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CURVATURES OF THE PRODUCT OF TWO 3-SPHERES
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1. Introduction

Let (53,#) be the 3-sphere with the canonical metric of constant curvature 1

and let (S3 x S3,g) be the Riemannian product of two (S3,g), where g denotes
the product metric of two g. In §3 we consider Riemannian metrics which are

left-invariant when we consider 53 x S3 as a Lie group SU(2) x SU(2). In §4

we study special type of left invariant metrics. Let {ηl,η2,η3} be a globally defined

orthonormal coframe field on S3 and {ηl,rf,η^} be one on the second S3. Then

the product metric g on S3 x S3 is expressed as g = Σ3

u=ι1Ίu ®ηu 4- Σl^i
We consider the following metric

(1.1)

on 53 x S3, where t is a real parameter (—t0 < t < t0) and r = (ruϋ) = (ruv) is a

constant real 3 x 3 matrix. If r is symmetric, then we can assume that r is diagonal

(ru$uv) after some orthogonal change of frames if necessary.

The deformation given by (1.1) is natural. The purpose of this paper is to report

that the phenomena of sectional curvatures for t > 0 and t < 0 are completely
different in the most simplest case r = (δuυ).

Theorem A. Suppose r = (—δuv) in (1.1). Then there is a positive number t*

such that { g ( t ) , 0 < t < t*} is a one parameter family of left invariant metrics on

S3 x S3 with non-negative sectional curvature. Here, the sections {X,Ϋ} with zero

sectional curvature are of the form X — (X, 0) and Ϋ = (0, X) for t e (0, £*).

Contrary to Theorem A, we have the following:

Theorem B. Suppose r = (Xuδuv) with 1 = λi > λ2 > λ3 > 0. Then there is

a positive number £'ψ such that {<?(£), 0 < t < t*} is a one parameter family of left

invariant metrics on S3 x S3 with the following properties:
(i) There are planes of the form {X, Ϋ} with X = (X, 0) and Ϋ = (0, Ϋ) with
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zero sectional curvature with respect to each g ( t ) . If \\ > λ2 > λ3 > 0, then
the number of such planes is three (at each point).

(ii) For any small positive number t there exist a plane Π and some positive number

t2 <t such that the sectional curvature K(ΐί) is negative with respect to g(t2).

The author would like to thank Professor H. Urakawa and Professor K. Masuda

for useful discussions on the problems treated here. Also the author thanks the
referee for a comment on Proposition 4.3 (r G SO(3) was extended to r G O(3)).

2. An orthonormal frame field on (S3,g)

Let (53,<?) be the 3-sphere with the canonical metric of constant curvature 1.

We have an orthonormal frame field {6,6,6} cm 53 satisfying [ξα,6] = 26 for
ε(α, 6, c) — 1, where ε(α, 6, c) denotes the sign of the permutation (α, 6, c) — > (1, 2, 3)
(and ε(α, 6, c) = 0 if the set {α, 6, c} is different from {1, 2, 3}). We denote the dual

of {6,6,6} by {η\η2,η3}. We define φa by φa = -Vξa for a = 1,2,3, where V
denotes the Riemannian connection with respect to g. Then we have

(2.1)

(2.2) g(φ°X, φaY) = g(X, Y) - ηa(X)ηa(Y),

(2.3)

(2.4)

for vector fields X and Y on S3 and α = 1,2,3. Furthermore, ξa = φbξc = -φcξb

and

(2.5) φa = φbφc -ξb®ηc = -φcφb + ξc®ηb

hold for ε(α, 6, c) = 1. For each α, {ηa,g} is called a Sasakian structure on (S3,g)

and ί^1,^2,^3,^} is called a Sasakian 3-structure (cf. Blair [1], Tanno [3], etc.).

Let (φay) be the components of φa with respect to the frame field {6,6,6}
Then we have φa% = —ε(a,u,v). Therefore, for example, we obtain

(2.6) Φa

uvx
uYv = -(x x *T,

where X x Y denotes the vector product in TXS
3 ~ E3 at each point x G S3.

