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Our main aim of the present note is to provide several sufficient conditions for a
colocal module L over a left or right perfect ring A to be injective. Also, by developing
the previous works [8] and [5], we will extend recent results of Baba [1, Theorems 1
and 2] to left perfect rings and provide simple proofs of them.

Throughout this note, rings are associative rings with identity and modules are
unitary modules. For a ring A we denote by Mod A (resp. Mod A°P) the category of
left (resp. right) A-modules, where A°P denotes the opposite ring of A. Sometimes,
we use the notation 4L (resp. L) to signify that the module L considered is a left
(resp. right) A-module. For a module L, we denote by soc(L) the socle, by rad(L) the
Jacobson radical, by E(L) an injective envelope and by ¢(L) the composition length
of L. For a subset X of a right module L4 and a subset M of A, we set Ix(M) =
{r € X|zM = 0} and rp(X) = {a € M|Xa = 0}. Also, for a subset X of
A and a subset M of a left module 4L we set Ix(M) = {a € X|aM = 0} and
rm(X) = {z € M|Xz = 0}. We abbreviate the ascending (resp. descending) chain
condition as the ACC (resp. DCC).

Recall that a module L is called colocal if it has simple essential socle. We call
a bimodule gUpg colocal if both gU and Ug are colocal. Let A be a semiperfect
ring with Jacobson radical J. Let L4 be a colocal module with H = End4(L 4) and
f € A a local idempotent with soc(L4) = fA/fJ. In case L4 has finite Loewy
length, we will show that L4 is injective if and only if gL fras is a colocal bimodule
and M = rus({ (M)) for every submodule M of Afras. Also, in case A is left
or right perfect and ¢(Af/raf(L)fay) < oo, we will show that the following are
equivalent: (1) Ly4 is injective; (2) yLfray is a colocal bimodule and r4¢(L) = 0;
and (3) gL fsay is a colocal bimodule and M = r4¢(l.(M)) for every submodule M
of Afsay.

Recall that a module L 4 is called M-injective if for any submodule N of M4
every § : Ny — L4 can be extended to some ¢ : M4 — L,. Dually, a module
L4 is called M-projective if for any factor module N of My every 6 : Ly — N4
can be lifted to some ¢ : Ly — My4. In case L is L-injective (resp. L-projective),
L is called quasi-injective (resp. quasi-projective). Let A be a left perfect ring with
Jacobson radical J and e, f € A local idempotents. Assume ¢(Af/ras(eA)fas) < 0.
Then we will show that eA 4 is quasi-injective with soc(eA4) = fA/fJ if and only if
AE = E(4Ae/Je) is quasi-projective with 4E/JE = Af/Jf (cf. [1, Theorem 1]).
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We call a pair (eA, Af) of a right ideal eA and a left ideal Af in A a colocal pair
if e, f € A are local idempotents and .4.eAffas is a colocal bimodule. We will see
that £(caceA/lea(Af)) = L(Af/ras(eA)say) for every colocal pair (eA, Af) in A. In
case l(cac€A/lea(Af)) = L(Af/ras(eA)fas) < oo, a colocal pair (eA, Af) in A is
called finite. Let A be a left perfect ring with Jacobson radical J and e, f1, fo, -+, fn €
A local idempotents. Put £ = E(4Ae/Je). Assume (eA, Af;) is a finite colocal pair
in A for all 1 < ¢ < n. Then we will show that soc(eds) = @, f;A/f:J if and
only if s4E/JE =@, Afi/J fi (cf. [1, Theorem 2]).

Following Harada [4], we call a module L4 M -simple-injective if for any sub-
module N of M4 every 8 : Ny — L4 with Im @ simple can be extended to some
¢: My — Ly. In case L is L-simple-injective, L is called simple-quasi-injective. We
will show that a left perfect ring A is left artinian if A satisfies the ascending chain
condition on annihilator right ideals and eA 4 is simple-quasi-injective for every local
idempotent e € A.

1. Preliminaries

In this section, we collect several basic results which we need in later sections.
We refer to Bass [2] for perfect rings.

Lemma 1.1. Let A be a left or right perfect ring and f € A an idempotent.
Assume L(Afsas) < oo. Then 4 Af has finite Loewy length.

Proof. Denote by J the Jacobson radical of A. Consider first the case of A being
left perfect. Since the descending chain Af D Jf O --- terminates, there exists n > 1
such that J*f = J*+1f Thus J*f = 0. Assume next that A is right perfect. Then,
since the ascending chain soc(4 Af) C soc?(4Af) C --- terminates, there exists n > 1
such that soc™(4Af) = Af. Thus J*f = J™(soc™(4Af)) = 0. O

Lemma 1.2. Let e € A be an idempotent. Then for a module L € Mod A with
ri(eA) = 0 the following hold.
(1) If AL is simple, so is ¢pc€eL.
2) eAeeE(AL) = E(eAeeL)-
(3) The canonical homomorphism sE(aL) — 4 Homeae(eA,eE(4L)),z — (a —
azx), is an isomorphism.

Proof. (1) See e.g. [5, Lemma 1.1].
(2) See e.g. [5, Lemmas 1.2 and 1.3].
(3) See e.g. [5, Lemma 1.3]. O

Recall that a module L4 is called M-injective if for any submodule N of M4
every 0 : Ny — L4 can be extended to some ¢ : M4 — L4. Dually, a module L4
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is called M-projective if for any factor module N of M4 every 0 : Ly — N4 can be
lifted to some ¢ : L4 — My. In case L is L-injective (resp. L-projective), L is called
quasi-injective (resp. quasi-projective).

