COLOCAL PAIRS IN PERFECT RINGS

MITSUO HOSHINO AND TAKESHI SUMIOKA

(Received September 12, 1997)

Our main aim of the present note is to provide several sufficient conditions for a colocal module L over a left or right perfect ring A to be injective. Also, by developing the previous works [8] and [5], we will extend recent results of Baba [1, Theorems 1 and 2] to left perfect rings and provide simple proofs of them.

Throughout this note, rings are associative rings with identity and modules are unitary modules. For a ring A we denote by $\operatorname{Mod} A$ (resp. $\operatorname{Mod} A^{\operatorname{op}}$) the category of left (resp. right) A-modules, where A^{op} denotes the opposite ring of A. Sometimes, we use the notation ${}_AL$ (resp. L_A) to signify that the module L considered is a left (resp. right) A-module. For a module L, we denote by $\operatorname{soc}(L)$ the socle, by $\operatorname{rad}(L)$ the Jacobson radical, by E(L) an injective envelope and by $\ell(L)$ the composition length of L. For a subset X of a right module L_A and a subset M of A, we set $\ell_X(M) = \{x \in X | xM = 0\}$ and $\ell_M(X) = \{x \in M | Xx = 0\}$. Also, for a subset X of X and a subset X of a left module X we set X use X in X and a subset X of a left module X we set X use X in X and a subset X of a left module X we set X use X in X and a subset X of a left module X we set X use X in X

Recall that a module L is called colocal if it has simple essential socle. We call a bimodule ${}_HU_R$ colocal if both ${}_HU$ and U_R are colocal. Let A be a semiperfect ring with Jacobson radical J. Let L_A be a colocal module with $H=\operatorname{End}_A(L_A)$ and $f\in A$ a local idempotent with $\operatorname{soc}(L_A)\cong fA/fJ$. In case L_A has finite Loewy length, we will show that L_A is injective if and only if ${}_HLf_{fAf}$ is a colocal bimodule and $M=r_{Af}(l_L(M))$ for every submodule M of Af_{fAf} . Also, in case A is left or right perfect and $\ell(Af/r_{Af}(L)_{fAf})<\infty$, we will show that the following are equivalent: (1) L_A is injective; (2) ${}_HLf_{fAf}$ is a colocal bimodule and $r_{Af}(L)=0$; and (3) ${}_HLf_{fAf}$ is a colocal bimodule and $M=r_{Af}(l_L(M))$ for every submodule M of Af_{fAf} .

Recall that a module L_A is called M-injective if for any submodule N of M_A every $\theta: N_A \to L_A$ can be extended to some $\phi: M_A \to L_A$. Dually, a module L_A is called M-projective if for any factor module N of M_A every $\theta: L_A \to N_A$ can be lifted to some $\phi: L_A \to M_A$. In case L is L-injective (resp. L-projective), L is called quasi-injective (resp. quasi-projective). Let A be a left perfect ring with Jacobson radical J and $e, f \in A$ local idempotents. Assume $\ell(Af/r_{Af}(eA)_{fAf}) < \infty$. Then we will show that eA_A is quasi-injective with $\sec(eA_A) \cong fA/fJ$ if and only if AE = E(AAe/Je) is quasi-projective with $AE/JE \cong Af/Jf$ (cf. [1, Theorem 1]).

We call a pair (eA,Af) of a right ideal eA and a left ideal Af in A a colocal pair if $e,f\in A$ are local idempotents and ${}_{eAe}eAf_{fAf}$ is a colocal bimodule. We will see that $\ell({}_{eAe}eA/l_{eA}(Af))=\ell(Af/r_{Af}(eA)_{fAf})$ for every colocal pair (eA,Af) in A. In case $\ell({}_{eAe}eA/l_{eA}(Af))=\ell(Af/r_{Af}(eA)_{fAf})<\infty$, a colocal pair (eA,Af) in A is called finite. Let A be a left perfect ring with Jacobson radical A and A and A and A in A local idempotents. Put A be a left perfect ring with Jacobson radical A and A in a for all A is a finite colocal pair in A for all A in A

Following Harada [4], we call a module L_A M-simple-injective if for any submodule N of M_A every $\theta: N_A \to L_A$ with $\operatorname{Im} \theta$ simple can be extended to some $\phi: M_A \to L_A$. In case L is L-simple-injective, L is called simple-quasi-injective. We will show that a left perfect ring A is left artinian if A satisfies the ascending chain condition on annihilator right ideals and eA_A is simple-quasi-injective for every local idempotent $e \in A$.

1. Preliminaries

In this section, we collect several basic results which we need in later sections. We refer to Bass [2] for perfect rings.

Lemma 1.1. Let A be a left or right perfect ring and $f \in A$ an idempotent. Assume $\ell(Af_{fAf}) < \infty$. Then ${}_AAf$ has finite Loewy length.

Proof. Denote by J the Jacobson radical of A. Consider first the case of A being left perfect. Since the descending chain $Af \supset Jf \supset \cdots$ terminates, there exists $n \ge 1$ such that $J^n f = J^{n+1} f$. Thus $J^n f = 0$. Assume next that A is right perfect. Then, since the ascending chain $\operatorname{soc}(_A Af) \subset \operatorname{soc}^2(_A Af) \subset \cdots$ terminates, there exists $n \ge 1$ such that $\operatorname{soc}^n(_A Af) = Af$. Thus $J^n f = J^n(\operatorname{soc}^n(_A Af)) = 0$.

Lemma 1.2. Let $e \in A$ be an idempotent. Then for a module $L \in \operatorname{Mod} A$ with $r_L(eA) = 0$ the following hold.

- (1) If $_AL$ is simple, so is $_{eAe}eL$.
- (2) $_{eAe}eE(_{A}L) \cong E(_{eAe}eL).$
- (3) The canonical homomorphism ${}_AE({}_AL) \rightarrow {}_A\operatorname{Hom}_{eAe}(eA, eE({}_AL)), x \mapsto (a \mapsto ax)$, is an isomorphism.

Proof. (1) See e.g. [5, Lemma 1.1].

- (2) See e.g. [5, Lemmas 1.2 and 1.3].
- (3) See e.g. [5, Lemma 1.3].

Recall that a module L_A is called M-injective if for any submodule N of M_A every $\theta: N_A \to L_A$ can be extended to some $\phi: M_A \to L_A$. Dually, a module L_A

is called M-projective if for any factor module N of M_A every $\theta: L_A \to N_A$ can be lifted to some $\phi: L_A \to M_A$. In case L is L-injective (resp. L-projective), L is called quasi-injective (resp. quasi-projective).

Lemma 1.3 ([6, Theorem 1.1]). Let $L \in \operatorname{Mod} A^{\operatorname{op}}$ and put $H = \operatorname{End}_A(E(L_A))$. Then L_A is quasi-injective if and only if HL = L. In particular, if L_A is quasi-injective, then we have a surjective ring homomorphism $\rho_L : \operatorname{End}_A(E(L_A)) \to \operatorname{End}_A(L_A)$, $h \mapsto h|_L$.

The equivalence (1) \Leftrightarrow (2) of the next lemma is due to Wu and Jans [11, Propositions 2.1, 2.2 and 2.4].

Lemma 1.4 ([11]). Let A be a left perfect ring. Then for a module $L \in \text{Mod } A$ the following are equivalent.

- (1) $_{A}L$ is indecomposable quasi-projective.
- (2) There exist a local idempotent $f \in A$ and a two-sided ideal I of A such that ${}_{A}L \cong Af/If$.
- (3) There exists a local idempotent $f \in A$ such that ${}_{A}L \cong Af/l_{A}(L)f$.

Proof. (1) \Rightarrow (2). By [11, Proposition 2.4] there exists an epimorphism π : ${}_{A}Af \rightarrow {}_{A}L$ with $f \in A$ a local idempotent. Put $K = \operatorname{Ker} \pi$. Then by [11, Proposition 2.2] KfAf = K and ${}_{A}L \cong Af/If$ with I = KfA a two-sided ideal of A.

- (2) \Rightarrow (1). Since $_{A/I}Af/If\cong _{A/I}(A/I)f$ is projective, $_{A}Af/If$ is quasi -projective.
- (2) \Rightarrow (3). Since $If = l_A(Af/If)f$, ${}_AL \cong Af/l_A(L)f$.
- $(3) \Rightarrow (2)$. Obvious.