Furthermore, one may use φa

uv = —φu

av, etc. in the calculations, if necessary; for
example, we have

(2.7) AuBvφ
ua

xφ »*XaY
c = -(A x X, B x Y),

where { , } denotes the inner product defined by g. Here we recall the following
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relation:

(A x B,C x D) = (A,C)(B,D) - (A,D)(B,C),

which will be used in §4.

3. Riemannian metrics on S3 x S3

We fix the range of indices as follows:

1 < i,j,k,l,x,y < 6, 1 < α, 6, c, u,v < 3,

and we denote a = a -f 3 generally (i.e., if α is used in S3 then α means simply α;
while if α is used in S3 x S3 then α means a + 3).

We have a globally defined orthonormal frame field {^1,^2,^3,^1,^2 >£s} and
its dual {ηl,η2,η3,ηl,η^,η3} on the Riemannian product (S3 x S3,g). Here ξa (£5,
resp.) is identified with (£α,0) ((0,^), resp.). The Riemannian connection with
respect to g is denoted by V. Then we have Vξα = (Vfα, 0) and Vξg = (0, V&), and
hence we have φa = -Vξa and φά = -Vξά for α = 1, 2, 3. By (φij

k) we denote the

components of φτ with respect to {ζa,ζa} One may notice that if one component
φτj

k has mixed indices ί < 3 and j > 4 for example, then it vanishes.
Now we define Riemannian metrics g ( t ) on 53 x S3 by

(3.1) fa = <jij +thij,

where (and in many places below) we denote g(i) simply by g, and

(3.2) hij = suηΐrf -h ruϋ(ηΐηϊ + ^ry?)

where r = (ruϋ) is a constant real 3 x 3 matrix; and 5 = (su)9 s = (sϋ) are constant
3-vectors. Here ί is a sufficiently small real number so that g = (gij) is a Riemannian
metric.

In the tensor calculus components of tensor fields are ones with respect to the
natural frame of a local coordinate system. Otherwise, components are ones with
respect to {£α,£α} This will be understood in the context.

Notice that (hij) given above is a general form of (hij) with constant coefficients.

Indeed, let h^ = βkiηϊηlj> Then the first block (βab) of (βabηfηj) is diagonalized
to (suδuv) so that βabiΊitf — Surf^rf™ by some orthogonal transformation {ξa} -+

{ζf

a} Similarly we have (sϋ) so that βabrlfτlj — Syrfirf]- So we have (3.2). Moreover,
g is a left invariant metric when we consider 53 x S3 as a Lie group SU(2) x SU(2).

The inverse matrix of g — (g^) is denoted by g~l — (gτs). Then, the difference
Wjk = Γjk — Γl

 k of the coefficients of the Riemannian connections with respect to

g and g, and the Riemannian curvature tensor Rl

 kl are given by

(3.3) W]k = (tl2)gia(Vjhak + Vkhaj - Vshjk),
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(3.4) R^M — fC i^i + VfcW/ — V/Wfc + Wi Wi —

We denote components of a vector field X on 53 x 53 as

where X (X, resp.) is tangent to the first (second, resp.) S3.

Lemma 3.1. g(R(X, Ϋ)Ϋ, X) is given by

(3.5) g(R(X, Ϋ}Ϋ, X) = ghίKklX
h*

Proof. First we have

dkifikWtj - VtW
l

kj] = Vfc(5w^) - V^w^ ) - ίV f cΛh i

Next, using (3.3) we obtain tVkhhi = 9hsWki + gisWkh and

Then applying these into (3.4), proof is completed. D

Lemma 3.2. ^iSWJfc is given by

(3.6) &βW7fc - -t[su(φu

i3ηl + ̂ uifc^) + ̂ (^0-^ + <^<fcτ#)

-f ruϋ(φ*ijη

ϋ

k + 0U^^ + ̂ o ryϊ 4- ̂ <fc^)].

Proof. One may use relations; V^J = </>nij, etc. Π

We continue some calculations to obtain the sectional curvature for a 2-plane

determined by X and Ϋ. Here we assume that {X,Ϋ} is orthonormal with respect

to g, i.e.,

(x, x) + (x, x) = i, <y, y) + <y , y> - i, (x, y) + (x, Ϋ) = o.