Lemma 1.3 ([6, Theorem 1.1]). Let L € Mod A°P and put H = Ends(E(L4)).
Then L, is quasi-injective if and only if HL = L. In particular, if Ly is quasi-
injective, then we have a surjective ring homomorphism pr, : Enda(E(L4)) — Enda
(LA), h L d hlL-

The equivalence (1) < (2) of the next lemma is due to Wu and Jans [11, Proposi-
tions 2.1, 2.2 and 2.4].

Lemma 1.4 ([11]). Let A be a left perfect ring. Then for a module L € Mod A
the following are equivalent.
(1) AL is indecomposable quasi-projective.
(2) There exist a local idempotent f € A and a two-sided ideal I of A such that
AL = Af/If.
(3) There exists a local idempotent f € A such that 4L = Af/l4(L)f.

Proof. (1) = (2). By [11, Proposition 2.4] there exists an epimorphism 7 :
AAf — aL with f € A alocal idempotent. Put K = Ker . Then by [11, Proposition
22l KfAf =K and 4L = Af/If with I = KfA a two-sided ideal of A.

(2) = (1). Since 4, Af/I1f = 4,1(A/I)f is projective, 4Af/If is quasi

-projective.
@) = (3). Since If = L4(Af/I])f, aL = Af/la(L)S.
(3) = (2). Obvious. O

Recall that an object L of an abelian category .4 in which arbitrary direct products
exist is called linearly compact if for any inverse system of epimorphisms {7y : L —
Ly}xen in A the induced morphism limmy : L — lim Ly is epic. In case A = Mod A,
there is an equivalent definition of linear compactness. Recall that, for a family of
submodules {L)}rca in a module 4L, a system of congruences {x = x) mod Ly} xea
is said to be finitely solvable if for any nonempty finite subset F' of A there exists
g € L such that xp = x)mod Ly for all A € F', and to be solvable if there exists
zo € L such that xg = z) mod L), for all A\ € A.

For the benefit of the reader, we include a proof of the following.

Proposition 1.5. For a module L € Mod A the following are equivalent.
(1) 4L is linearly compact.
(2) For any family of submodules {L)}xcA in oL, every finitely solvable system of
congruences {x = z)mod Ly} e is solvable.
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Proof. (1) = (2). Let {Lx}xca be a family of submodules in L and {x =
zymod Ly }ca a finitely solvable system of congruences. Denote by ¢y : L — L/Ly
the canonical epimorphism for each A € A and set ¢ : L — [[ycp L/Lx, T — (¢a(2)).
Put & = (¢x(xx)) € [[ncp L/Lx. We claim that & € Im ¢. Let F be the directed set
of nonempty finite subsets of A. For each F' € F, denote by pr : [[ycp L/Lx —
[I,cr L/Lx the projection and put £r = pr(&) € [[\cp L/Lx and Xp = (pr o
¢)"1(AZF). Note that for any F € F, since {z = 2, mod Ly} ¢y is finitely solvable,
pro¢ : L — H)\GF L/Ly induces an epimorphism ¢r : Xp — AZp. For each
F € F, take a push-out of ¢ : Xp — AZp along with the inclusion Xp — L:

Xp — L

or | |7

A.’i‘p — YF.

Then we get an inverse system of epimorphisms {7r : L — Yr}pecr. Also, since lim
is left exact, we get a pull-back square

limXp — L
Am
!imeFl Jrl*ir_nﬂp

liLnA:i‘F —_— }iLan.
Since L is linearly compact, lim 7 is epic, so is limpp. Note that lim Xp —
Nrer XF. Also, limpp : [[yep L/Lx — lim[]ycp L/Ly is an isomorphism and
hence induces an isomorphism Az = lim Azp. It follows that ¢((\per Xr) = AZ.
Thus £ € Im ¢.

(2) = (1). Let {mx» : L — Ly} ea be an inverse system of epimorphisms in
Mod A. We may consider lim L as a submodule of [[ycp La. Let (zx) € lim Ly
and for each A € A choose y) € L with m)(yy) = z. Then, since for any nonempty
finite subset F' of A there exists A\g € A such that Ay > X for all A € F, the system
of congruences {z = y) mod Ker my}xea is finitely solvable and thus solvable. Hence
liﬂlﬂ')\ : L — lim L) is an epimorphism. |

Let gUg be a bimodule and K € Mod R°P. For a pair of a subset X of (Kg)*
and a subset M of Kg, we set rp(X) = {a € M|h(a) = Oforall h € X} and
Ix(M)={h € X|h(a) =0 for all a € M}, where ( )* = Homg(—, gURg).

The next lemma is due essentially to [7, Lemma 4].

Lemma 1.6. Let gUg be a bimodule and K € Mod R°P a module such that Ug
is K-injective. Assume X = lg«(rg(X)) for every submodule X of (Kg)*. Then
(KR)* is linearly compact.
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Proof. Let {my : K* — X)}xca be an inverse system of epimorphisms in
Mod H. For A € A, put Yy = Kermy and My = rx(Yy), and let j) : M) — K
be the inclusion. Then for each A € A, since Kerj} = lg-(M)) = Y,, and since
Jx : K* — M3 is epic, there exists an isomorphism ¢, : My — X with Ty = ¢ 073}.
Since lim jx is monic, lim j% = (limj))* is epic. Also, lim¢, is an isomorphism.
Thus lim 7y = (lim ¢5) o (lim 5}) is epic. O

Corollary 1.7. Let A be a left or right perfect ring. Assume A, is injective and
I =14(ra(I)) for every left ideal I of A. Then A is quasi-Frobenius.

