
associated perturbed semigroups - so called generalized Feynman-Kac semigroups have
been studied by many authors ([1],[2],[3],[71,[241,[25],[31],[32]). Furthermore, Dirich-
let forms perturbed by jumps were recently investigated ([3],[24]), and unlike the case
of the perturbation by smooth measures, we needed some new concepts and tools to
study them. Indeed, when the underlying Markov process X; is discontinuous, the
following important discontinuous additive functionals can be considered ;

(1.1) Al =) F(X._,X.),

s<t

where F' is a Borel function on X x X vanishing on the diagonal. In this case, there are
some difficulties in studying the Feyhman-Kac semigroup for (1.1) and the correspond-
ing bilinear form, because the basic tools used in the continuous case are not available
in this discontinuous case. Song [24] studied the additive functionals of the forms

1.2 AWF = AR 4 AF
t t t

for the symmetric a-stable processes, where A* is the continuous additive functional
(or abbreviated as CAF) with 4 as its Revuz measure. For f € B(R?), he proved that
if p is a measure in the Kato class and F' is a bounded “admissible” function with
respect to the base process, then the Feynman-Kac semigroup

pt" f(z) = B (exp (-4 £(X)

is strongly continuous on LP(R%). As a generalized approach, Ying [31] introduced the
concepts of additive functionals of extended Kato class and showed that, if an additive
functional A; of symmetric Markov process X; belongs to this class, the Feynman-Kac
semigroup p;  f(z) = E, ((exp(A)), f(X;)) may be extended to a strongly continuous
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semigroup of bounded operator, where exp(A) (: et [1,<,(14+ AAy)) is the Stieltjes
exponential of A. He also characterized the perturbed bilinear form associated with
(2 ).

In 1951, Kac [18] obtained a remarkable relation between the principal eigenvalue
of Schrodinger operators and an asymptotics of the so called Feynman-Kac functional.
More precisely, let (B, PY) be the d-dimemsional Brownian motion and V' a function
on R? such that lim,_,., V(x) = co. Then, it holds

1 w ¢
tlgg) glong (exp (—/O V(Bs)ds))

= — inf (ED(u,u)—k/ uz(z)V(a:)dx).
LA R
Ufl2=

(1.3)

Here D is the classical Dirichlet integral and (1/2)D plays a role as the rate function of
the large deviation principle for the Brownian motion. Afterward, this formula became
a motivation of Donsker-Varadhan large deviation theory which tells us an asymptotics
of occupation time distribution L;(w,-) = (1/t) fot X-((Bs(w))ds, and nowadays, the
formula (1.3) also can be derived as a corollary of Donsker-Varadhan large deviation
theory.

On the other hand, many people recently studied the so called generalized Schrod-
inger operator with a signed smooth measure y as a potential, —%A—}— u, and the associ-
ated semigroup EY (exp (—A%) f(B:)) ([11,[2],[31,[6]). Moreover, Carmona-Masters-
Simon [7] considered the relativistic Hamiltonian operator /—A +m2 — m, m > 0
instead of Laplacian. Note that if we want to extend the formula (1.3) to the relativis-
tic Hamiltonian operator and also to the generalized Schrodinger operator, Donsker-
Varadhan large deviation principle is no longer available because the additive functional
A™F is not a function of the occupation time distribution L;(w,-) while fot V(Xs)ds
can be written as t [, V(z)L:(w, dz).

An objective of this paper is extend the formula (1.3) with continuous and jump
type’s Feynman-Kac functionals exp —Af’F ) in the framework of regular Dirichlet
space. To do this, we shall concentrate our attention on the modification of “Donsker-
Varadhan large deviation principle for symmetric Markov processes with multiplicative
functional exp —Af’F ) The two methods may be considered. One can immediately
expect on account of [26] that, if 4 and F' are positive and a symmetric Markov process
as a base process explodes so fast that R F1 the 1-resolvent of the identity function
1 belongs to Coo (X)) the space of continuous functions on the state space X vanishing
at infinity, then we can use the full large deviation principle!(Theorem 1.1 and 4.4
in [26]). The other is the choice of special Lévy process satisfying the exponentially

IThroughout this paper, “large deviation principle” means a “Donsker-Varadhan’s type”, otherwise, we shall
give a comment.
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localized condition (cf. [7]), under which, the LP-spectral radius of the Feynman-Kac
semigroup of kernels be ones p-independent. We combine this independent property
with the large deviation principle.

More precisely, let (£,F) be a regular Dirichlet form on L?(X;m) and M =
(Q, X¢, Pz, ¢, 6;) the associated Hunt process, where X is a locally compact separable
metric space and m is a positive Radon measure on X with full support. Let u be
a signed smooth measure associated with (£, F) and F' a Borel function of bounded
below on X x X vanishing on the diagonal. First we show that if F = (1 —e F ) €
L*(X x X\ d; Nm) and A*F is the additive functional of extended Kato class, then
the Hunt process M can be transformed into the ¢>m-symmetric ergodic process whose
Dirichlet form on L%(X; ¢%*m) is written as

gy = 5 [ Twugtame [ (i) -a) oo N dym(ds)

by means of a supermartingale multiplicative functional

(1.4) NP = exp (—Aé"F) zg;(;)) exp (— /: LM;SF(b(Xs)ds) .

Using this fact, we prove the following formula for the symmetric Lévy process on R%
with its exponent being the so-called a-relativistic Hamiltonian

(p* + m?)% —m*, m>0, 0<a<2;

lim -}log E, (exp <—Af’F>)

t—o0

(1.5) = _uei;lf,p (g(u, u) +/Rdu(x)2 du(z)
[lull2=1

[ e M1 = ) dy>)

holding for all z € R%, where F»F = {u € F;u € L*(R%|u| + |p)}, p(4) =
[y Jpa(1— e FEV) I (dzdy), A € B(R?).