Lemma 3.3. Let {X,Y} be an orthonormal pair with respect to g at a point

ofS3 x 53. Then we can assume (X,Y) = (X,Ϋ) = 0.
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Proof. Assume (X,Y) ^ 0 and consider Z = cosθX + sin#y and W =
- siuθX + cos6>y. Then (Z, W) for Z = (Z, Z) and W = (W, W) is given by

If ||y|| = ||X||, then we may put θ = π/4 to get (Z, W) = 0. Then also (Z, W) = 0
follows. If ||y|| ± ||X||, then we can find θ such that (Z,W) = 0. We have also
(Z,W) = 0. D

From now on we assume (X, Y) — (X, Ϋ) = 0 for our orthonormal pair {AT, Ϋ}.
Since g is the product of Riemannian metrics of constant curvature 1, we obtain

(3.7) ghiΪCjkιX
hXkΫ>Ϋl = H* x Y\\2 + \\X x F||2

where s and s are considered as matrices s = (suδuv) and s = (suδΰv)- By (2.4),
(2.6) and (3.6), the second term of the right hand side of (3.5) is given by

(3.8) [VktfhiWij) - Vι(ghiW
l

kJ)]XhXkγiγl = t [ r ( X , X )

+ 2r(Y, Ϋ) - 6r(X x Y, X x Ϋ)

+ 2\\Xfs(Y, Y) + \\Y\\2s(X, X) - 3s(X xY,XxY)

+ 2||^||2s(F, y) + \\Ϋ\\2s(X, X) - 3s(X xΫ,X xΫ)}.

1-forms (gjpWPhX
kXh) and (gjpW^hX

hΫ1} are expressed as follows:

(3.9) (gjpW?hX
kXh) = 2t(U(X)u, U(X)*),

U(X) = Xx (r(X) + β(X)), U(X) = Xx (*r(X)

(3.10) (9jPWfhX
hΫl) = t(V(X,Ϋ)u,V(X,Ϋ)Λ),

v(x, Ϋ) = x x (r(y) + β(y)) + y x (r(x) + s(x)),
v(x, Y) = XX (V(y) + §(?)) + y x (

where V denotes the transpose of r.
In the next Proposition we study some special type of sections for later use.

Proposition 3.4. g(R(X, Ϋ)Ϋ, X) for an orthonormal pair {X = ( X, 0) , Ϋ =
(0, y)} with respect to g is given by

g(R(X,Ϋ)Ϋ,X)

= ?{g™(X x r(Ϋ))u(X x r(Ϋ))v+g™(Ϋ x V(JΓ))a(y x

guϋ[2(X x r(y)) t t(y x ^(X)), - 4(X x s(X))u(Ϋ x
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Proof. By X = Y = 0 in (3.7) ~ (3.10), we have ghiR
i

jklX
hXkγiγl = 0 and

= 0,

l ) = t(X x r(Ϋ),Ϋ x

(gjPW*hΫ
kΫh)=2t(Q,Ϋxs(Ϋ)).

Substituting these into (3.5), proof is completed. D

The sectional curvature K(X,Ϋ) for an orthonormal pair {X,Ϋ} with respect

to g at a point of (S3 x S3,g(t)) is given by

(3.Π) K(X,Ϋ)=g(R(X,Ϋ)Ϋ,X)/D(X,Ϋ),

where D(X, Ϋ) = g(X, X)g(Ϋ, Ϋ) - g(X, Ϋ)2. As far as we are concerned with the
sign of sectional curvatures, it suffices to consider g(R(X,Ϋ)Ϋ,X).

4. The case where s = s = 0

In this section we assume 5 = s = 0 in (3.2), i.e.

(4.1) g = g + t ruϋ(ηu ® 77" + ̂  (8> ηu).

The restriction of g to each factor S3 is identical with the canonical metric g on S3.

