Ibafiez, R.
Osaka J. Math.
34 (1997), 553-571

COEFFECTIVE-DOLBEAULT COHOMOLOGY OF
COMPACT INDEFINETE KAHLER MANIFOLDS!

RAUL IBANEZ
(Received March 16, 1996)

1. Introduction

In this paper we consider indefinite Kdhler manifolds, that is, complex man-
ifolds with a compatible indefinite metric such that the associated Kéhler form is
closed. The class of indefinite Kédhler manifolds is a particular class of symplectic
manifolds containing the class of Kahler manifolds. There exists some similarities
of the theory of indefinite Kédhler manifolds with the theory of Kahler manifolds, in
particular, the formalism associated with the covariant derivative and the curvature
operator [ 1, 3], but there exists also some known differences:

1.  The minimal model of a compact Kahler manifold is formal [12], but there
are examples of non-formal compact indefinite Kéhler manifolds [6, 13, 14].

2. Any compact Kéhler manifold satisfies the Hard Lefschetz theorem [17], but
this is in general false for compact indefinite Kahler manifolds [5].

3.  The Frolicher spectral sequence of a compact Kahler manifold always col-
lapses at the F; term [17], but examples of indefinite Kéhler manifolds which
Frolicher spectral sequence may not collapse even at E5 are known (7, 8, 9].

Notice that the known examples of indefinite K&hler manifolds with no Kéhler
structure or not satisfying Kéhler properties are compact nilmanifolds or solvman-
ifolds. These classes of compact homogeneous manifolds have proved to be very
useful in producing a rich and wide variety of examples of compact manifolds with
special properties (see [2, 6, 11, 16]).

In [4] T. Bouché defines a differential subcomplex of de Rham complex on
a symplectic manifold, and he obtains some results on the cohomology of this
complex: the coeffective cohomology. In particular, he proves that the coeffective
cohomology is related to the de Rham cohomology for compact Kéhler manifolds,
but this is not true in general for any compact symplectic manifold (see [2, 15]).

The aim of this paper is to introduce for indefinite K&hler manifolds a differ-
ential subcomplex of Dolbeault complex defined analogously to the above subcom-
plex for symplectic manifolds. More precisely, in Section 2, for an indefinite Kidhler
manifold M with Kéhler form w, we study the complex
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M e AP ) S AP (M) S AP (M) — -

where 9 denotes the Dolbeault operator obtained in the decomposition of the exte-
rior diferential d = & + 9, and AP9(M) is defined by

API(M) = {a € AP(M)|a Aw = 0}.

In Section 3 we show that for compact Kéhler manifolds the cohomology of
the complex (1) (the coeffective-Dolbeault cohomology) is related to the Dolbeault
cohomology. This property gives a new difference between the indefinite Kahler
and Kahler theories, because it is not satisfied in general for any compact indefinite
Kahler manifold. To show this we need to prove, in Section 4, a Nomizu-type
theorem for the coeffective-Dolbeault cohomology groups of a compact indefinite
Kahler nilmanifold, which permits us to calculate such cohomology groups at the
Lie algebra level. Then, in Section 5, we construct an example of a compact nilman-
ifold with an indefinite Kahler structure for which the Kahler property relating the
coeffective-Dolbeault cohomology and the Dolbeault cohomology is not satisfied.

Moreover, in Section 3, we prove a Hodge decomposition theorem [17] for the
coeffective cohomology of a compact Kéhler manifold, relating this cohomology
with the coeffective-Dolbeault cohomology. But, in Section 5 we show an example
of compact nilmanifold with an indefinite Kahler structure not satisfying such a
property.

I wish to thank to M. Fernandez and M. de Leon for their interest and helpful
conversations.

2. Coeffective-Dolbeault cohomology

Let M be any real differentiable manifold. We denote by Fc(M) the algebra of
C* complex-valued functions on M and Xc(M) the Lie algebra of derivations of
Sc(M) that can be regarded as the complex C'* vector fields on M.

Now assume that M has an almost complex structure, that is, a real tensor J
of type (1,1) on M satisfying J2 = —I. Then, it is posible to decompose Xc(M) as
Xc(M) = X1,0(M) ® Xo,1(M) where

X10(M) = {X € Xc(M)|JX =V-1X},
X01(M) = {X € Xc(M)|JX = —V/—-1X}.