Proof. It follows by Lemma 1.6 that 4 A is linearly compact. Thus by [10, Propo-
sitions 2.9 and 2.12] A is left noetherian. O]

2. Bilinear maps into colocal bimodules

In this section, as further preliminaries, we modify results of [8, Section 1]. For a
left H-module gL, a right R-module K and an H-R-bimodule yUg, we call a map
¢ : gL x K — gUgr H-R-bilinear if Kr — Ug, a — ¢(z,a), is R-linear for every
z€ L and gL — g Homg(Kg, gUr), z — (a — ¢(z,a)), is H-linear.

Throughout this section, ¢ : gL X Kr — gUg is a fixed H-R -bilinear map. For
a pair of a subset X of L and a subset M of K we set rp(X) = {a € M|p(z,a) =
Oforall z € X} and Ix(M) = {z € X|p(z,a) = 0 for all a € M}. We denote by
Ai(L, K) the lattice of submodules X of gL with X =l (rg(X)) and by A.(L, K)
the lattice of submodules M of Kp with M = ri (I, (M)).

REMARKS (see e.g. [3, Part I] for details). (1) Let X be a subset of L. Then
o(X,rg(X)) = 0 implies X C I(rx(X)) and thus rx(IL(rx(X))) C rk(X).
Also, p(Ip(rk (X)), k(X)) = 0 implies rx(X) C rx(IL(rx(X))). Thus rg(X) =
rK(lL(rK(X))) and ’I‘K(X) S .AT(L, K)

(2) Let X be a subset of L. For any Y € A(L,K) with X C Y, I (rx(X)) C
lp(rx(Y)) =Y. Thus Ip(rk (X)) is the smallest module in A;(L, K) containing X.

(3) Let {Xx}rea be a family of submodules of gL. For any p € A, since
Maea X2 € Xu C 3nea Xo Tk (Xnea X0) C rr(Xyu) C rr(Nyea X2)- Thus
TK(Z,\GA X)\) C n)\eA T‘K(X)‘) and ZAGA ’I‘K(X)\) C TK(m)\GA X)\). Let
a € Myea Tk (X2). Since p(Xy,a) = 0 for all A € A, and since gL — pU, z —
o(z,a), is H-linear, o(D_ycp Xx,a) =0and a € rg (D yecp Xa). Thus 7 (3 25cp Xn)

= [Mrea ' (Xn).
(4) Let {X)}xea be a family of submodules of yL with the Xy € A(L, K).
Then by (3) n)\EA X)\ = n)\eA lL(’I‘K(XA)) = lL(ZAeA TK(X)\)). Thus

rk(Maea X2) = Te(L(Xrea 7 (X1))) and by (2) rx(Nyep X2) is the smallest
module in A, (L,K) containing 3}, \7k(Xx), so that 7g((Nyep Xr) =
> aea Tk (X)) whenever 3, ) 7k (X)) € Ar(L, K).
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(5) We have an anti-isomorphism of lattices A;(L, K) — A,(L, K), X — rg(X).
In particular, A;(L, K) satisfies the ACC (resp. DCC) if and only if A, (L, K) satisfies
the DCC (resp. ACC).

Recall that a module is called colocal if it has simple essential socle. We call a
bimodule yUg colocal if both yU and Uy are colocal modules.

Lemma 2.1. Let gUg be a colocal bimodule. Then soc(gU) = soc(UR).

Proof. Since soc(gU) is a subbimodule of gUg, soc(Ugr) C soc(gU). Similarly,
soc(gU) C soc(Ug). Thus soc(gU) = soc(Ug). OJ

Throughout the rest of this section, g Ug is assumed to be a colocal bimodule with
uSg =soc(gU) = soc(Ur), and ( )* denotes both the U-dual functors.

Lemma 2.2. The following hold.
(1) The canonical ring homomorphisms H — Endgr(Sgr) and R — Endy(xS)°P
are surjective.

(2) (gS)* =2 Sk and (Sg)* = S.

Proof. (1) Let 0 # u € S. Then S = Hu = uR. For any h € Endgr(Sg),
h(u) = au for some a € H and h(ub) = h(u)b = (au)b = a(ud) for all b € R.
Thus the canonical ring homomorphism H — Endg(Sg) is surjective. Similarly, the
canonical ring homomorphism R — Endg(g.S)°P is surjective.

(2) Let m : R — Sg be an epimorphism. We have a monomorphism y : (Sg)* —
g U such that pu(h) = (7*(h))(1) for h € (Sr)*. Put u = w(1). Then p(h) = h(u) € S
for all h € (Sg)* and Im pu = S, so that (Sg)* = yS. Similarly, (g S)* = Sg. [

Lemma 2.3. Let N C M be submodules of Kr with N = rg(l(N)) and
M /Ng simple. Then the following hold.
(1) M/N 2 Sgand Il (N) /I, (M) = (M/N)* = gS.
(2 M =rg(lp(M)).

Proof. (1) Since M # N = rg(IL(N)), IL(M) C I(N) with [ (N)/l,(M) #
0. Let 5 : Ng — Mg be the inclusion. Then we have the following commutative
diagram with exact rows:

0 —— I (M) L M*

! [

0 —— I(N) L N*.
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Thus 0 # I (N)/l (M) embeds in Ker j* = (M/N)*. Hence (M/N)* # 0, so that
M/N = Sg and by Lemma 2.2(2) (M/N)* = gS.

