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1. Introduction

The main purpose of this paper is to prove:

Theorem 1.1. For a Young diagram λ = (λi, λ2, λ 3 , . . . ) , sχ(x) = s\(xι,X2,X3,

...) denotes the corresponding Schur function, and, for each node v in the diagram

λ, h(υ) denotes the hook length of λ at υ. Then we have the following identity with a

parameter q:

(i i) Σ Π
λ i r=0

where

1 4_ sjh(v)

= Π jzfa'
ex qvex

and the sum on the left 0/(1.1) is taken over all Young diagrams λ.

When q = 0, (1.1) reduces to the identity

(1.3)

due to Schur and Littlewood (see [12], I, 5, Ex. 4). On the other hand, when x\ — z

and X2 — £3 = = 0, (1.1) reduces to the t = q case of the g-binomial theorem
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(see, e.g., [2]):

(1.4)

Using the Frobenius character formula relating Schur functions with irreducible char-

acters of symmetric groups, we see that Theorem 1.1 is equivalent to:

Theorem 1.2. For a Young diagram λ with n nodes, \χ denotes the correspond-

ing irreducible character of the symmetric group 5 n , and Iχ(q) as in (1.2). Then we

have

(1.5) Iλ(q) = I " 1

|

(1.6)
\X\=n

where p : Sn -> GLn(Z) is the representation of Sn by permutation matrices.

At q = 0, the identities (1.5) and (1.6) reduce to well-known ones.

Let ψW be the Adams operator of the second order acting on the space of gen-

eralized characters of Sn; ψ^ is defined by

(1.7)

or by

d 8 )

where χχ ^ and χx a are the symmetric and anti-symmetric squares of \χ respective-

ly (see [15], 2.1). By (1.8), for any pair of Young diagrams λ,μ with n nodes, there

exists a unique integer dχμ such that

(1.9)

We are interested in the coefficients dχμ. See [16], [14] for some of the known results

on this and related problems. See also [5] (p.380, Appendix I.D) from which one can

read off the values of dχμ (and also similar coefficients for the Adams operators of
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higher orders) for n < 8.

Using Theorem 1.2 and a known formula [8], [13], [16], [4] for the sum

15 " 1

we get the following.

Theorem 1.3. For Young diagrams λ and μ with n nodes, let d\μ be as in (1.9).

Then we have

(1.10) JA(,) = Σ dXμ f ^
\μ\=n v=v(i,j)eμ

where υ = υ(i,j) denotes the node at the intersection of the i-th row and the j-th

column of the diagram μ.

Theorem 1.1-Theorem 1.3 will be proved in Section 3 after some preparations in

Section 2.

Viewing (1.10) as a set of identities for series in q and comparing coefficients of the

corresponding terms on the both hand sides, we get many relations for d\μ's. The first

three of these are :

(1.11) d λ(n) = 1 (well-known),

(1.12) dλ(n) + dλ(n-i,i) = ^ i \

(1.13) 2d λ ( n ) + 3 d A ( n _ i f i ) + d λ ( n _ 2 f 2 ) +d λ (n-2,i 2 ) = (N*)2 + N£,n > 3,

where

(1.14) Nf = \{ve\\h(v) = i}l

and we understand

d\(ktim) =0, if k < I.

Using these results as well as related techniques, we can determine some of the d\μ's

explicitly. Here are examples:

(1.15) <*A<n-x,i) = Nϊ - 1,

(1.16) dλ(n-2,2) = # i W - 2) + N£,n > 2,

(1.17) dλ(n-2,ia) = - - N ί + 1»
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(1.18) dλ(in) =

(1.19) dλ(2 fi"-a) =

in Frobenius notation,

0, otherwise.

( - l ) Σ α % if λ ^ λ ' and λ = σ U o

for σ = ( α i , . . . , α p | α i , . . . , α p ) ,

- ( - l ) Σ α > , if λ = ( α i , . . . , α p I α i , . . . , α p ) with α p ^ 0,

0, otherwise,

where λ' denotes the diagram conjugate to λ, and λ = σ U o means λ is obtained by

adding just one node to a self-conjugate diagram σ.

We can also give an algorithm for the computation of dχμ for any diagrams λ and μ.

