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Introduction

Consider an end Ω in the sense of Heins [7]: Ω is a relatively noncompact
subregion of an open Riemann surface R, which is of null boundary and has a
single ideal boundary component, and the relative boundary dΩ(^ 0) of Ω consists
of finitely many analytic closed Jordan curves. We denote by P(Ω) the class of
nonnegative harmonic functions on Ω with vanishing boundary values on dΩ. The
minimum number of elements o f P ( Ω ) generating P(Ω) provided that such a finite
set exists, otherwise oo, is referred to as the harmonic dimension of β, dimP(Ω) in
notation. In terms of Martin compactification, it is known that dίmP(Ω) coincides
with the number of minimal boundary points in the Martin compactification of R
(cf. e.g. [4]), and hence dimP(Ω) = dimP(Ω') for any pair (β, Ω') of ends of R.

Denote by D the punctured unit disc {0 < \z\ < 1} and let W be a p-sheeted
(1 < p < oo) unlimited covering surface of D such that the projection of branch
points of W accumulates only at z = 0. Then W is naturally considered as a
subregion of an open Riemann surface R which is a p-sheeted unlimited covering
surface of {0 < \z\ < oo}. I f R has a single ideal boundary component, it is seen
that W is an end. We denote by εp the class of ends W of this kind. In this paper
we are especially concerned with ends belonging to £p. First of all, it is noted that
1 < dimP(W) < p for each W € £p (cf. Heins [7]). Roughly speaking, if each sheet
of W is closely connected with any of the other sheets, then dίmP(W) = I and if
each sheet of W is faintly connected with the other sheets, then dimP(W) — p. This
intuition is realized as follows. Consider two positive decreasing sequences {αn} and
{bn} satisfying 6n+ι < an < bn < I and lim^^ an = 0. Set G = {0 < \z\ < 1} - /,
where / = U^=lln and In = [αn, bn]. We take p copies G\, - - , Gp of G and join
the upper edge of In on Gj with the lower edge of In on Gj+i (j mod p) for every
n. Then we obtain a p-sheeted covering surface W\ of D which belongs to 8P. For
this end W\ we have showed the following (cf. [9], [11] and [14]).
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Theorem A. (i) If I is thin at z = Q, in the sense that z — 0 is an irregular

boundary point ofG with respect to Dirichlet problem, then dimP(Wι) — p.

(ii) /// is thick (= not thin) at z = 0, then dimP(Wι) = 1.

The proof of the above theorem in [9] and [11] essentially relies on symmetry
of G relative to the real line and the fact that the cover transformation group of

Wι acts transitively and cyclically on each fiber. Main purpose of this paper is to
show the following theorem which characterizes harmonic dimension in terms of

fine topology and gives generalization of Theorem A.

Main Theorem. Let M be the class of open connected subsets M ofD such

that M U {0} is a fine neighborhood ofz = 0. For every W E Sp, it holds that

d\mP(W) = max nw(M],
ME.M

where nw(M) is the number of connected components ofπ~l(M) and π is the
projection ofW onto D.

After Preliminaries (§1), the proof of Main Theorem will be given in §2. In

§3 from Main Theorem we shall derive Proposition 3.1 and Theorems 3.1 and 3.2,

which include Theorem A above. Applying Main Theorem, we shall also show
that, for an arbitrary given integer q with 1 < q < p, there exists aWeSp such that

Consider the cover transformation group Qw of W <G Ep. In this paper we say

that W is normal if there always exists a r e Qw which carries a given point w

into a prescribed point w' with same projection (cf. [6]). In §4 we show that the
harmonic dimension ofW divides p ίfW is normal We also say that W is cyclic if

W is normal and Qw is cyclic. The end Wι in Theorem A is a typical example of
cyclic covering surfaces. So it might be interesting whether the range of harmonic

dimensions of cyclic covering surfaces in Ep is {l,p}. Second purpose of §4 is to
answer this question negatively. In fact, for each divisor q of p9 we shall give an

example W E Ep such that W is cyclic and άimP(W) = q.

The authors would like to express their sincere thanks to Professors H. Ishida
and M. Taniguchi for their valuable comments to this work and at the same time to

the refree for his helpful advices.