Notice that xl,o(M) = }Zo,l(M).

Next let M be a complex manifold of complex dimension n. This means that
in a neighborhood of each point of M it is posible to introduce a system of local
complex coordinates (z1, - - -, z,) such that the transition functions between any two
systems of local complex coordinates are holomorphic. Every complex manifold has
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a canonically associated almost complex structure J such that for any coordinate
system

o} 0 o 0
— =y —-1— _ = —v/—-1—
J (321) ‘o5’ J (3%‘) 0z’

for j = 1,---,n. Therefore, near each point of M a vector field X of bidegree (1,0)
can be expressed as

“~, 9
X=3 fizg—
=1 BZ]'

where the f;’s are C* functions. The same holds for a vector field X of bidegree
(0,1),

— n 9
X=3 05
=1 6Zj

REMARK 2.1.  Itis known that an almost complex structure J on a manifold M
is the almost complex structure associated to a complex structure iff J is integrable,
that is, the Nijenhuis tensor N; of J vanishes [1, 20], where

N;(X,)Y)=[X,Y|+JJX,Y]|+ J[X,JY] - [JX,JY],
for X and Y vector fields on M.
Let M be a real differentiable manifold and A*(M) denote the §¢ (M )-module
of complex differential forms. If M is an almost complex manifold it is possible to
define the submodule AP-9(M) of differential forms of bidegree (p, q).

For a complex manifold M a differential form of bidegree (p, ¢) can be expressed
in any local complex coordinate system of M as

> f;ll;’;’dz,l Ao Adeg, AdZj A AdEj,.
Moreover, if d is the exterior differential,
d (AP (M)) C APTHI(M) @ AP (M).
Thus, for a complex manifold we get a decomposition of d as d = 8 + 9, where

9 (API(M)) C APTHI(M) and B (AP9(M)) C APTTH(M).
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From this decomposition of d and since d> = 0, we obtain that 82 = 52 =
90 + 89 = 0 and the known Dolbeault complex for complex manifolds:

2) oo — APITH(M) i AP9(M) 9, APIFL(M) — .- -,

The cohomology groups of (2) are the so-called Dolbeault cohomology groups
and they are denoted by Hg’q(M).

An almost complex manifold M of real dimension 2n is said almost Hermitian
if there exists a real indefinite metric g on M which is compatible with the almost
complex structure J of M, that is, g(JX,JY) = g(X,Y), for X and Y vector fields
on M. The Kahler form (or fundamental 2-form) of an almost Hermitian manifold
M is defined by w(X,Y) = g(JX,Y). The Kéhler form always has maximal rank,
that is, w™ # 0, it is real and of bidegree (1,1) with respect to the bigraduation.

Moreover, an almost Hermitian manifold M is said
i) indefinite Kahler iff J is integrable and w is closed,

i)  Kdhler iff it is indefinite Kéhler and g is a Riemannian (or positive definite)
metric.

Notice that indefinite Kéhler manifolds are in particular complex and symplec-
tic manifolds.

REMARK 2.2. A Lorentzian metric may not be a compatible metric with an
almost complex structure, because the signature of such a metric is (2n — 1,1) and
for the almost Hermitian case the signature of the metric is of the form (2n —2p, 2p)

(see [1]).

From now on, we suppose that M is an indefinite Kahler manifold of real
dimension 2n with integrable almost complex structure J, indefinite metric g and
Kihler form w. Then, we have the symplectic operator L : A*=2(M) — A*¥(M)
defined by La = a A w, for @ € A¥~2(M). This operator is real since w is a real
2-form and from w € AV1(M) it is expressed with respect to the bigraduation as

3) L: AP~59 1 (M) —s API(M).

Lemma 2.3. The operator L given by (3) is surjective forp +q > n+ 1 and
injective forp+q <n+ 1.

Proof. It follows inmediately since the symplectic operator L : A¥=2(M) —
AR(M) is surjective for k£ > n + 1 and injective for k < n + 1 [4], and from the
decomposition [17, 20]

(4) AF(M) = P API(M). O

p+g=k
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Next we introduce the subspace AP9(M) of AP9(M) defined by
APYM) = {a € API(M)|aAw =0}
= Ker{L : AP»9(M) —s APT1IT1(M)}.