Recall that an object L of an abelian category $\mathcal A$ in which arbitrary direct products exist is called linearly compact if for any inverse system of epimorphisms $\{\pi_\lambda: L \to L_\lambda\}_{\lambda \in \Lambda}$ in $\mathcal A$ the induced morphism $\varprojlim \pi_\lambda: L \to \varprojlim L_\lambda$ is epic. In case $\mathcal A = \operatorname{Mod} A$, there is an equivalent definition of linear compactness. Recall that, for a family of submodules $\{L_\lambda\}_{\lambda \in \Lambda}$ in a module ${}_AL$, a system of congruences $\{x \equiv x_\lambda \operatorname{mod} L_\lambda\}_{\lambda \in \Lambda}$ is said to be finitely solvable if for any nonempty finite subset F of Λ there exists $x_F \in L$ such that $x_F \equiv x_\lambda \operatorname{mod} L_\lambda$ for all $\lambda \in F$, and to be solvable if there exists $x_0 \in L$ such that $x_0 \equiv x_\lambda \operatorname{mod} L_\lambda$ for all $\lambda \in \Lambda$.

For the benefit of the reader, we include a proof of the following.

Proposition 1.5. For a module $L \in \operatorname{Mod} A$ the following are equivalent.

- (1) $_{A}L$ is linearly compact.
- (2) For any family of submodules $\{L_{\lambda}\}_{{\lambda}\in{\Lambda}}$ in ${}_{A}L$, every finitely solvable system of congruences $\{x\equiv x_{\lambda} \bmod L_{\lambda}\}_{{\lambda}\in{\Lambda}}$ is solvable.

Proof. (1) \Rightarrow (2). Let $\{L_{\lambda}\}_{\lambda\in\Lambda}$ be a family of submodules in L and $\{x\equiv x_{\lambda} \bmod L_{\lambda}\}_{\lambda\in\Lambda}$ a finitely solvable system of congruences. Denote by $\phi_{\lambda}: L\to L/L_{\lambda}$ the canonical epimorphism for each $\lambda\in\Lambda$ and set $\phi:L\to\prod_{\lambda\in\Lambda}L/L_{\lambda}, x\mapsto (\phi_{\lambda}(x))$. Put $\hat{x}=(\phi_{\lambda}(x_{\lambda}))\in\prod_{\lambda\in\Lambda}L/L_{\lambda}$. We claim that $\hat{x}\in\operatorname{Im}\phi$. Let \mathcal{F} be the directed set of nonempty finite subsets of Λ . For each $F\in\mathcal{F}$, denote by $p_{F}:\prod_{\lambda\in\Lambda}L/L_{\lambda}\to\prod_{\lambda\in F}L/L_{\lambda}$ the projection and put $\hat{x}_{F}=p_{F}(\hat{x})\in\prod_{\lambda\in F}L/L_{\lambda}$ and $X_{F}=(p_{F}\circ\phi)^{-1}(A\hat{x}_{F})$. Note that for any $F\in\mathcal{F}$, since $\{x\equiv x_{\lambda} \bmod L_{\lambda}\}_{\lambda\in\Lambda}$ is finitely solvable, $p_{F}\circ\phi:L\to\prod_{\lambda\in F}L/L_{\lambda}$ induces an epimorphism $\varphi_{F}:X_{F}\to A\hat{x}_{F}$. For each $F\in\mathcal{F}$, take a push-out of $\varphi_{F}:X_{F}\to A\hat{x}_{F}$ along with the inclusion $X_{F}\to L$:

$$X_F \longrightarrow L$$
 $\varphi_F \downarrow \qquad \qquad \downarrow \pi_F$
 $A\hat{x}_F \longrightarrow Y_F.$

Then we get an inverse system of epimorphisms $\{\pi_F: L \to Y_F\}_{F \in \mathcal{F}}$. Also, since \varprojlim is left exact, we get a pull-back square

$$\begin{array}{ccc} \varprojlim X_F & \longrightarrow & L \\ \varprojlim \varphi_F \Big\downarrow & & & & \varprojlim \pi_F \\ \varprojlim A\hat{x}_F & \longrightarrow & \varprojlim Y_F. \end{array}$$

Since L is linearly compact, $\varprojlim \pi_F$ is epic, so is $\varprojlim \varphi_F$. Note that $\varprojlim X_F \stackrel{\sim}{\to} \bigcap_{F \in \mathcal{F}} X_F$. Also, $\varprojlim p_F : \prod_{\lambda \in \Lambda} L/L_\lambda \to \varprojlim \prod_{\lambda \in F} L/L_\lambda$ is an isomorphism and hence induces an isomorphism $A\hat{x} \stackrel{\sim}{\to} \varprojlim A\hat{x}_F$. It follows that $\phi(\bigcap_{F \in \mathcal{F}} X_F) = A\hat{x}$. Thus $\hat{x} \in \operatorname{Im} \phi$.

(2) \Rightarrow (1). Let $\{\pi_{\lambda}: L \to L_{\lambda}\}_{{\lambda} \in \Lambda}$ be an inverse system of epimorphisms in Mod A. We may consider $\varprojlim L_{\lambda}$ as a submodule of $\prod_{{\lambda} \in \Lambda} L_{\lambda}$. Let $(x_{\lambda}) \in \varprojlim L_{\lambda}$ and for each ${\lambda} \in {\Lambda}$ choose $y_{\lambda} \in L$ with $\pi_{\lambda}(y_{\lambda}) = x_{\lambda}$. Then, since for any nonempty finite subset F of ${\Lambda}$ there exists ${\lambda}_0 \in {\Lambda}$ such that ${\lambda}_0 \geq {\lambda}$ for all ${\lambda} \in F$, the system of congruences $\{x \equiv y_{\lambda} \mod \operatorname{Ker} \pi_{\lambda}\}_{{\lambda} \in {\Lambda}}$ is finitely solvable and thus solvable. Hence $\varprojlim \pi_{\lambda}: L \to \varprojlim L_{\lambda}$ is an epimorphism.

Let ${}_HU_R$ be a bimodule and $K \in \operatorname{Mod} R^{\operatorname{op}}$. For a pair of a subset X of $(K_R)^*$ and a subset M of K_R , we set $r_M(X) = \{a \in M | h(a) = 0 \text{ for all } h \in X\}$ and $l_X(M) = \{h \in X | h(a) = 0 \text{ for all } a \in M\}$, where $()^* = \operatorname{Hom}_R(-, {}_HU_R)$.

The next lemma is due essentially to [7, Lemma 4].

Lemma 1.6. Let ${}_HU_R$ be a bimodule and $K \in \operatorname{Mod} R^{\operatorname{op}}$ a module such that U_R is K-injective. Assume $X = l_{K^*}(r_K(X))$ for every submodule X of $(K_R)^*$. Then $(K_R)^*$ is linearly compact.

Proof. Let $\{\pi_{\lambda}: K^* \to X_{\lambda}\}_{{\lambda} \in \Lambda}$ be an inverse system of epimorphisms in $\operatorname{Mod} H$. For ${\lambda} \in \Lambda$, put $Y_{\lambda} = \operatorname{Ker} \pi_{\lambda}$ and $M_{\lambda} = r_K(Y_{\lambda})$, and let $j_{\lambda}: M_{\lambda} \to K$ be the inclusion. Then for each ${\lambda} \in \Lambda$, since $\operatorname{Ker} j_{\lambda}^* \cong l_{K^*}(M_{\lambda}) = Y_{\lambda}$, and since $j_{\lambda}^*: K^* \to M_{\lambda}^*$ is epic, there exists an isomorphism $\phi_{\lambda}: M_{\lambda}^* \to X_{\lambda}$ with $\pi_{\lambda} = \phi_{\lambda} \circ j_{\lambda}^*$. Since $\varinjlim j_{\lambda}$ is monic, $\varinjlim j_{\lambda}^* \cong (\varinjlim j_{\lambda})^*$ is epic. Also, $\varprojlim \phi_{\lambda}$ is an isomorphism. Thus $\varprojlim \pi_{\lambda} = (\varprojlim \phi_{\lambda}) \circ (\varprojlim j_{\lambda}^*)$ is epic.