(2) Since I, (M) C I (N) with [ (N)/lL(M) simple, one can apply the part (1)
to conclude that rx (I(M))/rk(IL(N)) is simple. Thus, since rx(IL(N)) = N C
M C rg(lp(M)) with both M/N and rg (I (M))/rk(l(N)) simple, it follows that
M = rg (L (M)). O

Lemma 2.4. Let M be a submodule of Kg with ric(L) C M and {(M/rk(L)R)
< 00. Then the following hold.
(1) Every composition factor of M [rk (L) g is isomorphic to Sg.
(2 M =rg(lL(M)).

Proof. Since rx(L) = rx(l1(rkx(L))), Lemma 2.3 enables us to make use of
induction on (M /rk(L)g). O

Lemma 2.5 ([8, Lemma 1.3]). ¢(gL/lL(K))=¥¢(K/rk(L)R).

Proof. By symmetry we may assume £(gL/l;(K)) < oco. Let I (K) = Lo C
Ly C---C L, =L be a chain of submodules of gL with the L;1/L; simple. Then
by Lemma 2.3 we get a chain of submodules rg (L) = rg(Ly,) C --- C rg(L1) C
rk(Lo) = K in K with the 7 (L;)/rx(L;41) simple. OJ

Lemma 2.6. Assume R is left perfect. Then the following are equivalent.
@)) f(K/T‘K(L)R) < 00.
(2) A-(L, K) satisfies both the ACC and the DCC.
3) A.(L, K) satisfies the ACC.

Proof. (1) = (2) = (3). Obvious.

(3) = (1). It follows by Lemma 2.4 that there exists a maximal element K in the
set of submodules M of Kpr with rg(L) C M and ¢(M/rx(L)r) < oo. We claim
Ky = K. Otherwise, there exists a submodule M of Kr with Ko C M and M/K,
simple, a contradiction. ]

3. Simple-injective colocal modules

Throughout the rest of this note, A stands for a ring with Jacobson radical J.
For any pair of a right module L4 and a left ideal K of A, we have a canonical
bilinear map gL X Krp — wLKRg, (z,a) — za, where H = Ends(L4) and R =
End4(4K)°P, so that, in case gy LKFg is a colocal bimodule, we can apply results of
the preceding section.
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Lemma 3.1. Let L € Mod A°P be a colocal module and f € A a local idempo-
tent with soc(L4) = fA/fJ. Then the following hold.
(D) L (Af) =0.
Q) lL(If) =1L(I) for every right ideal I of A.
(3) Lfsay is colocal with soc(L fsas) = soc(La)f.

Proof. (1) For any 0 # x € L, since soc(L4) C A, 0 # soc(L4)f C zAf and
thus = ¢ I (Af).

(2) We have I (I) C I (If). For any x € I, (If), since zI Af = zIf = 0, by the
part (1) I C Il (Af) =0 and z € I(I). Thus I1(If) C I (I).

(B) Let 0 # = € soc(L4)f. For any 0 # y € Lf, since TA C yA, zfAf =
zAf CyAf =yfAf. Thus Lffay is colocal and soc(Lffas) = soc(La)f. O

Lemma 3.2. Let L € Mod A°? and f € A a local idempotent. Then the follow-
ing are equivalent. .
(1) L4 is colocal with soc(L ) = fA/fJ.
(2) Lffay is colocal and l,(Af) = 0.

Proof. (1) = (2). By (3) and (1) of Lemma 3.1.

(2) = (1). Since by Lemma 1.2(2) E(La) fras = E(Lfsaf) = E(fAf/fJfraf)
=~ E(fA/fJA)ffAf, by Lemma 1.2(3) E(LA) o HOIanf(Af,E(LA)f)A &
Homyas(Af,E(fA/fJa)f)a = E(fA/fJa). Thus L4 is colocal with soc(L )
fA/fJ.

Ol

Corollary 3.3. Let e, f € A be local idempotents. Then the following are equiv-
alent.
(1) eA/lea(Af)a is colocal with soc(eA/l.a(Af)a) = fA/fJ.
(2) eAfray is colocal.

Proof. Put L = eA/l.a(Af)a. Then I (Af) = 0 and, since l.4(Af)f = 0,
Lfsas = eAfsay. Thus Lemma 3.2 applies. O

Following Harada [4], we call a module L4 M-simple-injective if for any sub-
module N of My every 8 : Ny — L4 with Im 6 simple can be extended to some
¢: My — Ly. In case L is L-simple-injective, L is called simple-quasi-injective.

Lemma 3.4. Let L € Mod A°P be a colocal module and put H = End (L 4).
Let f € A be a local idempotent with soc(La) = fA/fJ. Then the following hold.
(1) If La is A-simple-injective, then M = rs4(1,(M)) for every submodule M of
Afras
(2) If uLfray is a colocal bimodule and M =1 45(1,(M)) for every submodule M
of Afray, then Ly is A-simple-injective.
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Proof. (1) Let M be a submodule of Affas and put N = r4¢(I(M)). We claim
M = N. Suppose otherwise. Note first that [;,(N) = [ (M). Since (NA/MA)f =
N/M # 0, there exist right ideals K, I of A such that MA C K C I C NA and
I/K = fA/fJ = soc(La). Then we have 0 : Iy — L with Im6 = soc(L4) and
Kerf = K. Let u: I4 — A be the inclusion. There exists ¢ : Ay — L, with
¢ou = 0. Then ¢(1)I = ¢(I) = 8(I) # 0 and $(1)K = ¢(K) = 6(K) = 0.
Thus ¢(1) € I1(K) and ¢(1) ¢ IL(I). Since IL(N) = IL(NA) C Iy(I) C I (K) C
IL(MA)=1,(M), Ip(K) # lp(I) implies I, (M) # I (N), a contradiction.

