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Let R be a right artinian ring and e a primitive idempotent of R. In [6, Corollary

3.2 and Theorem 3.4] (also see Anderson-Fuller [1, Theorem 31.3].) K. Fuller

showed that the following conditions are equivalent.
(1) eR is an injective right ^-module.
(2) There exists a primitive idempotent f of R such that

(2*) S(eR) ^ T(fR) and S(Rf) ** T(Re), where 5(M) and T(M) denote
the socle and the top of M, respectively.

(3) There exists a primitive idempotent f of R such that

(31) leR(rRf(I)) = el for each left ideal /, and
(3r) rRf(leR(K)) = Kf for each right ideal K of R, where rRf(I) = {α G

Rf\Ia = 0} and ίeR(K) = {b <E eR\bK = 0}.
Let .R be a semiprimary ring and e and / primitive idempotents of R. Then

(eR, Rf) is called an z-pair in [3] if the above condition (2*) is satisfied. In [3,
Theorem 1, Proposition 4 and Corollary 1], Y. Baba and K. Oshiro extended these
results to semiprimary rings to show the following statements.
(a) If R is a semiprimary ring, then the condition (1) is satisfied if and only if

both (2) and (3r) are satisfied.
(b) If R is a semiprimary ring satisfying (2) and the condition (*) below, then (1)

is satisfied.
(*) The lattice {rRf(X)\X C eR} satisfies the ascending chain condition.

Moreover, in [3, Theorem 2], they showed the following statement (c).
(c) If R is a semiprimary ring and (eR, Rf) is an i-pair for primitive idempotents

e and / of R, then the following are equivalent.
(cl) Rf is artinian as a right /.R/-module.
(c2) eR is artinian as a left e^e-module.
(c3) eR is an injective right ^-module and Rf is an injective left ^-module.

In this note, for a right ^-module M with S(M) ** T(fR) and P = EndM, we
consider a pair ( p M , R f f R f ) instead of an z-pair (eReeR,Rf/Rf) and give general-
izations of the results (a), (b) and (c) above (in Sections 1 and 2). In particular, in
Section 1, for a module NQ, we give some properties for the pair (pM, NQ), which

are very similar to Theorem 1.1 in Morita-Tachikawa [11]. Moreover, in Section
3, by applying results obtained in Sections 1 and 2, we give elementary proofs of
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Theorems 1 and 2 in Baba [2], which are related to some results in Fuller [6].
Throughout this note we always assume that every ring has an identity and

every module is unitary. In particular, R always stands for a semiprimary ring with
the Jacobson radical J. For a ring H, by MH (#M) we stress what M is a right
(left) J^-module. Let M be a module. Then L < M (resp. L < M) means that L
is a submodule of M (resp. L < M and L ± M). By S(M\ T(M) and E(M), we
denote the socle, the top and an injective hull of M, respectively, and by \M\ we
denote the composition length of M. Assume every homomorphism always operates
from opposite side of scalar. "Ace" ("dec") means the ascending (descending) chain
condition. We denote the set of primitive idempotents of R by Pi(R).

1. Colocal pairs of modules

Let P and Q be rings and pM, NQ and pUq be a left P-module, a right Q-
module and a P-Q-bimodule, respectively. Let φ : M x N —> U be a P-Q-bilinear
map, i. e., a map satisfying the following properties:

(1) φ(xl + x2, y) = φ(χι,y) + φ(χ*, y),
(2) φ(x, yι + y2) = φ(x, Vι) + φ(x, y2),

(3) φ(px, yq) = pφ(x, y)q\

for any z,#ι,z2 £ M,y,yι,y2 G N,p G P and ςr G Q.
Then, we say that (pM, TVg) is a pair with respect to φ or simply a pair.
Let (pM, NQ) be a pair with respect to φ. Then for x G M, 3; E TV and for

PX <P M, YQ < NQ, by xy we denote the element φ(x, y), and by XY we denote the
P-Q-subbimodule of p/7g generated by {xy|x G X, y E y}. Moreover, for A C M
and 5 C TV, we define submodules r(A) (= rN(A)) of NQ and ^(J5) (= £M(B)) of
pM, as follows: r(A) = {y G A^|Ay = 0} and ί(S) = {x G M|xB = 0}, and we
call r(A) (resp. ί ( B ) ) the right (resp. left) annihilator of A (resp. of B).

