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CURVATURES OF THE PRODUCT OF TWO 3-SPHERES
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1. Introduction

Let (S3,g) be the 3-sphere with the canonical metric of constant curvature 1
and let (S3 x S3,G) be the Riemannian product of two (S%,g), where § denotes
the product metric of two g. In §3 we consider Riemannian metrics which are
left-invariant when we consider S® x S% as a Lie group SU(2) x SU(2). In §4
we study special type of left invariant metrics. Let {n!,n?,13} be a globally defined
orthonormal coframe field on S® and {ni,né,ng} be one on the second S3. Then
the product metric g on S3 x S3 is expressed as g = >_3_ n* @n*+ 3. 3_n" @n®.
We consider the following metric

3
(1.1) gt =g+t Y ru"@n”+1° @n")

u,v=1

on S3 x S3, where t is a real parameter (—t, < t < t,) and r = (7y5) = (") is a
constant real 3 x 3 matrix. If r is symmetric, then we can assume that r is diagonal
(rubuv) after some orthogonal change of frames if necessary.

The deformation given by (1.1) is natural. The purpose of this paper is to report
that the phenomena of sectional curvatures for t > 0 and ¢ < 0 are completely
different in the most simplest case r = (yy)-

Theorem A. Suppose r = (—byy) in (1.1). Then there is a positive number t,
such that {§(t), 0 <t < t.} is a one parameter family of left invariant metrics on
S3 x S® with non-negative sectional curvature. Here, the sections {X,Y'} with zero
sectional curvature are of the form X = (X,0) and Y = (0, X) fort € (0,t,).

Contrary to Theorem A, we have the following:

Theorem B.  Suppose r = (Aybuy) With 1 = A1 > Ao > A3 > 0. Then there is
a positive number t!, such that {§(t), 0 <t < t,} is a one parameter family of left
invariant metrics on S® x S with the following properties.
(i)  There are planes of the form {X,Y} with X = (X,0) and Y = (0,Y) with
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zero sectional curvature with respect to each §(t). If A1 > Ay > A3 > 0, then
the number of such planes is three (at each point).

(ii)  For any small positive number t there exist a plane Il and some positive number
ty < t such that the sectional curvature K (I1) is negative with respect to §(ty).

The author would like to thank Professor H. Urakawa and Professor K. Masuda
for useful discussions on the problems treated here. Also the author thanks the
referee for a comment on Proposition 4.3 (r € SO(3) was extended to r € O(3)).

2. An orthonormal frame field on (S3,g)

Let (S3,g) be the 3-sphere with the canonical metric of constant curvature 1.
We have an orthonormal frame field {£;,&2,£3} on S2 satisfying [£,, &) = 2€. for
e(a,b,c) = 1, where £(a, b, ¢) denotes the sign of the permutation (a,b,c) — (1,2,3)
(and (a,b,c) = 0 if the set {a,b,c} is different from {1,2,3}). We denote the dual
of {&1,&,&} by {n',n%,n®}. We define ¢ by ¢* = —V¢, for a = 1,2,3, where V
denotes the Riemannian connection with respect to g. Then we have

(2.1) ¢*¢° X = =X +n*(X)&a,

(22) 9(¢°X,¢%Y) = g(X,Y) — n*(X)n*(Y),
(23) dn*(X,Y) = 29(X, ¢°Y),

(24) (Vx¢*)(Y) = g(X,Y )& — n*(Y)X

for vector fields X and Y on S® and a = 1,2, 3. Furthermore, ¢, = ¢*¢. = —¢°&,
and

(25) ¢ =¢°¢° — &N = —¢* + & @7

hold for e(a,b,c) = 1. For each a, {n%,g} is called a Sasakian structure on (S3, g)
and {n',n?,n3, g} is called a Sasakian 3-structure (cf. Blair [1], Tanno [3], etc.).

Let (¢*%) be the components of ¢* with respect to the frame field {&1,&2,&3}-
Then we have ¢%% = —¢(a, u,v). Therefore, for example, we obtain

(2.6) % XYV = —(X x Y)2,

where X x Y denotes the vector product in T,S® ~ E® at each point z € S3.
Furthermore, one may use ¢%,, = —¢",,, etc. in the calculations, if necessary; for
example, we have

2.7) AuB,d"%¢" X, Y = —(Ax X,B xY),

where (, ) denotes the inner product defined by g. Here we recall the following
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relation:
<A x B,C x D) = (A,C)<B5D> - <A,D><B,C>,

which will be used in §4.