1. Preliminaries from potential theory

1.1 We begin with recalling the definition of balayage. Consider an open

Riemann surface F possessing a Green's function. Denote by S = S(F) the class

of all nonnegative superharmonic functions on F. Let E be a subset of F and s
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belong to S. Then the balayage Rf = FRf of s relative to E on F is defined by

Rf (uΛ = liminf mΐiufx) : u £ <S, it > s onE}
X—+W

(cf. e.g. [2]). We here review fundamental properties of balayage (cf. [2], [3], [8],
etc).

Proposition 1.1. (i) If EI c E2, then Rf1 < Rf2;
(ii) Rf lLJβ2 <Rf* + Rf2;

(iii) //i/, t; E S and s, t > 0, ί/ze« RίL+tt, = sRf + ίRf
(iv) //EΊ and E2 are closed subsets ofF and N is a common connected component

of both F - EI and F - E2, then Rf 1 = Rf 2 0« AT.

The following lemma gives us a relation between balayage on F and that on a
covering surface of F (cf. [11]).

Lemma 1.1. Let F be an unlimited covering surface ofF with the canonical
projection π from F onto F, E a subset ofF and s belong to S. Then it holds that

on F.

1.2 We next state definitions of thinness and fine neighborhood (cf. [3]).

DEFINITION 1.1. Let α be a point in C and set F = {\z - a < r} and
ga(z) = log(r/|z - α|). We say that a subset E of C is thin at α if FRfα

nF / ga-

it is easily seen that the above definition does not depend on a choice of r > 0.
If E is closed and α belongs to E in the above, it is well-known that E is thin at α
if and only if α is an irregular boundary point of F — E with respect to Dirichlet
problem (cf. e.g. [3]). We also say that E is thick at z = 0 if E is not thin at z = 0.

DEFINITION 1.2. A subset U in C which contains α is said to be a fine neigh-
borhood of α if C — U is thin at α.

The notion of fine neighborhood is originally defined in the category of fine
topology. However, since it is well-known that the above definition of fine neighbor-
hood coincides with the original definition, we adopt the above for convenience.

As for thinness of circular projection of closed set in D, the following propo-
sition is applied in §3 (cf. [8]).
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Proposition 1.2. Let E be a closed subset of D and put E' = {\z\ : z e E}.

IfE is thin at z = 0, then E' is thin at z = 0.

In §3, we are also in need of the following proposition (cf. [5]).

Proposition 1.3. Let U be a fine neighborhood of z = 0. Then there exists
a polar subset Z of {\z\ = 1} satisfying the following property for every ray 10 =

{argz = θ} with 10 Π Z = 0, there exists a positive number p such that IQ Γ\ {\z\ <

P}CU.

1.3 Let F be an open Riemann surface possessing a Green's function. We
denote by Δ the Martin boundary of F and by kς the Martin kernel on F with
pole at ζ. The minimal boundary of F, ΔI in notation, is defined as the set of all
minimal points in Δ. Similarly as thinness and fine neighborhood, minimal thinness

and minimal fine neighborhood are defined as follows (cf. [3]).

DEFINITION 1.3. Let ζ be a point in ΔI and E a subset of F. We say that E
is minimally thin at ζ if FRf φ kς.

DEFINITION 1.4. Let ζ be a point in ΔI and U a subset of F. We say that
U U {ζ} is a minimal fine neighborhood of ζ if F — U is minimally thin at ζ.

The following proposition plays a fundamental role in the study of (minimal)

thinness and (minimal) fine neighborhood (cf. [12]).

Proposition 1.4. Let ζ be a point in ΔI and E a closed subset ofF. IfE is
minimally thin at ζ, then FRf is a potential and there exists a unique connected

component U ofF — E such that FRf < kζ on U. Moreover, under the condition

of Definition 1.1, ifE is a closed subset ofF and thin at a, then FRF

α is a potential

and there exists a unique connected component U ofF — E such that FRF

α < ga on

U.

We close Preliminaries by stating the following, which is easily verified from
the above proposition (cf. [12]).