Let (pM, TVg) be a pair and put C/ = MN. For submodules Xx < X <

PM,Y' < Y < NQ with XN' = XΎ - 0, we have a pair (pX/X',Y/Y^) by
defining (x + -X'/)(2/ + y7) = xy. This is called a pair induced from (M, TV). For an
arbitrary ring H9 we call an H-module V colocal if V has the (non-zero) smallest
submodule. We call a pair (pM, AΓg) colocal if the module U (= MTV) is colo-
cal both as a left P-module and as a right Q-module. Note, in case (pM, TVg)
is a colocal pair, we have S(pU) = S(UQ). We call a pair (M,TV) left faithful
(resp. right faithful) if ί(N) = 0 (resp. r(M) = 0), and a pair (M, TV) faithful if
it is left and right faithful. We denote the class of right annihilator submodules
in TVQ by Ar(M,TV); that is Ar(M,N) = {Y < NQ\Y = rί(Y)}, and similarly
Ai(M,N] = {X < PM\X = lr(X)}, and the lattice of submodules of PM (resp.
TVg) by Lat(pM) (resp. Lat(TVg)). We say that a pair (pM, TVg) satisfies r-ann
(resp. £-ann) if Ar(M,TV) = Lat(AΓQ) (resp. Ai(M,N] = Lat(PM)).

Let P be a ring, Q a subring of R, M a P-P-bimodule and / a left ideal of R
which is also an P-Q-bimodule. In this case, unless otherwise stated, by the notation
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(pM, /Q) we always mean a pair with respect to the bilinear map φ :• M x I —> MI

defined by φ(m, a) — raα; m G M, α G /. In case P is a subring of .R and Q is a ring,
for a right ideal K of R which is also a P-β-bimodule and for an Λ-Q-bimodule
TV, we consider the pair (pK, NQ) in the same way.

Lemma 1.1. Let (PM,NQ] be a colocal pair, andY' < Y < NQ with Y' =
r£(Y'). If(Y/Y')Q is simple, then P(t(Y')/ί(Y)) is also simple andY = rί(Y).

Proof. Put U = MTV, X = ί(Y) and X1 = i(Y'}. By the assumption,
there exists an element y e Y such that Y = yQ + Y' < NQ. From r£(Y') =
Yf < Y < rt(Y), we obtain X = l(Y) < i(Y') = X' . For any x e X f , the
left multiplication map x : (Y/Y')q — » xYq by x is an epimorphism, so we have
xYQ < S(UQ). Hence XΎ = S(UQ) = S(PU), which shows that PX'Y is simple.
On the other hand, the map η : pX'/X — > pX'Y defined by η(x + X) = xy
is a monomorphism. Thus P(i(Y')/i(Y)) (= P(Xr/X)) is simple. By the same
argument, it follows that (r£(F)/r£(F/))Q is simple. Hence we have Y = r£(Y)
from rί(Y') = Y1 < Y < rt(Y). D

Lemma 1.2. Let (pM, NQ) be a colocal pair, and Y and Z submodules of

NQ with Z = rt(Z) < YQ. If\(Y/Z)Q\ < oo, then Y = rί(Y).
In particular, if(PM,NQ) is right faithful and \YQ\ < oo, then Y = r£(Y).

Proof. The assertion is immediate from Lemma 1.1 by induction on the length

\(Y/Z)Q\. D

Lemma 1.3 (See [11, Theorem 1.1] (or [15, Theorem 1.1])). Let(PM,NQ) be
a colocal pair, and put M' = l(N) < M and N' = r(M) < N. Then \(N/N')Q\ <
oo if and only if\P(M/M')\ < oo.

Moreover, in case the above conditions are satisfied, we have X = ir(X) (resp.
Y = r£(Y)) for any X with Mf < X < PM (resp. for any Y with N' <Y < NQ),

_ Proof. _We denote_r/7V^(resp. X/M') by F (resp. X). If \(N/N')Q\ = n and
]V7 = ΐ ^ < ϊ ^ < . . . < ϊ ς ^ 7 V i s a composition series of TVg = (N/N')Q, then for
χi = t(Yi), M' = Xn < Xn-ι < - - < XQ — M is a composition series of M by
Lemma 1.1 and in particular |p(M/M7)| = \(N/N')Q\ = n. It follows from Lemma
1.2 that X = ίr(X) and Y - rί(Y). D

REMARK 1. Let (pM, NQ) be a colocal pair and put U = pMTVg, M' =
and 7V; = r/v(M). Then the following condition (**) is satisfied.