3. Riemannian metrics on S3 x §3
We fix the range of indices as follows:
1<4,5,k,1,z,y <6, 1<a,b,c,u,v <3,

and we denote @ = a + 3 generally (i.e., if @ is used in S3 then @ means simply q;
while if @ is used in S x S3 then @ means a + 3).

We have a globally defined orthonormal frame field {&1,&,¢&3,&1,83,&3} and
its dual {n*,72,7%,1%,7%,7%} on the Riemannian product (53 x S3, ). Here &, (&,
resp.) is identified with (£4,0) ((0,&), resp.). The Riemannian connection with
respect to g is denoted by V. Then we have V¢, = (V&,,0) and Vfb (0, V&), and
hence we have ¢% = —V¢, and ¢ = —V¢&, for a = 1,2, 3. By (¢>”) we denote the
components of ¢¢ with respect to {£,,&:}. One may notice that if one component
¢’i7c has mixed indices ¢ < 3 and j > 4 for example, then it vanishes.

Now we define Riemannian metrics §(t) on S® x S3 by

3.1 3ij = Gij + thyj,

where (and in many places below) we denote §(t) simply by g, and

(32) hij = sulinl + rus(MPn +03n?) + 5omint,  Taw = Tva,
where 7 = (r,3) is a constant real 3 X 3 matrix; and s = ( w), 8 = (83) are constant
3-vectors. Here t is a sufficiently small real number so that § = (g;;) is a Riemannian

metric.

In the tensor calculus components of tensor fields are ones with respect to the
natural frame of a local coordinate system. Otherwise, components are ones with
respect to {£,,&5}. This will be understood in the context.

Notice that (h;;) given above is a general form of (h;;) with constant coefficients.
Indeed, let h;; = ﬁkm, nJ Then the first block (Bab) of (Bavnin b) is diagonalized
to (8y0uv) so that Bepnd 77] = sun'{n'% by some orthogonal transformation {¢,} —
{¢.}. Similarly we have (53) so that ﬂab’h 7;] = 53n'{n'}. So we have (3.2). Moreover,
g is a left invariant metric when we consider S3 x S2 as a Lie group SU(2) x SU(2).

The inverse matrix of § = (9;;) is denoted by §g=! = (§*°). Then, the difference
Wi, = I, — I, of the coefficients of the Riemannian connections with respect to
g and g, and the Riemannian curvature tensor R;kl are given by

(3.3) = (t/2)§" (Vjhsk + Vihsj — Vshjr),
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(3.4 Rﬁz = Ry + VW), — ViIW}; + WEWE, — Wi W,
We denote components of a vector field X on S3 x S3 as
X=X =(X,X)= (X% X% = (X', X%, X% X1, X%, X%),
where X (X, resp.) is tangent to the first (second, resp.) S°.
Lemma 3.1. §(R(X,Y)Y,X) is given by

(3.5)  HRX,YV)Y,X) = gnRiy X" X YY"

+ [Vi(Gr W) — V(g Wi )| X" XYY

= 5" [@epWEn) @0aW5) — (GepWh) (@4 Wi I X XYY

Proof.  First we have
i ViW); = ViWi] = V(W) — Vi(@riWi;) — tVihni - Wi + tVihg - Wi
Next, using (3.3) we obtain tVihni = grs Wi, + gisWp,, and
—tVihni - W + guWi Wi = =" (Gep W) (GyaW)-
Then applying these into (3.4), proof is completed. ]
Lemma 3.2. §;;W;, is given by

(3.6) GisWi = —t[su(P™ijmi + 6" kny) + 55(0755m8 + ¢"ikm})
+ Tus(B%i5mk + 6 ikny + ¢k + ¢ akn)]-

Proof. One may use relations; @m}‘ = ¢%y;, etc. O

We continue some calculations to obtain the sectional curvature for a 2-plane
determined by X and Y. Here we assume that {X,Y} is orthonormal with respect
to g, i.e.,

X, X)+ (X, X)=1, (,/")+({,V)=1, (X,)Y)+(X,Y)=0.