We shall also discuss some of its applications. When the base process is a symmet-
ric stable process of index «, (1 < a < 2), the surface measure of the sphere on R3 is
in the (extended) Kato class ([6]). Since the pseudo-differential operator | — A|°‘/ 1<
a < 2) and the a-relativistic Hamiltonian operator (—A + m?)*/2 — m* (m > 0,1 <
a < 2) define the same Kato class, the formula (1.5) gives us the asymptotic behaviour
of the local time for the surface measure of the sphere on R3 (see Example 5.1 and
5.2). As mentioned above, when p and F' are positive and Rf’F 1 belongs to Coo(X),
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we can also consider the full large deviation formula. We shall describe the asymp-
totics of the number of jumps for symmetric Markov chains on a symmetric region
of the state space and give some sufficient conditions to ensure Rf1 € Coo(X) in
establishing full large deviation principle (see Example 5.3 and Theorem 5.2).

2. Preliminaries and Assumptions

Let X be a locally compact separable metric space and m a positive Radon mea-
sure on X with full support. Let (£, F) be a regular Dirichlet form on L?(X;m) and
M = (Q, X}, P, () a corresponding Hunt process.? Here Q is the space of all right
continuous functions from [0, 00) to X with the left hand limit on (0, 00) such that
w(t) = A for all t > ((w) = inf{s > 0; w(s) = A} and X; is the coordinate maps,
Xi(w) = w(t). The stopping time ¢ is called the life time of M and A is called a
cemetery point adjoined to X. Let (p;);>¢ be the transition semigroup of M, p, (x)
E.(f(X¢)), and (Rq)a>o the resolvent of M, R, f(z) = E; ([, e~** f(X,)ds). Th
capacity associated with the Dirichlet form (€, F) is defined by

Cap(0) = inf‘{é’(u, u) +/ u’dm ; u € F,u > 1 m-ae. on O}
b

for an open set O, and is extended to any set as an outer capacity. We say that an
increasing sequence {F,} of closed sets is a generalized nest (simply say, a nest) if
lim,, o, Cap(K \ F,,) = 0 for any compact set K. A positive Borel measure 4 on X is
said to be smooth if u charges no set of zero capacity and there exists a nest {F},} such
that u(F,) < oo, for all n (§2.2 in [16]). Let us denote by S the totality of smooth
measures. Given a signed Borel measure p = u+ — pu~, we say p the signed smooth
measure and write p € S — S if u* € S and p~ € S. For a Borel function f on X,
we define the quasi-norm by

Ifllg= inf = sup |f(z)].

Cap(N)=0 zEX\N

Note that, if f is quasi-continuous, || f||4 is the same as || f||oo the usual L*°-norm.
A signed Radon measure p is said to be in the Kato class Sk if

(2.1) lim |, (4£) l, =0,

which is the extension of the classical definition of the Kato class for Brownian motion.
Now, we introduce more general concepts of the Kato class (2.1)

2The Dirichlet form is defined as a Markovian closed “symmetric” form and hence, the associated Hunt
process is always assumed to be “m-symmetric” (cf. [16]).
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DEFINITION 2.1. A positive additive functional A of M is said to be in the ex-
tended Kato class if it belongs to

ad_f . 1
agd = {45t 1B 00, < 3}

A signed smooth measure p = u* — p~ (resp. A Borel function F = F+ — F~ on
X x X \d) is said to belong to the extended Kato class if A* = A" —An~ ¢ 43d_ 4ad
(resp. AF = AF" — AF~ ¢ pad _ gady

From now on, we assume that F' is a symmetric (i.e. F(z,y) = F(y,z)) Borel
function on X x X'\ d and for convenience, F(z,A) =0, z € X. Put F = (1 -~ F).
For the additive functional A*¥ which belongs to the extended Kato class, we define
the symmetric bilinear form (£, F»F) on L?(X;m) by

EWF (u,v) = E(u,v) + / w(z)0(z) p(dz) + // u(a: O(y)FJ (dx dy)
for u,v € F»F
FoF ={ue F; e L*(X;|ul+ o)},

where p(B) = [5- [y F J(dzdy), B € B(X), i.e., the marginal measure of F'J
and U means a quasi contmuous m-version of u with respect to the capacity Cap. Then
(EWF, FEF) is a lower semibounded closed symmetric bilinear form on L?(X;m)
because its perturbed semigroup, the. so-called Feynman-Kac semigroup,

(2.2) pF f(z) = E, (exp (—Ai"F) f(Xt)) zeX.

is a strongly continuous symmetric semigroup of bounded operators on L%(X;m) (The-
orem 3.2 in [31]).

Now, in order to obtain our main results, we make the following assumptions on
(€,F) and M which are always available throughout this paper.

Assumptions

(I) The energy measure corresponding to (£, F) is absolutely continuous with respect
to the base measure m, that is, £ can be written as

Eluu) = % /X I‘C(u,u)dm+-;- / /X o 0) ~ )N ()

+/ u(z)?k(z)m(dz) for u € F N Co(X),
b'e
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where Co(X) is the set of continuous functions on X with compact support.

(II) (Irreducibility of M) If a Borel set B € B(X) satisfies
xBp:f =pi(xpf) forVf e L*(X;m)NB(X) and t > 0,

then m(B) =0 or m(X \ B) = 0.

(IIT) The transition probability p;(z,dy) of M is absolutely continuous with respect
to m foreach t > 0 and z € X.

(IV) p: is a bounded operator from L!(X;m) to L*°(X;m) for any ¢ > 0.

The next lemma asserts that under the extended Kato class conditions for A#F
determined by p and F', the Feynman-Kac semigroup (2.2) inherits the LP-boundedness
and LP-smoothing properties of the original semigroup.

Lemma 2.1. Suppose AVF ¢ A3 _ 43 Tpen

(i) There exist positive constants ¢ and 3(u, F') such that for all t > 0,

H“EH < eefiuPt 1< Vp < oo
p,p

where || ||p,p means the operator norm from LP to LP.