Proposition 1.5. Let ζ be a point in ΔI and U an open subset of F such
that U U {ζ} is a minimal fine neighborhood of ζ. Then there exists a unique
connected component VofU such that V U {ζ} is a minimal fine neighborhood of
ζ. Moreover, let a be a point in C and U an open subset ofC such that U U {α} is a

fine neighborhood of a. Then there exists a connected component VofU such that
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V U {α} is a fine neighborhood of a.

2. Proof of Main Theorem

2.1 Throughout this section, let W belong to 8P, where Ep is defined in

Introduction. Denote by dW the relative boundary of W and by π = πw the

projection of W = W U dW onto {0 < \z\ < 1}. Note that π(dW) = {\z\ = I } .

We consider the Martin compactification W* of W. Then W* takes a form W* =

W U dW U Δw, where Δ^ is the Martin ideal boundary of a bordered surface W.

We also denote by Δ^ the set of minimal points in Δw . It is well-known that
dimP(W) coincides with the number of points in Δ™ (cf. e.g. [4]). We again note

that

(2.1) l<dimP(W)<p

for every W £ £p (cf. [7]). For simplicity of notation, here and hereafter denote

by Ry the balayage WR^ on W and set g ( z ) = log(l/|z|). We first maintain the
following

Lemma 2.1. Let ζ belong to Δ^ and N be an open subset ofW. Suppose that

7Vu{C} is a minimal fine neighborhood ofζ. Then π(7V)u{0} is a fine neighborhood

ofz = 0.

Proof. By (2.1), we can put Δ^ = {Ci, ,Cn} (π < p), where Ci = C Let

ki be the Martin kernel with pole at ζi (i = 1, , n). In view of Proposition 1.5,

we may assume that TV is connected. By Proposition 1.4,

(2.2) R£-" < fcx

on N. It is easily seen that g o π > cki with c > 0 (i = 1, , n). Therefore the

Martin representation theorem (cf. [4], [8]) implies that there exist positive numbers

Ci satisfying

(2.3) goπ

From this with Lemma 1.1 and Proposition 1.1 it follows that

DβD-π(AΓ) gW-Tr-^πW) < β^-7V _ V^ -p^-TV
Π^ O π — Xl^oπ li ^oπ — / ^ ^-"-fci

i=l

Hence, in view of (2.2) and (2.3), we have
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on TV, i.e. DR%~π(Λ° < g on π(TV). Since DR^ = D°Rf in general, where D0 =
{\z < 1}, this means that ττ(TV) U {0} is a fine neighborhood of z = 0. D

2.2 As stated in Main Theorem, let M be the class of open connected subsets
M of D such that M U {0} is a fine neighborhood of z — 0, or equivalently, D — M
is thin at z = 0. We next claim

Lemma 2.2. Let M belong to λΛ and N be an arbitrary connected component
ofπ~1(M)J where π = πw Then there exists a point ζ G Δj4" such that TV U {ζ} is
a minimal fine neighborhood ofζ.

Proof. Let Δj^ = {Ci, ,Cn} and kι be the Martin kernel with pole at ζi
(i = 1, , n). In the same way as in the proof of the preceding lemma (see (2.3)),
there exist positive numbers Q such that

(2.4) g o π =

By definition and Proposition 1.4, we have DR^~M < g on M. Therefore Proposi-
tion 1.1, (2.4) and Lemma 1.1 imply that

Σ Dτ>D-

on π~1(M). Hence there exists a v G {1, ,n} such that R^ π ^ ̂  kv on
TV. On the other hand, in view of (iv) of Proposition 1.1, it is easily seen that

R^~π ^M* = R^~N on TV. Therefore we conclude that R^~N φ kv on TV, i.e.
TV U {ζv} is a minimal fine neighborhood of ζ^. D

2.3 In addition to Lemmas 2.1 and 2.2, we need the following lemma (cf.
[10]) for the proof of Main Theorem.

Lemma 2.3. Let E be a subset ofW. IfE is minimally thin at every ζ G Δ^,
then π(E) is thin at z = 0.