(2) Let I be a nonzero right ideal of A and p : Iy — A4 the inclusion. Let
0 : Iy — Ly with Im@ = soc(L4) and put K = Ker#. Since by Lemma 1.2(1)
If/Kfras = (I/K)fsays is simple, by Lemma 2.3(1) so is gl (Kf)/lL(If). Let
a € If with a ¢ Kf. Then, since I (Kf)a # 0 and I (If)a = 0, glp (K f)a is
simple. Thus by Lemmas 2.1 and 3.1(3) I (K f)a = soc(Lfsas) = soc(La)f, so that
0(a) = 6(af) = 6(a)f = za for some z € I (K f). Define ¢ : Ay — La by 1 — z.
Then, since by Lemma 3.1(2) € I(K f) = I (K), and since I = K + aA, we have
dpou=~0. U

Lemma 3.5. Let L € Mod A°P be a colocal module and put H = End(L4).
Let f € A be a local idempotent with soc(L4) = fA/fJ. Then the following hold.
(1) If Ly is simple-quasi-injective, then g Lfsas is a colocal bimodule and I (Af)
= 0.
(2) If L4 is A-simple-injective, then r45(L) = 0 and ra(L/LJ4) C la(soc(aAf)).

Proof. (1) By Lemma 3.2 Lf;ss is colocal and I(Af) = 0. Let 0 # z €
soc(L4)f. We claim that z € Hy for all 0 # y € Lf. Note that r;4(x) = fJ. Let
0#ye Lf. Then rpa(y) C fJ =rsa(x) and we have 0 : yAy — xAys =soc(Ly),
ya — za. Let u:soc(Lg) — Ly and v : yAs — L4 be inclusions. There exists
h € H with hov = o6, so that z = h(y) € Hy. Thus gLf is colocal.

(2) By Lemma 3.4(1) raf(L) = raf(I1(0)) = 0. Next, let a € r4(L/LJ). Since
La C LJ, La(soc(4Af)) C LJ(soc(4Af)) = 0. Thus a(soc(aAf)) C rag(L) =0
and a € [4(soc(4A4f)). O

Lemma 3.6 ([5, Lemma 3.3]). Let L € Mod A°P be a simple-quasi-injective mod-
ule with soc(L ) # 0. Assume Enda(L 4) is a local ring. Then soc(L 4) is simple.

Proof. Let S be a simple submodule of soc(L,4). Suppose to the contrary that
S # soc(La). Let m : soc(La) — Sa be a projection and p : soc(La) — La,
v:Sas — L, inclusions. There exists ¢ : Ly — L with ¢ o p = vom. Since 7 is
not monic, ¢ is not an isomorphism. Thus ¢ € rad End4(L4) and (id; — ¢) is a unit
in End4(L4), so that for 0 # = € S, since ¢(z) = m(z) = z, (idy — ¢)(z) = 0 and
x = 0, a contradiction. O
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4. Injectivity of colocal modules

In this section, by extending the previous results [8, Theorems 2.7, 2.8 and Propo-
sition 2.9], we provide several sufficient conditions for a colocal module over a left or
right perfect ring A to be injective.

Lemma 4.1 ([5, Lemma 3.4]). Let A be a semiperfect ring and L € Mod A°P
an A-simple-injective colocal module of finite Loewy length. Then L 4 is injective.

Proof. Let I be a right ideal of A and p: I4 — A4 the inclusion. Let 6 : T4 —
L 4. We make use of induction on the Loewy length of 6(I) to show the existence of
¢ : Ag — Ly with § = ¢op. Let n = min{k > 0|§(I)J* = 0}. We may assume
n > 0. Since soc(L4) is simple, soc(L4) = 0(I)J""! = §(IJ"~1). Let p; and 6,
denote the restrictions of x and 6 to IJ"~1, respectively. Then Im#; = soc(L4) and
there exists ¢; : Ag — L4 with ¢; o u; = 6;. Since (0 — ¢1 o p)(I)J"~! = 0, by
induction hypothesis there exists ¢o : Ag — L4 with ¢2 o u = 0 — ¢; o u. Thus
0 = (o1 + ¢2) o p. U

Thorem 4.2. Let A be a semiperfect ring. Let L € Mod A°P be a colocal module
of finite Loewy length and put H = Ends(L4). Let f € A be a local idempotent with
soc(La) & fA/fJ. Then the following are equivalent.

(1) L4 is injective.
(2) aLfsay is a colocal bimodule and M = r45(I(M)) for every submodule M
Of AffAfA

Proof. (1) = (2). By Lemmas 3.5(1) and 3.4(1).
(2) = (1). By Lemmas 3.4(2) and 4.1. O

Corollary 4.3. Let A be a semiperfect ring. Let L € Mod A°P be a colocal
module of finite Loewy length and put H = Ends(L4). Let f € A be a local
idempotent with soc(La) = fA/fJ. Assume yLfsas is a colocal bimodule and
M = ra5(1(M)) for every submodule M of Afsas with Tas(L) C M. Then La
is quasi-injective.

Proof. Put I = ra(L). Then by Theorem 4.2 L,/ is injective, so that L, is
quasi-injective. O

Thorem 4.4. Let A be a left or right perfect ring. Let L € Mod A°P be a colocal
module and put H = End4(Ly). Let f € A be a local idempotent with soc(Ly) =
fA/fJ. Assume L(Af/ras(L)fas) < co. Then the following are equivalent.

(1) L4 is injective.
(2) uHLfray is a colocal bimodule and r45(L) = 0.
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(3) wLfsay is a colocal bimodule and M = r45(l,(M)) for every submodule M
of AffAf.

Proof. (1) = (2). By Lemma 3.5.

