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1. Introduction

In this paper we study a Schrδdinger operator with a magnetic field :

(1.1) H={-i*-Kx))2+V(x)

denned on Co(R3), where V^L2

ίOc(R3) is a scalar potential and b^C\R3)3 is a

vector potential, both of which are real-valued, and B(x)=Vxb is called the

magnetic field. Let x = (xi> X2, z)^R3, f)=(xi, Xi), r = \x\, p = \ p\, and S72=(d/dxι,

d/dx2). Letting T= — iV—b(x), we define the quadratic form QH by

QH[Φ, φ] = f

QH[φ] = QH[Φy Φ]

for φ, φ^Co(R3). We assume that

(VI) V(x)-+0 as |*|->oo.

Then H admits a unique self-adjoint realization in L2(R3) (denoted by the same

notation H) with the domain

D(H) = {utΞL2(R3); \V\1/2u, Tu, HU<ΞL2(R3)},

which is associated with the closure of QH (denoted by the same notation QH) with

the form domain

Q(H)={ueL2(R3); \V\mu, Tu,<=L2(R3)},

This fact can be proved in the same way as in the cases of the constant magnetic

fields ([1] and [7]).

It is well known that, if B(x) = 0, then the finiteness or the infiniteness of the

discrete spectrum of H depends on the decay order of the scalar potential V, of

which the border is |x|"2([6]). On the other hand, if B(x) = (0, 0, B), B being a

positive constant, then the number of the discrete spectrum of H is infinite under
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a suitable negativity assumption of the scalar potential, which is independent of the

decay order of V. More precisely, the following result was proved by Avron-

Herbst-Simon [2].

Theorem 0. ([2]) Let B(x)=Vxb = (0, 0, B), B being a positive constant.

Suppose that V^L2-\-L™ and that V is non-positive, not identically zero and

azimuthally symmetric. Then the number of the discrete spectrum of H is

infinite.

Here a function f(x) on R3 is called azimuthally symmetric (in £-axis) if f(x)

depends only on p and z. Now a question arises : What occurs for the discrete

spectrum when we perturb slightly the constant magnetic field ? One may well

imagine that the infiniteness or the finiteness of the discrete spectrum depends on

both of the magnetic vector potential b(x) and the scalar potential V(x). This is

certainly true. In fact, Mohamed [5] gave a sufficient condition for the existence

of infinite discrete spectrum with long-range scalar potential V(x) and suitable

magnetic fields. The case of short-range scalar potential is also important since in

this case the number of discrete spectrum turns to be infinite because of the presence

of constant magnetic fields. The aim of this paper is to clearify the relation between

b(x) and V(x) for H to have an infinite or a finite discrete spectrum.

To state the main theorem we make some preparations. We assume that

( V is azimuthally symmetric, bounded above and there exists
( } li?o>0 such that V^C\\x\>Ro), V<0 for \x\>R0.

Let B be a positive constant and

bc(x) = Bl2(-χ2, xi, 0)

which satisfies Vx6 c = (0, 0, B). For given b^C\Rz)\ we put

bp(x) = b(x) — bc(x)=(aι(x), a2(x), a3(x)).

By introducing the polar coordinate (p, θ) in R2, we define the set X by

X={a^C\R3) there exists N(a)^N such that

Γ 2 π ( , θ: z)eikθdθ = 0 for \k\>N(a),ΓJo

We denote by θ(H) the spectrum of H, by Od(H) the discrete spectrum of H, by

ϋe(H) the essential spectrum of H and by # Y the cardinal number of a set Y. For

two vector potentials b\y 62^ C^/?3)3, we denote bi^bi when b\ is equivalent to £2

under a gauge transformation, namely, b\ — &2=Vλ for some λ^ C2(R3). Then our

main result is the following theorem.

Theorem 1. Assume (VI), (V2) and that aά(x)<^X (; = 1, 2, 3). Suppose
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that there exist Ri>0 and positive constants Cj (/ = l, 2, 3) such that

ψ\ \V{x)\p] (/ = 1, 2),

(1.2) \\V2aj(x)\<c2\V(x)\(j=l, 2),

(1.3)

α«ί/ α&0 suppose that

(1.4) das/dz-^0 as |#|-»oo.