Although our algorithm is not very practical in general, it is rather efficient when μ is

of hook-shape. This and (1.15)—(1.19) will be discussed in Section 4.

Our main result (1.1) is a partial generalization of the g-binomial theorem (1.4); a

full generalization seems to have the following form.

Conjecture. We have

_ TTTT 1 + tXjqr γr YJ 1 - t2Xj
-11111 _ xqr 1111 j _ x

i r=0 τ^ i<j r=0 ι

1 — t2XiXjq

iXjq

,2r

2r

where P\(x;q2,t2) denote the Macdonald symmetric functions (see [12], IV), and

a(υ) and l(v) are the arm-length and the leg-length (see Section 5) of λ at the node

v respectively.

For t = -q, (1.20) reduces to the Schur-Littlewood identity (1.3), for t = q, to

our (1.1), and, for x\ — z and x2 = X3 — •• = 0, to the g-binomial Theorem (1.4).

Moreover, for q = 0, (1.20) reduces to the following identity, which was essentially

proved (using representation theory of general linear groups over finite fields) in [6]:

Π
a(v)=0

where P\{x\t2) denote the Hall-Littlewood symmetric functions (see [12]). See Sec-

tion 5 for the identity (1.21) (and another identity proved in the same way).
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2. Preliminaries

2.1. Partitions and diagrams. A partition

(2.1) λ = (λ i ,λ2, . . . ,λ r , . . . )

is an infinite sequence of non-negative integers Xi in non-decreasing order:

λi > λ2 > > λ r > •

containing finitely many non-zero terms. In the expression (2.1), zero terms are often

omitted. If rπi(X) is the number of times i(φ 0) occurs as a term of the partition (2.1),

we also write

The number of non-zero terms (or parts) of λ is denoted by Z(λ). A partition (2.1)

is often identified with the Young diagram with l(λ) rows whose i-th row contains

exactly λ; nodes. The number of nodes in the diagram λ is denoted by |λ|, namely

We define the partition λ' conjugate to λ by

λ = (λ1 ? λ 2 , . . .))

where λ̂  is the number of nodes in the i-th column of the diagram λ. If λ = λ', we

say that λ is self-conjugate. For the node υ = v(i,j) of λ at the intersection of the

z'-th row and the j-th column, the corresponding hook length h(v) is defined by

h(v) = λi + λj - i - j + 1.

We also need Frobenius notation for partitions. Let λ = (λ i ,λ 2 , . . . ) be a partition.

Putting

p = max{i | λ; > ί) — max{i | X!{ > i},

and

o>i = λj - i, βi = λ - z, 1 < i < p,

we denote the partition λ by

λ = (a1,a2,...,ap \ βι,β2, .. ,βP).
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2.2. Symmetrizing operators and Schur functions. Let Fn be the ring of se-

ries in n variables xι,x2,... ,x n For an element / of Fn, and an element s of the

symmetric group 5 n , we put

fS(xχ,X2, . , Xn) = /(Zβ-i(l), »β-1(2)> J V 1 ^ ) ) -

The symmetrizing operator [10]

π n : F n —> Fn

is defined by

(2.2) π n ( / ) = ( Π ( x ' - χ i ) ) Σ sgn(β)(/s4(n))', / G Fn>

where

X — Xj X2 •''n—1

The following properties of τrn are easy to see.

(2.3) πn(f)° = π n ( / ) , / € F n , β G 5 n .

(2.4) *n(fg) = f*n(9),

where f,geFn and f8 = f for any s G 5 n .

(2.5) π n ( / ) G Z[a?i,X25 .,«n], if / € Z[xux2,... ,a?n]-

(2.6) M * ; 1 ^ 8 ••.*«»)=<),

unless α< + n — i , l < i < n , are all distinct.