Corollary 1.7. Let A be a left or right perfect ring. Assume A_A is injective and $I = l_A(r_A(I))$ for every left ideal I of A. Then A is quasi-Frobenius.

Proof. It follows by Lemma 1.6 that ${}_{A}A$ is linearly compact. Thus by [10, Propositions 2.9 and 2.12] A is left noetherian.

2. Bilinear maps into colocal bimodules

In this section, as further preliminaries, we modify results of [8, Section 1]. For a left H-module $_HL$, a right R-module K_R and an H-R-bimodule $_HU_R$, we call a map $\varphi: {}_HL \times K_R \to {}_HU_R$ H-R-bilinear if $K_R \to U_R$, $a \mapsto \varphi(x,a)$, is R-linear for every $x \in L$ and ${}_HL \to {}_H\operatorname{Hom}_R(K_R, {}_HU_R), x \mapsto (a \mapsto \varphi(x,a))$, is H-linear.

Throughout this section, $\varphi: {}_HL \times K_R \to {}_HU_R$ is a fixed H-R -bilinear map. For a pair of a subset X of L and a subset M of K we set $r_M(X) = \{a \in M | \varphi(x,a) = 0 \text{ for all } x \in X\}$ and $l_X(M) = \{x \in X | \varphi(x,a) = 0 \text{ for all } a \in M\}$. We denote by $\mathcal{A}_l(L,K)$ the lattice of submodules X of ${}_HL$ with $X = l_L(r_K(X))$ and by $\mathcal{A}_r(L,K)$ the lattice of submodules M of K_R with $M = r_K(l_L(M))$.

REMARKS (see e.g. [3, Part I] for details). (1) Let X be a subset of L. Then $\varphi(X,r_K(X))=0$ implies $X\subset l_L(r_K(X))$ and thus $r_K(l_L(r_K(X)))\subset r_K(X)$. Also, $\varphi(l_L(r_K(X)),r_K(X))=0$ implies $r_K(X)\subset r_K(l_L(r_K(X)))$. Thus $r_K(X)=r_K(l_L(r_K(X)))$ and $r_K(X)\in \mathcal{A}_r(L,K)$.

- (2) Let X be a subset of L. For any $Y \in \mathcal{A}_l(L,K)$ with $X \subset Y$, $l_L(r_K(X)) \subset l_L(r_K(Y)) = Y$. Thus $l_L(r_K(X))$ is the smallest module in $\mathcal{A}_l(L,K)$ containing X.
- (3) Let $\{X_{\lambda}\}_{\lambda\in\Lambda}$ be a family of submodules of ${}_HL$. For any $\mu\in\Lambda$, since $\bigcap_{\lambda\in\Lambda}X_{\lambda}\subset X_{\mu}\subset\sum_{\lambda\in\Lambda}X_{\lambda},\ r_K(\sum_{\lambda\in\Lambda}X_{\lambda})\subset r_K(X_{\mu})\subset r_K(\bigcap_{\lambda\in\Lambda}X_{\lambda})$. Thus $r_K(\sum_{\lambda\in\Lambda}X_{\lambda})\subset\bigcap_{\lambda\in\Lambda}r_K(X_{\lambda})$ and $\sum_{\lambda\in\Lambda}r_K(X_{\lambda})\subset r_K(\bigcap_{\lambda\in\Lambda}X_{\lambda})$. Let $a\in\bigcap_{\lambda\in\Lambda}r_K(X_{\lambda})$. Since $\varphi(X_{\lambda},a)=0$ for all $\lambda\in\Lambda$, and since ${}_HL\to{}_HU,\ x\mapsto\varphi(x,a)$, is H-linear, $\varphi(\sum_{\lambda\in\Lambda}X_{\lambda},a)=0$ and $a\in r_K(\sum_{\lambda\in\Lambda}X_{\lambda})$. Thus $r_K(\sum_{\lambda\in\Lambda}X_{\lambda})=\bigcap_{\lambda\in\Lambda}r_K(X_{\lambda})$.
- (4) Let $\{X_\lambda\}_{\lambda\in\Lambda}$ be a family of submodules of ${}_HL$ with the $X_\lambda\in\mathcal{A}_l(L,K)$. Then by (3) $\bigcap_{\lambda\in\Lambda}X_\lambda=\bigcap_{\lambda\in\Lambda}l_L(r_K(X_\lambda))=l_L(\sum_{\lambda\in\Lambda}r_K(X_\lambda))$. Thus $r_K(\bigcap_{\lambda\in\Lambda}X_\lambda)=r_K(l_L(\sum_{\lambda\in\Lambda}r_K(X_\lambda)))$ and by (2) $r_K(\bigcap_{\lambda\in\Lambda}X_\lambda)$ is the smallest module in $\mathcal{A}_r(L,K)$ containing $\sum_{\lambda\in\Lambda}r_K(X_\lambda)$, so that $r_K(\bigcap_{\lambda\in\Lambda}X_\lambda)=\sum_{\lambda\in\Lambda}r_K(X_\lambda)$ whenever $\sum_{\lambda\in\Lambda}r_K(X_\lambda)\in\mathcal{A}_r(L,K)$.

(5) We have an anti-isomorphism of lattices $\mathcal{A}_l(L,K) \to \mathcal{A}_r(L,K)$, $X \mapsto r_K(X)$. In particular, $\mathcal{A}_l(L,K)$ satisfies the ACC (resp. DCC) if and only if $\mathcal{A}_r(L,K)$ satisfies the DCC (resp. ACC).

Recall that a module is called colocal if it has simple essential socle. We call a bimodule ${}_{H}U_{R}$ colocal if both ${}_{H}U$ and ${}_{H}U_{R}$ are colocal modules.

Lemma 2.1. Let ${}_HU_R$ be a colocal bimodule. Then $soc({}_HU) = soc(U_R)$.

Proof. Since $soc(_HU)$ is a subbimodule of $_HU_R$, $soc(U_R) \subset soc(_HU)$. Similarly, $soc(_HU) \subset soc(U_R)$. Thus $soc(_HU) = soc(U_R)$.

Throughout the rest of this section, ${}_HU_R$ is assumed to be a colocal bimodule with ${}_HS_R = \mathrm{soc}({}_HU) = \mathrm{soc}(U_R)$, and ()* denotes both the U-dual functors.

Lemma 2.2. The following hold.

- (1) The canonical ring homomorphisms $H \to \operatorname{End}_R(S_R)$ and $R \to \operatorname{End}_H({}_HS)^{\operatorname{op}}$ are surjective.
- (2) $({}_{H}S)^* \cong S_R$ and $(S_R)^* \cong {}_{H}S$.
- Proof. (1) Let $0 \neq u \in S$. Then S = Hu = uR. For any $h \in \operatorname{End}_R(S_R)$, h(u) = au for some $a \in H$ and h(ub) = h(u)b = (au)b = a(ub) for all $b \in R$. Thus the canonical ring homomorphism $H \to \operatorname{End}_R(S_R)$ is surjective. Similarly, the canonical ring homomorphism $R \to End_H(H_S)^{\operatorname{op}}$ is surjective.
- (2) Let $\pi: R_R \to S_R$ be an epimorphism. We have a monomorphism $\mu: (S_R)^* \to HU$ such that $\mu(h) = (\pi^*(h))(1)$ for $h \in (S_R)^*$. Put $u = \pi(1)$. Then $\mu(h) = h(u) \in S$ for all $h \in (S_R)^*$ and $\text{Im } \mu = HS$, so that $(S_R)^* \cong HS$. Similarly, $(HS)^* \cong S_R$.

Lemma 2.3. Let $N \subset M$ be submodules of K_R with $N = r_K(l_L(N))$ and M/N_R simple. Then the following hold.