A differential form o € AP4(M) is said to be a coeffective (bigraduate) form of
bidegree(p, q).

From the decomposition d = d + 0 and that w € A!(M), then dw = 0 and
the operators L and & commute. Therefore, it may be considered the subcomplex
of Dolbeault complex

(5) e — _Ap,q—l(M) _5_, API(M) _5_> _Ap,q+l(M) _—

for 0 < p < n; called the coeffective-Dolbeault complex. The cohomology groups
of the complex (5) are called coeffective-Dolbeault cohomology groups and they are
denoted by HZ?(A(M)).

As a consequence of Lemma 2.3 we obtain that AP9(M) = {0} for p+q < n—1,
therefore

(6) HEZY(AM)) = {0}, for p+g<n-1

Proposition 2.4.  For 0 < p < n, the coeffective-Dolbeault complex
(AP* (M), D) is elliptic in degree q if p+q > n+ 1.

Proof.  The complex (AP*(M),d) is elliptic [4, 20] in degree q if for each

point z € M, the following complex
s AR (M) " AR () " AR (M) —

is exact in degree g, for every element of the cotangent bundle 6 € T (M) — {0},
with 6 = 60, o + 0p,1; where the space A29(M) is Ker L N AP9T*(M).

For each x € M, it is posible to consider a local complex coordinate system
(21, +,2n) such that w = Z?:l dzj A dz; and 0y ; = dz;. Therefore, the problem
is reduced to the study of the exactness of the complex

e APITL(D) dzi/y: AP( M) dz i AP (L) —s -

Then, we consider a non-zero u € A24(M)NKer(dz; A.), withp+g>n+1,
that is, u verifies:
1) wAu=0,
ii) dz:Au=0.
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Then, we shall show the existence of v € AP9~1(M) such that u = dz; A .

Denote by w’ the 2-form w —dzy Adz = }°7_, dz; Adz;. From ii) we have that
there exists v; € AP9~1T*(M) such that dz; Av; = u and v; does not contain the
term dz;. Moreover, i) implies that

WAdZH AV =wAdZ Avy =wAu=0.

Consequently, w’ A vy = 0. Now, we distinguish two cases:

1. dz; Av; = 0. Then w Av; = 0 and we finish the proof.

2. dz; Av; # 0. Then v; = vy + dz; A vs, where v, and vz contain neither
dz; nor dz;, in their coordinate expressions. Taking into account that we
work in a point of M, the form v, can be considered as a form of bidegree
(p,qg — 1) on a complex manifold of complex dimension (n — 1) and with
Kéhler form w’ (notice that we have now the coordinates (zz,-- -, 2,)). From
Lemma 2.3, the operator L’ associated to w’ is surjective in bidegree (p,q —1)
ifp+(g—1)>(n—1)+1,thatis, p+q > n+ 1. Thus, there exists a form
vy of bidegree (p — 1,q — 2) such that w’ A vy = vs.

Consider the form v (in z € M) given by v = v; — dz; A dZ; A vg. Since

v; — vy = dz1 A v3, the form v verifies

WAV =dzy AdzZy ANvy —wAdzy ANdZp A vy
=dz; ANdZ Avy —w Adzy AdZ Aoy
=dzy NdZy Nvy —dzy AdzZy A vg
= dzy ANdZ A (v —vg) =0.

Moreover,
dzZy N v = u;
and we conclude the proposition. J
As a consequence [20], we obtain

Theorem 2.5.  For a compact indefinite Kdhler manifold of real dimension
2n, the cohomology groups Hg’q(A(M )) have finite dimension forp+q > n+ 1.

Since dw = 0, we have that [w] € H%’I(M ) and we consider the subspace of
Hg’q(M ) given by the Dolbeault cohomology classes truncated by the class of the
Kahler form [w], that is,

(7) HEY(M) = {a € HZY(M)|a A [w] = 0},
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where [o] denotes the cohomology class of a form a in HE(M).

Problem. Is there any relation between the coeffective-Dolbeault cohomology
groups and the subspaces of the Dolbeault cohomology groups given by (7) ?

Next we define the mapping 1, 4 : Hg’q(A(M)) — ﬁg’q(M) by

(® Yp,e({a}) = [a],

where {a} denotes the cohomology class of a form « in Hg’q(.A(M )). This mapping
permits us to give a first answer to the above problem for any indefinite Kahler
manifold.