Before starting with the proof of Main Theorem, recall the definition of nw(M).
For each M G M, let nw(M) be the number of connected components of π~1(M) =
πw
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Proof of Main Theorem. Set dimP(W) = n and Δ^ = {Ci, - , Cn} We
first show that there exists an M E M. such that n < nw(M), which implies

that dimP(W) < maxM<=M nw(M). Let {Nι, - - , Nn} be mutually disjoint open
connected subsets of W such that each A^U{^} is a minimal fine neighborhood of £$.
Set S = n?=lπ(Ni) and E = n£=lN£. Since each π(AΓ i)u{0} is a fine neighborhood
of z = 0 by means of Lemma 2.1, S U {0} is also a fine neighborhood of z = 0.
Since each Nf is minimally thin at ζi by definition, E is minimaly thin at each ζi.

Hence π(E) is thin at z = 0 by means of Lemma 2.3. Therefore (S - π(E)) U {0}
is a fine neighborhood of z — 0. Then, by Proposition 1.5, there exists a connected
component M of 5 — π(E) belonging to M. Let w be a point in Ni n π-1(M)

and C be an arbitrary curve in W such that u? is the initial point of C and ττ(C)
is contained in M. Then it is seen that the end point of C belongs to Ni. By this
reasoning, for each ί = 1, , n, we can take a connected component Oi of π~1(M)
such that O; C Λ^. It is evident that O^'s are mutually disjoint. Consequently we
conclude that nw(M) > n.

We next show that n > nw(M) for every M e .Λ/ί, which implies that dimP(W)
> m&xMeMnw(M). Set ra = nw(M) and let {Λ/i, ,7Vm} be the totality of

connected components of π~1(M). For each Ni, by virtue of Lemma 2.2, there
exists an r^ E Δj^ such that Ni U {77^} is a minimal fine neighborhood of 77^. Since
Ni Π Nj = 0 if i / j, we see that r^ ^ 77j if i ^ j. Therefore we obtain that

{771, - , 77m} C Δ™ or m < dimP(W).
The proof is herewith complete. D

By virtue of Main Theorem and (2.1), the following corollaries are instantly
verified.

Corollary 2.1. If there exists an M £ M such that nw(M) = p, then

άimP(W) =p.

Corollary 2.2. Ifnw(M) = 1 for every M E M, then dimP(W) = 1.

3. Applications of Main Theorem

3.1 In this section, we are concerned with application of Main Theorem.

Let {/nj^Li and {Jn}n=ι (0 < z^ < CXD) be sequences of closed segments in D
accumulating only at z — 0 such that /m Π In = Jm Π Jn = 0 (ra ^ n) and

Im Π Jn = 0 We also assume that In c {argz = ̂ n} for a sequence {θn}. Set

/ = Q / n , ^^IJ^/n and S = S(I,J)=D-I-J.
n=l n=l
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We consider a subclass TP(I, J) of Sp which consists of ends W E 8P satisfying the
following three conditions, where we denote by πw the projection of W onto D:

(i) π^(S) consists of p connected components Si, , Sp9 where each Si is a copy
of 5,

(ii) every branch point of W lies over a point in the set of end points of {In}
 and

{Jn},

(\ii) for every end point z of {/n}> there exists a branch point of W of order p — 1
(i.e. of multiplicity p) which lies over z.

We first maintain

Proposition 3.1. Let W be in «FP(/,J). /// U J is thin at z = 0, then
άimP(W)=p.

The above result was originally proved in [11]. We here give an alternative and
very short proof of the above by applying Corollary 2.1.

Proof. By assumption, S belongs to ΛΊ. It follows from the above condition
(i) that nw(S) = p. Therefore, by virtue of Corollary 2.1, we have άimP(W) = p.

D

3.2 Here and hereafter, we set Er = {\z\ : z <E E] for a subset E of D.

Theorem 3.1. Let W be in TP(I, J). Suppose that {I'n} are mutually disjoint.
IfΓ is thick at z = 0 and J' is thin at z = 0, then άimP(W) = 1.