(1.5)

REMARK 1.1. Let F be as in Theorem 1. If W<EL2z0C(/?3) satisfies (VI) and
W<V, then #Od(T2+ W)= + <*> by the min-max principle. Thus we can apply
the above theorem to potentials which are not azimuthally symmetric or not
continuous on |

REMARK 1.2. The above theorem of course holds if we replace the vector
potential by an equivalent one.

As an example we consider the perturbation of the constant magnetic field on
a compact set.

Proposition 1.3. If there exists Z?2>0 such that

B(x) = (0, 0, JB) for \x\>R2,

then one can replace the magnetic vector potential b(x) by an equvalent one
satisfying (1.2), (1.3) and (1.4).

Proof of Proposition 1.3. It is easy to see that

V x ( δ - δ c ) = 0 (\x\>R2).

Hence, there exist λ^C2(R3) such that

b-bc=Vλ (\x\>R2).

We put

b=b-Vλ on R\

Then b—bdinά b ~bc = 0 for \x\>R2. For this b, (1.2), (1.3) and (1.4) are always
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satisfied. D

Let us compare our result with that of Mohamed [5]. Roughly speaking,
supposing that V(x) = O(\x\~a)9 he studied the case 0< a< 2. In this case our result
is weaker than his, however, our method can also treat the case a>2. We shall also
construct examples which show that our condition (consequently the condition of
Mohamed) is almost optimal to guarantee the infiniteness of the discrete spectrum
when lies in an interval (2 — ε, 2]. These examples also show that some non-
constant magnetic fields decrease the number of bound states in spite of the fact that
if B(x) = 0 and 0<a<2 the number of the discrete spectrum is infinite ([6]).

2. Proof of Theorem 1

We first recall the following facts.

(2.1) inίσe(H)= sup iπf{(Hφ, φ)L2 φ^Co(R3\E), \\φ\\L> = l}
E: compact

(2.2) =\immί{{Hφ, φ)L2; φ^a{\x\>R\ IA, = 1}.
J?-oo

They can be proved in the same way as in [ l] . We devide the proof of Theorem
1 into three steps.

Step 1. We prove that, if \bP(x)\-*0 as |*|—>°o, then

Σ ( # ) = i n f ae(H) = B.

In fact, letting

Tc=-iV-bc,

we have, for any 0^Co°(/?3) and any ε>0,

\Tφ\2=\Tcφ-bpφ\2

Hence, letting M be the operator of multiplication by the function |έp(%)|2, we have

T 2 > ( l - ε ) T c

2 + ( l - £ - 1 ) A ί

in the form sense. By using (2.2) and the fact that \bp(x)\-^§ as |#|—»°°, we have

Σ(T2)^(l-ε)Σ(Tc

2)=(l-ε)R

Similarly one can show

Σ(T2)<(l + e)B.

Hence we have
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so, by using (2.2) again, we have

Step 2.

Proposition 2.1. // \bP(x)\-+0, |div bP(x)\-^0 as \x\-+0, then oe(H) = [B,
oo).

Proof of Proposition 2.1. We have only to prove [B, oo)CZσe(H). For λ>
0, we define ψm(x) by

where

φo(p)=Bll2(2πyιl2e-B'l2'\
ηm{z)=2-{m-λ)l2η{2~'m-ι)z)

for some fixed ^ e C ~ ( l < | ^ | ^ 2 ) . We remark that

(2.3) {T?-(

To prove [β,oo)cσ e(iί) it is sufficient to show that

(2.4) (H-(B+λ2))φm-^0 strongly in L2(R3) as

By using (2.3) and T 2 = T c

2 +(fdiv ί̂» +16/»|2) — 26/»- Tc, we have

(2.5) T2φm=Bφm-d2φmJdz2 + Udiv bP + \bP\
2)φm-2bP' Tcφm

We compute

where

) = -eiλzη"m{z)φo(p).

By the change of variable : ξ=2~(m~l)z, we have

as
as

Hence we have
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(2.6) -d2φm/dz2-λ2φm-^0 strongly in L2(R3) as m->oo.

Since \\Tcψm\\h = (T?φm, φm) and Tϊ=(B + λ2)φm + ( I ) + (Π), there exists a con-

stant Co>0 independent of m such that

(2.7) |TC0«| |L.

Using the assumption on bp and the fact that

s u p p ^ c { ^ e i i 3 ; 2m-ι<\z\<2m}y

gives

(2.8) (/div bp + \bp\2)ψm-*0 strongly in L\R3) as

By (2.7) we also have

(2.9) 2bP- Tcφm-*0, Vφm->0 strongly in L2(R3) as m^oo.