(ii) Foranyl <p,g<ooandt>0, Hpt’FH < oo0.
P

Proof. (i) Since exp(—A"’F) :e‘Mqu(H—e'F(X“’XS)— 1)=exp(—Af’F),
‘ <
we see by Lemma 2.1 in [31] that there exist positive constants ¢ and 3(u, F') such
that for any ¢ > 0,

||EI (exp (—Af’F)) Hq < cePmF)t z e X.

Now, we have the result by using interpolations.
(ii) It is enough to show that p} " is bounded operator from L!(X;m) to LP(X; m),
(1 < p < ) for any t > 0. The assumption (IV) say that there exists a positive
constant C such that for any ¢ > 0,
[ptll1,00 = Ct < 00.

Now, for any f € LY(X;m), (1 < ¢ < 00), we have

s < (B (7)) o)
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Using (i), we get “pf’p II < 3C}, t > 0 and its dual property give the conclusion.
q,00
U
3. Transformation to Ergodic Processes by Multiplicative Functional
In this section, we transform the Hunt process M into the ergodic subprocess by

certain multiplicative functional, which will play a crucial role in the coming section.
First, we define the resolvent {R%F},5 5, ) by

RAF f(z) = E, ( / exp(—at — AMF) f(Xt)dt) for f € By(X)
0
and the generator £ by
LPFy=ou—f foru=REFF feCy(X)

where B, (X) (resp. Cp(X)) is the set of all bounded Borel (resp. continuous) functions
and B(u, F) is the constant in Lemma 2.1. Set the domain of £*F

DY(LT) = {REFf5 o> B F), fe€L*(X;m)NCy(X), f20and f#0}.
Note that any function in D2 (L*F) is strictly positive on X by assumption (II) and

(IID) (cf. Theorem 4.6.6 in [16]).
For ¢ = R&Fg € D3 (LHF), put

t
MPF® = o) — 6(0X0) - [ e AT L gl ds
0

Then, Mt’"F % is a martingale with respect to P, € X because
E,(M/F?) =0 and MM5? = MPF? 4 e~ 4% " MpEe(9,).

Lemma 3.1. M""® can be also written as

t
M{"F‘¢=/ —ALT gMe) - / e dLPF | Pyae z € X,
0 0

where

F =3 6(X,)F(X,o, Xo) / [ N (X)) F (X ) ds

s<t

and M? is the martingale part for Fukushima decomposition of ¢(X;) — ¢(Xo).
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Proof. ~ We apply It6 formula to G(z,y) = zy. Since de= A" = —(e‘Af'FdAf +
F o
e~ 4 dAF), we get

e‘Ai"Fcb(Xt) — ¢(Xo) G’(e_A:‘,F d(Xy)) — G(e_Ag,F,@"(XO))
t t
G.1) - / —A g / e AN

t t
- [octge " an - [ axe s aaf,
0 0

where AF = Ye<t F(Xs—, X,). Put APF = > et P(Xo)F(Xo—, X,) and consider
its dual predictable projection (A;”’F ),, = [! [« N(X,,dy)$(y)F(X,,y)ds. Then

L = S HKIP(Xurs X - / [ N d)é(0) (X 1)

is a martingale with respect to P,,x € X, and hence, the last term of the right hand
side of (3.1) (discontinuous part) equals

t
/ —A"‘ dAd) F
0

t A l-‘
_ / AT LT / -4 / N(Xa, dy)(u) F(X,, y)ds.

We have the lemma. |

Let us define the multiplicative functional N by

(3.2) NP = exp (—Af’F) (Xt) exp <— /Ot U;)Fqﬁ(Xs)ds) .

Then N¢ is a supermartingale multiplicative functional. Indeed, put K, = {z €
X ; o(z) > %} and denote by K the fine interior of K. By noting

d (e-Aé"F¢(xs) exp (- /0 t E';)%(Xu)du))

= exp (— t L#‘F¢(Xu)du) (d(e‘Aé"Fqs(Xs)) - e‘Af'F£M¢(X3)ds) )
o ¢

we can immediately check that for each n
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Nf,. -1

(33) tATR F
= /0 (;(O)exp( /ﬁ‘ ¢ X,)d )dM“F"’ Pyae. z€ X,

where 7, is the first leaving time from K2, 7, = inf{t > 0: X; ¢ K2}. Therefore, we
see from (3.3) that

Eo(N?) = Ex(N},) < lim inf B, (No.)=1, zeX.

Let us denote by M?¢ = (Q, X;, P?,() the transformed process of M by N¢.
Lemma 3.2. M? is a ¢*>m-symmetric right process on X.

Proof. For a path w € Q with ¢t < {(w), let r; be a reversal operator on £ which
is defined by

re(w)(s) =w((t —s)—) if (0<s<t), ri(w)(s) = w(0) if (s>¢).

Note that M? is a right process (see [21]) and is reversible under P,‘fl-a.e., because for
any JF;-measurable function f,

En(f(re); t <Q) = En(f(); t <)

Since F is symmetric on X x X \ d, A*F (rw) = A»F(w), Pn-ae. on account of
Theorem 5.4.1 in [16]. Now for f, g € B(X),

®? f,9)42m
(2 (" S oo (- [ “gtoma) sx0).0)
B (7 6(X)0(X0) 1 (Xo)g(X exp (= [ Z8(x,)ds
o ¢

= (pfgv f)q&zm’

which completes the proof. O

Denote by (£¢, F?) the Dirichlet form on L?(X; ¢?m) associated with M?. Note
that K2 is also the fine interior of K, with respect to M?¢ because P, = P¢ on
For(= NesoFy, Fi is the universal completion of Fo=0{Xs;0<s<t}). Le
M?” (resp. M#™) be the part process of M (resp. M¢) on K2 and (£™,F™) (resp
(£%m, F#™)) the Dirichlet form generated by M"™ (resp. M¢’").
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Lemma 3.3 ([19]). Under the identification of L?(KZ; $*m) with
Lo (X;6°m) = {u € L*(X;¢*m) ; u=0 m-ae on X \ K2},

Fon={ueF?; u=0 ¢*m-ae on X\ K,}
and E%™ = £¢. In particular, F®™ is included in F¢.