Proof. It suffices to show that nw(M) = I for every M e M. For this
purpose, set E = D — M. Since E is thin at z = 0, it follows from Proposition
1.2 that E' is thin at z = 0. Denoting by K the totality of end points of {In}, we
see that E' U J' U Kf is thin at z = 0, and therefore /' - (E' U J 'U K') is thick
at z = 0. Hence there exist an r with 0 < r < 1 and a positive integer m such
that r belongs to I'm - (E1 U J' U K'). Setting d = {\z\ = r}, we deduce that
CΊ C M, C\ Π J = 0 and CΊ Π / consists of a single point α which contained
in Im — K. We shall show that π^(Cι) consists of a single closed Jordan curve.
Consider a closed Jordan curve C2 passing through α such that C2 — {α} is contained
in 5, 62 surrounds only one end point of /m and the inside of C2 is contained
in 5 U Im. We give d (i — 1,2) anti-clockwise orientation and parametrization
z = Zi(t) (0 < t < 1) with Zi(ϋ) = Zi(l) = α. Take an arbitrary point b e 7r^(α)
and denote by I\ : w = ̂ (ί) (0 < t < 1) the lift of C^ by π^1 satisfying 1(^(0) = 6.

Then, since C\ — {α} and C2 — {α} are contained in 5, we see that u>ι(l) = 1^2(1).
On the other hand, it follows from the conditions (ii) and (iii) in no. 3.1 that

^w'^i] consists of a single closed Jordan curve. Consequently, we obtain that
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π^(Cι) also consists of a single closed Jordan curve. Hence, in view of CΊ C M, it
is not difficult to see that π^1 (M) is connected, which completes the proof. D

It is easily seen that Proposition 3.1 and Theorem 3.1 yield Theorem A in
Introduction.

3.3 Applying the same argument as in the above proof, we can prove the
following, which gives another sufficient condition in order that dimP(W) = 1.

Theorem 3.2. Let W be in FP(I,J) and lθ = {arg£ = θ}. Suppose that
I C 10 and there exists a positive number ε such that J C D — {\ arg z — θ\ < ε}. If
both of I and lθ - I are thick at z = 0, then άιmP(W] = 1.

Proof. Without loss of generality, we may assume that θ = 0. As well
as Proof of the preceding theorem, we have only to show that nw(M) — 1 for
every M e M. By means of Proposition 1.3, there exist two rays la and lβ with
—ε<a<Q<β<ε and a positive number p such that {re*α : 0 < r < p}
and {reτf3 : 0 < r < p} are contained in M. Since (D — M)r is thin at z = 0
by Proposition 1.2 and / is thick at z = 0, there exists a positive number s with
s < p such that Cs = {seiΊ : a < 7 < β} C M and s <E / - K, where K is the
totality of end points of {/n} By similar reasoning, there exists a positive number
t with t < s such that Ct = {te*7 : α < 7 < β} C M and t £ 10 - I. Joining
Ct, {reιa : t < r < s}, Cs and {rez/3 : t < r < s} in order, we obtain a closed
curve C in M. Since C — {s} C S and s e / — K, applying the same argument
as in the preceding proof, we can conclude that π^/

1(C) is connected. Hence, by
the fact C C M, we see that nw(M] = 1 and άimP(W) = 1. This completes the
proof. Π

We here remark that, in Theorem 3.2, the assumption that J C D — {\ arg z — θ\ <
ε} for ε > 0 can not be removed. Let / be the same as in Theorem 3.2 and set
In = {telθ : an < t < bn}. Take a decreasing sequence {θn} with limn^oo θn = θ.
Put Jn = {teiθn : an < t < bn] and J = U™=lJn. For this pair (/, J), choose a
W € F<2(I, J) such that the projection of the totality of branch points of W coincides
with the totality of end points of {In} and {Jn}. Denote by L2n (resp. I/2n-ι) the
closed segment [ane

lθ, ane
ϊθn] (resp. [bne

τθ, bne
lθn]). Making the convergence θn —> θ

be sufficiently rapid, we can suppose that L = U^=lLn is thin at z = 0. Then it
holds that dimP(W) = 2. In fact, M = D - L belongs to M and π^(M) consists
of two components. Hence, by Corollary 2.1, we have that dim.P(W) = 2.

We also remark that, in Theorem 3.2, the assumption that 10 — I is thick at z = 0
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can not be removed (cf. [11] and see also no. 4.4).