(**) pt/Q - dual takes simple left P-modules and simple right Q-modules to
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simples or zero.
In order to show this, let K = xQ be a simple right Q-module. If 0 ^

pHorng(#Q,pί7Q), then a(x)Q = a(K) = S(UQ) = S(PU) = Pa(x) for any α G
pHomQ(#Q,pί/Q). Hence Pa(x) > Pβ(x) for any 0 ̂  α,/3 e pHomg^g, PC7Q)
and consequently Pα > P/3, which implies pHomg^Q, pUq) is simple.

On the other hand, by the proof of Morita-Tachikawa [11, Theorem 1.1], in
case the condition (**) is satisfied, we have that \p(M/M')\ < oo if and only if
\(N/N')q\ < oo. Thus Lemma 1.3 is obtained as a corollary to [11, Theorem 1.1].

Theorem 1.4 (See [3, Lemma 3 and Proposition 5]). Let Q be a semίprimary
ring. Assume (pM, NQ) is a colocal pair and put Mf = l(N) < M and N' —
r(M) < N. Then the following conditions are equivalent:
(1) Ar(M,N) satisfies ace, (or equivalently Al(M,N) satisfies dec).
(2) \(N/N')Q\<oo.

(3) |p(M/M')| < oo.
Moreover, in case the above conditions are satisfied, we have X — lr(X) (resp.

Y = rl(Y)) for any X with M' < X < PM (resp. for any Y with N' < Y < NQ),

and \P(M/M')\ = |(7V/7V/)Q|.

Proof. The implication (2) => (1) is trivial and the equivalence (2) <=> (3)
follows from Lemma 1.3. Hence we only show the implication (1) => (2). Assume

\(N/N')Q\ = oo. Then we can take an infinite-chain N' = Y0 < YI < YΊ < < NQ
of submodules of NQ such that \(Yi/N')Q\ = i for any i > 0. By Lemma 1.2,
Yi = ri(Yi) for any i > 0. Hence, from the assumption we have Yn = Yn+ι = •
for some n > 0, which is a contradiction. D

We call a pair (pM, NQ) right (resp. left) finite provided the lattice Ar(pM, NQ)
(resp. Al(pM,NQ)) satisfies ace and (pM, NQ) finite provided (pM, NQ) is left
finite and right finite. As a special case of Theorem 1.4, we have the following
corollary.

Corollary 1.5. Let Q be a semίprimary ring and (pM, NQ) a right finite
faithful colocal pair. Then it holds that \pM\ = \Nq\ < oo and (pM, NQ) satisfies
r-ann and i-ann.

2. Indecomposable injective modules

As mentioned in the introduction, we assume that R always stands for a semipri-
mary ring with the Jacobson radical J.

Lemma 2.1 (See [6, Lemma 1.1]). Let M be a right R-module and f a prim-
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itive idempotent of R and put Q = f R f . Consider the following conditions.
(1)
(2)
(3) £M(I) = lM(If) for any IR < RR.
(4) S(Mfq) = S(MR)fQ.

Then the implications (1) => (2) => (3) => (4) hold.
In particular, ifM is ίnjectίve with S(M) = T(fR) (i.e. M ** E(T(fRR))), then

Proof. The implication (1) =» (2) follows from T(fR) = S(M) < xR for any
(0 ψ) x G M. (2) => (3) is easily seen from // = IRf. We show the implication
(3) =Φ (4). S(M)f C S(Mf) is clear. Since S(MfQ)Jf = S ( M f Q ) f J f = 0, we
have S(Mf)J = 0 from ίM(J) = £ M ( J f ) . Therefore we have S(Mf) C S(M)f
and consequently S(MfQ) = S(MR)f.

We assume Mβ is injective with S(M) = T(fR). Then we have lM(Rf) = 0
from the implication (1) =Φ> (2). If 0 7^ α G Λ/, then we have a non-zero map
θ : α# — > M. Hence by the injectivity of M, xα = 0(α) ^ 0 holds for some x G M.