Lemma 3.3. Let {X,Y} be an orthonormal pair with respect to § at a point
of S3 x S3. Then we can assume (X,Y) = (X,Y) =0.
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Proof.  Assume (X,Y) # 0 and consider Z = cosfX + sinfY and W =
—sin@X + cosQY. Then (Z,W) for Z = (Z,Z) and W = (W, W) is given by
(Z,W) =sinfcos(||]Y]|? — || X||?) + (cos® 8 — sin? 6)(X,Y).

If |Y]| = || X||, then we may put § = w/4 to get (Z,W) = 0. Then also (Z,W) =0
follows. If ||Y|| # || X||, then we can find € such that (Z,W) = 0. We have also
(Z,W) =0. O

From now on we assume (X,Y) = (X, ¥) = 0 for our orthonormal pair {X,Y}.
Since g is the product of Riemannian metrics of constant curvature 1, we obtain

(37 R X"X*YIYV =X x Y|? +||X x V|2
+H[r(X, X) + [V ]2s(X, X) + |V [*8(X, X)),

where s and § are considered as matrices s = (S,04y) and 3§ = (3z645)- By (2.4),
(2.6) and (3.6), the second term of the right hand side of (3.5) is given by

(38)  [Vi(gniW}) — Vi(gniWi)| X" X*Y Yt = t[r(X, X)
+2r(Y,Y)-6r(X xY,X x Y)
+ 2| X|12s(Y,Y) + | Y]I?s(X, X) —3s(X x YV, X xY)
+ 2| X |25V, 7) + |V ||25(X, X) — 35(X x ¥, X x ¥)].

1-forms (§;, W7, X*X") and (ijWl’;lX' Y'!) are expressed as follows:
(3.9) (@pWhX*X") = 26(U(X)u, U(X)a),
UX) =X x (r(X)+s(X)), UX)=Xx(r(X)+5X)),
(3.10)  (@pWHX"YY) =t(V(X,Y), V(X,Y)a),
V(X,Y)=Xx (r(Y) +s(Y))+ Y x (r(X) + s(X)),
V(X,Y)=X x ('r(Y)+5()) + Y x (tr(X) + 5(X)),

where r denotes the transpose of r.
In the next Proposition we study some special type of sections for later use.

Proposition 3.4. §(R(X,Y)Y, X) for an orthonormal pair {X = (X,0),Y =
(0,Y)} with respect to g is given by
§(R(X,Y)Y,X)
= 23" (X x r(¥))u(X x 7(¥))o + (¥ x 'r(X))a(Y x 'r(X))s
+ 3" (X x r(Y))u(Y x 'r(X))s — 4X x s(X))u(Y x 5(Y))s]}-
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Proof. By X =Y =0in (3.7) ~ (3.10), we have gh,R;'.lehX’kf/jffl =0 and
[Vi(aniW) — Vi(gniWiy |1 X" XFYIY! =
(§;pWE, X X") = 2t(X x 5(X),0),
Y x

@pWhEX"Y!) = t(X x 7(¥),Y x *r(X)),
(4;,WE,YFY™) = 2¢(0,Y x 5(Y)).
Substituting these into (3.5), proof is completed. O

The sectional curvature K (X,Y) for an orthonormal pair {X,Y} with respect
to g at a point of (S% x S3,§(t)) is given by

(3.11) K(X,Y)=g§(R(X,Y)Y,X)/D(X,Y),
where D(X,Y) = §(X, X)§(Y,Y) — §(X,Y)2. As far as we are concerned with the
sign of sectional curvatures, it suffices to consider §(R(X,Y)Y, X).
4. The case where s=3=20
In this section we assume s = 5§ = 0 in (3.2), i.e.
4.1 g=g+trum"@n" +n"®n").
The restriction of § to each factor S? is identical with the canonical metric g on S3.