By Lemma 3.1 and (3.7) ~ (3.10), we obtain

Proposition 4.1. For the metric (4.1) on S3 x S3, g(R(X,Ϋ)Ϋ,X) for an

orthonormal pair {X, Ϋ} with respect to g is given by

(4.2) g(R(x, y)y, x) = \\x x y ||2 + \\x

where we have put Gι and G z = G^i + 622 as

(4.3) Gi =2[r(X,X) + r(Y,Ϋ)-3r(XxY,

(4.4) G21 = -4g™(X x r(X))u(Y x r(Ϋ))v

-4guϋ[(X x r(X))u(Ϋ x

-4ffβδ(X x V(A-)) f l(y x

(4.5) G22 = guυ(X x r(F) + y x r(X))u(X x r(F) + Y x

(X x r(Ϋ) + Y x r(X))u(X x V(y) + y x *r(X))ϋ

X x V y + y x V A - f l X x V F + ? x
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The inverse matrix of g — (g^) is given by

oo 3

(4.6) glj = glj + t2 V* ί2^"1

3
> f / _ - n V^ / /* \ / _ 1\ s^-i^i +i »7 \

κ (r( Γ Γ) ) - ( ί f - + f f - )

/ — I 2,tL>=l

where r - *r means (r V)uw = Σϋr^rϋ™ = Σϋr^r^ϋ and V r means (*r r)uϋ =

ΣrwΰrWϋ' So we have (tr-r'tr)ϋz = (r V r)^, etc. Thus, we obtain the following:

Lemma 4.2. (i) Ifr is an orthogonal matrix, then we have

3

(ii) 7/*r ΐs diagonal, i.e., r = (Xuδuv), then

(4.8) g™ - ̂  - [1/(1 - \lt2)]δw, guϋ = -[\ut/(l - \2

ut
2)]δuv.

Proposition 4.3. Ifr G O(3),

(4.9) (1 - (detr)t)g(R(X,Ϋ)Ϋ,X) = (1 - (detr)ί)(||X x F||2 + ||X x Ϋ\\2}

+ 2ί(l - (detr)ί)[r(X,X) -h r(y,Ϋ) - 3r(X xY,Xx Ϋ)}

x r(Ϋ) - Y x r ( X } \ \ 2 - 4(X x y, r(X) x

Proof. We apply (4.7) to (4.4) and (4.5). In the calculation one may notice

that r G O(3) satisfies r(lr(X) x X) = (detr)X x r(X), etc. D

Proposition 4.4. Let {X, Y} be an orthonormal pair with respect to g such that

X = (X, 0) and Ϋ = (0, y). Then the sectional curvature K(X, Ϋ) is non-negative.

K(X, Ϋ) vanishes with respect to g(t) for each t G (-tojί0), if and only ifr(Ϋ)

is proportional to X and tr(X) is proportional to Ϋ. So, let Ϋ be a unit eigenvector

of the symmetric matrix tr r corresponding to a non-zero eigenvalue. We define X

by X = r(y)/||r(y)||. Then the sectional curvature K(X,Ϋ) = 0 for X = (X,Q)

Proof. The first part is verified by Proposition 3.4 and the fact that

g(t)~l is also positive definite. The second part follows from the expression of

). D
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Corollary 4.5. We assume that tr - r has three different non-zero eigenvalues.
Then for each point of (S3 x S3,g(t)), there are only three sections of the form
{X,Ϋ} with X = (X,0) and Ϋ — (0,F) and with vanishing sectional curvature
with respect to each g ( t ) , t e (—t0,t0).

REMARK 1. If one expands (4.2) with respect to t up to [ί3], then one obtains

(4.10) g ( R ( X , Ϋ ) Ϋ , X ) = \\X x Y\\2 + \\X x ?||2

+ 2t[r(X, X) + r(y, ?) - 3r(X xY,X x Ϋ)}

+ t2{\[X x r(y) - y x r(X)\\2 + ||VpO x F - V(y) x Jί||2

x Y,r(X) x r(y)) + (X x F, V(X) x V(F)}]} + [ί3].