- (1) $M/N \cong S_R$ and $l_L(N)/l_L(M) \cong (M/N)^* \cong {}_HS$.
- (2) $M = r_K(l_L(M)).$

Proof. (1) Since $M \neq N = r_K(l_L(N))$, $l_L(M) \subset l_L(N)$ with $l_L(N)/l_L(M) \neq 0$. Let $j:N_R \to M_R$ be the inclusion. Then we have the following commutative diagram with exact rows:

$$0 \longrightarrow l_L(M) \longrightarrow L \longrightarrow M^*$$

$$\downarrow \qquad \qquad \qquad \downarrow j^*$$

$$0 \longrightarrow l_L(N) \longrightarrow L \longrightarrow N^*.$$

Thus $0 \neq l_L(N)/l_L(M)$ embeds in Ker $j^* \cong (M/N)^*$. Hence $(M/N)^* \neq 0$, so that $M/N \cong S_R$ and by Lemma 2.2(2) $(M/N)^* \cong {}_HS$.

(2) Since $l_L(M) \subset l_L(N)$ with $l_L(N)/l_L(M)$ simple, one can apply the part (1) to conclude that $r_K(l_L(M))/r_K(l_L(N))$ is simple. Thus, since $r_K(l_L(N)) = N \subset M \subset r_K(l_L(M))$ with both M/N and $r_K(l_L(M))/r_K(l_L(N))$ simple, it follows that $M = r_K(l_L(M))$.

Lemma 2.4. Let M be a submodule of K_R with $r_K(L) \subset M$ and $\ell(M/r_K(L)_R) < \infty$. Then the following hold.

- (1) Every composition factor of $M/r_K(L)_R$ is isomorphic to S_R .
- (2) $M = r_K(l_L(M)).$

Proof. Since $r_K(L) = r_K(l_L(r_K(L)))$, Lemma 2.3 enables us to make use of induction on $\ell(M/r_K(L)_R)$.

Lemma 2.5 ([8, Lemma 1.3]). $\ell({}_{H}L/l_{L}(K)) = \ell(K/r_{K}(L)_{R}).$

Proof. By symmetry we may assume $\ell(HL/l_L(K)) < \infty$. Let $l_L(K) = L_0 \subset L_1 \subset \cdots \subset L_n = L$ be a chain of submodules of HL with the L_{i+1}/L_i simple. Then by Lemma 2.3 we get a chain of submodules $r_K(L) = r_K(L_n) \subset \cdots \subset r_K(L_1) \subset r_K(L_0) = K$ in K_R with the $r_K(L_i)/r_K(L_{i+1})$ simple.

Lemma 2.6. Assume R is left perfect. Then the following are equivalent.

- (1) $\ell(K/r_K(L)_R) < \infty$.
- (2) $A_r(L, K)$ satisfies both the ACC and the DCC.
- (3) $A_r(L, K)$ satisfies the ACC.

Proof. $(1) \Rightarrow (2) \Rightarrow (3)$. Obvious.

 $(3)\Rightarrow (1)$. It follows by Lemma 2.4 that there exists a maximal element K_0 in the set of submodules M of K_R with $r_K(L)\subset M$ and $\ell(M/r_K(L)_R)<\infty$. We claim $K_0=K$. Otherwise, there exists a submodule M of K_R with $K_0\subset M$ and M/K_0 simple, a contradiction.

3. Simple-injective colocal modules

Throughout the rest of this note, A stands for a ring with Jacobson radical J. For any pair of a right module L_A and a left ideal K of A, we have a canonical bilinear map ${}_HL \times K_R \to {}_HLK_R$, $(x,a) \mapsto xa$, where $H = \operatorname{End}_A(L_A)$ and $R = \operatorname{End}_A({}_AK)^{\operatorname{op}}$, so that, in case ${}_HLK_R$ is a colocal bimodule, we can apply results of the preceding section.

Lemma 3.1. Let $L \in \operatorname{Mod} A^{\operatorname{op}}$ be a colocal module and $f \in A$ a local idempotent with $\operatorname{soc}(L_A) \cong fA/fJ$. Then the following hold.

- (1) $l_L(Af) = 0$.
- (2) $l_L(If) = l_L(I)$ for every right ideal I of A.
- (3) Lf_{fAf} is colocal with $soc(Lf_{fAf}) = soc(L_A)f$.

Proof. (1) For any $0 \neq x \in L$, since $soc(L_A) \subset xA$, $0 \neq soc(L_A)f \subset xAf$ and thus $x \notin l_L(Af)$.

- (2) We have $l_L(I) \subset l_L(If)$. For any $x \in l_L(If)$, since xIAf = xIf = 0, by the part (1) $xI \subset l_L(Af) = 0$ and $x \in l_L(I)$. Thus $l_L(If) \subset l_L(I)$.
- (3) Let $0 \neq x \in \text{soc}(L_A)f$. For any $0 \neq y \in Lf$, since $xA \subset yA$, $xfAf = xAf \subset yAf = yfAf$. Thus Lf_{fAf} is colocal and $\text{soc}(Lf_{fAf}) = \text{soc}(L_A)f$.

Lemma 3.2. Let $L \in \operatorname{Mod} A^{\operatorname{op}}$ and $f \in A$ a local idempotent. Then the following are equivalent.

- (1) L_A is colocal with $soc(L_A) \cong fA/fJ$.
- (2) Lf_{fAf} is colocal and $l_L(Af) = 0$.

Proof. (1) \Rightarrow (2). By (3) and (1) of Lemma 3.1.

 $(2)\Rightarrow (1)$. Since by Lemma 1.2(2) $E(L_A)f_{fAf}\cong E(Lf_{fAf})\cong E(fAf/fJf_{fAf})\cong E(fA/fJ_A)f_{fAf}$, by Lemma 1.2(3) $E(L_A)\cong \operatorname{Hom}_{fAf}(Af,E(L_A)f)_A\cong \operatorname{Hom}_{fAf}(Af,E(fA/fJ_A)f)_A\cong E(fA/fJ_A)$. Thus L_A is colocal with $\operatorname{soc}(L_A)\cong fA/fJ$.

Corollary 3.3. Let $e, f \in A$ be local idempotents. Then the following are equivalent.

- (1) $eA/l_{eA}(Af)_A$ is colocal with $soc(eA/l_{eA}(Af)_A) \cong fA/fJ$.
- (2) eAf_{fAf} is colocal.

Proof. Put $L = eA/l_{eA}(Af)_A$. Then $l_L(Af) = 0$ and, since $l_{eA}(Af)f = 0$, $Lf_{fAf} \cong eAf_{fAf}$. Thus Lemma 3.2 applies.

Following Harada [4], we call a module L_A M-simple-injective if for any submodule N of M_A every $\theta: N_A \to L_A$ with $\operatorname{Im} \theta$ simple can be extended to some $\phi: M_A \to L_A$. In case L is L-simple-injective, L is called simple-quasi-injective.

Lemma 3.4. Let $L \in \operatorname{Mod} A^{\operatorname{op}}$ be a colocal module and put $H = \operatorname{End}_A(L_A)$. Let $f \in A$ be a local idempotent with $\operatorname{soc}(L_A) \cong fA/fJ$. Then the following hold.

- (1) If L_A is A-simple-injective, then $M = r_{Af}(l_L(M))$ for every submodule M of Af_{fAf} .
- (2) If $_HLf_{fAf}$ is a colocal bimodule and $M=r_{Af}(l_L(M))$ for every submodule M of Af_{fAf} , then L_A is A-simple-injective.