By Lemma 3.1 and (3.7) ~ (3.10), we obtain

Proposition 4.1.  For the metric (4.1) on S® x S, §(R(X,Y)Y,X) for an
orthonormal pair {X’ , Y} with respect to g is given by

(4.2) JR(X, Y)Y, X) = ||X x Y|+ [|X x Y| + G1t + Gat?,
where we have put G, and G, = G, + Gag as
(43) G =2[r(X, X)+r(Y,Y)-3r(X xY,X xY)],
(4.4) Go1 = —45"(X x 7(X))u(Y x 7(Y)),
=43 (X x 7(X))u(Y x T(¥))s + (¥ x r(¥))u(X x *r(X))s]
—4g" (X x 'r(X))a(Y x *r(Y))s,
(45) Gaz = g (X x1(Y)+Y xr(X))u(X xr(Y)+ Y x r(X)),
20" (X xr(Y)+Y x 7(X)u(X x 'r(Y)+Y x 'r(X))s
+3P(X x (YY) + Y x (X)X x'r(Y)+Y x (X)),

Ju
X)

<
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The inverse matrix of § = (g;;) is given by

(4.6) g“—9“+t22t2<’ b Z )il + (' - 1)")z0bil]
z,w=1
—tZt’“ DS () ) n(eleh + €60,
z,w=1

where 7 - 'r means (7 - '7)yyw = Y TusTow = O 5TusTws and 'r - means (*r-r)g; =

3 TwaTws. SO we have (‘r-r-tr);, = (r-!r-r),s, etc. Thus, we obtain the following:

Lemma 4.2. (i) Ifr is an orthogonal matrix, then we have

3

@n g =1/A=-2g 7 = [t/ - 7)] Y ol ® e + o ®E:).

z,w=1
(i) Ifr is diagonal, ie., r = (Aybyy), then

(48) guv uv [ / )\2t2 ]6uv éuﬁ — -[/\ut/(l _ )\it2)]6uv'

Proposition 4.3. Ifr € O(3), then

(4.9) (1 - (det))§(R(X, Y)Y, X) = (1 - (det)t)(IX x Y* + | X x Y|1?)
+2t(1 — (det )t)[r(X, X) + (Y, Y) = 3r(X x Y, X x Y)]
+262[| X x r(Y) =Y x r(X)||? —4(X x Y, 7(X) x r(Y))].

Proof. We apply (4.7) to (4.4) and (4.5). In the calculation one may notice
that r € O(3) satisfies r(*7(X) x X) = (detr)X x r(X), etc. O

Proposition 4.4. Let {X,Y'} be an orthonormal pair with respect to § such that
X = (X,0) and Y = (0,Y). Then the sectional curvature K(X,Y) is non-negative.

K(X,Y) vanishes with respect to §(t) for each t € (—t,,t,), if and only if r(Y)
is proportional to X and *r(X) is proportional to Y. So, let Y be a unit eigenvector
of the symmetric matrix *r - v corresponding to a non-zero eigenvalue. We define X
by X = r(Y)/||r(Y)|. Then the sectional curvature K(X,Y) = 0 for X = (X,0)
andY = (0,Y).

Proof.  The first part is verified by Proposition 3.4 and the fact that
g(t)~1 is also positive definite. The second part follows from the expression of
J(R(X, Y)Y, X). O
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Corollary 4.5. We assume that ‘r - r has three different non-zero eigenvalues.
Then for each point of (S® x S3,4(t)), there are only three sections of the form
{X,Y} with X = (X,0) and Y = (0,Y) and with vanishing sectional curvature
with respect to each §(t), t € (—t,,t5)-

ReEMARK 1. If one expands (4.2) with respect to ¢t up to [t3], then one obtains

(4.10) GRX, V)Y, X)=|X xY|?+ | X x Y|?
+2t[r(X, X) +7(Y,Y) = 3r(X x Y, X x V)]
+tH||X xr(Y) =Y x r(X)||2 + |'r(X) x ¥ = tr(Y) x X||?
—4[(X x Y, r(X) x r(¥)) + (X x ¥, tr(X) x tr(Y))]} + [t°].

5. Proof of Theorem A

Let 7 = (—6y,) and let {X,Y} be an orthonormal pair with respect to §. We
can assume (X,Y) = (X,Y) = 0 by Lemma 3.3. By Proposition 4.1 and Lemma
4.2 we see that F(¢t, X,Y) = (1+t)g(R(X,Y)Y, X) is expressed as

S F@X,Y) = [IXIPIYI? + IX P17
+IXIIY P+ X PV~ 2(X, X) —2(Y,Y)
+6(X, X)(Y,Y) — 6(X,Y)(X,Y)]
+22[I X PV + (1 X PV - (X, X) = (¥, Y)
+ (X, XY, Y) + (X, Y)(X,Y) — (X, V)2 — (X,Y)?].