In order to reach our final goal of this section, we make full use of the following
expression of transformed Dirichlet form. We would like to emphasize that F? the
domain of the transformed Dirichlet form in Proposition 3.1 includes F, which makes
it possible to show that the identity function 1 belongs to F¢ even if the expression
(3.4) itself follows from It6 formula.

Proposition 3.1.  Fix a Borel function F of bounded below on X x X \d. Suppose
that F € L>(X x X \ d ; Nm), where Nm(dzdy) = N(z,dy)m(dz) and ARF ¢
A?{d - Aa}(d. Then the Dirichlet space F? includes F and for u € F,

1
E(u,u) = = [ I(u,u)p’dm
(3.4) /

2 X
+ / /X X\d(ﬂ(r) —i(y))*¢(x)$(y)e” " N(z, dy)m(dz).

Proof.  First, for ¢ = R4Fg € D2 (L+F) and u € F™ N L°(X;m), we put

(u— E(Nu(Xy) 5 t < Tn), W)g2m
= (u—E.(u(Xy); t <Tn)U)p2m — (B.(N? = Du(Xy) ; t < Tn), %) g2m
()¢ — (I1);.

I

From (3.3), (II); equals

t S F
Eyom (u(Xt)/O exp (—/0 U;) ¢(Xu)du> dMPFe ¢ < Tn) .

Put

tATR K} ll'yF
(I11); = Eugm (U(Xt)/0 exp (—/O £ 7 ¢(Xu)du) aMpFe b > m) .
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Then, by Lemma 3.1,

1 2 1 tATn W F
t—z(III)t < EEIHW"” | exp|—24%

s pu,F )
(35) [ £ ¢(Xu)du)d(M[¢]—Ld”F>s>
0

o
1
x 2E1u|¢m(U(Xt)2é t > Ty)

For ¢, € F, we let
[(¢,9)(x) =T(¢, p)(x) + /X (#(2) = 6()(B(z) — $(¥)) N (z, dy) + d(x)@(a)k(z).
Then the joint quadratic variation (M[#!, M¥]) is equal to

(M) My, = / L(¢,¢)(Xs)ds, ¢, p€F

(Theorem 5.3.1 in [16]). Now we claim that the first factor of the right hand side of
LHF
(3.5) is bounded. By Lemma 2.1 (i) and the fact that " ¢

<3Jdec<ooon K},

1 tAT, s ,C”’F
ZEIuM)m (/0 exp (—2/15’1’ -~ 2/0 3 ¢(Xu)du> d(MM)s)

£ exp(2et) B ( [ exp(=245)T(6,0)(X.)ds)

IN

IN

s exp(zet)uble [ 1527 ((6,8) s

INA

~expetfusllee [ 19277 a0,
0

IN

t
c'%exp(?ct)“uqﬁ”ooﬂf((b, Ol / P2 g < o,
0

Also, since (L#F t—fo [x * @) F*(Xs,y)N(Xs, dy)ds,

1 tATh s £u,F _
;Eluqum (/ €xXp (_2‘4?’17 - 2/ P ¢(Xu)du> d<L¢’F>S>
0 0

+ exp(zet) B ( [ Cexp (-246) [ 6P (X ) N (Xuy ) )

IA

IN

L exp(aetusllo [ 15277 [ PN di)lds
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IA

—exp(ZCt IIU¢3||oo/ Ilpz“’wlll,lll/XF2(-,y)N(wdy)N1ds

IA

1 _
o2 exp(2ct)[ud?|os / P21 2F)a g / / F2(2,3)N(z, dy)m(dz) < oo.
i 0 XxX\d

Now, Kunita-Watanabe inequality gives the boundedness of the first factor of (3.5). The
second factor of (3.5) is equal to 1(|u|¢, psu? — u?)m — 1 (|ul¢, PPu® — u?)m, which
tends to E(|ulé, u?) — E™(Ju|p,u?) = 0 as t — O because |u|¢ and u? are elements of
F™ and we can appeal to Theorem 4.4.2 in [16]. Hence we get

lim ~ ! Z(ID),

tATn 5£“,F¢ Fé
= i —_ — (27 )
tiy Buom (w00 [ 0 (= [ i) vz

1
= lim > Bugm ((U(Xt) — u(Xo))
tATn ~ s[,u,Fqs F.b
X/o exp</0 . (Xu)du)dM;‘ )

Now, let u(X;) — u(Xo) = M + N*) be the Fukushima decomposition (cf. Theorem
5.2.2 in [16]). Then,

) 1 (4] tATn sf,‘u"F¢ WF) _
gl_r)l’(l) zEudJm (Nt /0 exp —/0 3 (Xy)du | dM} =0

because N is of zero-energy (p.201 in [16]), and thus the right hand side of (3.6) is
equal to

(3.6)

tATh
hm Eu¢m< exp( AL F

-5

(3.7)

)d(M["],MW - L¢’F>s>-

Moreover, since

exp (— I %‘E(Xu)du) -1

S

<dM < o0, §<tATh,
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tATR s pu,F ~ 2
t_l2_Eu¢m (/ e—Al;,F (e_ fo E-T’_Q(Xu)d’u, _ 1) d(M[u],Ld),F)s)
0

N TN PN A A PN
Mol En ([ e ATy <L¢F>) B ([ tF(U,U)(Xs)ds>
M2Jug¥|2, / ot ( [ e dy)) Ids / Ipo (D2 w)) s

M fugd2, / s [ | PN dm(a) / Ips (T(w, w)) ads

— 0 as t— 0.