5. Proof of Theorem A

Let r = (— δuv) and let {X,Ϋ} be an orthonormal pair with respect to g. We
can assume ( X , Y ) — ( X , Ϋ ) — 0 by Lemma 3.3. By Proposition 4.1 and Lemma
4.2 we see that F(t,X,Ϋ) = (l+t)g(R(X,Ϋ)Ϋ,X) is expressed as

- (x,x) - (y,y)
,γ) + (x,y)(x,y) - (x,?)2 -

We put ε0 = l/100\/2. If we have

then (5.1) shows that we have some real number £3 such that F(t,X,Ϋ) > 0 holds
for any t G (—is, is) (where £3 is independent of the choice of orthonormal pairs
{X, y}). So, in the following we suppose

(5.2) ||X||2||y||2 + | |X||2 | |y| |2<ε2.

We can assume ||X|| < ||X||. Then ||y|| < ||y|| follows from (5.2). Also we have
||Jf||||y|| < ε0. By ||y|| > l/A/2, we obtain \\X\\ < v^o Similarly we obtain
||y|| < V2ε0. Therefore we get ||X||2 > 1 - 2ε2 and ||y||2 > 1 - 2ε2.

If X = y = 0, then Proposition 4.4 shows that g(R(X, Ϋ)Ϋ, X) is non-negative.
So, in the following in this section we assume X φ 0 or Y ^ 0. By symmetry we
assume Y Φ 0.
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Now for any orthonormal pair {X,Ϋ} we can change the frames {ξu,ξΰ} —>
{&»&} by an orthogonal 3 x 3 matrix A (i.e., ξ'u = Av

uξv, ξ'n = Av

uξϋ) so that

(5.3) X = (Jl-εlθ,Q;Xl,X2,Xz), Ϋ = (0,ε 2,0;Yk, F2,F3)

with the property; A\ - \\X\\ = v/1 - ε?, F2 = ||y|| = ε2 > 0 and

(5.4) X* + X* + Xl = el ή2 + ?2

2 + F3

2 = l-ε2,

+ X2Ϋ2 + X3Ϋ3 = 0,

where εl = \\X\\ < \/2εo = 1/100 and ε2 < 1/100.
Notice that the expression of g(R(X ,Ϋ}Ϋ , X) is unchanged. By (5.1) we obtain

(5.5)

where we put F0, FI = Fι(t,X,Ϋ) and F2 = F2(tίXJΫ) as

^ - *2?ι) + ε? + e\

F2 = 2[ε2X1(X1?2 + *2yΊ) -h εi(X? + Xl] -h ̂ (ί̂ 2 -h ?3

2) - Xi^ - ε2Ϋ2].

We consider ί in the range 0 < t < 1/100.
First we assume εi = 0, i.e., *Ί = X^ = X% = 0 with respect to the expression

(5.3). Putting ε = ε2, we obtain

F(ί, X, Ϋ) = ε2 + (ε2 - 2εF2)£ + 2(F2

2 + K2 - εF2)ί2.

By using an inequality -2εF2ί
2 > -(ε2 + Ϋ2)t2, we get

> (ε - F2ί)
2 + 2Ϋ32ί2 -h ε2t(l - t) > 0.

Therefore, sectional curvatures are positive in this case. So, in the following in this
section we assume ε\ > 0 and ε2 > 0.

Lemma 5.1. For fixed t, ε1 and ε^, ifF(t,X,Ϋ) = F(ί,ει,ε2, Xι,X2,X3,Ϋι,
F2,F3) attains its minimum at (t,X*,Ϋ*) = (t,ει,ε2,Xϊ,Xζ,X£,Ϋf,Ϋ.Ϊ,Ϋf), then
X* = F3* - o.

Proof. First we consider the following deformation;

Xι(θ)= cos θ Jf ί - sin (9** , *3 (θ) = sin θ X* 4- cos 6>*3* ,

Ϋι(θ)= cos θ Ϋ* - sin (9F3* , Ϋ3 (θ) = sin θ Ϋf + cos <9F3* ,
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and X2(θ) = Xζ, Ϋ2(θ) = y2* for θ e (-«,«). Calculating (dF(t,X(θ),Ϋ(θ))/dθ)(0)
= 0 and noticing Xι > 0, we obtain

X; + 3ε2(JΓ2*y3* - *3?2*) + [X£ + 2Jf1yι*y3* - ε2(X;Ϋ£ + ̂ 3*y2*)]ί = 0.