We put g9 = 1/100/2. If we have
XY+ 1XIPNY ) > e,

then (5.1) shows that we have some real number t3 such that F(t, X,Y) > 0 holds
fog any t € (—t3,t3) (where t3 is independent of the choice of orthonormal pairs
{X,Y}). So, in the following we suppose

(5.2) IXIPY I + | XNV )? < 5

We can assume || X|| < || X|. Then ||Y] < ||Y] follows from (5.2). Also we have
XY < eo- By ||Y] > 1/v/2, we obtain || X| < v2eo. Similarly we obtain
Y]l < V2e0. Therefore we get || X2 > 1 — 22 and |[V]|2 > 1 — 2¢3.

If X =Y = 0, then Proposition 4.4 shows that §(R(X,Y)Y, X) is non-negative.
So, in the following in this section we assume X # 0 or Y # 0. By symmetry we

assume Y # 0.
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Now for any orthonormal pair {X,Y} we can change the frames {&,,&;} —
{¢&,, &} by an orthogonal 3 x 3 matrix A (i.e., £, = AY¢,, &, = AU&;) so that

(53) X = (\/ 1- E%,O, Oa XlaXZaXS), ? = (Oa5230; }717)72, }73)
with the property; X1 = || X|| = /1 —¢%, Y2 =|Y| =e2 > 0 and
(5.4) R4 X2+ X2=2, VR4 4+VE=1-
X1Y1 4+ XoYs + X3Y3 =0,
where €, = || X|| < v/2e0 = 1/100 and &, < 1/100.
Notice that the expression of G(R(X,Y)Y, X) is unchanged. By (5.1) we obtain
(5.5) F(t,X,Y) = Fo + Fit + Fyt?,
where we put Fy, F} = Fl(t,)z,f’) and Fy = Fg(t,f(,f’) as

Fo =€ + €% — 2263,
F1 = —2X1X1 - 262}72 + 6€2X1(X1?2 - Xz}—/l) + 8% + E% - 26?6%,
F, = 2[52X1(X1)72 + Xz?l) + Eg()—(% + Xg) + Xf(?g + Y32) - X1X1 - 62}72].

We consider ¢ in the range 0 < ¢ < 1/100.
First we assume €; = 0, i.e., X; = Xy = X3 = 0 with respect to the expression
(5.3). Putting € = 5, we obtain

F(t,X,Y) =2+ (6% — 2eV,)t 4+ 2(Y2 + YV — e¥y)t2.
By using an inequality —2eY5t? > —(? + Y2)t2, we get
F(t,X,Y) > (e — Yat)? 4+ 2Vt + £2t(1 — t) > 0.

Therefore, sectional curvatures are positive in this case. So, in the following in this
section we assume ; > 0 and 5 > 0.

Lemma 5.1. Forﬁxed t, €1 and €9, lfF(t,X,}}) = F(t,gl,EQ,Xl,XQ,X,g,YI,
Y2, Ys) attains its minimum at (t, X*,Y*) = (t,e1,e0, X5, X5, X5, Y, Yo', Ys), then
X3 =Yy =0.

Proof.  First we consider the following deformation;

X1(0) = cos X7 —sin6X3, X3(0) =sinf X + cos X3,
Y1(0) = cos 0 Y* — sin Yy, Y3(0) = sinf Y;* + cos Yy,
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and X5(0) = X3, Y2(0) = Y5 for 6 € (—6,6). Calculating (dF(t, X(8),Y (8))/d6)(0)
= 0 and noticing X; > 0, we obtain

X3+ 3ea(X3T5 — K3¥s) + K5 +2X0 WYy — ea(R375 + X3T)lt =
Therefore we get
[1—3e2Yy + (1 — &2V )] X5 = [-3e2 X5 + (e2 X5 — 2X1 Y)Yy,
and hence (1 — 3e2)|X3| < [3e1e2 + (2 + €1€2)t]|Y5"|. Consequently, we obtain