IN

IN

IA

IN

We get

tATH s pu,F ~
ity B ([ exp (-7 = [ (i) aqar 2o, )
t—0 0 0 d)

tATH _
= lim- Eu¢m (/ exp (—A%TF) d(M[“],L‘/”F)s) ,
0

t—0 t

and also similarly,

tAT, s pu,F
tiy 1B ([ enp (—ant = [T ECE G au) a3, )
0 0

tATh
= lim - Eu¢m (/ exp (_A;SA,F) d(M[“],M[¢]>s) .
0

t—0 t

Therefore, (3.7) is equal to
li 1 B tATR AP’F) (d (M[u] M[¢]) -d (M[u] L¢,F‘> )
tl—I+I(1) E ugpm o exp (— s y s , s .

Now, since lim;—,0 Plujgm (t > Tn) =0,

2
1 t " _
t_2E|u|¢»m </(; eXP(—A‘sL’F)d <M[ ],L¢1F>3§t > T’n)

2
1 t . _
t—2P|u|¢,m(t > Tn)E|u|¢m ((/0 eXp(—Ag:F)d (M[ ],L¢,F)s> )

glaPluwm(t > rn)llu¢||§oEm( /0 tF(u, u)(Xs)ds)Em( /0 texp(—2A‘;'F)d (qu,ﬁ)s)

IN

IA
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1 ¢ _
< @ Puon(t 2 mlud [ 15227 ([ PN dp)lds

x / s (D, ) l1ds

— 0 as t—0,

and also

tATR
iy 3 Buom ([ exp (~A2F) 419, M) 5> ) =0,
0

t—0 t

Therefore, we conclude that

|
Jim 2 (1)

= lim 1Em,,m ( /0 t exp(—A*»F)D(u, ¢)(Xs)ds>

t—0 ¢t

i 3B [ expl- 8 [ 60DV (X))

t—0 ¢t

= hm l(’U,¢, At pf:’F(F(Uy ¢))d5)m

t—0 t
~tim 7 wo, [ 27([ 6WPC NG, d)ds)

= (wp,T(8))m — (ud, /X SW)TF(, )N (- dy))m

= [ ur(u g)am - / / u(@)p(2)b(y)aF (z, y)N (z, dy)m(dz),
X X xX\d

where 4(z,y) = u(y) — u(z). On the other hand, lim;_,o %(I)t = £(u, ug?). Hence,

L1
th_r)r(l) z(u — E.(NPu(X1);t < ), ) g2m

1

_ 1 2,2 _
= E/Xl‘(u,u¢>2)dm+2/xu ¢“kdm /Xuqﬁl"(u,qﬁ)dm

+//X><X\d u(z)d(z)d(y)aF (z,y)N(z, dy)m(dz)

1
= §/XFC(u,u)¢2dm

alr) — @ 24(p e FEY N (g m(dzx),
+ / /X o )~ T (@0 N(z, dy)m(dz)
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and consequently, v € F#", which implies that 7" N L®(X;m) C F® by virtue of
Lemma 3.3. Noting that

E%(uu) < |1lI5E(uu)  we FPNLP(X;m).
Since U, (F™ N L>®(X;m)) is dense in F, we arrive at the lemma. O

Proposition 3.2. For ¢ € D3 (L*F), the identity function 1 belongs to F* and
E%(1,1) =0.

Proof.  This proposition follows from Proposition 3.1 with the same argument as
in Lemma 6.3.3 in [16]. O

Lemma 3.4 ([14],[19],[22]). Let (£,F) be the Dirichlet form associated with an
m-symmetric right process (Q, Xy, P;) on X. Suppose that

leF and £(1,1)=0.

Then, the following statements are equivalent each other;

@ (&,F) is irreducible.

@) If E(u,u) =0, then u is constant m-a.e.

(iii) If Tiu = u m-a.e. for all t > 0O, then u is constant m-a.e.

(iv) (R, Py, F°,0,) is ergodic, (i.e., if A € F° is Os-invariant, (6;) "' (A) = A, then
P,(A)=0forallxz € X or P,(A)=1forallz € X. Here F* = o{X; : 0 < t < o0}
and 0, is the shift operater on ().

Theorem 3.1. The transformed process M? is ergodic in the sense of Lemma 3.4.

Proof.  On account of the positivity of N¢ up to the life time ¢, (€%, F?) is
irreducible. Hence, it follows from Lemma 3.4 and Proposition 3.2 that szm(A) =0

or Pg’zm(ﬂ \ A) = 0. Moreover, by assumption (II[), M? also admits a transition
density. Hence P#(A) =0 or 1. O

Assume that p and F' are positive. Then by combining Theorem 3.2 in [31] for
the multiplicative functional exp —Af’F) with Theorem 6.3.1 in [16], we can imme-
diately check that Theorem 3.1 is also derived without the assumption ().

4. Lower and Upper Estimations

In this section, we now describe the asymptotic behaviour of E; (exp (—Aé"F ))
by applying the results of previous sections. We first give the lower estimate of its large
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deviation principle governed by the perturbed Dirichlet form £4F, and next consider
the upper estimate for the symmetric Lévy process with its exponent (4.1) below.

The lower estimate

Let M;(X) be the set of probability measures on X equipped with the weak
topology. Define the function I¢,.,» on M;(X) by

00 otherwise.

EF(VEVT) ifv=fom, VFeFnr
Igu.,F (V) =
For w € Q and 0 < t < ¢{(w), also define the occupation distribution

Li(w)(4) = 3 / xa(Xu(@))ds, A€ BX).

Theorem 4.1.  Fix a Borel function F of bounded below on X x X \ d. Suppose
that F € L?(X xX; Nm) and A»F € .Aa .Aa Then for any open set G C M;(X),

NP | wF\ .
htr_n_)&lleogEz (exp (—At ) ;s Ly e Gt < C) > —'}IGIE;IE;‘,F(V) forall z € X.