(2) = (3). By Lemma 2.4.

(3) = (1). By Lemma 3.4(2) L4 is A-simple-injective. Note that 74¢(L) =
Ta7(lL(0)) = 0. Thus £(Affaf) < co and by Lemma 1.1 Jf = 0 for some n > 1,
so that LJ"Af = LJ™f = 0 and by Lemma 3.1(1) LJ™ C I (Af) = 0. Hence by
Lemma 4.1 L4 is injective. O

Corollary 4.5. Let A be a left or right perfect ring. Let L € Mod A°P be a
colocal module and put H = Ends(La). Let f € A be a local idempotent with
soc(La) = fA/fJ. Assume yLfsay is a colocal bimodule and {(Af/raf(L)faf) <
0o. Then L4 is quasi-injective.

Proof. Put I =r4(L). Then rys/1¢(L) = 0 and by Theorem 4.4 L, is injec-
tive, so that L4 is quasi-injective. O

Proposition 4.6. Let A be a left or right perfect ring. Let L € Mod A°P be
a colocal module and put H = Ends(La). Let f € A be a local idempotent with
soc(La) = fA/fJ. Then the following are equivalent.
(1) L4 is injective and X =11,(raf(X)) for every submodule X of p L.
(2) uLfsay is a colocal bimodule, 45(L) = 0 and £(Affay) < oco.

Proof. (1) = (2). By Lemma 3.5(1) gLfras is a colocal bimodule, and by
Lemma 3.5(2) ra¢(L) = 0. It remains to show (Afsas) < co. Put K, = Af(fJf)"
for n > 0. We claim Z(Kn/Kn_,_lfAf) < oo for all n > 0. Let n > 0. Note that
by Lemma 3.4(1) the lattice of submodules of Affas is anti-isomorphic to the lat-
tice of submodules of L. Thus £(Kn/Knt1fas) = L(alL(Knt1)/lL(Kn)). Also,
since rad(Kn/Kn.,.lfAf) =0, glp(Knt1)/lL(K,) is semisimple. For any submod-
ule X of gL, since raf(X) = ra(X)f, by Lemma 3.12) X = I (ras(X)) =
Ip(ra(X)f) = lp(ra(X)). Thus by Lemma 1.6 gL = Hom (A4, gL4) is linearly
compact, so is glr(Kn+1)/lL(Ky) by [10, Proposition 2.2]. Hence by [10, Lemma
23] U(Kn/Kns1ag) = Ll (Kni1)/1L(Kn)) < oo. Since €(fIf/(fIf)2a;) <
U(K1/Kafap) < 00, by [9, Lemma 11] fAf is right artinian. Then £(Ko/Ki5af) <
oo implies £(Affaf) < 0o.

(2) = (1). By Theorem 4.4 L4 is injective. Since by Lemma 3.1(1) I.(Af) = 0,
by Lemma 2.5 ¢(gL) = ¢(Afsas) < co and thus by Lemma 2.4 X = I(ras(X)) for
every submodule X of g L. |
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5. Colocal pairs

We call a pair (eA, Af) of a right ideal eA and a left ideal Af in A a colocal pair
if e, f € A are local idempotents and ¢4ceAffay is a colocal bimodule. Note that by
Lemma 2.5 £(cac€A/lea(Af)) = €(Af/ras(eA)say) for every colocal pair (eA, Af)
in A. In case l(caceA/lca(Af)) =L(Af/ras(eA)sas) < 00, a colocal pair (eA, Af)
in A is called finite.

In [5], a pair (eA4, Af) of a right ideal eA and a left ideal Af in A is called an
i-pair if e, f € A are local idempotents, eA 4 is colocal with soc(eA4) = fA/fJ and
AAf is colocal with soc(4Af) = Ae/Je.

Lemma 5.1. Let e, f € A be local idempotents. Then the following are equiva-
lent.
(1) (eA, Af) is an i-pair in A.
(2) (eA, Af) is a colocal pair in A with lcs(Af) =0 and rs5(eA) = 0.

Proof. (1) = (2). By (1) and (3) of Lemma 3.1.
(2) = (1). By Corollary 3.3. O

The equivalence (1) < (2) of the next lemma has been established in [5, Theorem
3.7]. Here we provide another proof of the implication (2) = (1) which does not appeal
to Morita duality.

Lemma 5.2 ([5, Theorem 3.7]). Let (eA, Af) be an i-pair in a left or right per-
fect ring A. Then the following are equivalent.
(1) (eA, Af) is finite.
(2) Both eA4 and A Af are injective.
() eAp, is injective and A Af is A-simple-injective.

Proof. (1) = (2). By Theorem 4.4.

(2) = (3). Obvious.

(3) = (1). It follows by Lemma 3.4(1) that X = l.4(r47(X)) for every submod-
ule X of c4ceA. Thus by Proposition 4.6 £(Affas) < oo. O

Lemma 5.3. Let (eA, Af) be a finite colocal pair in a left or right perfect ring
A. Then the following hold.
(1) eA/lea(Af)a is a quasi-injective colocal module with soc(eA/lea(Af)a) &
fA/fJ.
(2) If rag(eA) =0, then E(fA/fJa) = eA/lea(Af), so that E(fA/fJa) is quasi-
projective and eA/leaA(Af) a is injective.
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Proof. Put I =14(Af) and L =eA/els. Then lca(Af) = el and I(Af) = 0.
Note that, since If = 0, Lfrar = eAfray. Thus by Lemma 3.2 Ly is colocal
with soc(L4) = fA/fJ. Since Lfray = eAfray and H = Endas(La) & eAe/ele,
aLfray is a colocal bimodule. Note also that £(Af/raf(L)far) = L(Af/ras(eA)saf)
< 0.