- Proof. (1) Let M be a submodule of Af_{fAf} and put $N=r_{Af}(l_L(M))$. We claim M=N. Suppose otherwise. Note first that $l_L(N)=l_L(M)$. Since $(NA/MA)f\cong N/M\neq 0$, there exist right ideals K, I of A such that $MA\subset K\subset I\subset NA$ and $I/K\cong fA/fJ\cong \mathrm{soc}(L_A)$. Then we have $\theta:I_A\to L_A$ with $\mathrm{Im}\,\theta=\mathrm{soc}(L_A)$ and $\mathrm{Ker}\,\theta=K$. Let $\mu:I_A\to A_A$ be the inclusion. There exists $\phi:A_A\to L_A$ with $\phi\circ\mu=\theta$. Then $\phi(1)I=\phi(I)=\theta(I)\neq 0$ and $\phi(1)K=\phi(K)=\theta(K)=0$. Thus $\phi(1)\in l_L(K)$ and $\phi(1)\notin l_L(I)$. Since $l_L(N)=l_L(NA)\subset l_L(I)\subset l_L(K)\subset l_L(MA)=l_L(M),\ l_L(K)\neq l_L(I)$ implies $l_L(M)\neq l_L(N)$, a contradiction.
- (2) Let I be a nonzero right ideal of A and $\mu:I_A\to A_A$ the inclusion. Let $\theta:I_A\to L_A$ with $\mathrm{Im}\,\theta=\mathrm{soc}(L_A)$ and put $K=\mathrm{Ker}\,\theta$. Since by Lemma 1.2(1) $If/Kf_{fAf}\cong (I/K)f_{fAf}$ is simple, by Lemma 2.3(1) so is ${}_Hl_L(Kf)/l_L(If)$. Let $a\in If$ with $a\notin Kf$. Then, since $l_L(Kf)a\neq 0$ and $l_L(If)a=0$, ${}_Hl_L(Kf)a$ is simple. Thus by Lemmas 2.1 and 3.1(3) $l_L(Kf)a=\mathrm{soc}(Lf_{fAf})=\mathrm{soc}(L_A)f$, so that $\theta(a)=\theta(af)=\theta(a)f=xa$ for some $x\in l_L(Kf)$. Define $\phi:A_A\to L_A$ by $1\mapsto x$. Then, since by Lemma 3.1(2) $x\in l_L(Kf)=l_L(K)$, and since I=K+aA, we have $\phi\circ\mu=\theta$.
- **Lemma 3.5.** Let $L \in \operatorname{Mod} A^{\operatorname{op}}$ be a colocal module and put $H = \operatorname{End}_A(L_A)$. Let $f \in A$ be a local idempotent with $\operatorname{soc}(L_A) \cong fA/fJ$. Then the following hold.
 - (1) If L_A is simple-quasi-injective, then ${}_HLf_{fAf}$ is a colocal bimodule and $l_L(Af) = 0$.
 - (2) If L_A is A-simple-injective, then $r_{Af}(L) = 0$ and $r_A(L/LJ_A) \subset l_A(\operatorname{soc}(_AAf))$.
- Proof. (1) By Lemma 3.2 Lf_{fAf} is colocal and $l_L(Af)=0$. Let $0\neq x\in \mathrm{soc}(L_A)f$. We claim that $x\in Hy$ for all $0\neq y\in Lf$. Note that $r_{fA}(x)=fJ$. Let $0\neq y\in Lf$. Then $r_{fA}(y)\subset fJ=r_{fA}(x)$ and we have $\theta:yA_A\to xA_A=\mathrm{soc}(L_A)$, $ya\mapsto xa$. Let $\mu:\mathrm{soc}(L_A)\to L_A$ and $\nu:yA_A\to L_A$ be inclusions. There exists $h\in H$ with $h\circ \nu=\mu\circ \theta$, so that $x=h(y)\in Hy$. Thus HLf is colocal.
- (2) By Lemma 3.4(1) $r_{Af}(L) = r_{Af}(l_L(0)) = 0$. Next, let $a \in r_A(L/LJ)$. Since $La \subset LJ$, $La(\operatorname{soc}(_AAf)) \subset LJ(\operatorname{soc}(_AAf)) = 0$. Thus $a(\operatorname{soc}(_AAf)) \subset r_{Af}(L) = 0$ and $a \in l_A(\operatorname{soc}(_AAf))$.
- **Lemma 3.6** ([5, Lemma 3.3]). Let $L \in \operatorname{Mod} A^{\operatorname{op}}$ be a simple-quasi-injective module with $\operatorname{soc}(L_A) \neq 0$. Assume $\operatorname{End}_A(L_A)$ is a local ring. Then $\operatorname{soc}(L_A)$ is simple.

Proof. Let S be a simple submodule of $\operatorname{soc}(L_A)$. Suppose to the contrary that $S \neq \operatorname{soc}(L_A)$. Let $\pi : \operatorname{soc}(L_A) \to S_A$ be a projection and $\mu : \operatorname{soc}(L_A) \to L_A$, $\nu : S_A \to L_A$ inclusions. There exists $\phi : L_A \to L_A$ with $\phi \circ \mu = \nu \circ \pi$. Since π is not monic, ϕ is not an isomorphism. Thus $\phi \in \operatorname{rad} \operatorname{End}_A(L_A)$ and $(\operatorname{id}_L - \phi)$ is a unit in $\operatorname{End}_A(L_A)$, so that for $0 \neq x \in S$, since $\phi(x) = \pi(x) = x$, $(\operatorname{id}_L - \phi)(x) = 0$ and x = 0, a contradiction.

4. Injectivity of colocal modules

In this section, by extending the previous results [8, Theorems 2.7, 2.8 and Proposition 2.9], we provide several sufficient conditions for a colocal module over a left or right perfect ring A to be injective.

Lemma 4.1 ([5, Lemma 3.4]). Let A be a semiperfect ring and $L \in \operatorname{Mod} A^{\operatorname{op}}$ an A-simple-injective colocal module of finite Loewy length. Then L_A is injective.

Proof. Let I be a right ideal of A and $\mu:I_A\to A_A$ the inclusion. Let $\theta:I_A\to L_A$. We make use of induction on the Loewy length of $\theta(I)$ to show the existence of $\phi:A_A\to L_A$ with $\theta=\phi\circ\mu$. Let $n=\min\{k\geq 0|\theta(I)J^k=0\}$. We may assume n>0. Since $\mathrm{soc}(L_A)$ is simple, $\mathrm{soc}(L_A)=\theta(I)J^{n-1}=\theta(IJ^{n-1})$. Let μ_1 and θ_1 denote the restrictions of μ and θ to IJ^{n-1} , respectively. Then $\mathrm{Im}\,\theta_1=\mathrm{soc}(L_A)$ and there exists $\phi_1:A_A\to L_A$ with $\phi_1\circ\mu_1=\theta_1$. Since $(\theta-\phi_1\circ\mu)(I)J^{n-1}=0$, by induction hypothesis there exists $\phi_2:A_A\to L_A$ with $\phi_2\circ\mu=\theta-\phi_1\circ\mu$. Thus $\theta=(\phi_1+\phi_2)\circ\mu$.

Thorem 4.2. Let A be a semiperfect ring. Let $L \in \operatorname{Mod} A^{\operatorname{op}}$ be a colocal module of finite Loewy length and put $H = \operatorname{End}_A(L_A)$. Let $f \in A$ be a local idempotent with $\operatorname{soc}(L_A) \cong fA/fJ$. Then the following are equivalent.

- (1) L_A is injective.
- (2) $_{H}Lf_{fAf}$ is a colocal bimodule and $M=r_{Af}(l_{L}(M))$ for every submodule M of Af_{fAf} .

Proof. (1)
$$\Rightarrow$$
 (2). By Lemmas 3.5(1) and 3.4(1). (2) \Rightarrow (1). By Lemmas 3.4(2) and 4.1.

Corollary 4.3. Let A be a semiperfect ring. Let $L \in \operatorname{Mod} A^{\operatorname{op}}$ be a colocal module of finite Loewy length and put $H = \operatorname{End}_A(L_A)$. Let $f \in A$ be a local idempotent with $\operatorname{soc}(L_A) \cong fA/fJ$. Assume ${}_HLf_{fAf}$ is a colocal bimodule and $M = r_{Af}(l_L(M))$ for every submodule M of Af_{fAf} with $r_{Af}(L) \subset M$. Then L_A is quasi-injective.

Proof. Put $I = r_A(L)$. Then by Theorem 4.2 $L_{A/I}$ is injective, so that L_A is quasi-injective.

Thorem 4.4. Let A be a left or right perfect ring. Let $L \in \operatorname{Mod} A^{\operatorname{op}}$ be a colocal module and put $H = \operatorname{End}_A(L_A)$. Let $f \in A$ be a local idempotent with $\operatorname{soc}(L_A) \cong fA/fJ$. Assume $\ell(Af/r_{Af}(L)_{fAf}) < \infty$. Then the following are equivalent.

- (1) L_A is injective.
- (2) $_{H}Lf_{fAf}$ is a colocal bimodule and $r_{Af}(L) = 0$.

(3) $_{H}Lf_{fAf}$ is a colocal bimodule and $M = r_{Af}(l_{L}(M))$ for every submodule M of Af_{fAf} .