Let λ = (λi, λ2,.. •) be a partition with l(X) < n. Then the symmetric polynomial

(2.7) 8\{XUX2, ,Xn) = 7Γn(x^X^2 - X*n)

is called the Schur polynomial in n variables corresponding to λ. It is easy to see that

which implies that we can define the Schur function [12]

in infinite variables x = (xι,x2, ) by letting n ->• oo in (2.7).
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Lemma 2.1 ([10]). Let πn and sχ(xι,x2, .. , # n ) be as above. Then:

(i) Let λ = (λi,λ2,...) be a partition with l(\) < n — 1, and m a non-negative
integer. Then we have

πn(sx(xι, x2, , xn-i)x™) = 0

if rn = \i 4- n — z /or .som^ 1 < i < n — 1, and

otherwiseywhere the element w = i/;(λ,m) o/ 5 n αnί/ ίΛ̂  partition μ = μ(λ,ra)
αr^ uniquely determined by the conditions:

(μ) n

and

(ii)

λi + n — 1, X2 + n — 2, . . . , λ n_i + 1, m)

= w(μι +n-l,μ2 + n - 2,... ,μ n ) .

/ " - 1 \ f 1 if n is odd;
πn[ll(l-XiXn))=< .

\ " / [ 1-xi^ a n, if n is even.

Proof. (i) Let {u>i,.. . ,w n } C 5 n be a set of representatives of the coset
5 n _ i \ 5 n . Then, by (2.2)-(2.4) and (2.7),

f }

2 sgnW^ ^lV^-^Γίxi Xn-Ox̂
*" s 6 S i >s6S n _
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We have shown

πn(sχ(xU . . . , Zn-lX 1 ) = TΓnfrί1 X^X™).

Hence Part (i) follows from (2.6) and (2.7).

(ii) We have

jj(l -xiXn) = Σ(-l)k{ £ xhxi2 xΛxk

n.
i=l k=0 ^ ii<Ϊ2< <ik<n '

On the other hand, by (2.6), we have

πn(xiiXi2 '"χik

χkn) = °> k > OJi <i2 <-" <ik <n

unless n is even, k = n/2, and ( ϊ i , i 2 , . . . ,ifc) = ( 1 , 2 , . . . , n / 2 ) . Moreover, by (2.2)
and (2.4), we have

πn{x1x2 - .xn/2Xn/2) = ( - l ) " 7 2 " 1 ^

if n is even. Now Part (ii) follows. D

For a positive integer k, we put

and, for an element s of the symmetric group 5 n , we put

Ps (») = Pμi (Φμ2 (X)'- Pμn (X),

where (μi,μ2? A*n) (ΣiA^t = n ) i s the cycle-type of s. For a partition λ with|λ| =
n, XA denotes the corresponding irreducible character of Sn. This means

(2.8) 8λ(x) = \Sn\-1

s€Sn

(Frobenius character formula).

2.3. Adams operator. The following lemma relates the infinite product

r=0 lH i<j r=0
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appearing on the right hand side of (1.20) to the Adams operator ψ^ (see (1.7) and

(1.8)).

Lemma 2.2. Let A(x;q,t) be the infinite product (2.9). For a partition λ, let

aχ(q,t) be a function in q and t defined by

(2.10) A(x;q,t) =
x

Then we have

where n — |λ|, and pn : Sn —> GLn(Z) is the representation of Sn by permutation

matrices.

Proof. We calculate, as in [12], p.120, Ex.11,

log A(x;q,t) =
i r

Σ Σ 2 2 ~ log(l - Xi

ί {~tXi<f)k {XiqT)k

i r k=l ^

{~tXi<f)k i { XiqT)k)

j r fc=l

1 {-txj)k

k

2xiXj)
k

, v-v-ί 1 (t2xiXj)
k 1 (xiXj)

fa k \ 1 ~q2k k l ~q2k k

I xf]

\

_ f2k ( X i X . )

i k - - • i<j k ~ q k

l-{-t)kpk{x) , y-^ \ - t2k pk(x)2 - p2k{x)I - (-t)* pk{x) l-

Y 1 - qk k Y 1 -

^

qk k Y 1 - q2k 2k

tkpk{x)

1 - qk k £-> 1 - q2k 2k '
k odd k
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Hence we get