3.4 Although it seems to be well-known that, for an arbitrarily given integer
q with 1 < q < p, there exists an end W G Sp such that dimP(W) = q, we can
find no references to show this explicitly. For the sake of completeness, applying
Main Theorem, we shall give an example Wq G Sp with dimP(Wq) — q for every

<?£{!, ••-,£}.
If q is 1 or p, then there exists a W G Sp with dimP(W) = q by means of

Theorem A in Introduction. Assume that 1 < q < p. For convenience' sake, we
use the notation En for n — 1: S\ — {D}, where D is considered to be an end of
{0 < \z\ < oo}. By Theorem A and the fact that dimP(D) = 1, there exists an end

Vι € £q-ι (resp. V2 £ £p-ς+ι) such that dimP(Vί) = q-l (resp. dimP(V2) = 1).
Denote by πi (resp. π2) the projection of Vί (resp. V2) onto D. Consider a sequence
{Kn}^=l of mutually disjoint closed segments in D such that K is thin at z = 0
and there exist no branch points of VΊ (resp. V2) on π^l(K) (resp. π^l(K)), where
K = U^=lKn. For every n, let «ln (resp. κ;2n) be a closed segment in VΊ (resp.
V2) with τrι(«ιn) = Kn (resp. π2(/t2n) = K"n). Joining VΊ with V2 crosswise along
slits Kin and ^2n f°r every n, we obtain an end Wq which belongs to £p. To prove
that dimP(Wq) = g, we denote by π the projection of Wς onto D. By virtue of
Main Theorem, we can find an M e Λί with nVl(M) = ς — 1. Let Mx be the
connected component of M — K such that z — 0 is a boundary point of M1'. Then
M' also belongs to Λ4, because K is thin at z — 0. Since ny1(M/) = q — 1 and
ny2(M/) > 1, it is easily seen that nwq(M') > q, and hence dιmP(Wq) > q by
Main Theorem. On the other hand, by Main Theorem, we have that nγ2(M) = 1
for every M £ Λ4. From this and the fact that ny1(M) < g — 1 for every M G ΛΊ,
it follows that n^g(M) < q for every M G A"i, and hence dimP(Wq) < q by means
of Main Theorem. The proof of dimP(Wq) = q is herewith complete.

4. Normal and cyclic covering surfaces

4.1 We start with fixing terminology and notation. Let F be an open Riemann
surface and F an unlimited covering surface of F. Denote by π — πp the canonical
projection of F onto F. A conformal mapping r of F onto itself is said to be a
cover transformation of F if π(r(iϋ)) — π(ιt ) for every w G F. Denote by C/p the
group of cover transformations of F. We proceed to the statement of definitions of
normal and cyclic covering surfaces. Although normality is usually defined only for
unramified covering surfaces(cf. [1]), we adopt the following definition, in which
normality is defined even for ramified covering surfaces (cf. [6]).

DEFINITION 4.1. We say that F is normal if Op is transitive on π~l(z) for
every z £ F, that is, for every pair (ιuι,u>2) of π-1(z), there exists a τ £ Op such



HARMONIC DIMENSION OF COVERING SURFACES 669

that T(WI) = W2

DEFINITION 4.2. We say that F is cyclic if F is normal and Gp is cyclic.

If F is p-sheeted (1 < p < oo), it is not difficult to see that the order of Qp is
a divisor of p and that F is normal if and only if Qp is exactly of order p (cf. e.g.

[i]).

4.2 Assuming that W G Sp is normal, we are interested in relation between

the harmonic dimension of W and the number p of sheets of W. Our first assertion
of this section is the following

Theorem 4.1. IfW G Sp is normal, then the harmonic dimension ofW divides

P-

Proof. We first put ά\mP(W] = m. By means of Main Theorem, there exists

an M G M such that nw(M) = m. We denote by {ΛΓi, , Nm} the totality of
connected components of π~l(M) and set H = {r G Qw '• τ(Nι) — NI}. It is
evident that H is a subgroup of Qw Let r be the order of H and put q = p/r.