Proof. (1) \Rightarrow (2). By Lemma 3.5.

- $(2) \Rightarrow (3)$. By Lemma 2.4.
- $(3)\Rightarrow (1)$. By Lemma 3.4(2) L_A is A-simple-injective. Note that $r_{Af}(L)=r_{Af}(l_L(0))=0$. Thus $\ell(Af_{fAf})<\infty$ and by Lemma 1.1 $J^nf=0$ for some $n\geq 1$, so that $LJ^nAf=LJ^nf=0$ and by Lemma 3.1(1) $LJ^n\subset l_L(Af)=0$. Hence by Lemma 4.1 L_A is injective.
- **Corollary 4.5.** Let A be a left or right perfect ring. Let $L \in \operatorname{Mod} A^{\operatorname{op}}$ be a colocal module and put $H = \operatorname{End}_A(L_A)$. Let $f \in A$ be a local idempotent with $\operatorname{soc}(L_A) \cong fA/fJ$. Assume ${}_HLf_{fAf}$ is a colocal bimodule and $\ell(Af/r_{Af}(L)_{fAf}) < \infty$. Then L_A is quasi-injective.

Proof. Put $I = r_A(L)$. Then $r_{Af/If}(L) = 0$ and by Theorem 4.4 $L_{A/I}$ is injective, so that L_A is quasi-injective.

Proposition 4.6. Let A be a left or right perfect ring. Let $L \in \operatorname{Mod} A^{\operatorname{op}}$ be a colocal module and put $H = \operatorname{End}_A(L_A)$. Let $f \in A$ be a local idempotent with $\operatorname{soc}(L_A) \cong fA/fJ$. Then the following are equivalent.

- (1) L_A is injective and $X = l_L(r_{Af}(X))$ for every submodule X of HL.
- (2) $_HLf_{fAf}$ is a colocal bimodule, $r_{Af}(L) = 0$ and $\ell(Af_{fAf}) < \infty$.
- Proof. (1) \Rightarrow (2). By Lemma 3.5(1) $_HLf_{fAf}$ is a colocal bimodule, and by Lemma 3.5(2) $r_{Af}(L)=0$. It remains to show $\ell(Af_{fAf})<\infty$. Put $K_n=Af(fJf)^n$ for $n\geq 0$. We claim $\ell(K_n/K_{n+1}{}_{fAf})<\infty$ for all $n\geq 0$. Let $n\geq 0$. Note that by Lemma 3.4(1) the lattice of submodules of Af_{fAf} is anti-isomorphic to the lattice of submodules of $_HL$. Thus $\ell(K_n/K_{n+1}{}_{fAf})=\ell(H_L(K_{n+1})/l_L(K_n))$. Also, since $\mathrm{rad}(K_n/K_{n+1}{}_{fAf})=0$, $_Hl_L(K_{n+1})/l_L(K_n)$ is semisimple. For any submodule X of $_HL$, since $r_{Af}(X)=r_A(X)f$, by Lemma 3.1(2) $X=l_L(r_{Af}(X))=l_L(r_A(X)f)=l_L(r_A(X))$. Thus by Lemma 1.6 $_HL\cong \mathrm{Hom}_A(A_A, _HL_A)$ is linearly compact, so is $_Hl_L(K_{n+1})/l_L(K_n)$ by [10, Proposition 2.2]. Hence by [10, Lemma 2.3] $\ell(K_n/K_{n+1}{}_{fAf})=\ell(_Hl_L(K_{n+1})/l_L(K_n))<\infty$. Since $\ell(fJf/(fJf)_{fAf}^2)<\ell(K_1/K_{2fAf})<\infty$, by [9, Lemma 11] fAf is right artinian. Then $\ell(K_0/K_{1fAf})<\infty$ implies $\ell(Af_{fAf})<\infty$.
- $(2)\Rightarrow (1)$. By Theorem 4.4 L_A is injective. Since by Lemma 3.1(1) $l_L(Af)=0$, by Lemma 2.5 $\ell(H_AL)=\ell(Af_{Af})<\infty$ and thus by Lemma 2.4 $X=l_L(r_{Af}(X))$ for every submodule X of H_AL .

5. Colocal pairs

We call a pair (eA, Af) of a right ideal eA and a left ideal Af in A a colocal pair if $e, f \in A$ are local idempotents and $_{eAe}eAf_{fAf}$ is a colocal bimodule. Note that by Lemma 2.5 $\ell(_{eAe}eA/l_{eA}(Af)) = \ell(Af/r_{Af}(eA)_{fAf})$ for every colocal pair (eA, Af) in A. In case $\ell(_{eAe}eA/l_{eA}(Af)) = \ell(Af/r_{Af}(eA)_{fAf}) < \infty$, a colocal pair (eA, Af) in A is called finite.

In [5], a pair (eA, Af) of a right ideal eA and a left ideal Af in A is called an i-pair if $e, f \in A$ are local idempotents, eA_A is colocal with $soc(eA_A) \cong fA/fJ$ and AAf is colocal with $soc(AAf) \cong Ae/Je$.

Lemma 5.1. Let $e, f \in A$ be local idempotents. Then the following are equivalent.

- (1) (eA, Af) is an i-pair in A.
- (2) (eA, Af) is a colocal pair in A with $l_{eA}(Af) = 0$ and $r_{Af}(eA) = 0$.

Proof. (1)
$$\Rightarrow$$
 (2). By (1) and (3) of Lemma 3.1. (2) \Rightarrow (1). By Corollary 3.3.

The equivalence $(1) \Leftrightarrow (2)$ of the next lemma has been established in [5, Theorem 3.7]. Here we provide another proof of the implication $(2) \Rightarrow (1)$ which does not appeal to Morita duality.

Lemma 5.2 ([5, Theorem 3.7]). Let (eA, Af) be an i-pair in a left or right perfect ring A. Then the following are equivalent.

- (1) (eA, Af) is finite.
- (2) Both eA_A and $_AAf$ are injective.
- (3) eA_A is injective and ${}_AAf$ is A-simple-injective.

Proof. (1) \Rightarrow (2). By Theorem 4.4.

- $(2) \Rightarrow (3)$. Obvious.
- (3) \Rightarrow (1). It follows by Lemma 3.4(1) that $X = l_{eA}(r_{Af}(X))$ for every submodule X of $_{eAe}eA$. Thus by Proposition 4.6 $\ell(Af_{fAf}) < \infty$.

Lemma 5.3. Let (eA, Af) be a finite colocal pair in a left or right perfect ring A. Then the following hold.

- (1) $eA/l_{eA}(Af)_A$ is a quasi-injective colocal module with $soc(eA/l_{eA}(Af)_A) \cong fA/fJ$.
- (2) If $r_{Af}(eA) = 0$, then $E(fA/fJ_A) \cong eA/l_{eA}(Af)$, so that $E(fA/fJ_A)$ is quasi-projective and $eA/l_{eA}(Af)_A$ is injective.

Proof. Put $I=l_A(Af)$ and $L=eA/eI_A$. Then $l_{eA}(Af)=eI$ and $l_L(Af)=0$. Note that, since If=0, $Lf_{fAf}\cong eAf_{fAf}$. Thus by Lemma 3.2 L_A is colocal with $\mathrm{soc}(L_A)\cong fA/fJ$. Since $Lf_{fAf}\cong eAf_{fAf}$ and $H=\mathrm{End}_A(L_A)\cong eAe/eIe$, $_HLf_{fAf}$ is a colocal bimodule. Note also that $\ell(Af/r_{Af}(L)_{fAf})=\ell(Af/r_{Af}(eA)_{fAf})<\infty$.

- (1) By Corollary 4.5 L_A is quasi-injective.
- (2) By Theorem 4.4 L_A is injective. Thus, since $soc(L_A) \cong fA/fJ$, $E(fA/fJ_A) \cong L$. Since $L_{A/I} \cong e(A/I)_{A/I}$ is projective, L_A is quasi-projective.

Proposition 5.4. Let (eA, Af) be a colocal pair with $l_{eA}(Af) = 0$ in a left or right perfect ring A. Put $\overline{A} = A/r_A(eA)$. Let $\pi : A \to \overline{A}$ be the canonical ring homomorphism and put $\overline{e} = \pi(e)$, $\overline{f} = \pi(f)$. Then the following are equivalent.