Therefore we get

[1 - 3ε2y2* + (1 - ε2y2*)*]X3* = [-3ε2X2

and hence (1 - 3ε2)|X3| < [3εxε2 + (2 + ειε2)£]|y3*|. Consequently, we obtain
(3/4)μ?3*| < (3/100)|y3*|, and |*3*| < (l/25)|y3*|.

Next, we consider the following deformation;

X2 (r) = cos τX2 - sin rX^ , X3 (r) = sin τ X% + cos rX3 ,

y2 (r ) = cos r ?2* - sin rF3* , F3 (r ) - sin r F2* + cos r?3* ,

and Xι(r) - X*, yι(r) = ?i* for r e (-«, β). Calculating (dF(t, X(τ), Ϋ(τ))/dτ)(0)
= 0 and noticing ε2 > 0, we obtain

y3* - 3Xι(*ry3* - x Ϋΐ) + [F3* + 2ε2x*x* - ̂ (^y; + ****)]* - o.

If F3* > 0 (< 0, resp.), we can show

y3* - 3Xι(*ry3* - x3*y;) > o, (< o, resp.)
y3* + 2ε2X2X; - X^XSΫ? + **y3*) > 0, (< 0, resp.)

using the inequality |X3 1 < (l/25)|y3*|. This is a contradiction. So we have y3* = 0
and X3* = 0. D

In the following we consider X and Ϋ of the form;

(5.6) * = (*1,x2,o), y = (y1:y2,o)

and we put p — |y2|. Then we have

XI = P

2ε?/(l - ε|), Xl = (l-4- P2H/(1 - ε|), Y? = \-e\- p\

We consider the following two cases (i) and (ii).
(i) The case where p < 4max{ει,ε2}.

Lemma 5.2. There is a positive number £4 such that F(t, X, Ϋ] > 0 holds for
anyt e (0,ί4).
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Proof. We put έ = max{ει,ε2}. For example we have

\XιXι\ <\Xι\< 2pει < 8έει < 4(ε2 + ε?).

Therefore, we see that |Fι| < a(ε\ +ε|) holds for some positive number α. Similarly,
we see that \F2\ < o!(ε\ + ε|) holds for some positive number a'. Then (5.5) shows

F(t, X, Ϋ) > (ε\ + e|)(l - oί - at2) - 2ε?e|,

where α and a1 are universal constant. So, we have some £4 so that 1 — at — a't2

> 1/2 for t G (0,ί4). Since -2ε?ε| > -ειε2, we have F(i,X,y) > 0 for any
ίe(θ,ί4). D

(ii) The case where p > 4max{ε1,ε2}.

Lemma 5.3. Forβxedt,εl and ε2, i
attains its minimum at (ί,Λ"*,y*) = (t,ει,ε2,Xϊ,Xϊ^ΫΪ,Ϋ£,ϋ), then we have
Xf > 0 and F2* > 0.

Proof. We compare X* - ( X Ϊ , X ζ , 0) and ?* = (F^, F2*, 0) with

x = (-xf,x2*,o), y - (-y;,y2*,o).

By (5.5), F(ί, A",y) > F(ί,X*,F*) is expressed as

x; - 3ε2(x*F2* - x*?!*) - [ε2(xίy2* + x Ϋ?) - xΐ]t > o,

which is equivalent to

[1 - 3ε2?2* + (1 - ε2y2*)ί]^ί > (ί - 3)ε2X;Ϋ1*.

If XI < 0, then we have (1 - 3ε2)|^"Γ| < Sε^ By \X*\ = pε1/v

/l-ε%, we obtain

p < 3ε2^/l-ε2

2/(l - 3ε2) < 3ε2/(l - 3ε2).