(3/4)1X3] < (3/100)|Y5, and | X3| < (1/25)|Y5].
Next, we consider the following deformation;

Xo(7) = cosT X; —sinTXJ, X3(7) =sinT X; + cos X3,
Ya() = cos 7Yy —sinTYy, Y3(T) = sinT Yy + cos 7Yy,

and X, (1) = X}, Yi(7) = Y;* for 7 € (=6, 6). Calculating (dF(t, X (), Y (7)) /dr)(0)
= 0 and noticing 5 > 0, we obtain

Yy = 3X1 (X7Ys — X3V9) + (Vo + 26 X5 X5 — X0 (XY + XV )|t =
If Y7 > 0 (< 0, resp.), we can show

Yy - 3X1(X;Ys — X3Y") >0, (<0, resp.)

Yy + 2 X5 X5 — X (X3Y + X;Y5) >0, (<0, resp.)

using the inequality | X3| < (1/25)|Y5|. This is a contradiction. So we have Y3 = 0
and X3 =0. O

In the following we consider X and Y of the form;
(5.6) X = (X, X>,0), Y = (Y1,Y,0)
and we put p = |Ys|. Then we have
=p’i/(1-¢€3), Xi=(-ei-p))el/(1~¢}), Vi=1-e3-p"

We consider the following two cases (i) and (ii).
(i) The case where p < 4max{e;,ez}.

Lemma 5.2.  There is a positive number t, such that F(t, X, }7) > 0 holds for
anyt € (0,ty4).
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Proof. We put é = max{ey,e}. For example we have
|X1X1‘ < IX]I < 2pe; < 8ée; < 4(é2 +€§)

Therefore, we see that |Fy| < a(e? +¢€2) holds for some positive number a. Similarly,
we see that |Fy| < a’(e? + €2) holds for some positive number a’. Then (5.5) shows

F(t,X,Y) > (62 + £2)(1 — at — a't?) — 262¢2,

where a and @’ are universal constant. So, we have some ¢, so that 1 — at — a't?

> 1/2 for t € (0,t4). Since —2e2e2 > —eqe,, we have F(t,X,Y) > 0 for any
t € (0,t4). O

(ii) The case where p > 4max{e;,e2}.

Lemma 5.3. For fixedt, e, ande,, ifF(t, X, ?)=_F(t,€—1,62_, X1,X2,0,Y;,Y5,0)
a_ttains its miiﬂ'mum at (¢, X*,Y*) = (t,e1,e2, X7, X3,0,Y7*, Y, 0), then we have
Xf>0andYy > 0.

Proof. We compare X* = (X}, X3,0) and Y* = (Y, Yy,0) with

X =(-X7,X35,0), Y = (=Y, Y5, 0).
By (5.5), F(t,X,Y) > F(t,X*,Y*) is expressed as
X7 =3e(X7Y5 = X3V)) — [e20X7Y5 + X3V7) — K]t > 0,
which is equivalent to
[1—3e2Y) 4 (1 — Yo )t] X7 > (t — 3)ea X5 Y7

If X; <0, then we have (1 — 3e2)|X;| < 3e1e2. By |X]| = pe1/4/1 — €2, we obtain
p < 3e24/1 —5%/(1 —3e3) < 3ea/(1 — 3ea).

This contradicts p > 4 max{e;,e,} and we have X} > 0.
Next we compare X* = (X7, X5,0) and Y* = (Y7, Y, 0) with

X=(X;,—X;,O), Y=()71*,—Y2*,0).
By (5.5), F(t,X,Y) > F(t,X*,Y*) is expressed as

Vi - 3Xi(X1 Y5 - X3 ¥) - G (Ri¥s + K ¥) — T3t > 0,
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which is equivalent to
1-3X, X7+ (1 - X1 XYy > (t—3) X, Y X,

If Y < 0, then we have (1 — 3e;)|Y"| < 3e;. This contradicts p = |V >
4max{e;,e2} and we have Y3 > 0. O

In the following we consider X and Y of the form;

Xlszl/\/l—E%, Xzzﬂsl\/l—ég—pz/\/I—€%,
Y1 = —f4/1-€5 —p?, Y =p,

where = £1. Now F; and F5 in (5.5) are expressed as

F = —2p51\/1—s§/\/1 — €% — 2peg + 661604/ 1 — 24/1 — €3

2, .2 2.2
+ &1 + &5 — 2e7e3,

5.7 Fy/2 = —e1e94/1 — €24/1 — €2 + pe1(2pe2 — 1)\/1 —e%/\/l — €32

+p%eles /(1 —e3) + (1 —€})p® — pea.