Thus rRf(M) = 0. D

Let I/β be a simple right .R-module and / G Pi(Λ). Then note that Lf/Rf is a
simple right /^/-module or zero (cf. Baba [2, Lemma 1]).

Let M be a right ^-module. Then we call M quasi-injective if for any submod-
ule L of M, any homomorphism θ : L — > M can be extended to some endomorphism
of M. By [9, Theorem 1.1], M is quasi-injective if and only if HM — M, where
H = EudE(MR). Hence in case M is quasi-injective, we have a surjective ring ho-
momorphism H — > End(Mβ) (α ι-» Q|M for any α G H) and we denote the map by
PM As easily seen, any quasi-injective right ^-module M is colocal if and only if
M is end-local (i. e., EndM# is a local ring.). By Harada [8], a module M is called
simple-injective if for any modules L and N with L < TV, any homomorphism
θ : L — > M with a simple image 0(7) can be extended to some homomorphism
φ : N — » M. The following lemma shows that Proposition 1 in Baba-Oshiro [3] is
also verified in case M is not necessarily projective.

Lemma 2.2 (See [3, Proposition 1]). IfM is an end-local and simple-quasi-
ίnjectίve right R-module, then M is colocal.

Proof. See the proof of the implication (1) => (2), (i) in [14, Lemma 1, 2] in
which LI and 1/2 are simple. D

Lemma 2.3 ([3, Proposition 2]). Let M be a colocal right R-module. IfM
is R-simple-injective, then M is injective.
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Lemma 2.4. Let M be a right R-module, and put P = EndM and Q — fRf
(^ EiίάRRf); f G Pi(R). Then the following are equivalent.
( 1 ) (pM, R/Q ) is a left faithful colocal pair.
(2) PMf is colocal and S(MR) 2* T(fRR).

Moreover, in case the conditions are satisfied, any endomorphism a of S(MR)
can be exended to some endomorphism ofM.

Proof. (1) =Φ (2). Since, by the assumption, xRf φ 0 for any 0 φ x G
S(MR)9 we have S(MR) = Θ;G/L; with Li ^ T(fRR) for each i G I. But S(MR)fQ

(= S(Mfq)) is simple by Lemma 2.1 and Lifq is also simple for any z, so / is a
set consisting of a single element. This shows S(MR) = T(fRR).

(2) =>(!). This is immidiate from the implication (1) => (2), (4) in Lemma
2.1. We assume that (1) and (2) are satisfied and let α : S(MR} — > S(MR) be a map.
Clearly S(MR) = xR holds for some x = xf G 5(MΛ). Then α(α ) G S(MR)fQ =
xQ = Px9 which implies a(x) = φ(x) for some ψ G P. D

Lemma 2.5. Let M be an injective (resp. quasi-injective) right R-module with
S(MR) ^ T(fRR) J G Pi(fl). ΓAέ?/ι (PM,RfQ) is a faithful (resp. left faithful)
colocal pair, where P = EndM #«£/ Q = fRf.

Proof. Assume that MR is quasi-injective with S(MR) = T(fRR). By Lemma
2.1, S(MfQ) = S(MR)fQ is simple and the pair (PM,RfQ) is left faithful. We
show that PMj is colocal. Let 0 ^ x = xf G S(MfQ) and 0 φ y = yf G M/Q.
Since (xfJ)Rf = x(fJf) = 0, we have xfJ = 0 by Lemma 2.1, which shows

rfR(y] < fJ = ^ f R ( x } . Hence the map θ : yR — > M with β(ι c) = xc (c G -R) is
well-defined. Therefore θ is extended to some ψ G EndM = P, and in particular
x = φ(y). Thus we have Px < Py. This shows that PMf is colocal. In case MR is
injective, it follows from Lemma 2.1 that rRf(M) = 0, so (pM,Rfq) is faithful.

D

REMARK 2. Let e be a primitive idempotent of R such that eββ is quasi-
injective and assume the lattice Ar(R,R) satisfies ace. Then S(eRR) = T(fR) for

some / G Pi(-R), and by Lemma 2.5, (eReeR,RffRf) is a right finite left faithful
colocal pair. Hence by Theorem 1.4, eReeR is artinian. Thus in [14, Proposition
2.7], without using torsion theory we can prove that -R is a left artinian ring.