Proof. Using Theorem 3.1, we have the theorem with exactly the same argument
as in [11],[27]. Take ¢ = RAFf € D2(L4F) and ¢*m € G. For the multiplicative
functional N¢ defined by (3.2) and = € X, we have

E, (exp (—A“’F) s Ly e Gt < C)

= <( - exp Af’F) i Ly € G)

> exp (t( LM F pdm —5)) E? ig‘:; : S(t,e))

exp (t ( ¢L#»F¢dm - e)) T (1- P22\ S(t,¢)),

Y

where

S(t,e) =
{w €n; )/ L8 ) Lu(w, dz) -/ ¢£"’F¢dm’ < 5} N{we Q; L(w)e G}.
x ¢ X
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t puF
Q = {wEQ; tlgg-}/o E’; ¢(Xs(w))ds=/x¢cuf¢dm},
Qo

{w € Q; Ly(w) converges to ¢*>m as t — co}.

Now, on account of the shift invariance of Q; (z = 1,2) due to Theorem 3.1, we know
P2(Q;) = 1, ¢*>m-a.e. Hence,

P?(Q\ S(t,e)) — 0 as t—oo forVz e X.

Consequently, we have
NP |
lltl’ll’élolf%— log E,, (exp (—Af’F) s Ly e Gt < g) > /X SLPF pdm —¢.

Note that the set {¢ € D3 (L*F); ||g|l2 = 1} is dense in {¢p € F»F; ¢ > 0,||¢||2 =
1} with respect to E4F (ap > B(p, F')) which completes the proof. O

We can not treat the upper estimate of E (exp (—A*T')) with large deviation
theory without additional conditions. By the same argument of Proposition 4.2 in [27],
we have the followings.

REMARK 4.1. Let us assume the hypotheses in Theorem 4.1 are satisfied. In
addition, let assume that the symmetric Markov process M as a base process is conser-
vative and the transition probability p; of M satisfies the strong Feller property. Then
for any compact subset K of M;(X),

limsupllog E, (exp (—Af’F) s Ly € K) < - 1é1}f( Igwr(v) forall z € X.

t—oo t

Moreover, if the base process explodes so fast in the sense that R 1 belongs to
Coo(X), it can be extended for any closed subset of Mq(X).

We shall consider the upper estimate of large deviation principle without above two
conditions. To do this, we apply the fact that the LP-spectral radius of the Feynman-
Kac semigroup of kernels is p-independent under the symmetric Lévy process whose
Lévy exponent is the so-called a-relativistic Hamiltonian (4.1) below.
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The upper estimate
Symmetric convolution semigroups {14, > 0} of infinitely divisible probability

measures on R? define a Markovian semigroup p; by

pi@ = [ ferumin  f bR,

which is symmetric with respect to the Lebesgue measure, and the Lévy-Khinchin for-
mula under the above conditions for v; leads as follows ;

/ €@y, (dy) = exp(—t(z))
Rd

v(e) = 5(S2.3)+ [ (1= costa) (),

where S is a non-negative definite d x d symmetric matrix and J is a symmetric mea-
sure on R?\ {0} such that Jra\ oy min(L, |z[?)J (dz) < co. Here, the function 4 is
called the Lévy exponent and the measure J is called the Lévy measure. The Dirichlet
form (£, F) associated with the semigroup p; is written as

1 1 2 ) de
E(u,u) = i/Rd(SVU’ Vu)(z)dx + 5//}2de¢\(1(”($) —u(y))*J(dy — z) dz,

D(E) = {u e L*(R%) ; E(u,u) < 00} .

The Hunt process associated with (£, F) is called the Lévy process and denote it by
M = (Q, X;, P,). In this situation, we add the following assumption ;

) / e @) dr < 0o, vt > 0.
Rd

Then, under this assumption, the function

pe(z) = (TJrF /Rd eV e W dy(e Con(RY)), z € R¢

is the density of the measure v, for each ¢ > 0 and is an analytic function of ¢ on
(0,00) ([7]). Furthermore, the transition density of M, p;(z — y) satisfies all assump-
tions in section 2. Indeed, the irreducibility of M is derived by noting the periodicity
of 1(x) on R%. Therefore, we can apply the lower estimate of large deviation principle
for the Lévy process M.
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DEFINITION 4.1. A Lévy measure J is said to be exponentially localized if there
exists a constant 6 > 0 such that

/ e’ J(dz) < oo.
|z|>1

Lemma 4.1 ([7]). Let the Lévy measure J of M be exponentially localized. Then
there exist positive constants cy,co such that

Eg (e‘ss“p"ssst |X“|) < ¢t

We now concentrate on the symmetric Lévy process M = (Q, X, P;) on R* with
the so-called a-relativistic Hamiltonian as Lévy exponent

(4.1) (p®> +m?) % —m?, m>0,0<a<2

which was recently investigated by Carmona, Masters, and Simon ([7]). Note that the
Lévy measure corresponding to the Lévy exponent (4.1) is exponentially localized be-
cause (4.1) has an analytic continuation to some strip (see Proposition II.1 in [7]). With

the Lévy process M as the base process, we then have the following upper estimate.

Theorem 4.2. For any A*F € A8 — 434 44 7 € RY,

limsupllogEJE (exp (—Aé"p)) < — inf EMF(u,u).

t—soo t ueFHF
flullz=1
Proof. Let
A=—-lo “ “’FH = inf EMF(u,u).
i 2,2 ueFm F ( ’ )
llullz=1

We also put

b (o 1)
= E,; (exp (—Af’F) XB,(z)(Xt)) + E, (eXp (“Af’F) (1= xB,()) (Xt))
= I+ (I1)s,

where B,(z) is the ball centered at z with radius 7. Then, from Lemma 4.1,

(II); < E, (exp (—2A£"F) (1= xB,()) (Xt))1/2 E; (1 = XB.(2)) (X))
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IN

1/2 1/2
2u,2F
e e 10 1)
00,00 0<s<t

IA

Cexp (,B(Qu, 2F)t—gr + %Qt) .