A{x\q,t) =
2 k

k odd

where the sum on m^, lj is taken over the set of sequences (7711,7713,7715,...; /i,/2, •)

of non-negative integers m^, lj such that

k odd j

Let u be an element of Sn with cycle-type ( μ i , μ 2 , . . . , μ n ) If we put

mfc = IU I Mi = &}|> 1 < A: < n,

then

k

and the order of the centralizer of u in Sn is equal to

Hence we have

The lemma now follows from Frobenius character formula (2.8). D



SCIIUR FUNCTIONS 167

3. Proofs of Theorem 1.1-Theorem 1.3

3.1. Proof of Theorem 1.1. It is enough to prove this for a finite set of variables

xι,X2, - ,#n, i.e. in the case when x n + i = x n + 2 = = 0. Then (1.1) takes the

following form:

n °° -ι j _ r+1 n i

*.) = ΠΠτϊr Π rr^
i = l r = 0 -1 X%Q i,i=l * ^

where the sum on the left is over all partitions λ with /(λ) < n. As noted in Section

1, this is true for n = 1. Let F(n) be the right hand side of (3.1). Then we have

Hence, by induction assumption, we have

(3.2) (Σiλ(g)M*i,-..,*»-i))(f;Π

where the sum on λ is over all partitions with l(\) < n — 1. By applying the sym-

metrizing operator π n (see Section 2.2) on the both hand sides of (3.2), we get

oo

0.3) y y
λ m=0

= F{n)πn

Now let F(n)* be the left hand side of (3.1). In view of (3.3), for a proof of (3.1), it

is enough to show:

X m=0 ^ t = l

Since the both hand sides of (3.4) are symmetric polynomials in x l 5 . . . ,a?n, they can

be written as linear combinations of Schur polynomials sμ(xι,... ,xn),l(μ) < n. If

l(μ) < n — 1, then the coefficients of sμ(x\,... ,x n ) on the left and right hand

sides of (3.4) are both equal to Iμ{q) by Lemma 2.1(i)(ii) and the multiplication rule

([12], p.73, (5.17)) between Schur functions and elementary symmetric functions. If
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μ = ( μ i , . . . , μ n ) is such that /(μ) = n, then, by Part (i) of Lemma 2.1, the coeffi-

cient of Sμ(#i,. . . ,xn) of the left hand side of (3.4) is equal to

+ n i 1 fc

Π r1 '̂

where μ(j) = (μ(j)i,μ(j)2> •) is a partition with l(μ(j)) <n — \ defined by:

and, by Part (ii) of Lemma 2.1, the coefficient of s μ ( # i , . . . ,x n ) o n the right hand

side of (3.4) is equal to Iμ(q) or Iμ(q) — Iμ-(in)(q) according as n is odd or even,

where μ - ( l n ) = (μi - 1,... ,μ n — 1). Thus (3.4) is equivalent to:

Lemma 3.1. Let μ be a partition with l(μ) = n. In the above notation, we have

n μj+n-3 i , m

(3.5) Iμ(q) = Σ(-l)n-ήμU)(q) JJ γ ^ ,
j=l m=l ^

if n is odd, and

n μj+n-j m

(3.6) Iμ{θ) — J^("l)n~"7'^μ(i)(^) I J ĵ m + ^ - (
3 = 1 m=l ~ ^

/f n is even.

Proof. We put v3- — μ3 , + n - j for 1 < j < n. Multiplying the both hand sides

of (3.5) and (3.6) by

1

we see that (3.5) and (3.6) are equivalent to:

(3-7) TT ~ g ' = V ( - l ) " " f c Π ~ g ' TT '

jφk
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and

iφk

+ "
i<j * i=l ^

respectively. Putting _4_ — qv\ we can rewrite (3.7) and (3.8) as

J J Aj - Aj = ^-(_1)n_fc J J Aj - A, j | 1 - *

and

^^^ Λ , Λ . _____ _____ Δ . Δ . _____ Ί Λ . _____ Λ . A _____ Ί Δ .

TT _ V^f_\\n-k TT th 111 TT i 111 ι T T ^ Λ * TT i zΞl
LLΔ.Λ-Δ. L^K } 1 1 A • 4- /4 1 1 1 4- 4

respectively. We can further rewrite these equalities as

(3.9)
i-\ ι k=

(which is to be proved for odd n) and

(3.10)

(which is to be proved for even n). Now, by the partial fraction expansion

t = l k=l

we see that

2Ak

We also have

(3.13)
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(put z = 0 and t = - 1 in (3.11)). Adding (3.12) and (3.13), we get (3.9) and (3.10).

This proves Lemma 3.1. D

The proof of Theorem 1.1 is now complete.