Proposition 2.6. For an indefinite Kdhler manifold of real dimension 2n, the
mapping 1y, 4 defined by (8) is surjective for p+ q > n.

Proof. Leta € ﬁgﬂ(M), thatis, a € H29(M) and aA[w] = 0in HE*294 (M),
Consider a representative a: of a and suppose that a ¢ AP9(M) (notice that if o €
AP9(M), then « defines a cohomology class in Hg’q(A(M)) such that ¥, ,({a}) =
a).

Since a A [w] = 0, there exists o € AP*1:9(M) such that a Aw = 9. Then, from
Lemma 2.3, there exists v € AP9~1(M) such that Ly = o. Thus, L(a —9v) = 0 and
d(a — 8v) = 0; therefore, @ — 97 defines a cohomology class in HZ(A(M)) such

that ¥, ,({a — 97}) = a. O

3. Coeffective-Dolbeault cohomology for Kiahler manifolds

The purpose of this section is to answer the above problem for compact Kéhler
manifolds and to prove a coeffective version of the Hodge decomposition theorem.
From the remainder of this section we consider M a Kahler manifold of real di-
mension 2n with integrable almost complex structure J, Riemannian metric g and
Kahler form w.

Defined on M we have the symplectic operator L, the differentials d, 8, & and
the Hodge star operator * associated to the Riemannian metric. Then, we consider
the codifferential d* : A**1(M) — A¥(M) given by d* = — x dx, and the dual
operators of 8 and 9 given by 8* = — x & and 3" = — % O, respectively, where
*x: AP9(M) — A" 2""P(M) is the Hodge star operator on A**(M) (see [20]).

Therefore, we have the Laplacians: A = dd* + d*d, O = 99* + 0*0 and o=
88 + 8 8. For a Kihler manifold it is well known [20] that O and O are real
operators,

) A=20=20, and LA =AL.
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Denote by H* (M) the space of harmonic k-forms on M and HP:9(M) the space
of harmonic forms of bidegree (p,q) on M.

Lemma 3.1. The operator L : HP~1971(M) — HP9(M) given by (3) is sur-
Jective forp+q > n+ 1.

Proof.  Since the operator L : H¥~2(M) —s H*(M) is surjective for k > n+1

(see [4]), from (9) and that O preserves the bigraduation, the result follows easily.

(]
As Dolbeault complex is elliptic it is known [20] that

(10) HEY(M) = HP(M).

Theorem 3.2. For a compact Kdihler manifold M of real dimension 2n,
(11) HZ(A(M)) = H2(M),
forp,q >0 andp+ q #n.

Proof.

Part1: p+g<n-—-1

From (6) we know that Hg’q(A(M)) = {0} for p+ ¢ < mn — 1. Moreover, form
(9) and (10),

HZI(M

I

{a e HPI(M)|aAw e D (APYHI(M))}
{a € HPY(M) | a A w = 0}.

1

Thus, from Lemma 2.3 we conclude that f]g’q(M) = {0} for p+¢g < n—1. This
finishes the proof for p+ ¢ <n — 1.

Part2: p+g>n+1.

We shall see that the mapping 1, , given by (8) is an isomorphism for p +q >
n + 1. From Proposition 2.6, it is sufficient to show the injection.

Let a € Hg’q(A(M)) such that ¥(a) = 0 in ﬁg’q(M) and suppose that « is

a representative of a. Since ¢(a) = Y({a}) = [@] = 0 in fIg’q(M ), there exists
B € AP971(M) such that

a=0p.

Suppose B ¢ AP9~1(M) (notice that if 3 € AP9~1(M), then a = 0 and we
conclude the proof). Since L and & commute, then 9(L3) = L(88) = La = 0;
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therefore L3 defines a Dolbeault cohomology class [L3] € H.g“Ll’q(M ). From (10),
LB =h+d,

for h € HP*t19(M) and v € APT1971(M). By Lemma 3.1 there exists v € HP*?~1 (M)
such that Lv = h and by Lemma 2.3, there exists 0 € AP9~2(M) such that Lo = ~.
Thus,

L(B—v—0980)=0, and 9(8—v—080)=a.