By (2.5), (2.6), (2.8) and (2.9), we obtain (2.4). D

By the assumption of Theorem 1, the condition in Proposition 2.1 is fulfilled.

Hence we have σe(H) = [B, °°).

Step 3. We can assume that Ri>Ro. To prove that #θd(H)= + <x>, by using the

Rayleigh-Ritz method ([6]), it is sufficient to construct {Φm}Z=iClQ(H) such that

(2.10) \QH[ΦJ, Φk] =

We define φm by

where in terms of (p, #)-coordinates

(2.11) φrn(p) = ameίmθpme-Bp2IA=arn(x, + ix2)me-Bp2IA ([3]),

(2.12) am = (πm!)-1/2(B/2ym+1)/2,

They satisfy the following relations.

\\Φm\\L^=\\hs\\LwH\

(Φϊ, ΦI)L>=0 (jΦk),

(2.13) {Tc-(-d2/dz2)}φm = {(-id/d

=Bφm.

We first show that
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(2.14) \\Tψs

n\\h=B+s2+ft-sin 0V 2ai+cos ΘV2a2) p* p~ι\φs

m\2 dx

On one hand, by (2.13) and a straightforward calculation,

-2mftp-2(-χ2ai+xia2)\Φsm\2dx

-χ2ai+x1a2)}\φU2dx.

On the other hand, passing to the cylindorical coordinates and integrating by parts
in p, we have

(2.15) {2m+l)jp-2{-χ2aι+Xιa2)\φs

m\2dx

=y"(sin <9V2αi-cos ΘV2a2) p p-ι\ψs

m\2 dx + jB{-x2ai+xιa2)\φ%\2 dx.

By using (2.15) and a simple manipulation, we have (2.14) which implies

\\Tφ^h^B + s2+ft\V2a,\^^2a2\ + p-ιiaj^2 + a\+al+al)\φs

m\2dx.

Here we use the assumption (1.2) to see that

/" {
J \x\^R\

for some constants c4, Cs>0. Since V<0 for U|>i?i, by letting 5 = 1 — {2(ci

C3 + 72ci}>0, we have

-δ)+ fn (-V(x))\ψs

m\2dx+ f (ct + csp-WJfdx.
J\x\>Ri J\x\<Ni

We add (Vψm, Ψ%)L* to the both side, noting that V is bounded from above by
assumption (V2), we have

(2.16) gH[φi]£B + sI+δfι V(x)\φs

m\2dx+(

for some constant Cβ>0. Let

, z)(ΞR3; 2

; 0<P<Ru

We estimate the integral of the right-hand side as follows.
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' \φU2dx=2 / se~2szdz / 2;rJ0 / ^ p ^ ^ e ^ " 2 ' 2 *
Ωl Jo JO J2R1

^2se-2s l 2πa2

m(2R1)
2m+1e-B(3Sl)2'2 Ru

Therefore there exists a constant c(i?i)>0 independent of m and s such that

(2.17) <s/" V(x)\φs

m\2dx<δ f sup V(x)\φs

m\2dx
J\χ\^Rι JΩ\ xeΩi

<-c(Rι)sa2

m(2Rι)
2m.

We also have by a similar calculation

(2.18) f (to + csp-yφtfdxί. f (cs + csp-ι)\φs

m\2dx

<Lc'{Rι)s(&R\2m

for some constant c'(Rι)>0 which is independent of m and s. Hence, by (2.16),

(2.17) and (2.18),

There exists mi>0 such that

c'(R\) — c(i?i)4m<— 1 for m>ni\,

so we have

Let

s = s(nι) = l/2a2

mR2m, Φm = ΦsJm).

Then the above inequality implies

(2.19) qH[Φm\<B-(ll2 alRlm)2<B for

Next, by the assumption of Theorem 1, there exists Ni^N such that each

cij(x)(j = l, 2, 3,) is a linear combination of {etlθ}\ι\^Nι, κ=z as a function of θ with

coefficients depending on p and z. We show that

(2.20) QH[ΦJ9 Φk]=fffG(p, θ, z)eίU~k)θ dpdθdz

where

G(p, θ,z)= Σ eilβGι(p, z), Gt(p, z)eL\(0, oo)χΛ).