Lemma 54. We have F5 > 0.

Proof. We neglect some positive terms of the right hand side of (5.7) and use
an inequality 1/4/1 — €2 < 1+ €3. Then we obtain
Fy/2 > —€160 — pe1(1 +€3) + (1 — 2)p? — pey
= (p*/4 —e1e9) + p(1/4 — €})p — e163] + p(p/2 — €1 — £2) > 0.
Therefore we have Fy > 0. ]

Lemma 5.5. For fixed p, e, and e,, ifF(t,X',f’) = Fyt? + Fit + Fy takes its
minimum at t, then we havet > (1 + €2)/16.

Proof. We estimate { = —F, /2F;. Since /1 — = 1— /2 — p?/8 + [1®] and
1/VT—=pu=1+p/2+3u%/8 + [u3], we see that F} and F, are expressed as

Fy = —2p(e1 +€3) + €2 + €2 4 6169 + pey (€2 — €2)
—e169(3e2 + 2160 + 3€2) + (pe1/4)(e2 — €2) (2 + 3¢2) + [#],
(5.7") F2/2 = p* — ple1 + 2) — e162 + p°e1(2e2 — &1) + (pe1/2)(e] — €3)



PRODUCT OF TWO 3-SPHERES 275

+(e162/2) (€2 + €3) + pPerea(e1e2 — €7 + €2)
+(pe1/8)(e] — £3) (€1 + 3e3) + 4],

where [«] denotes terms of higher order £¢e} with a + b > 6. First we see that the
terms of higher order %€} with a +b > 3 in F} are covered by 2(e? + €2). So we
have

—F) > 2p(e1 +&2) — 3e% — 3¢2 — 6e169

= 2p(e1 +&2) — 3(e1 + €2)°
(p/2)(e1 +€2) +3(e1 +€2)(p/2 — €1 — €2)
2 (p/2)(e1 + €2).

Next neglecting the negative terms in (5.7') and putting € = max{e;, 2}, we obtain

Fy/2 < p* +2p%c162 + (p/2)es + 1664
< p* +2p%e160 + (p?/8)e? + p?é? < 2p? < 2p.

Therefore we get —F1/2F> > (1 + €2)/16. O

Finally we show F(t,X,Y) > 0 for t € (0,1/100). We rewrite F(t,X,Y) as
F(t,X,Y) = Jop? + Jip + Jo, where we have put

Jo = (€2 +e3 —2e3e3)(1 +t) + 2e160t(3 — t)4/1 — €24/1 — €2,
Jp=—-2t(1+1) (52+51\/1—5%/\/I—E§),

Jy = 2t2 [1 —E%+26162\/1 —e%/\/l —e3+elel/(1 —a%)] :

I

Clearly we have J, > 0. To show F(t,X,Y) > 0, it suffices to show that the
discriminant D = JZ — 4J,J; is negative. After some calculation we obtain

D/4t? = —(e; — £2)2(1 — €2 4 3e165) — 4te1e9(2 — 36% + 4e1e9 — e%)

+ (g1 — &2)% + 8e163 — (€] + Tetes — 9eiel +e163)] + [#],

where [#] denotes terms of higher order €%e} with a + b > 6. We see that 5 > [«]
holds. Neglecting some negative terms we obtain

D/4t? < —(e1 — €2)%(1 — €3) — 4te1e9(2 — 32 — €2)
+ tz[(€1 — 62)2 + 8e169 + 96%5%] + é°
(5.8) < —(9/10)[(e1 — €2)% + 8teqe9] + &°.
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By Lemma 5.5, it suffices to show D < 0 for ¢ = (g1 + £2)/16. By symmetry of &;
and e, in (5.8) we can assume € = €5 > ¢;. Then the inequality

—(9/20)[2(61 - 62)2 + 6182(61 + 62)] + <0
is verified by considering two cases; e; < £/2 and ¢; > £/2.