Then, a = {a} is the zero class in H??(A(M)) and this finishes the proof.
U

Taking into account that the Hodge decomposition theorem [17] relates the de
Rham cohomology of a compact Kéhler manifold to the Dolbeault cohomology, we
shall prove a coeffective version of this result. Remember [4] that for a symplectic
manifold M, H*(A(M)) denotes the coeffective cohomology group of degree k
and H*(M) the subspace of H*(M) containing the de Rham cohomology classes
truncated by the class of the Kahler form [w].

Theorem 3.3 (coeffective Hodge decomposition theorem). For a compact
Kahler manifold M of real dimension 2n,
: Tk ~ P9
) HYM)= P HEI(M).
pt+g=k
il) Fork>n+1,

(13) HFAM)) = P HEZUAM)).

ptg=k

Proof. Let a € H*¥(M) and « a representative of a. There is no loss of
generality in assuming that « is harmonic and o A w = 0. From (4)

a=ako+ - t+apq+--+ ok,
and from (9) Do = A« = 0 and since O preserves the bigraduation, we have
Eak,oz :Eap,q = =Ea0,k =0.
Moreover, since w is of bidegree (1,1) and a Aw = 0, then
apoNw="'"=apsAw="-=aor ANw=0.

Thus, part i) follows from (12).
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Now, from part i), Bouche’s result [4] and Theorem 3.2,

HYAM) = H*(M)= @ HZY(M)= @ HEU(AM)),
k

ptg=k ptq=

and it follows part ii). 0

Denote c;(M) the dimension of the coeffective cohomology group H*(A(M))
and c”?(M) the dimension of the coeffective-Dolbeault cohomology group
Hg’q(A(M ))-

Corollary 3.4.  For a compact Kdhler manifold M of real dimension 2n,

k(M) = Z cPUM), for k>n+1.
p+q=k

REMARK 3.5.  The author have proved in [18] that for a compact Kéhler
manifold,

ck(M) = bp(M) — br12(M),

where by, (M) is the k** Betti number, that is, cx(M) depends only on the topology
of M. Now, it may be proved in a similar way that

PU(M) = hPI(M) = RPHHEY(M),

where h?7(M) denotes the dimension of the Dolbeault cohomology group HE(M);
then ¢”?(M) depends only on the complex structure of M.

4. Compact indefinite Kihler nilmanifolds

The main problem to construct an example of compact indefinite Kéhler man-
ifold not satisfying the isomorphism (11) or the isomorphism (13) is the difficulty
to compute the coeffective-Dolbeault cohomology of an indefinite K&hler manifold.
In this section we prove a Nomizu-type theorem which reduces the calculation of
such cohomology of a compact indefinite K&hler nilmanifold to the calculation at
the Lie algebra level.

Let M = T'\G be a compact nilmanifold of dimension 2n, where the Lie group
G posseses a left invariant integrable almost complex structure J*, so that I'\G
inherits an integrable almost complex structure J from that of G' by passing to the
quotient. If, moreover, there is a complex basis {w;;1 < i < n} of forms of type
(1,0), such that satisfy the equations

dw; = Z Aijkqu N wg + Z Bz’jkwj A Ok (1 <i< n)’
j<k<i Jik<i
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where A;jr and B, are complex numbers, Cordero, Fernandez, Gray and Ugarte
have proved in [10] that there exists a canonical isomorphism

(14) HZ(T\G) 2 HE*(g°),

where Hg‘*(gc) denotes the cohomology ring of the differential bigraded algebra

A**(g®)*, associated to the complexified Lie algebra g€, with respect to the operator
9 in the canonical decomposition d = &+ 9 of the Chevalley-Eilenberg operator in
A*(g©)*.

Moreover, suppose that G posseses a left invariant indefinite metric g* compati-
ble with J* and w* is the associated left invariant Kahler form, so that I'\G inherits
an indefinite metric g compatible with J and the Kéhler form w from those of G.
If w* is closed then I'\G is an indefinite Kéhler nilmanifold. Under this conditions
we consider the subspace ﬁg’q(gc) of Hg’q(gc) defined by

H29(g%) = {a* € HZ9(g%) | a* A "] = 0}.
Now from (14) it is easy to see that there exists a canonical isomorphism
(15) HEI(T\G) = HZ(gC).
Next we consider the subspace AP9(g*) of AP*(gC)* defined by
AP9(g*) = {a* € API(gC)" | a* Aw™ = 0}.
Then, as w* is O-closed, we have the complex
(16) co— AP (g%) i AP9(g*) i, AP (g*) —s ...

and we denote by Hg’q(A(g*)) its cohomology groups.
On account of Lemma 2.3 and Proposition 2.6 at the Lie algebra level, we have
the following result.