In fact, we examine each term of the expression

qH[Φj, Φk] = f{VΦj V~Φ^+i(VΦj bΦ^-V~ΦΪ bΦj) + (\b\2+ V)ΦΪΦΪ}dx.
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Since V is azimuthally symmetric, it is easy to see (2.20). Then we have

QH[ΦJ, Φk] = 0 Qj-

Therefore by choosing a subsequence of {Φm} which we denote again by {Φm}, one

can assume that

(2.21) qH[Φj, Φk] = 0 (jΦk).

Summing up, we have obtained {Φm} satisfying (2.10). Hence

This completes the proof of Theorem 1. D

3. Examples

In this section we illustrate some examples showing that the conditions in

Theorem 1 are almost optimal. For the sake of convenience, we strengthen slightly

the conditions in Theorem 1 as follows.

Theorem 1*. Assume (VI), (V2) and that aj(x)<^X(j = l, 2, 3). Suppose

that

T\ \V(x)\p}) (/ = 1, 2)

as |#|—»oo. Then σe(H) = [B, oo) and

We give the above mentioned examples in the following form.

(3.2) b=f(r)(-x2, xi, 0)

where /EC^O, OO)), /'(0)=0 and / is real-valued. In this case ai(x)=-(f(r)

— B/2)x2, a2(x) = (f(r)-B/2)xu as(x)=09 so the assumption that ^ e X O ^ l , 2,

3,) is satisfied. We assume that V(x) is a function of r = |#|. Then (3.1) is

equivalent to the following

(x)\ll2r-\ | V{x)\}\

Now we put V= — r~a(a>0) for |# |>2, then (3.3) is equivalent to

Before showing the examples, we prepare the following proposition.
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Proposition 3.1. For <^Co°(/?3), we have the following inequality.

(3.5) f\Tφ\2dx^ f^ldx.-d

where b = (bi(x), b2(x), bs(x)).

Cororally. In the case of (3.2) we have

f\Tφ\2dx>f(f(r)p2r-1+2f(r))\φ\2dx for

In particular, if f'(r)<0, then

(3.6) f\Tφ\2dχϊ> fFf{r)\φ\2dx for φ^a{R3),

where F/(r)=rf'(r) + 2f(r).

Proof of Proposition 3.1. We put

Ai = d/dxi + b2, A2=d/dx2-bi, A=Ai + iA2 and P=d/dz-ib3.

Then by a straightforward calculation,

A*A= - d2/dxϊ-d2/dx22+2i(bid/dxι + b2d/dx2) + i(dbι/dxι + db2/dx2)
+ \bι\2 + \ b2\

2 - db2/dxi + dbjdx2,
P*P=-d2ldz2+2ihdldz+idhldz+\fa\2.

Therefore we have

P*P+A*A=T2-(db2/dx1-dbι/dx2).

Hence, for φ& Co(R3),

x. D

EXAMPLE 1. We first take a=2, namely, let

\-r-2(r>em),
V{x)={ί 10 (r<eV2).

If f(r)-B/2=r~β for r >eυ2{β>2), the condition (3.4) is fulfilled, hence #σd(H)
= + co. We next see what occurs when this condition is violated. We define f(r)
by
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Then /eC'tfO, oo)), /'(0)=0, /'(r)^0, and

-1 (r<eί/2).

Hence, by using (3.6),

(3.7) (Hφ, φ)L*> f(Ff(r) + V)\φ\2dx^B\φU for φe

By Proposition 2.1, it is easy to see that σe(H)=[B, oo). Hence, by (3.7), we have

#σd(H)=0.

EXAMPLE 2. To consider the case of 0<<z<2 we use the almost same but
slightly complicated method.

Let

v( \ ί r (r>2), 0<a<2,

If/(r)-β/2=(constan) r-' for r^2(β>l + a/2), the condition (3.4) is fulfilled,
hence tθd(H)= + oo. When β=a(<l + a/2), H does not always have infinitely
many bound states, although the difference (l + ff/2) — a—>0 as a—>2. In fact, We
define f(r) by

r-'K2-a) (r>2),
-a) (Kr<2),

Then /eCKtO, OP)); /'(0)=0, /'(r)^0, and

(B + r-a (r>2),
F/(r)= JB + 2-"-1{-2αr2+3«r+4}/(2-ff) ( K r < 2 ) ,

so

Hence, by using (3.6), we have

(Hφ, Φ)L^B\\φ\\h for φ

So, in the case of 1< a< 2, by the same reasoning as before, we have o{H)=ee{H)
= [B, oo), hence

σ*(H)=β.