Consider the decomposition of Gw by left cosets of H:

(4.1) Gw = τlH + . +τqH,

where r\H = H.
Observe that every r G Gw induces a permutation on {7Vι, , 7Vm}. Therefore

we can consider a mapping φ : TI ι-> 7VΊ, from {TI, , rg} to {7Vι, , 7Vm} such

that Ti(JVι) = NV Suppose that φ(n) = φ(τj). Then we have that r~lTi(Nι) = 7Vι
or r"1^ G H, and hence T; = TJ by (4.1). This implies that φ is injective. On the

other hand, for each N^, there exists a r G Gw satisfying τ(Nι) = N^ by assumption.
Putting r = r^σ for a σ G if, we see that T;(7Vi) = r ΐσ(A/1) = τ(JVι) = 7V^. This
implies that φ is also surjective. Consequently we obtain that ψ is bijective, and
hence m = q. This completes the proof. Π

4.3 Put Hp = {άimP(W) : W G £p, W is cyclic} and denote by Xp the
totality of divisors of p. Our second assertion of this section is that Tp c Hp. In
fact, for an arbitrarily given q G Jp, we shall construct a W e Sp such that VF is

cyclic and dimT^VF) = ςr. On the other hand, by Theorem 4.1, we see that Hp C Ip.
Consequently we obtain

Theorem 4.2. There exists α cyclic covering surface W G Sp with dιmP(W) =
q if and only if q is a divisor of p.
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Suppose q E Tp and put p = qr. Consider a sequence {an}^=l with 2~n < an <

2-n+ι Making each αn draw near 2~n+1, we can assume that U£°=1[αn,2-n+1] is

thin at z = 0 (cf. e.g. [16]) and

n=l

For each j — 1, , q and each n = 1, 2, , set

/^ = {te^ :2~n <ί <αn} and G = D - \Jq

j=lI
j ,

where P = U^^. For convenience' sake, we denote by J^+ (resp. /£~) the left

(resp. right) side edge of the slit Pn in D with respect to the ray {argz = 2jπ/q}.

Take p copies G\ , , Gp of G. Joining In on G; with In on GΪ+I (z mod p)

for every j = 1, , q and every n = 1, 2, , we obtain a covering surface Wpq

of Z} belonging to 8P. It is clear that Wpq is cyclic. Our goal is to show that

dimP(Wpq) = q. The proof is accomplished in no. 4.4.

4.4 We first show that dίmP(Wpq) < q. For this purpose, we need the fol-

lowing (cf. [13] and [15])

Proposition 4.1. Let Ω be an end in the sense of Heins and {An}^=1 a

sequence of mutually disjoint subset of Ω such that each An consists of at most

μ mutually disjoint annuli {Anrn}^=l (μn < μ) and An+ι separates An from the

ideal boundary o/Ω for every n. Suppose that Σ™=1 mod An = oo, where mod Anrn

are moduli of Anrn and (mod An}~1 = (mod Anι)~l + + (mod Anμn)~l. Then

dim7:>(Ω) is at most μ.

Set An — π~1({2~n < z\ < an}} (n — 1,2, ), where π is the projection of

Wpq onto D. By construction of Wpq, it is not difficult to see that each An consists

of q disjoint annuli An\, , Anq which are conformally equivalent to {1 < \z\ <

^/2nαn}, where r = p/q. This yields that

1 = gr(log(2nαn))-1.

Hence, by (4.2), we have that

.. 00

n = oo.
n=l n=l

It is evident that An+ι separates An from the ideal boundary of Wpq. Consequently,

by means of Proposition 4.1, we see that dimP(Wpq] < q.
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We next show that dimP(Wpq) > q. Set

Jj =DΓ\{Άΐgz = — }-P, E=\JJϊ and 5 = D - E,

where JJ is the closure of J 7. Since each JJ is thin at z = 0 by assumption, it follows
that E is thin at z = 0, and hence 5 belongs to M defined in no. 2.2. It is not

difficult to see that π~l(S) consists of q components as well as An, i.e. nwpq(S) = q.
Therefore, by virtue of Main Theorem, we conclude that dimP(Wpq) > q. The proof
of dimP(Wpq) — q is herewith complete.

REMARK. Set I = I1 and J = U?=2P for {Ij}*=l in no. 3.1. Then the above
Wpq for q > I shows that, in Theorem 3.2, the assumption that IQ — I is thick at

z = 0 can not be removed.
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