Lemma 4.1.
i)  The mapping L* : AP~1971(gC)* — AP:9(gC)* defined by

L*(a*) = a* Aw*,

for a* € AP=1971(gC)*, is surjective forp+q > n + 1.
ii)  The mapping Y, : H2?(A(g*)) — Hg’q(gc) defined by

Ypq () =[],

for {a*} € HZY(A(g")), is surjective for p +q > n.



564 R. IBANEZ

Theorem 4.2. There exists a canonical isomorphism
HZI(AT\G)) = H(A(g")),
forp+g>n+1.
Proof. A similar proof to the given in [15] for the coeffective cohomology
groups of a compact symplectic nilmanifold still goes for the coeffective-Dolbeault
cohomology groups of a compact indefinite Kédhler nilmanifold when we consider

the Nomizu-type theorem for the Dolbeault cohomology given in (14) and the
Lemma 4.1. O

5. Counterexamples

This section is devoted to prove that the isomorphisms (11) and (13) does not
hold for arbitrary compact indefinite Kdhler manifolds by constructing counterex-
amples.

5.1. The compact nilmanifold R®

Consider the 6-dimensional compact nilmanifold R® = I'\G (see [2, 15]), where
G is a simply connected nilpotent Lie group of dimension 6 defined by the left
invariant 1-forms {o; |1 <4 < 6} such that

do; =0, 1<i<3,

day = —aq A as,
(17)

das = —ay A as,

dag = —ag A ag,

and T is a discrete and uniform subgroup of G. The manifold R® can be alternatively
described as a T*-bundle over T (see [15]). In [2] it has been proved that R® has
no Kahler structures.

Let {X;|1 < i < 6} be the basis of vector fields dual to the basis of 1-forms
{ai|1 < i< 6}, then

(X1, Xo] = X4, [X1,X3] = X5, [X1, X4] = Xo,
and the others zero. Define the almost complex structure J on R® by
JX1 = —Xo+ X3 — Xy, JX; = X1 + Xy,
(18) JX3 = —X3+2Xy, JX4 = — X3+ Xy,
JX5 = — X5+ 2Xe, JXe = — X5+ Xe.
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It is easy to see that J is integrable, that is, it defines a complex structure on
RS. Moreover, the indefinite metric

1
(19) g = -on#oq — onFraz — ooy + oy HFas — asFas
2

1
—aa#as + az#as + azFFoy + 5044#044,

where # denotes the symmetric product, is compatible with J and its Kahler form
is given by

(20) w=a; ANas+a; ANag+as Aas + az A ag+ a; A as.
Since dw = 0, then J, g and w define an indefinite Kahler structure on RS.

Lemma 5.1. On the compact nilmanifold R® we consider the almost complex
structure J defined by (18). Then,
i) a basis of vector fields of bidegree (1,0) is given by {U,,Us,Us}, where

1 v—1
U, = 5 (X1 + Xa) + TX%

1 1 Vv -—-1
Uy =-|—-—=X X, —X,
2 5 ( 5 5 + 6) + 1 5,
1 v-—1
Us = 2 (X3 — X4) — —2‘-*X4,

ii)  the basis of 1-forms of bidegree (1,0) {1, pe, ps} dual to {Uy,Us,Us} is given
by

p1 = o1 —vV—las,
ue = ag +vV-—1 (—20[5 - Ols),

us = azg +vV-1(—a; +as + a4).

Proof. From (18) it follows that

J(-Xl + -X4) = _X27
1 1
2n J(_EXS + Xe) = —'2‘X5,
J(X3 — X4) = Xa.