As an immediate consequence of Lemma 2.5, we have Corollary 2.6 below,
which was obtained by Baba-Oshiro [3] (by Fuller [6] in case R is one-sided ar-
tinian). The corollary is useful and its proof is simple. So we give a proof directly
in spite of [3], [6] and Lemma 2.5. The proof is similar to that of the implication
(3) =* (2) in Kato [10, Lemma 2],
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Corollary 2.6. (Baba-Oshiro [3, Proposition 4] (and Fuller [6, Theorem 3.1]

for a right artinian ring R)). Let e and f be primitive idempotents of R. If eR is
an injective right R-module with S(eRR) = aRR;a = eaf, then S(RRf) — RRa =
T(RRe). (That is: If eR is an injective right R-module with S(eRR) = T(fRR)f

then S(RRf) * T(RRe).)

Proof. It is clear that r f R ( b ) < fJ = ΓfR(a) for any 0 ^ b G Rf. Hence

the map θ : bR —» eR with θ(bc) = ac (c G R) is well-defined. Therefore by the
injectivity of eRR we have α = hb for some h G eR. So α G Rb, which implies that
S(RRf) = Ra is simple. Π

The following theorem is a slight generalization of Baba-Oshiro [3, Theorem
1]. But for the sake of completeness, we give a proof.

Theorem 2.7 (See [3, Theorem 1]). Let M be an indecomposable right R-

module. Then the following conditions are equivalent.
(1) M is injective.

(2) (PM,Rfq) is a faithful colocal pair satisfying r-ann for some f G Pi(R),
where P = EndMR and Q = fRf.

Proof. By Lemmas 2.4 and 2.5, we may assume that (pM,Rfq) is a faithful
colocal pair with S(MR) ^ T(fRR)-J G Pi(Λ). Then by lemma 2.1, 1(1) = 1(1 f)
is satisfied for any / < RR.

(2) => (1). It suffices to show that MR is .R-simple-injective by Lemma 2.3.
Let / < RR, and θ : I —> M a homomorphism with a simple image 0(7) = S(MR)
and put K = Kerθ. Then 0 induces an isomorphism 0 : I/K —> S(MR). Since

Kf < If < RfQ, it holds that rl(Kf) = Kf < If = r l ( I f ) by the assumption.
Hence l(K) = l(Kf) > £(If) = t(I), so there exists an element x G l(K) -1(1). Let
x : R —» M be the left multiplication map by x and η : I —> M the restriction map to
/ of x. Then η induces an isomorphism η : I/K —> S(MR). If a : S(MR) —> S(MR)

is the automorphism with aη = θ (i.e. a = Hη~l), then α is extended to an
endomprphism φ of MR by Lemma 2.4, which shows φη = 0. Hence 0 : / —•> M is

extended to a map φx : R —> M, so MR is β-simple-injective.
(1) => (2). Assume that there exists a submodule Z// of RfQ with I// < rl(Lf).

Then L/# < rl(Lf)R. Put / = rί(Lf)R. Since Λ is a semiprimary ring, we can
take a maximal submodule K of IR with LfR < K < IR. Then £(K) = 1(1) holds

since ί(L/Λ) = l ( L f ) = M(Lf) = 1(1). On the other hand we have Kf < If,
because Kf = If implies / = IfR = KfR < K, which is a contradiction. Hence
(I/K)f ^ 0, so we have an isomorphism a : I/K —> S(MR). Let 0 : I —> M
be a composition map 0 = μαλ, where λ : / —» i//ί and μ : S(MR) —> Mβ are
canonical maps. By the assumption, there exists x G M such that 0(α) = xα for any



696 M. MORIMOTO AND T. SUMIOKA

a el. From 0(1) ^ 0 and Θ(K) = 0, we have x e £(K) -1(1], which contradicts

ί(K) = 1(1). D

The following theorem shows that in case ( M , R f ) is finite, the converse of
Lemma 2.5 holds.