3.2. Proofs of Theorem 1.2 and Theorem 1.3. By putting t = q in Lemma 2.2,

and using Theorem 1.1, we get (1.5). The formula (1.6) follows from (1.5) via the

orthogonality relations for χ\. This proves Theorem 1.2.

For a proof of Theorem 1.3, we need the following formula (see [8], [13], [16], [4]):

(3 14) 15 I(3.14) \Sn\ _ (

where μ is a partition with \μ\ — n, and v — v{i,j) is as in (1.10). This formula,

together with (1.9) and (2.11), implies

(3.15) «Λ(β,*) = Σ ^ Π ^-X1'
μ v=v(ij)eμ

where the sum on the right is over all partitions μ with |μ| = |λ|. Combining (3.15)

for t = q with (2.10) and (1.1), we get Theorem 1.3.

REMARK. It would be interesting to generalize Theorem 1.2 (and Theorem 1.3)

to finite reflection groups. The formula (3.14) has been generalized to the case of Weyl

groups by Gyoja, Nishiyama and Shimura [4]. See also [8], [13].

4. The coefficients d\μ

Comparing the coefficients of q°, q1 and q2 on the both hand sides of (1.10), we

get (1.11 H I . 13). These formula imply:

(4.1) dλ(n) = 1 (well-known),

(4.2) dλ(n-i,i) = iViλ - 1,

(4.3) dλ(n-2,2) + dλ(n-2,l») = ( ^ ) 2 - 3Λ? + N> + 1

Thus (1.10) is not sufficient in determining d\(n_2,2) a n d dλ(n-2,i2) f° r aU n a n d λ.
To determine these and some other coefficients d\μ, we shall use:

Theorem 4.1. For a partition λ, we put

aχ(t)=ax(0,t)

in the notation of Lemma 2.2. Then:
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(i) We have

(4.4)

and

(4.5)

f/ιe 5W/7Z51 cw μ αnύf λ are over all partitions, and the sums on σ are over

all self-conjugate partitions σ = (c*i,..., ap \ α i , . . . , ap) (in Frobenius nota-

tion', see Section 2.1).

(ii) We have

(4.6) ax(t) - ^ ( d λ ( n _ r + l 5 l r - i ) + dA(n-r,i-)) i r\ n =
r=0

where d\(n+ι^-ι>) and c?λ(o,in) are understood to be 0.

Proof. Putting q = 0 in (2.10) and (2.11), we have

and

(4.8) α λ (ί) = \Sn\~1 Σ Ψ{2)(Xx)det(l + tpn(s)), n = |λ|.
«€5n

Since

(see [12], I, 5, Ex.9(c)), we have

(4.9) l[(l + txi) J](l - t2xiXj) =

By (4.7), (4.9) and (1.3), we get (4.4). The identity (4.5) follows from (4.4) by just
replacing, in the latter, t with t~λ and then Xi with tx{. This proves Part(i). Part (ii)

follows from (4.8) and

det(l + tpn(s)) =
r=0
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which is well-known and is equivalent to the q — 0 case of (3.14).

We now show how we can derive formulas like (1.16)—(1.19) from Theorem 4.1

and Theorem 1.1. Comparing the coefficients of tr(r = 0 ,1 ,2, . . . ) on the both hand

sides of (4.4) and (4.5) and taking (4.6) into consideration, we have

(4.10) ( j > ) (
μ \<r\=r

and

\μ\=r

respectively, where n — |λ| and the sums on σ are taken over all self-conjugate par-

titions σ — ( α i , . . . , ap | « i , . . . , ap). For three partitions μ, v and λ, let cx

μv be the

Littlewood-Richarson coefficient in the expansion

(4.12) sμ(x)sv{x)