This contradicts p > 4max{ει,ε2} and we have X± > 0.
Next we compare X* - (X^X^Q) and F* = (Yf,Y£,Q) with

J? = (XΓ,-X2*,0), ^ = (^,-^,0).

By (5.5), F(t,X,Ϋ) > F(ί,A"*,y*) is expressed as

y; - 3Xι(xry2* - ̂ n*) - [Xiί^ίy; + ̂ n*) - y2*]t > o,
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which is equivalent to

If y2* < 0, then we have (1 - 3ει)|F2*| < 3ε:. This contradicts p = |Y"2* >

4max{ει,ε2} and we have F2* > 0. D

In the following we consider X and Ϋ of the form;

Xx = pεj^l-εl, X2 = β£l γ/1 - ε\ - P2 / ̂  - ε\,

where β = ±1. Now FI and F2 in (5.5) are expressed as

F! = -2pεl J\-ε\l Jl-ε\- 2pε2 -

(5.7) F2/2 - -

Lemma 5.4. F2 > 0.

Proof. We neglect some positive terms of the right hand side of (5.7) and use
an inequality 1/y/l — ε2, < 1 + ε2. Then we obtain

F2/2 > -,

= (PV4-

Therefore we have F2 > 0.

-f - ε2)p2 - pε2

p(p/2 - εi - ε2) > 0.

D

Lemma 5.5. For fixed p, εv and ε2, if F(t, X, Ϋ) = F2t
2 + Fit + F0 takes its

minimum at i, then we have i > (εi + ε2)/16.

Proof. We estimate i = -Fι/2F2. Since ^/Y^~μ = 1 - μ/2 - μ2/8 + [μ3] and
1/A/l — μ = 1 -h μ/2 + 3μ2/8 + [μ3], we see that FI and F2 are expressed as

= -2p(ει -f ε\ + ε2

3ε2)

(5.70 = p2 - p(ει + e2) -

- ε2)(ε2 + 3ε2) + [*

- ε t) 4- (pε!/2)(ε2 - ε2)



PRODUCT OF Two S-SPHERES 275

+ (ειε2/2)(ε? 4- el) + p2ειε2(εlε2 -ε\+ ε2,)

where [*] denotes terms of higher order ε"ε\ with a + b > 6. First we see that the

terms of higher order ε*εb

2 with α 4- b > 3 in F\ are covered by 2(ε2 4- ε|). So we

have

-FI > 2p(ει 4- ε2) - 3ε? - 3ε?>

- 2p(ε!+ε 2)-3(ει-hε 2) 2

- (p/2)(ει + ε2) + 3(eι + ε2)(p/2 - εi - ε2)

> (p/2)(ει+ε2).

Next neglecting the negative terms in (5.7') and putting ε = max{ει,ε2}, we obtain

F2/2 < p2 + 2p2ειε2 + (p/2)ε? + 16ε4

< p2 + 2p2ειε2 + (p2/^)^? H- p2έ2 < 2p2 < 2p.

Therefore we get -Fι/2F2 > (εi -h ε2)/16. D

Finally we show F(t,X,Ϋ) > 0 for t G (0,1/100). We rewrite F(£,X,f) as

X, F) = J2p
2 4- Jip -f JQ, where we have put

Jo - (ε2 + ε2 - 2ε2ε^)(l + t) + 2ειε2ί(3 -

J2 =

Clearly we have J2 > 0. To show F(t,X,Ϋ) > 0, it suffices to show that the

discriminant D = J2 — 4J0 J2 is negative. After some calculation we obtain

= -(εl - ε2)
2(l - ε? 4- Sε^) - 4tειε2(2 - 3ε? 4-

- (ε\ -f 7ε?ε2 - 9ε2ε2 4- ε^i)] 4- [*],

where [*] denotes terms of higher order ε"ε2 with α 4- b > 6. We see that ε5 > [*]

holds. Neglecting some negative terms we obtain

< -(ε, - ε2)
2(l - ε2) - 4ίεχε2(2 - 3ε2 - ε2)

4- t2[(ει - ε2)
2 4- Sε^ 4- 9ε^ε^] 4- ε5

(5.8) < -(9/10)[(ει - ε2)
2 + Stειε2} 4- ε5.
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By Lemma 5.5, it suffices to show D < 0 for t — (εi + ε2)/16. By symmetry of ε\

and ε2 in (5.8) we can assume ε = ε2 > ε^ Then the inequality

-(9/20)[2(εχ - ε2)
2 + εlε2(εl -f ε2)] + ε5 < 0

is verified by considering two cases; ε\ < έ/2 and εi > ε/2.