- (1) (eA, Af) is finite.
- (2) eA_A is quasi-injective, eA_eeA is finitely generated and $eAf/r_{Af}(eA)$ is injective.
- (3) $(\bar{e}\overline{A}, \overline{A}\bar{f})$ is a finite i-pair in \overline{A} .

Proof. Note first that \overline{A} is left or right perfect and \overline{e} , $\overline{f} \in \overline{A}$ are local idempotents. Put $I = r_A(eA)$. Then eI = 0 and $If = r_{Af}(eA)$. Thus $\ell(\overline{eA}\overline{e}\overline{A}) = \ell(eAeA)$ and, since $eAeA\overline{eA}f_{fAf} \cong eAeAf_{fAf}$ is a colocal bimodule, $(\overline{e}\overline{A}, \overline{A}\overline{f})$ is a colocal pair in \overline{A} .

- (1) \Rightarrow (2). By Lemma 5.3(1) eA_A is quasi-injective, and by Lemma 5.3(2) $_AAf$ $/r_{Af}(eA)$ is injective. Also, since $\ell(_{eAe}eA)<\infty$, $_{eAe}eA$ is finitely generated.
- $(2)\Rightarrow (3)$. By [3, Corollary 5.6A] $\overline{e}\overline{A}_{\overline{A}}\cong eA_{\overline{A}}$ is injective. Also, since ${}_{A}\overline{A}\overline{f}\cong Af/r_{Af}(eA)$ is injective, so is ${}_{\overline{A}}\overline{A}\overline{f}$. It is obvious that $r_{\overline{A}}(\overline{e}\overline{A})=0$. For any $a\in l_{eA}(\overline{A}\overline{f})$, since $aAf\subset If$, $aAf=eaAf\subset eIf=0$ and $a\in l_{eA}(Af)=0$. It follows that $l_{\overline{e}\overline{A}}(\overline{A}\overline{f})=0$. Thus by Lemmas 5.1 and 5.2 $(\overline{e}\overline{A},\overline{A}\overline{f})$ is a finite i-pair in \overline{A} .
 - $(3) \Rightarrow (1)$. Obvious.

Corollary 5.5. Let (eA, Af) be an i-pair in a left or right perfect ring A. Then the following are equivalent.

- (1) (eA, Af) is finite.
- (2) eA_A is quasi-injective, eA_eeA is finitely generated and AAf is injective.

6. Applications of colocal pairs I

In this section, as applications of colocal pairs, we extend recent results of Baba [1, Theorems 1 and 2] to left perfect rings and provide simple proofs of them.

Lemma 6.1. Let A be a left perfect ring and $e \in A$ a local idempotent. Assume ${}_AE = E({}_AAe/Je)$ is quasi-projective. Then ${}_AE/JE$ is simple and for a local idempotent $f \in A$ with ${}_AE/JE \cong Af/Jf$ the following hold:

- (a) $_AE \cong Af/r_{Af}(eA)$;
- (b) $_{eAe}eAf \cong {_{eAe}eE}$ is injective; and
- (c) (eA, Af) is a colocal pair in A with $l_{eA}(Af) = 0$.

Proof. Put $I=l_A(E)$. By Lemma 1.4 there exists a local idempotent $f\in A$ such that ${}_AE\cong Af/If$. We claim $If=r_{Af}(eA)$. Since by Lemma 3.5(2) $eAIf=eIf\subset l_{eA}(E)=0$, $If\subset r_{Af}(eA)$. Conversely, let $a\in r_{Af}(eA)$. Then eA(a+If)=0 and by Lemma 3.1(1) $(a+If)\in r_{Af/If}(eA)=0$, so that $a\in If$. Next, since $e(r_{Af}(eA))=0$, $eAeeE\cong eAee(Af/r_{Af}(eA))\cong eAeeAf$. Thus eAeeAf is colocal by Lemma 3.1(3) and injective by Lemma 1.2(2). Also, since $\operatorname{End}_A(AAf/If)\cong fAf/fIf$, by Lemma 3.5(1) eAf_{fAf} is colocal. Finally, by Lemma 3.5(2) $l_{eA}(Af)\subset l_{eA}(Af/r_{Af}(eA))=l_{eA}(E)=0$.

Thorem 6.2 (cf. [1, Theorem 1]). Let A be a left perfect ring and $e, f \in A$ local idempotents. Put $E = E({}_AAe/Je)$. Assume $\ell(Af/r_{Af}(eA)_{fAf}) < \infty$. Then the following are equivalent.

- (1) eA_A is quasi-injective with $soc(eA_A) \cong fA/fJ$.
- (2) $_AE$ is quasi-projective with $_AE/JE \cong Af/Jf$.
- (3) (eA, Af) is a colocal pair in A with $l_{eA}(Af) = 0$.
- (4) $_{eAe}eAf$ is colocal and $soc(eA_A) \cong fA/fJ$.

Proof. (1) \Rightarrow (3). By Lemma 3.5(1).

- $(3) \Rightarrow (1)$. By Lemma 5.3(1).
- $(2) \Rightarrow (3)$. By Lemma 6.1.
- $(3) \Rightarrow (2)$. By Lemma 5.3(2).
- $(3) \Rightarrow (4)$. By Corollary 3.3.
- $(4) \Rightarrow (3)$. By (3) and (1) of Lemma 3.1.

Lemma 6.3. Let (eA, Af) be a colocal pair in a left or right perfect ring A. Put $E = E(_AAe/Je)$ and $H = \operatorname{End}_A(_AE)^{\operatorname{op}}$. Assume $\operatorname{soc}(eA_A)f \neq 0$. Then the following hold.

П

- (1) $soc(eA_A)fA$ is the unique simple submodule of eA_A which is isomorphic to fA/fJ_A .
- (2) If (eA, Af) is finite, then ${}_AE_H$ contains a subbimodule X such that ${}_AX \cong Af/r_A(eA)f$, ${}_{eAe}eX_H$ is a colocal bimodule, $\operatorname{soc}(eA_A)fA \cap l_{eA}(X) = 0$ and $\ell({}_{eAe}eA/l_{eA}(X)) < \infty$.

Proof. (1) Since $soc(eA_A)f \neq 0$, eA_A contains a simple submodule $K \cong fA/fJ$. On the other hand, by Corollary 3.3 $eA/l_{eA}(Af)_A$ is colocal with $soc(eA/l_{eA}(Af)_A) \cong fA/fJ$. Thus K is the unique simple submodule of eA_A which is isomorphic to fA/fJ. It follows that $K = soc(eA_A)fA$.

(2) Put $I=r_A(eA)$. Then $If=r_{Af}(eA)$ and by Lemma 5.3(1) ${}_AAf/If$ is a quasi-injective colocal module with $\operatorname{soc}({}_AAf/If)\cong Ae/Je$. Thus ${}_AE$ contains a submodule $X\cong {}_AAf/If$. Then by Lemma 1.3 $XH\subset X$. Since by Lemma 3.5(1) ${}_{eAe}eE_H$ is a colocal bimodule, so is ${}_{eAe}eX_H$. Also, since eI=0, $\operatorname{soc}(eA_A)fA(Af/If)\cong\operatorname{soc}(eA_A)fAf\neq 0$. Thus $\operatorname{soc}(eA_A)fA\cap l_{eA}(X)=0$. Finally, since $l_{eA}(X)=l_{eA}(Af)$, $l_{eAe}eA/l_{eA}(X)=l_{eAe}(Af)$, $l_{eAe}eA/l_{eA}(X)=l_{eAe}(Af)$.

Lemma 6.4. Let A be a left perfect ring and $e \in A$ a local idempotent. Put $E = E({}_{A}Ae/Je)$ and $H = \operatorname{End}_A({}_{A}E)^{\operatorname{op}}$. Assume $\operatorname{soc}(eA_A) \cong \bigoplus_{i=1}^n f_iA/f_iJ$ with the (eA, Af_i) finite colocal pairs in A. Then $f_iA/f_iJ \not\cong f_jA/f_jJ$ for $i \neq j$, $\ell(E_H) = \ell({}_{eAe}eA) < \infty$ and ${}_{A}E/JE \cong \bigoplus_{i=1}^n Af_i/Jf_i$.