Theorem 2.8 (See [3, Theorem 1 and Corollary 1]). Let M be a right R-
module. If(pM,Rfo) is a right finite faithful (resp. left faithful) colocal pair for

some f e PΊ(R), where P = EndMβ and Q = f R f , then MR is ίnjective (resp.
quasi-injective) with S(MR) ^ T(fRR).

Proof. Assume (pM, R/Q) is a right finite left faithful colocal pair. Then by
Lemma 2.4 S(MR) ^ T(fRR). In case that (PM,RfQ) is faithful, M is injective
from Corollary 1.5 and Theorem 2.7. Putting / = rR(M), then // = rRf(M).
Hence the pair (pM, R/Q) induces a right finite faithful colocal pair (pM, R f / I f q ) .
Moreover M can be regarded as a right .R-module canonically and it holds that

P ^ EndM^ΈRf/If ^ ΈRf and Q/flf ^ fRf (canonically), where ~R = R/I
and / = / + / G Pi(R). Hence, considering the pair (pM-^^Rf^j), then by the
same argument as above, M^ is injective and consequently MR is quasi-injective.

D

REMARK 3. Let MR be a right .R-module with P = EndM#. Consider the

following conditions:

(D M = eE(M)rR(M),
(2) Mβ is injective, where R = R/rR(M),
(3) MR is quasi-injective.

Then by [7, Theorem 1.2], (1) «=> (2) =Φ (3) hold, and by [4, Theorem 19.14]

(or [5, Corollary 5.6A]), in case pM is finitely generated, (3) => (2) holds.
But in this note (e.g., in the proof of Theorem 3.5), we consider a colocal module

MR (or a colocal module MR with pM\ < oo; P = EndMβ). In this case, above

implications follow from Theorems 2.7, 2.8 and their proofs.

Proposition 2.9 (See [3, Theorems 1 and 2]). Let M be an indecomposable

right R-module and (PM,Rfq) a faithful colocal pair, where f e Pi(ίϊ), P —
EndM^ and Q = fRf. Then the following are equivalent.
(1) The pair (pM, Rfq) is right finite.
(2) The pair (pM, Rfq) satisfies r-ann and i-ann.
(3) MR is injective and the pair (pM, R/Q) satisfies i-ann.

Proof. The implication "(1) => (2)" follows from Corollary 1.5, and "(2)
(3)" follows from Theorem 2.7.
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(2) => (1). By the equivalence (2) <Φ=>> (3), MR is injective. First we shows
that pM is linearly compact. The proof is the almost same as Mueller [12, Lemma
4]. Let (xi,Xi)i£i be a finitely solvable family of PM. Then by the assumption,

Xi = tMrRf(Xi)9 so Xi = lMrR(Xi) because of rRf(Xi) = rR(Xi)f and 1M(K) =
£M(KΪ) for any K < RR. Put YIR = rR(Xi) and consider a map θ : Σiei Yi ^> M
with 0(ΣieF yi) = Σi€jp^i2/i, where F is a finite subset of / and yι G 1$. By the
assumption, for any finite subset F of /, there exists an element x e M such that

Xi - x 6 Xi. Then (x{ - x)yt e -YiYJ = 0, so ΣίeF ^Wi = x Σ GF 2/»» which shows
θ is well-defined. Since M is injective, there exists an element XQ £ M such that
XiUi = XQiji for any yι G Yί and any i e I. Hence (xi — xo)Yi = 0, and consequently
Xi — XQ G ̂ M^R(Xi) = Xi. Thus pM is linearly compact.

By the assumption, we have Lat(pM) = Al(pM,Rfq) and Lat(Rfq) =
Ar(PM,Rfq), so Lat(pM) is anti-isomorphic to Lat(Λ/g) by the correspondence
X —» Y\ where ^Γ = ^M(^) and Y = r R f ( X ) . Since Q is semiprimary, Jϊ/g has the
upper Loewy series Rf = Y0 > Yl > - - > Yn = 0. Then, 0 = ί(Y0) < l(Y^ <•- <
l(Yn) = M is the lower Loewy series of pM, and l(Yi)/l(Yi-ι) is a semisimple left
P-module for each i = 1,... ,n. Since pM is linearly compact, so is pl(Yi)/l(Yi-ι)
(see e.g. [13, Proposition 2.2]). Thus each module pl(Yi)/l(Yi-ι) has a finite com-
position length (see e.g. [13, Lemma 2.3]), and hence pM\ < oo. Π

Corollary 2.10 (Baba-Oshiro [3, Theorem 2]). Let (eR, Rf) be an i-pair and
P = eRe, Q = f R f , where e,fe Pi(R). Then the following are equivalent.
(1) peR is artinian.
(2) R/Q is artinian.
(3) Both eRR and RRf are injective.