Proof of Theorem A. We define £* by £* = minjίa,^, 1/100}. Then sectional
curvatures are non-negative. Furthermore, by Proposition 4.4 and the above discus-
sion, we see that the sections {X, Y} with zero sectional curvature are of the form
X = (X, 0) and Ϋ = (0, X) for t e (0, £*). D

R E M A R K 1. For εi = ε2 = ε, we consider X — (p, 0,0; ε, 0,0) and F =
(0, ε, 0; 0, p, 0) where p = \/l — ε2- Then FI and F2 are expressed as

Fi = -4pε + 8ε2(l - ε2), F2 = 2 - 4pε - 2ε2 + 2ε4.

Therefore, i = -Fl/2F2 = ε -f ε3/2 + [ε4] and for ί = ε + ε3/2, we obtain

6. Proof of Theorem B

Suppose r — (Xuδuυ) with 1 = λi > λ2 > λ3 > 0. (i) follows from Proposition
4.4 and Corollary 4.5. To prove (ii) we define [X,Ϋ] by

X = (Xι,0,0;-f,0,0), Xl = Vl-t2,

Ϋ = (0, -A2ί, 0; 0, F2, 0), ?2 = λ/l - λ2t2.

By Proposition 4.1 and Lemma 4.2, we have the following:

GI = 2(-X1t - \\Ϋ2t - 3λ2

G2 = [1/(1 - A2ί2)]{λ2(ί2 -

+2λ2λ3(ί2 - js

Therefore, using X1 = I - t2/2 + [ί4] and Ϋ2 = 1 - λ|ί2/2 + [t4], we get

(6.1) (1 - X2

3t
2)g(R(X,Ϋ)Ϋ,X) = -4λ2λ3ί

3 - (8λ2 - λ2λ2 - λ2)ί4 + [ί5],

where [t5] denotes the term of higher order. So, for a sufficiently small ί, we obtain
g(R(X,Ϋ)Ϋ,X) < 0 for g ( t ) and {X,Ϋ}. This proves Proposition B.
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REMARK 1. By (6.1) we see that (ii) of Theorem B works for the cases;

(λl, λ2, λg) = ( + , + , 0), ( + , -, 0), ( + , -, -).

REMARK 2. Hopf problem asks whether S2 x 52 admits a Riemannian metric
of positive sectional curvature. One of the related problems is whether 53 x S3

admits a Riemannian metric of positive sectional curvature. On the other hand,
Hopf conjecture says that the Euler-Poincare characteristic of a compact oriented
2n-dimensional Riemannian manifold is > 0 (> 0, < 0, < 0 for n — 2r + 1; >

0, > 0, > 0 for n = 2r, respectively), if and only if the sectional curvature is > 0
(> 0, < 0, < 0, respectively). If 2n = 4, the Hopf conjecture is true. However, for
2n > 6 this conjecture is open, and some people focus their study on 6-dimensional

or 8-dimensional case (cf. Klembeck [2], etc.). S3 x S3 lies at a point of intersection
of the above two problems.

Let g ( t ) be one defined by (1.1). Then, (517(2) x SU(2},g(t}} admits Kil l ing
vector fields which are right invariant vector fields on SU(2] x SU(2). Since the
Euler-Poincare characteristic of S3 x S3 is zero, (5ί/(2) x S U ( 2 ) , g ( t ) ) can not be
of positive sectional curvature (cf. Weinstein [4]). Therefore, we have one question
if it is possible to deform g(t) in Theorem A to a Riemannian metric which is not
left invariant and has positive sectional curvature.
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