Proof. By Lemma 6.3(1) $f_iA/f_iJ \not\cong f_jA/f_jJ$ for $i \neq j$. Also, for each $1 \leq i \leq n$, by Lemma 6.3(2) ${}_AE_H$ contains a subbimodule X_i such that ${}_AX_i \cong Af_i/r_A(eA)f_i$, ${}_{eAe}eX_{iH}$ is a colocal bimodule, $\operatorname{soc}(eA_A)f_iA \cap l_{eA}(X_i) = 0$ and $\ell({}_{eAe}eA/l_{eA}(X_i)) < \infty$. Put ${}_AX_H = \sum_{i=1}^n X_i$. Then, by Lemmas 3.1(1) and 2.5 $\ell(X_{iH}) = \ell({}_{eAe}eA/l_{eA}(X_i)) < \infty$ for all $1 \leq i \leq n$, so that $\ell(X_H) < \infty$. Also, since $\operatorname{soc}(eA_A)f_iA \cap l_{eA}(X) = 0$ for all $1 \leq i \leq n$, by Lemma 6.3(1) $\operatorname{soc}(eA_A) \cap l_{eA}(X) = 0$. Thus, since eA_A has essential socle, $l_{eA}(X) = 0$. Since by Lemma 3.5(1) ${}_{eAe}eE_H$ is a colocal bimodule, so is ${}_{eAe}eX_H$. Thus by Lemma 2.5 $\ell({}_{eAe}eA) = \ell(X_H) < \infty$. Since by Lemma 1.3 we have a surjective ring homomorphism $\rho_X : H \to \operatorname{End}_A({}_AX)^{\operatorname{op}}$, $h \mapsto h|_X$, it follows by Theorem 4.4 that ${}_AX$ is injective. Thus X = E and we have an epimorphism $\bigoplus_{i=1}^n Af_i/Jf_i \to {}_AE/JE$. On the other hand, since $f_iA/f_iJ \not\cong f_jA/f_jJ$ for $i \neq j$, it follows by Lemma 3.5(2) that ${}_AE/JE$ has a direct summand which is isomorphic to $\bigoplus_{i=1}^n Af_i/Jf_i$. Thus ${}_AE/JE \cong \bigoplus_{i=1}^n Af_i/Jf_i$.

Thorem 6.5 (cf. [1, Theorem 2]). Let A be a left perfect ring and e, f_1, f_2, \cdots , $f_n \in A$ local idempotents. Put $E = E({}_AAe/Je)$. Assume (eA, Af_i) is a finite colocal pair in A for all $1 \le i \le n$. Then the following are equivalent.

- (1) $\operatorname{soc}(eA_A) \cong \bigoplus_{i=1}^n f_i A / f_i J$.
- (2) $_{A}E/JE \cong \bigoplus_{i=1}^{n} Af_{i}/Jf_{i}$.

Proof. (1) \Rightarrow (2). By Lemma 6.4.

 $(2)\Rightarrow (1)$. It follows by Lemmas 3.5(2) and 6.3(1) that $\operatorname{soc}(eA_A)$ is isomorphic to a direct summand of $\bigoplus_{i=1}^n f_i A/f_i J$. We may assume $\operatorname{soc}(eA_A)\cong \bigoplus_{i=1}^r f_i A/f_i J$ for some $1\leq r\leq n$. Then by Lemma 6.4 ${}_AE/JE\cong \bigoplus_{i=1}^r Af_i/Jf_i$, so that r=n.

7. Applications of colocal pairs II

In this section, we provide some other applications of colocal pairs. Recall that a set $\{e_1, \dots, e_n\}$ of orthogonal local idempotents in a semiperfect ring A is called

basic if $(\sum_{i=1}^{n} e_i) A(\sum_{i=1}^{n} e_i)$ is a basic ring of A.

Lemma 7.1 ([5, Lemma 3.5]). Let A be a semiperfect ring and $\{e_1, \dots, e_n\}$ a basic set of orthogonal local idempotents in A. Assume every e_iA_A is A-simple-injective and has essential socle. Then there exists a permutation ν of the set $\{1, \dots, n\}$ such that $(e_iA, Ae_{\nu(i)})$ is an i-pair in A for all $1 \le i \le n$.

Proof. By [5, Lemma 3.5] there exists a mapping $\nu:\{1,\cdots,n\}\to\{1,\cdots,n\}$ such that $(e_iA,Ae_{\nu(i)})$ is an *i*-pair in A for all $1\leq i\leq n$. Then by the definition of *i*-pairs ν is injective.

Corollary 7.2. Let A be a left perfect ring. Assume A_A is simple-quasi-injective. Then E(AA) and $E(A_A)$ are injective cogenerators in Mod A and Mod A^{op} , respectively.

Lemma 7.3. Let A be a left perfect ring. Assume $A_r(A, A)$ satisfies the ACC and eA_A is simple-quasi-injective for every local idempotent $e \in A$. Then A is left artinian.

Proof. It suffices to show that $\ell(eAeeA) < \infty$ for every local idempotent $e \in A$. Let $e \in A$ be a local idempotent. Since by Lemma 3.6 eA_A is colocal, there exists a local idempotent $f \in A$ with $\operatorname{soc}(eA_A) \cong fA/fJ$. By Lemma 3.5(1) (eA, Af) is a colocal pair in A with $\ell_{eA}(Af) = 0$. For each $M \in \mathcal{A}_r(eA, Af)$, put $\hat{M} = r_A(\ell_{eA}(M)) \in \mathcal{A}_r(A, A)$. Then $\hat{M}f = r_Af(\ell_{eA}(M)) = M$ for every $M \in \mathcal{A}_r(eA, Af)$. Thus, for $M, N \in \mathcal{A}_r(eA, Af)$ with $M \subset N$, $\hat{M} \subset \hat{N}$ and $\hat{M} = \hat{N}$ implies $M = \hat{M}f = \hat{N}f = N$. It follows that $\mathcal{A}_r(eA, Af)$ satisfies the ACC. Thus by Lemmas 2.5 and 2.6 $\ell(eAeeA) = \ell(Af/r_{Af}(eA)_{fAf}) < \infty$.

Corollary 7.4. Let A be a left perfect ring. Assume $A_r(A, A)$ satisfies the ACC and A_A is simple-quasi-injective. Then A is quasi-Frobenius.

Proof. By Lemma 7.3 A is left artinian. Then it follows by Lemmas 3.6 and 4.1 that A_A is injective.

References

^[1] Y. Baba: Injectivity of quasi-projective modules, projectivity of quasi-injective modules and projective cover of injective modules, J. Algebra 155(1993), 415-434.

^[2] H. Bass: Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95(1960), 466–488.

^[3] C. Faith: Injective modules and injective quotient rings, Pure and Applied Math. 72, Marcel Dekker, 1982.

- [4] M. Harada: Note on almost relative projectives and almost relative injectives, Osaka J. Math. 29(1992), 435–446.
- [5] M. Hoshino and T. Sumioka: Injective pairs in perfect rings, Osaka J. Math. 35(1998),501-508.
- [6] R. E. Johnson and E. T. Wong: Quasi-injective modules and irreducible rings, J. London Math. Soc. 36(1961), 260–268.
- [7] B. J. Müller: Linear compactness and Morita duality, J. Algebra 16(1970), 60-66.
- [8] M. Morimoto and T. Sumioka: Generalizations of theorems of Fuller, Osaka J. Math. 34(1997),689-701.
- [9] B. L. Osofsky: A generalization of quasi-Frobenius rings, J. Algebra 4(1966), 373–387; Erratum, 9(1968), p. 120.
- [10] F. L. Sandomierski: *Linearly compact modules and local Morita duality*, Proc. Conf. Ring Theory, Utah 1971, Academic Press, 1972, 333–346.
- [11] L. E. T. Wu and J. P. Jans: On quasi-projectives, Illinois J. Math. 11(1967), 439-448.

M. Hoshino Institute of Mathematics University of Tsukuba Ibaraki, 305-8571 Japan

T. Sumioka Department of Mathematics Osaka City University Osaka, 558-8585 Japan