3. Application of colocal pairs

In this section, we give elementary proofs of Theorems 1 and 2 in Baba [2].
"Quasi-projective" for a module is defined as the dual notion to "quasi-injective".
See [16] for the definition of a quasi-projective module and its characterization.
Note that a right .R-module MR is end-local and quasi-projective if and only if
MR = eR/el for some primitive idempotent e of R and for some two sided ideal /

of Λ.
Let (pM,7VQ) be a pair and put P - P/£P(M) and Q = Q/rQ(N). Then we

have a pair (pM, N Q) naturally. It is clear that (pM, NQ) is colocal if and only if so
is (pM, NQ). Hence note that we may identify (PM,NQ) with (pM, N-Q) through

the canonical maps P —» P and Q —» Q.

Lemma 3.1 ([2, Theorem 1]). Let E = Rf/If = E(T(RRe)) for some left
ideal I of Rf and put P = eRe and Q = fRf where e, f e PΊ(R). If E is quasi-
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projective, then the following hold.

(1) rRf(eR) = If.

(2) (PeR, R/Q ) is a left faithful colocal pair.

Proof. (1) Since Rf/If is quasi-projective and injective with S(RRf/If) ^
T(RRe), we have If(fRf) = If and l e R ( R f / I f ) = 0 by Lemma 2.1. Hence
elf (Rf/If) = 0, so (eR)If = elf = 0. Thus we have rRf(eR) > If. On the other
hand, S(Rf/If) ^ T(RRe) implies rRf/If(eR) = 0 by Lemma 2.1. If eRa = 0 for
an element α = af G Λ/, then e/Z(α+//) = OH-// in Rf/If. Hence α+// = OH-//
in Λ//// and α G //, so rRf(eR) < If. Thus we have rRf(eR) = If.

(2) By (1), peEq = peRfq holds, hence we can identify the pair (peR,Eq)
with the pair (peR, Rf/Ifq) induced from (peR,Rfq). Moreover we may assume
Q/flf = EπdRE since E = Rf/If is quasi-projective. It follows from Lemma 2.5
that the pair (PeR,Eq) is faithful colocal, so (peR,Rfq) is left faithful colocal.

D

Lemma 3.2 ([2, Theorem 1]). Let (PeR,RfQ) be a right (or left) finite left
faithful colocal pair with P = eRe and Q = f R f where e, f G Pi(Λ), and put

RE = RE(T(RRe)). Then the following hold.
(1) RE is quasi-projective with T(RE) ^ T(RRf).
(2) eRR is quasί-ίnjective with S(eRR) = T(fRR).

Proof. (1) Putting / = rR(eR), then // = rRf(eR). Since R R f / I f is quasi-
projective, we can regard Q / f l f as EτιdRRf/If. Moreover (peR,Rf/Ifq) is a
finite faithful colocal pair since pe(Rf/If)q = PeRfQ. It follows from Theorem
2.8 that R R f / I f is an injective module with S(RRf/If) ^ T(RRe). Thus we have
E = R R f / I f , which implies (1).

(2) By Theorem 2.8. Π

Theorem 3.3 (Baba [2, Theorem 1]). Let e and f be primitive idempotents of
R and put E = E(T(RRe)), P = eRe and Q = f R f . IfAr(PeR,RfQ) satisfies ace
or dec, then the following conditions are equivalent.
(1) RE is quasi-projective with T(RE) = T(RRf).
(2) eRR is quasί-ίnjective with S(eRR) = T(fRR).
(3) (peR, RfQ) is a left faithful colocal pair.
(4) PeRf is colocal and S(eRR) ^ T(fRR).