Then, (21) permits us to prove the lemma. O



566 R. IBANEZ

Now, the Kéhler form w, defined in (20), is expressed in this new basis {u1, u2,
ps3} by:

1 V-1
(A= V-1 A= 7 (14 V1) o ATy + “5— s AT

22) w= 3

1
4

Moreover, from (17) and the Lemma 5.1, we obtain that the 1-forms {u1, 2, u3}
verify:

d,ul =0,
1
(23) duy = 5(14’\/—1)(#1 A pz — 3 A i),

1 _
dus = —5H1 Ay

Now from the isomorphism (14) we calculate the Dolbeault cohomology groups
Hg’q(RG). They are:

0

=

R®) = {[pm]},
R®) = {[@i], [7is]},
R%) = {[u1 A pal},
R®) = {[p1 A Ta], [2 AT, (2 ATip — (1 — V=1)ps A T3]},
R®) = {[B1 A Hal, [Ba A Tis]},
R%) = {[1m1 A p2 A pal},
%) = {lu2 A s AT, 1 A s A Tag),y
[(1 = V=D Apz ANz — (1+V=1)p1 A pz AT},

1

& ol ¢ QI Dl ¢
o o o

T
®

QF anw QaFo QJE—- = QJ:IJ:O o:lm
5 P e e e U

6

HE(RS) = {[i A iy A gy (2 ATy Ao 2 ATy ATas] ),

H§’3(R6) = {[m, Ny A Tgl},

HENRS) = {[jn A ia A s AT, lia A o A i A Tigl},

HZ*(R®) = {[a A pa Aoy A ool (1 A s Ny ATig), [ A s ATy ATl
H3(R®) = {lue ATy A iz A Tl

H3*(R®) = {11 A pa A i ATy ATig), (s A A as A i A T},
H2A(R®) = {[ua A ps ATy Ay ATigl},

H§’3(R6) = {{u1 A p2 A s ATy ATy ATl
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From (15) we calculate fIg’q(Rﬁ):

H(R) = {0},

HYY(R®) = {(m]},

H2°(R®) = {0},

HEN(R) = {[m AT},

HY*(R®) = {lm A B},

H2O(R®) = {[m A pa A s},

HZN(RO) = {{pa A ps ABs), [(1 = V=T)pa A ps Ay
+(1 = V=11 A pg Az — (1 + V=1)p1 A pz Ao},

HZ*(R®) = {[m Ay ATs), 12 A iy A i)}

HZ*(R®) = {[B Ay A},

H2N(R®) = {[in A pa A s A B, [0 A g A s A 3]},

ﬁ;’z(Re) = {[p1 A p2 ATiy A i — (L + V=1)p1 A pg Aoy A Tig),
(2 A s ATEy A ool },

HY*(R®) = {[u2 ATy A2 A T3]}

H22(R®) = {[m A pa A s ATy ATig), [pa A piz A iz ATy A ),

H2*(R®) = {[n2 A s Ny Aoy ATig},

H2P(R®) = {[1 A pa A pa ATy ATy AT}

Moreover, the coeffecive-Dolbeault cohomology groups Hg’q(.A(Rﬁ)) may be
calculated by means of Theorem 4.2:

H§’°(A(R6)) 2 {{m1 A p2 A pst}

HZ'Y(AR®)) 2 {{m Aua AB AL+ V=T)pz A ps ATy +
(L +V=D)p1 Apa Az + (1 = V=) A pz AT},
{pg A ATy — (14 V=1)py A s ATz},

H%’2(~A(RG)) 2 {{m Ay AT} s ARy AT {p AT A, +
(1= V-Dus Ay ARs} {(1 = V=1 Ay Aiz +
(1+V-1)uz ARy ATs}},

Hg’s(A(RG)) 2 {{;m Ay AEsY

HY'(A(R®) = {{m Apa A s ATy} {pa A s A pa AT},
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HZ*(A(R®)) = {{m A g Ny ATz}, {a A pa ATiy A Tia}s

{u1 A pa ATy ATy = (14 V=) A iz ATip A T3},
HZ (A(R) = {{p2 Ay ATE A3},
HE’Z( (R®) = {{m1 A pa A ps Aoy Ao}, {pa A pz A i ATy ATig}),
H2*(A(R®)) = {{uz A ps ATy ANy A B3},
H*(A(R®)) = {{m A pa A pa ATiy Ny ATz}

Theorem 5.2.  For the compact nilmanifold R® with the described indefinite
Kahler structure, the isomorphism (11) is not satisfied.