(1) By Corollary 4.5 L4 is quasi-injective.

(2) By Theorem 4.4 L, is injective. Thus, since soc(L4) = fA/fJ, E(fA/fJa)
= L. Since Ly,/; = e(A/I)4; is projective, L4 is quasi-projective. O

Proposition 5.4. Let (eA, Af) be a colocal pair with l.o(Af) = 0 in a left or
right perfect ring A. Put A = A/rs(eA). Let 7 : A — A be the canonical ring
homomorphism and put € = w(e), f = 7(f). Then the following are equivalent.

(1) (eA, Af) is finite.

(2) eAa is quasi-injective, caceA is finitely generated and A Af/ras(eA) is injec-
tive.

(3) (€A, Af) is a finite i-pair in A.

Proof. Note first that A is left or right perfect and &, f € A are local idempotents.
Put I = r4(eA). Then el =0 and If = r4s(eA). Thus £(,5,6A) = £(caceA) and,
since cac€Affas = eac€Afray is a colocal bimodule, (€4, Af) is a colocal pair in A.

(1) = (2). By Lemma 5.3(1) eA 4 is quasi-injective, and by Lemma 5.3(2) 4 Af
/ras(eA) is injective. Also, since £(c4ceA) < 00, cac€A is finitely generated.

(2) = (3). By [3, Corollary 5.6A] éAx = eAy is injective. Also, since 4 Af =
AAf/ras(eA) is injective, so is 7Af. It is obvious that r5(€A) = 0. For any a €
lea(Af), since aAf C If, aAf = eaAf Celf =0 and a € l.4(Af) = 0. It follows
that [_;(Af) = 0. Thus by Lemmas 5.1 and 5.2 (€4, Af) is a finite i-pair in A.

(3) = (1). Obvious. 0

Corollary 5.5. Let (eA, Af) be an i-pair in a left or right perfect ring A. Then
the following are equivalent.
(1) (eA, Af) is finite.
(2) eAy is quasi-injective, . aceA is finitely generated and 4 Af is injective.

6. Applications of colocal pairs 1

In this section, as applications of colocal pairs, we extend recent results of Baba
[1, Theorems 1 and 2] to left perfect rings and provide simple proofs of them.

Lemma 6.1. Let A be a left perfect ring and e € A a local idempotent. As-
sume aAE = E(aAe/Je) is quasi-projective. Then 4E/JE is simple and for a local
idempotent f € A with AE/JE = Af/Jf the following hold:
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(a) 4aF = Af/TAf(eA);
(b) eac€Af =2 caceE is injective; and
(c) (eA, Af) is a colocal pair in A with l.4(Af) = 0.

Proof. Put I =[4(FE). By Lemma 1.4 there exists a local idempotent f € A such
that 4 £ = Af/If. We claim If =rss(eA). Since by Lemma 3.5(2) eAIf =elf C
lea(E) =0,1f Crags(eA). Conversely, let a € r45(eA). Then eA(a+If) = 0 and by
Lemma 3.1(1) (a + If) € Ta5/15(eA) =0, so that a € I f. Next, since e(ras(ed)) =
0, caceE = cpce(Af/ras(eA)) = caceAf. Thus caceAf is colocal by Lemma 3.1(3)
and injective by Lemma 1.2(2). Also, since Enda (4 Af/If) = fAf/fIf, by Lemma
3.5(1) eAffay is colocal. Finally, by Lemma 3.5(2) lea(Af) C lea(Af/ras(ed)) =
lea(E) = 0. O

Thorem 6.2 (cf. [1, Theorem 1]). Let A be a left perfect ring and e, f € A local
idempotents. Put E = E(asAe/Je). Assume ((Af/ras(eA)sas) < oo. Then the
following are equivalent.

(1) eA4 is quasi-injective with soc(eAs) = fA/fJ.
(2) aAE is quasi-projective with sE/JE = Af/Jf.
) (eA, Af) is a colocal pair in A with l.4(Af) = 0.
(4) eae€Af is colocal and soc(eAs) = fA/fJ.

Proof. (1) = (3). By Lemma 3.5(1).

(3) = (1). By Lemma 5.3(1).

(2) = (3). By Lemma 6.1.

(3) = (2). By Lemma 5.3(2).

(3) = (4). By Corollary 3.3.

(4) = (3). By (3) and (1) of Lemma 3.1. O

Lemma 6.3. Ler (eA, Af) be a colocal pair in a left or right perfect ring A.

Put E = E(4Ae/Je) and H = Enda(4E)°P. Assume soc(eAa)f # 0. Then the
Sfollowing hold.

(1) soc(eAa)fA is the unique simple submodule of eAs which is isomorphic to
fA/fJa.

(2) If (eA, Af) is finite, then sEy contains a subbimodule X such that X =

Af/ra(eA)f, caceXn is a colocal bimodule, soc(eAs)fANIl.a(X) = 0 and

Z(eAeeA/leA(X)) < 0Q.