On the other hand,

(D)

P X B2 (@)

,F ,F
Py P X B, (2) ()

IN

o
”pl 2,00 pt—].XBr(z) 2

IN

7], e sl

S Clrd/2e—/\t,

where O’ = e* “p’f’F”2 . Now, take k > 0 so that —3(2u,2F) + $k — % > X and
put 7 = kt. We then have

B (o (-427)) < K1+ e
for some positive constant K. The proof is complete. J

Consequently, when the underlying process is the symmetric Lévy process with its
Lévy exponent (4.1), Theorem 4.1 and Theorem 4.2 lead us to the following theorem.

Theorem 4.3.  Fix a Borel function F of bounded below on R? x R\ d. Suppose
that F € L*(R* x R% Nm) and AMF € A3 _ 42d Tpep

1
N AWF _ o, F d
(4.2) tl_l)moo . log E,, (exp( Al )) = uel;lf’F EHMT(u,u)  for Yz € R
[lull2=1

5. Applications

Let M’ = (Q, X;, P;) be a symmetric stable process of index o, (1 < a < 2) on
R? with its exponent |z|®. It is known in [24] that the definition of Kato class measure
i, (2.1) is equivalent to the classical definition of the Kato class

1
limsup/ ———|ul(dy) =0, pl=pt+u”
60 e e Jjg—y|<s lﬂv—yl"""'I ) ol
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under M'. So, we see from [6] that the surface measure o of the sphere on R® is in
the (extended) Kato class. We shall first apply the formula (4.2) to the surface measure
o and give the asymptotics of local time for 0. The problem is arised for the fact that
at least, we cannot say anything about the formula (4.2) under M’ because its Lévy
measure is not exponentially localized. To show that the surface measure o belongs
to the Kato class corresponding to the a-relativistic Hamiltonian operator, we need to
apply the following fact essentially due to [7],[32] ; the Kato class measure is same
whether we deal with the pseudo-differential operator | — A|*/?(1 < a < 2) or the
a-relativistic Hamiltonian operator (—A 4+ m?)®/2 — m®(m > 0,1 < a < 2).

Let us denote g, by the Green’s density of M’. A measurable function f on R%
is said to be in I'(L®) if ||flli(ze) = Ykeza SUPzec(k) |f(2)] < 0o, where C(k)
denotes the cube centered at k € Z¢ with sides of length 1. Note that the transition
density p;(-) of M’ belongs to I} (L) and for each fixed § > 0,

(5.1) sup ||x(jy1>8}Pet]ls gy < 00

([29]). Note that most of the transition densities of the Lévy processes we are interested
indeed, satisfy the above properties ([7]).

Theorem 5.1. Let u be a smooth measure such that sup,cga p(z + C(0)) <
0o. Suppose that the assumption (V) and the condition (5.1) are satisfied by the Lévy
process. If

lim sup / ga(z — y)u(dy) =0,
6—>0z€Rd |lz—y|<é

then u belongs to the (extended) Kato class.

Proof. For fixed § > 0, arbitrary ¢ > 0 and sufficiently large enough 3 > 0, we
have from (5.1)

sup / 9s(z — y)p(dy)
zER J|z—y|>4

o0
= sup/ x{|u|25}p3up(x—du)/ e Peds
z€R? JR4 0

[ee)
= s Z/ X{Iulza}Psuu(w—dU)/ e Peds
z€R4 kezd k) 0

IN

sup u(:L'+C(O))sup||x{|u]25}psu||p(Lm)/ e Peds
zER4 s>0 0
< &

1
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On the other hand, for such 3 > 0,

E
sup / 95(z — y)u(dy) < sup / ga(@ — y)u(dy) (< 5).
z€RL J |z—y|<b z€RY J|z—y|<§ 4

Hence, we can choose 3 > 0 large enough so that

oo
sup E, (AY) < sup E, (eﬂt/ e_ﬂsdA’s‘)
zER4 z€R4 0
= sup e’ Ryu(z)
z€R?

€
= sup eﬁt/ g8(z — y)u(dy) < eﬂt§
zER? Rd

A

Now, to reach the conclusion, we only choose sufficiently small ¢ so that e®* < 2. The
proof is complete. il

In fact, the above theorem is held equivalently because for sufficiently large enough
B > 0 and some constant ¢ > 0,

€

[ 98(@ = vula) < Ipellnzey sup p(xw(o»{ / e-‘“ds}<—
R4 rER4 0

C

and there exists constant § > 0 such that if |z — y| < & then go(z — y) < cgg(z —y)
(Lemma IIL.3 in [7]).

EXAMPLE 5.1. Note that the Theorem 5.1 implies that the definition of the Kato
class measure depends only on the behaviour of the exponent function v (u) when v —
oo because the Green’s density g, () is equal to

1 1 1 1 .
—ZU-T — —'Lu!}d .
@) /R ot w=Krt gy /.M atg@ o

So the Kato class is the same whether we deal with ¥(u) = |u|*, (1 < a < 2) or
Y(u) = (u24+m2)*2 —m®,(m > 0, 1 < a < 2). This means that the surface measure
u = o(|z| = R) of the sphere on R3 also belongs to the (extended) Kato class when
the base process is the relativistic Hamiltonian of index «, (1 < a < 2). Let us denote
by ¢r(t) the local time corresponding to u. We have

tl_iglo%logEx(exp( —Lg(t))) = — inf (/ Y(z Izd:v+/|z|=Rﬂ(fc)2du(w)>

uEFH
lull2=1
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where F# = {u € F : 4 € L*(R3;|u|)}, ¥(z) = (2% + m?)¥2 —m*(m > 0, 1 <
a < 2), and ° means its Fourier transformation. O