Proof. This is an immediate consequence of Lemmas 2.4, 2.5, 3.1 and 3.2.
D

Lemma 3.4. Let (P'eR,Rfq) be a right (or left) finite colocal pair with
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eS(RRf) φ 0, where ej e Pi(R),P' = eRe and Q = f R f . Put K = ReS(RRf)f

E = E(T(fRR}} and P = EudER. Then the following hold.
(1) RK is a unique simple submodule of RRf satisfying K = T(RRe).
(2) There exists a local quasi-injective submodule M ofER such that (pM, Rfq)

is a finite left faithful colocal pair, T(MR] ^ T(eRR) and MK φ 0.

Proof. (1) Since S(P>eRf] is simple, we have S(P,eRf) = eS(RRf). If
S(RRf) = ΘieA-Kί with simple submodules KI, then eS(RRf} = ζ&i<EAeKi Hence
there exists only one index i e A such that eS(RRf) = eKi. Thus K = ReS(RRf) =
KI is simple.

(2) Putting / = £R(Rf), then we have el = ίeR(Rf) and elf = eIRf = 0.
Hence (pteR/el^Rfq) is a finite left faithful colocal pair with P'/ίpr(eR/eI)(=
eRe/ele) = EιιdeR/eIR. It follows from Theorem 2.8 that eR/eIR is quasi-injective.
Since S(eR/eIR) = T(fRR) ^ S(ER), there exists a submodule M of ER with M ̂
eR/el. Then MR is quasi-injective and we have the surjective ring homomorphism
PM P —> EndM^. Therefore (PM,Rfo) is a finite left faithful colocal pair
with T(MR) ^ T(eRR). Moreover if MReS(RRf) = 0, then (eR/eI)eS(RRf) =
0, so eS(RRf) < el and eS(RRf) < elf = 0, a contradiction. Hence MK =
MReS(RRf) / 0. Thus M satisfies the property in (2). D

Theorem 3.5 (Baba [2, Theorem 2]). LetE = E(T(fRR)) and let (pieiR, Rfq]
be a right (or left) finite colocal pair for any i = 1 , . . . , n, where eί? / £ Pi(#), Pi =
CiRβi and Q — f R f . Put P = ΈιnάER. Then the following conditions are equiva-
lent.
(1) S(RRf) ^ T(RReι) Θ - - •• θ T(RRen).
(2) T(ER) ** T(elRR) φ - - 0 T(enRR).

Moreover in case the conditions are satisfied, S(RRf) (or equivalently T(ER))
is square-free and the pair (pE, Rfq) is finite.

Proof. Note that for any e G Pi(Λ), the following property (P) holds.
(P) eS(RRf) φ 0 implies T(ER)e ± 0.
If eS(RRf) / 0, then by Lemma 2.1 EeS(RRf) ^ 0 holds and we have

EJS(RRf) = 0 clearly, which shows that (P) holds.
(1) => (2). Assume (1). Then S(RRf) is square-free by Lemma 3.4 (1). Hence

by the property (P), T(ER] has a direct summand isomorphic to T(eιRR) θ θ
T(enRR). By (1) we have S(RRf) = Kλ θ θ Kn for some Ki < RRf with
Ki = T(RRei); i = 1, . . . , n. By Lemma 3.4, for each i — 1,. . ., n, there exists a
quasi-injective submodule Mi of ER such that (pM^Rfq] is a finite left faithful
colocal pair with T(M;) = TfaR) and M^ φ 0. Putting M = MI H h Mn,
then MR is a quasi-injective module with \pM\ < oo. Since (pE.Rfq) is a left
faithful colocal pair, so is (pM, Rfq). If 0 φ a e Rf, then Ra > ̂  for some i and
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consequently Ma > MKi φ 0. Hence (pM,Rfq) is a finite faithful colocal pair.

Moreover we have the surjective ring homomorphism PM '• P —* End(M). Therefore
MR is injective by Theorem 2.8, which implies E = M. Thus T(ER) (= T(MR)) is
isomorphic to a direct summand ofT(eιRR) 0 θ T(enRR) and consequently we
have (2). Moreover (E, Rf) is finite because of E = M.

(2) =*(!). Assume (2). Then by the property (P) and Lemma 3.4 (1), we
may assume that S(RRf) = T(RRe\) θ θ T(RRern) for some m; 1 < m < n.
Therefore from the implication (1) =>> (2), T(ER) = T(eιRR) θ - θ T(em.Rβ) is
obtained. Thus m = n holds and consequently we have (1). D
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