Proof.
Part I: p+g<n—-1=2,

HZ9(A(R®)) # H2Y(R®), for (p,q) = (0,1), (1,1), (0,2).
Part2: p4+g>n+1=4,

HZ*(A(R%)) % H2*(R®). O

5.2. The Iwasawa manifold I

The Iwasawa manifold can be realized as the compact quotient I3 = I'\G where
G is the complex Heisenberg group of matrices of the form

1 » =z
01 y
0 0 1

where z, y, z are complex numbers and I is the subgroup of G consisting of those
matrices whose entries are Gaussian integers. It is easy to see that I3 posseses a basis
of holomorphic 1-forms {e, 3,~} such that

da=dB=0, dy=-aAp.

In [13] it is proved that I3 has no Kéhler structures. There is no such strong
statement for indefinite Kahler structures on I3, but at least we can say that there
is not indefinite Kéhler structures with respect to the natural complex structure on
I3, because no closed form of bidegree (1,1) can have maximal rank.
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However, there are other complex structures on I3 that do posseses indefi-
nite Kahler structure. Let {X;, X5,Y1,Y3, 21, Z5} be the real vector fields dual to
{Rea, Ima, Ref, ImB3, Rey, Im~}. Then in [13] it is proved that the almost complex
structure J given by

JXi=Y1, JXo=Ys, JZ1=2

is integrable. Put w; = (1/2)(Rea + v—1ReB), wy = (1/2)(Ima + /—1Imp),
w3 = (1/2)(). Then

g = wi1#w3 + WiH#ws — V-1 (w1#W; — Dr#ws + weH#s — Wa#ws),
is an indefinite metric compatible with J and its Kahler form is
Ww=w; AWz + W] ANws +ws ANwz + w3 Awz + vV—1 (w1 Az — w1 Awz).

Since dw = 0, J, g and w define a indefinite Kéhler structure on I3.
Notice that

dw; = dwy =0,
dws = w1 AWz +wes A7 — V=1 (w1 AWT — wa AN W3).

From Nomizu’s theorem [19] and a Nomizu-type theorem for the coeffective
cohomology groups [15], we have:

H*(I3) = {[w1 Aw2 Awz AW, [w1 Awa Awz AW3), [wr AT AT Aws),
[ws AT AWz AWs], (w1 Awz AWT A W3], [w1 Aws AwT AW,
[wi Aws ANWT AW3 + wp Aws AWz Aws),

w1 Aws Awz Az — wa Aws Ay Awsl}
and

H*(A(I3)) = H*(I3) = {|w1 A w2 A ws AwT), [w1 A we Aws Aws),
(w1 AN@T AWz A W3], [ws AT AWz A W3],
[w1 Aws A1 Aws +we Aws Awz Aws),
[wi Aws ANz Aws — wa Awz AWy Aws),

[w1 Awa AT AWz +wy Aws Awr Az}

Moreover, from (14), (15) and Theorem 4.2, we have
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H'(I3) = {[wi A wa Aws ADT), [wi Awz Aws Awa), [wr Aws Aws AW3]}
HZ2*(I3) = {[wi A wa AWT AWs), [w1 Aws AWT AW3), [wa A ws ABT A3,
[~V=1wi Aws AGT AW3 + Wy Aws AT A @3],
[w1 A ws Awg AWz — wa A ws AWy AWgl,
[w1 A wg AwT AWz + wae A ws Awz Awsl},
H*(I3) = {[wr A1 Aw3 AW3), [ws AT AWz AW}

and

HY' (A(Ly)) = Hy'(Is) = HY' (Is),
H22(A(Iy)) = H2*(Is) = {[w1 A ws AT A5 +wp Aws AW A3,
[wi Awa AT A3 + wy Aws Ay A W),
[V=1wi Aws AWT AW3 — wa Aws A7 A W),
(Wi Awa ATT AWz +V—1w; Aws ADT AWz — wy Awz Awg A T3],
[wo Aws AWz A5 — V—Twi Aws AWT AWz — V—lwy Aws A7 A3},
22 A(I3)) = Hy*(Is) = Hy (Is).

Therefore,

Theorem 5.3.  For the Iwasawa manifold I3 with the above indefinite Kdhler
structure, we have that the isomorphisms given in Theorem 3.3 are not satisfied,
concretely,

H*(I3) 2 HY' (Is) ® Hy* (I5) © Hy* (Is);
HY(A(I3)) % Hy' (A(I3)) & H*(A(I5)) & Hy* (A(I3).
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