EXAMPLE 5.2. Let Br(= {z;|z| < R}) be the open ball in R® and o the
surface measure of the sphere B, (r < R). Let X; be an absorbing symmetric stable
process on B with index a, (1 < a < 2). The surface measure o is in the (extended)
Kato class under the process X;, and is the killing measure on Bg. Let us denote
by £,(t) the positive continuous additive functional corresponding to o. Since the ball
Bg, is regular, lim, 55, E; (™) = 1. That is, R¥1 € C,(Br) and which implies
Rf"rl € C(BRr)- In this case, we can derive the formula (4.2) by using the full large
deviation principle. Therefore,

1 g ,
Jim = log E” (exp(—£:(t)) 5 t < ()

= — in z)|i(z)|*dx i(z)%do(z
= — nf (/Rsz/)()l()ld +/M=T ()d()),

flullz=1
where F° = {u € F; @ € L?(R3 o))}, ¥(z) = |z|*, (1 < a < 2). O

Now, in the rest of this section, we shall consider the formula (4.2) with symmetric
Markov chains. Let I be a countable set equipped with the discrete topology. Let
Q = (gi;) be an I x I matrix such that

Gi; >0 (i#37), Y gk<—gu<oo, Viel
k#i

and m;q;; = m;qj; for some strictly positive function m; on I. Let £ be the Dirichlet
form on L%(I;m) defined by

Ewr) = 53 amiul) - ud)el) - v(0)
i#]

+Z —qi — Y ¢ij | mau(@)o(s).

J#

(5.2)

Denote by F” the collection of functions u on I such that £(u,u) < oco. Let F, be
the set of functions u in F" for which there exists u,(n = 1,2, - --) with finite support
such that

up > u and  sup&(un, u,) < 0.
n
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Then (€, F) becomes a symmetric regular Dirichlet form on L?(I;m) and the Dirichlet
space F is identified with the space F. N L?(I;m) (cf. Theorem 17.2 in [22]). The
space F. is said to be the extended Dirichlet space of F (p.36 in [16]). Denote by
M = (P;, X;) the Hunt process associated with (£, F). Then M is nothing but the
minimal Q-process constructed by W. Feller.

EXAMPLE 5.3. Let us consider a symmetric Markov chain M = (F;, X;) on the
finite state space I = {1,2,---,n}. In this case, since the state space I is compact and
the Dirichlet form on L?(I;m) associated with M is

=3 Z%sz — u(2))(v(j) = v(3)),

i#j

we can establish the following full large deviation principle by Remark 4.1;

!
Jim ~log E; | exp —SZ;F(XS_,XS)

= ~ mf ( unmz ])—U(’l))

faama N i#
(5.3) + > giymiu(i)u(j)(1 - e_F(i’j))>
i#]

- — mf ( unml »J) (J)—u(i))2

i#]

IIUI|2

+Z“ Zqz]m,(l —e F(w)))

where FF = {u € Fyu € L*(I;|p))},p(A) = Sicn - Sies @imi (1 — e F0D) for
all A € B(I). Now, let us take F(,j) = xB(%,7), where B = {(1,2),(2,3),- -, (k, k+
1), (k + 1,k), (k,k — 1),---,(2,1)} is the symmetric region on I x I\ d. Then, the
formula (5.3) gives to us the asymptotics of the number of jumps for the symmetric
Markov chain M on B. O

To establish the full large deviation principle in the case of infinite state space, we
may need the following conditions on the Lévy kernel .
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Theorem 5.2. For a positive Borel function F on X x X \ d, we put

(5.4) V(z) = / (1 -9 N(z, dy).
X
Suppose that V(z) — oo as |z| = oo and

(5.5) lim P,(cxg <t)=0

T—>00

for any compact subset K C X, ok is the first hitting time of K. Then the full large
deviation principle is established.

Proof. Let F = (e~F — 1). For an increasing sequence of compact sets {K,}
on X x X\ d such that U32, K, = X x X \d, we put F,, = Fxg,, Fp, = (e72F - 1)

an(d B(") 2os<t Fo(Xs_,X,). Then there exists the dual predictable projection of
B™,

(B™Y //NXs,dyNXs,y)ds

Since B{™ — (Bt(n)) is a P,-martingale for every z € X, Doléans-Dade exponential
SJormula ([10]) implies that

Z, = eBgn)_(ng)p H(l+Fn(Xs-,Xs))8_F"(X‘“’”’XS)
s<t
— (B [0+ Fu(x.-, X,))
s<t

_zz <o Fa(Xom Xo)— (B™)yp

is at least supermartingale multiplicative functional. From Schwarz inequality, we get

E <€_ Zs<c Fo (X, ’X"))
= <

_ &, (e— > e Fn(Xs-,Xs)—(1/2)(Bﬁ"))"e(lm)(Bg"))P)

— —_(B(my» 1/2 (n)yp 1/2
(Ez (6 225515 Fpn(Xs-,Xs) (Bt ) )) (I;':B (e(Bt ) ))
, 1/2
£ (exp (- [ [ NOot) (1m0 a))
0 JX

IA

IA
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On account of positivity of F, if n tends to oo, we have
Ez (e— Z,StF(X8—7X5)> < Ex (6_ fot V(Xs)ds) .

By assumption for V(z) and (5.5),
o F(X,_,X
RF1(x) =/ e ™E, (e_ Yoee FXom, ’)) dt —0
0

which implies that the full large deviation principle is derived by Remark 4.1. H

EXAMPLE 5.4. The typical model of Markov chain which satisfies the hypothe-
ses in Theorem 5.2 is a population model with birth rate -\, = n\, (A = ) and
death rate y, = nu, where A, u are certain rates which satisfy A > u. Indeed, since
liminf, 0 mp > 0,m, =n"1(A\/u)" and E,(exp(—ok)) € L?(I;m), we get

i mpEn(exp(—0k))? < 00

n=1

and which implies (5.5). Moreover, since N(i,j) of (5.4) is equals to nA in this case,
the same problem in Example 5.3 can be also considered on an infinte state space with
the finite life time. ]
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