As is well known, there exists a nice combinatorial rule (the Littlewood-Richardson

rule) for computing cx

μv. See, e.g., [12], I, 9. By (4.10), (4.11) and (4.12), we have

(4.13) ^ ( - l ) ^ β i c £ σ = dλίn-r+l,!-1) +dλ(n-r,l-)
|σ|=r

|μ|=n-r

and

(4.14) ] Γ ( - l ) Σ α i

C ^ σ =dλ(Γϊ l«-r) +d λ ( r + l ϊ l n-r-l)

|μ|=r
\σ\ = n-r

for any partition λ and any integer r with 0 < r < n = |λ|, where the sums on

σ are as in (4.10) and (4.11). By (4.13) and/or (4.14), we have an algorithm for the

computation of d\v for any partition v — (s,ln~s) of 'hook-shape'. (Note that the

individual values of the Littlewood-Richardson coefficients cμσ are not needed here; it

is enough to know the sum Σ|μ|=iλ |- |σ | cμσ f° r e a c n Pa"* (^σ) w * t n σ — σ ' ) P° r

example, if we put r — 0 in (4.13) and (4.14), then we get (4.1) (again) and (1.18). If
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we put r = 1 in (4.13) and (4.14), then we get (1.12) (again) and

^ a \ i f λ = σ U ofor σ = (OLΛ . . . . . α D I OLΛ , . . . , OLΌ),
f

0 , otherwise,

where λ = σ U o means that the diagram λ is obtained by adding just one node to a

self-conjugate diagram σ. This, together with (1.18), implies (1.19). If we put r = 2

in (4.13), then we get

dλ(n-l,l) + dλ(n-2,l2) = 0.

This and (4.2) imply (1.17), and (1.17) and (4.3) imply (1.16). D

EXAMPLES.

(0 d(7,l)(7,l) ~ l>d(5,2,l)(7,l) = 2, d(4,4)(7,l) = 0> ̂ (4,2,1,1)(7,1) = 2 *

(U) d(7 ji)(6>2) = ljd(5,2,l)(6,2) — 4, d(4,4)(6,2) — l>rf(4,2,l,l)(6,2) = 5..

(iii) d(7,i)(6,i,i) — ~l?^(5,2,i)(6,i,i) — — 2,d(4 j 4)( 6 ji )i) = 0,d(4ί2,i,i)(6,i,i) — —2.

ί - 1 , if λ = (4,2,1,1) or (3,3,2),
(iv) d λ ( i8) = < .

[ 0 , otherwise.

- 1 , if λ = (5,13) or (4,14),

(v) dλ(2,iβ) = ̂  li if λ = (3,3,2),

0, otherwise.

REMARK.

(i) By (4.7) and (2.10), we have

Π (

Hence

(4.15)
n=0

CX) N

Σ < . 2 - ^ •• Πfl^(*)

where, for partitions λ,μi,/x2, ., we define c^ i μ 2 μfc by

C 5 λ
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By (3.15), the knowledge of the function a\(q,t) is sufficient for the determina-

tion of dXμ for any μ with |μ| = |λ|. Thus (4.4), (4.5) and (4.15), together with

the Littlewood-Richardson rule, give an algorithm for the computation of d\μ.

Theorem 1.1, which gives an explicit formula for a\(q,q), is sometimes helpful

to shorten the computation,

(ii) For a positive integer r, the Adams operator φ^ of the r-th order is defined by

Φ{r)(xχ)(s) = χx(sr), seSn.

Since

r-1

t=0

(see [12], I, 3, Ex.11), we have the following generalization of (1.8):

r- l

(4.16) Ψ(r)(xx) =
t=0

where χ\(r-t,V) *s t n e symmetrization of χ\ by X(r_t,i*) (in the terminology

of [5], 5.2). For any pair of partitions (λ,μ) with /(λ) = l(μ) = n, let dχμ be

an integer defined by

By (4.16), one can read off the values of dχμ for r < 5 and n < 8 from the

tables in [5], Appendix I, D. We observe that the absolute values of these num-

bers are relatively 'small'; perhaps this suggests the existence of a nice theory

for the coefficients dχ .