Proof of Theorem A. We define t. by t. = min{ts, t4,1/100}. Then sectional
curvatures are non-negative. Furthermore, by Proposition 4.4 and the above discus-
sion, we see that the sections {X,Y} with zero sectional curvature are of the form
X =(X,0)and Y = (0,X) for t € (0,t,). ]

REMARK 1. For e; = g5 = ¢, we consider X = (p,0,0;¢,0,0) and Y =
(0,€,0;0, p,0) where p = +/1 — £2. Then F; and F; are expressed as

Fy = —4pe 4 8%(1 — £?), Fy =2 — 4pe — 2% 4 2%
Therefore, t = —F,/2F; = ¢ + /2 + [¢*] and for t = € 4 £3/2, we obtain

F(t,X,Y) = 4e® — 2¢* + [°].

6. Proof of Theorem B

Suppose r = (Aybuy) With 1 = X1 > A9 > A3 > 0. (i) follows from Proposition
4.4 and Corollary 4.5. To prove (ii) we define {X,Y} by

X = (X1,0,0;-%,0,0), X, =+/1—12,
Y = (0, —\at, 0;0, Y3, 0), Yy = 4/1— A3t2.
By Proposition 4.1 and Lemma 4.2, we have the following:

IXIPIYIZ + X2V = 2 + A58 — 2A5¢%,

G = 2(= X1t — A3Yst — 3Aa A3 X Yst?),

Go = [1/(1 = A2t)]{N3(t2 — X1 V2)? + (M2t — X V3)2
+2X203(t2 — X1 Y3)(A3t2 — X, Y,)t}.

Therefore, using X; = 1 — t2/2 + [t*] and Y2 = 1 — \3t2/2 + [t%], we get
(6.1) (1—A32)G(R(X,Y)Y,X) = —adohst® — (8A3 — A3A3 — M3)td + [t7],

where~ [t5~] denotes the term of higher order. So, for a sufficiently small ¢, we obtain
J(R(X,Y)Y,X) <0 for §(t) and {X,Y}. This proves Proposition B.
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REMARK 1. By (6.1) we see that (ii) of Theorem B works for the cases;

()\17>‘2a /\3) = (+’ +,0)a (+a ) O)a (+: ! _)'

REmARK 2.  Hopf problem asks whether S? x S? admits a Riemannian metric
of positive sectional curvature. One of the related problems is whether S2 x S3
admits a Riemannian metric of positive sectional curvature. On the other hand,
Hopf conjecture says that the Euler-Poincaré characteristic of a compact oriented
2n-dimensional Riemannian manifold is > 0 (> 0,< 0,< 0 for n = 2r +1; >
0,> 0,> 0 for n = 2r, respectively), if and only if the sectional curvature is > 0
(> 0,<0,< 0, respectively). If 2n = 4, the Hopf conjecture is true. However, for
2n > 6 this conjecture is open, and some people focus their study on 6-dimensional
or 8-dimensional case (cf. Klembeck [2], etc.). S2 x S2 lies at a point of intersection
of the above two problems.

Let G(t) be one defined by (1.1). Then, (SU(2) x SU(2),g(t)) admits Killing
vector fields which are right invariant vector fields on SU(2) x SU(2). Since the
Euler-Poincaré characteristic of S3 x S3 is zero, (SU(2) x SU(2), §(t)) can not be
of positive sectional curvature (cf. Weinstein [4]). Therefore, we have one question
if it is possible to deform g(t) in Theorem A to a Riemannian metric which is not
left invariant and has positive sectional curvature.

References

[1] D.E. Blair: Contact manifolds in Riemannian geometry, Lecture Notes in Math. 509,
Springer-Verlag, Berlin/New York, 1976.

[2] P. Klembeck: On Geroch’s counterexample to the algebraic Hopf conjecture, Proc. Amer.
Math. Soc. 59 (1976), 334-336.

[3] S. Tanno: The identity map as a harmonic map of a (4r + 3)-sphere with deformed metrics,
Kodai Math. J. 16 (1993), 171-180.

[4] A. Weinstein: A fixed point theorem for positively curved manifolds, J. Math. Mech. 18
(1968), 149-153.

Department of Mathematics
Tokyo Institute of Technology
Meguro-ku, Tokyo, 152

Japan