Proof. (1) Since soc(eA4)f # 0, eA4 contains a simple submodule K = fA/fJ.
On the other hand, by Corollary 3.3 eA/l.a(Af)a 1is colocal with
soc(eA/lea(Af)a) = fA/fJ. Thus K is the unique simple submodule of eA4 which
is isomorphic to fA/fJ. It follows that K = soc(eA4)fA.
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(2) Put I = ry(eA). Then If = rus(eA) and by Lemma 5.3(1) 4Af/If is
a quasi-injective colocal module with soc(4Af/If) = Ae/Je. Thus 4F contains a
submodule X = 4Af/If. Then by Lemma 1.3 XH C X. Since by Lemma 3.5(1)
eaceEq is a colocal bimodule, so is .4.eXgy. Also, since el = 0, soc(edAs)fA(Af
/If) =2 soc(eAas)fAf #0. Thus soc(eAa)fANl.a(X) = 0. Finally, since l.4(X) =
leA (Af), e(eAeeA/leA(X)) = B(eAeeA/leA(Af)) < 0. ]

Lemma 6.4. Let A be a left perfect ring and e € A a local idempotent. Put
E = E(aAe/Je) and H = Enda(4E)°P. Assume soc(eAs) = @), fiA/fiJ with
the (eA, Af;) finite colocal pairs in A. Then f;A]f;J ¥ f;A/f;J for i # j, {(En) =
{(caceA) < o0 and sE/JE = @, Afi/J fi.

Proof. By Lemma 6.3(1) f;A/f;J % f;A/f;J for i # j. Also, for each 1 <17 <
n, by Lemma 6.3(2) 4 Ey contains a subbimodule X; such that 4 X; = Af;/ra(eA)f;,
eAceX, g is a colocal bimodule, soc(eA4)fiANlea(X;) =0 and £(caceA/lea(X;)) <
00. Put 4 Xy = > ; X;. Then, by Lemmas 3.1(1) and 2.5 {(X;g) = l(cac€A/lca
(Xi)) < ooforall 1l <i<n,sothat (Xg) < oo. Also, since soc(eda)f;AN
lea(X) =0 forall 1 < ¢ < n, by Lemma 6.3(1) soc(edq) Nlea(X) = 0. Thus,
since eA4 has essential socle, l[.4(X) = 0. Since by Lemma 3.5(1) c4.eFy is a
colocal bimodule, so is c4c€Xg. Thus by Lemma 2.5 £(.4c€A) = (X ) < 0o. Since
by Lemma 1.3 we have a surjective ring homomorphism px : H — End(4X)°P,
h — h|x, it follows by Theorem 4.4 that 4X is injective. Thus X = E and we
have an epimorphism .., Afi/Jfi — aE/JE. On the other hand, since f;A/f;J %
fjA/ f;J for i # j, it follows by Lemma 3.5(2) that 4F/JFE has a direct summand
which is isomorphic to @, Af;/Jf;. Thus oE/JE = @, Af:/J f:. O

Thorem 6.5 (cf. [1, Theorem 2]). Let A be a left perfect ring and e, f1, fa,-- -,
fn € A local idempotents. Put E = E(4Ae/Je). Assume (eA, Af;) is a finite colocal
pair in A for all 1 < i < n. Then the following are equivalent.

(1) soc(edq) = D;_, fiA/fiJ.
2) AE/JE = @;;1 Af,/sz

Proof. (1) = (2). By Lemma 6.4.

(2) = (1). It follows by Lemmas 3.5(2) and 6.3(1) that soc(eA,4) is isomorphic
to a direct summand of @], f;A/f;J. We may assume soc(eds) = @._, fiA/fiJ
for some 1 < 7 < n. Then by Lemma 6.4 sE/JE = @;_, Afi/J fi, so that r = n.

O

7. Applications of colocal pairs II

In this section, we provide some other applications of colocal pairs. Recall that
a set {e1,---,e,} of orthogonal local idempotents in a semiperfect ring A is called
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basic if (31, e;)A(Y 1 €;) is a basic ring of A.

Lemma 7.1 ([5, Lemma 3.5]). Let A be a semiperfect ring and {e1,--- ,e,} a
basic set of orthogonal local idempotents in A. Assume every e;As is A-simple-
injective and has essential socle. Then there exists a permutation v of the set {1,--- ,n}
such that (e; A, Ae,;)) is an i-pair in A for all 1 < i <n.

Proof. By [5, Lemma 3.5] there exists a mapping v : {1,--- ,n} — {1,---,n}
such that (e;A, Ae,(;)) is an i-pair in A for all 1 <4 < n. Then by the definition of
{-pairs v is injective. O

Corollary 7.2. Let A be a left perfect ring. Assume A4 is simple-quasi-injective.
Then E(4A) and E(A,) are injective cogenerators in Mod A and Mod A°P, respec-
tively.

Lemma 7.3. Let A be a left perfect ring. Assume A,.(A, A) satisfies the ACC
and eA, is simple-quasi-injective for every local idempotent e € A. Then A is left
artinian.

Proof. It suffices to show that £(.4.eA) < oo for every local idempotent e € A.
Let e € A be a local idempotent. Since by Lemma 3.6 eA 4 is colocal, there exists a lo-
cal idempotent f € A with soc(eAs) = fA/fJ. By Lemma 3.5(1) (eA, Af) is a colo-
cal pair in A with l,4(Af) = 0. For each M € A,(eA, Af), put M = ra(lea(M)) €
A-(A,A). Then Mf = ras(lea(M)) = M for every M € A,(eA, Af). Thus, for
M,N € A.(eA,Af) with M ¢ N, M c N and M = N implies M = Mf =
Nf = N. It follows that A.(eA, Af) satisfies the ACC. Thus by Lemmas 2.5 and 2.6
E(eAeeA) = f(Af/T‘Af(eA)fAf) < 0. O

Corollary 7.4. Let A be a left perfect ring. Assume A,(A, A) satisfies the ACC
and A, is simple-quasi-injective. Then A is quasi-Frobenius.

Proof. By Lemma 7.3 A is left artinian. Then it follows by Lemmas 3.6 and 4.1
that A4 is injective. O
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