5. Symmetric spaces over finite fields

It is known ([3], [7], [6]) that the permutation representation of the general lin-

ear group GLn(F g2) over a finite field ¥q2 of q2 elements on the 'symmetric space'

G L n ( F g 2 ) / G L n ( F g ) is multiplicity-free. As noted in [6], Theorem 3.2.6 (ii), this fact

can be expressed as a set of identities for Green polynomials. By the relation ([12],

III, 7) between Hall-Littlewood symmetric functions P\(x,;t) and Green polynomials,

the latter is equivalent to:

|λ |in
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where rrij(s) = rrij(us) denotes the number of times j occurs as a part of the cycle-

type vs of s e Sn, and bχ(t) is a polynomial in t defined by

j

(see [6], Remark 3.2.7(ii)). It is easy to see that

Π
and that

α(υ)=O

where, for a node v — υ(i,j) of the diagram λ, we define the arm-length a(v) =

a\(υ) and the leg-length l(υ) = l\(v) of λ at v by

Moreover, by the proof of Lemma 2.2 with q = .0, we have

Π γ=ί Π 1 r ^ i = Σ ̂ r1 Σ
i * «<J * J n=0 sG5 n

Hence, (1.21) follows from (5.1).

Another well-known multiplicity-free permutation representation of a finite general

linear group comes from the action of G L 2 n ( F g ) on the symmetric space

G L 2 n ( F g ) / S p 2 n ( F g ) . See [9], [1]. It is easy to see that an exact analogue of

[6],Theorem 3.2.6 also holds in this case. (See [11] for a much more general result.)

Using this result and results [17] on unipotent conjugacy classes of symplectic groups

over finite fields, we can prove the following identity. (Since the argument is very

similar to the one shown above, we omit the details.)

(5.2) £
λ

l(v) even

where the sum on the left is taken over all partitions λ such that mi(X) is even for

odd i, and

o(λ) =
i odd
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Note that, when t = 0, (5.2) reduces to the identity given in [12], I, Ex.5(a).

References

[1] E. Bannai, N. Kawanaka and S.-Y. Song: The character table of the Hecke algebra

H(GL2n(Fq),Sp2n(Fq)), J. Algebra, 129 (1990), 320-366.

[2] G. Gasper and M. Rahman: Basic Hypergeometric Series, Encyclopedia of Math, and Its

Appl. 35, Cambridge Univ. Press, Cambridge, 1990.

[3] R. Gow: Two multiplicity-free permutation representations of the general linear group
GL(n,q2), Math. Z. 188 (1984), 45-54.

[4] A. Gyoja, K. Nishiyama and H. Shimura: Invariants for representations of Weyl groups and
two sided cells, preprint.

[5] G. James and A. Kerber: The Representation Theory of the Symmetric Group, Encyclopedia

of Math, and Its Appl. 16, Addison-Wesley, Reading Mass. 1981.

[6] N. Kawanaka: On subfield symmetric spaces over a finite field, Osaka J. Math. 28 (1991),
759-791.

[7] N. Kawanaka and H. Matsuyama: A twisted version of the Frobenius-Schur indicator and
multiplicity-free permutation representations, Hokkaido Math. J. 19 (1990), 495-508.

[8] A.A. Kirillov and I.M. Pak: Covariants of the symmetric group and its analogues in Weil
algebras, Funct. Annal. and its Appl. 24 (1990), 172-176.

[9] A.A. Klyachko: Models for the complex representations of the groups GL(n,q), Math.
USSR-Sb. 48 (1984), 365-379.

[10] A. Lascoux and P. Pragacz: S-function series, J. Phys. A: Math. Gen. 21 (1988), 4105^4114.

[11] G. Lusztig: Symmetric spaces over a finite field, The Grothendieck Festschrift III (ed. P.

Carrier et al.), Progress in Math. 88, Birkhauser, Boston, 1990, 57-81.

[12] I. Macdonald: Symmetric Functions and Hall Polynomials (2nd ed.), Oxford Univ. Press,

Oxford, 1995.

[13] V.F. Molchanov: On the Poincare series of representations of finite reflection groups, Funct.
Anal, and its Appl. 26 (1992), 143-145.

[14] T. Scharf and J.-Y. Thibon: A Hopf-algebra approach to inner plethysm, Adv. in Math. 104
(1994), 30-58.

[15] J.-P. Serre: Linear Representations of Finite Groups, Springer, Berlin, 1977.

[16] J.-Y. Thibon: The inner plethism of symmetric functions and some of its applications, Bay-
ereuther Math. Schriften, 40 (1992), 177-201.

[17] G.E. Wall: On the conjugacy classes in the unitary, symplectίc and orthogonal groups, J.
Austr. Math. Soc. 3 (1963), 1-62.

Department of Mathematics

Osaka University

Toyonaka 560-0043, Japan