In the case of 0<α^l , we need another proof that σe(H)=[B, oo), which is
due to [4] (pi 17).
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Proof. We have only to prove [B, oo)dσe(H). Since /(r)-i?/2->0 as

? there exist {xn}n*N^R3 such that

(Xn = (0, 0, Zn),

(3.8) Izjn2-* + oo as ?z-+ + °o and
tsuv{\f(r)-B/2\p2;\z-Zn\<n, p<n}<n~\

For λ>0, we define Ψn(x) by

??;(*)= ^ U ) - ^ ^ U ) ^ O ( P ) (weΛΓ),

where ^o( ̂ ) is in the proof of Proposition 2.1 and

^U) = »-1/2ί(U-a,)/n)

for some fixed $eCo(\z\^ϊ). We remark that

(3.9) I M I L V H I & I L ' W H I ?F»||«r>=l.

To prove [B, °°)<Zσe(H) it is sufficient to show that

ί(H-(B+Λ2))Ψn-^Q strongly in L2(R3) as m-^c« and
( i W ) \(Ψj, ψh)L2=Q(jΦk).

Since div ό=div(/(r)(—X2, Xι, 0))=0, we have

Moreover, since Ψn is independent of θ,

bP VΨn=(f{r)-Bl2){-X2, xu 0)'((dΨn/dp)p-1xu (dΨnldp)p-ιx2, dΨjdz)=0.

Hence we have

(3.11) T2Ψn=Tc2

By a simple calculation,

for some constant di>0. By using the above inequality,

fj{2bc bp + \bP\
2)Ψn\2dx<dϊfβf{r)-Bl2\p2)2\Ψn\

2dx

<dU( +[ }(\f(r)~B/2\p2)2\Ψn\
2dx.

Using (3.8) and the fact that supp ξna{\z — Zn\^>n} gives

f (\f(r)-B/2\p2)2\Ψn\
2dx<n-2 f | Ψn\2dx<n~2-^^ as n-+™.

Jp^n JP<n
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On the other hand, by using (3.9),

f Qf(r)-B/2\p2)2p4\Ψn\2dx<d2 Γ p5e~Bfi2/2df^0 as *->«>.
Jp>n Jn

Therefore we obtain

(3.12) (2bc'bp + \bp\2)Ψn-^0 strongly in L\R3) as n—>oo.

By a similar argument as in the proof of Proposition 2.1, we also have

(3.13) (T?-(B + λ2))Ψn->0 strongly in L\R3) as w->oo,

and

(3.14) VΨn-+0 strongly in L\R3) as rc->oo.

By (3.11), (3.12), (3.13) and (3.14), we obtain

(H-(B + λ2))Ψn-*0 strongly in L\R3) as n^oo.

Using (3.8) and choosing a subsequence of {Ψn} (denoted by the same notation

{Ψn}), one can assume that

Thus we obtain (3.10). D

We next show that the negativity assumption (V2) is necessary for the

infiniteness of the discrete spectrum under the situation that V is bounded above.

EXAMPLE 3. Let

B/2 (

B/2+exp(l/(r-2)) (3/2<r<2),

e-2(0<r<l).

Then we have f£ΞCι([0, oo)), //(0)=0, f(r)<0, and

Now we define V(x) by

fθ (
= max(0, B-F,(r)) (Kr<2),

U(r)
where |y(r) |^4e" 2 . We remark that, in this case, (3.3) is satisfied but V(x) does

not satisfy (V2). We also have
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(Hφ, φ)L>>f(Ff(r)+ V)\φ\2dx^B\\φ\\h,

SO

σe(H) = [B, c»), σd(H)=0.

Finally we show an example of the magnetic bottle (see [2]) which means a

magnetic Schrόdinger operator without the static potential term having a non-

empty discrete spectrum.

EXAMPLE 4. Let

(3.15) β=iπf{(-Aφ, φ)L>; Φ^CO(\X\<1\ \\Φ\\l=l}

We pick up / e Cι([0, oo)) such that

/ ( r ) ίO(O<r<l),

Then it follows from Proposition 2.1 that σe(T2) = [β + l, oo), so by (3.15) it is easy

to see that

inf σ(T2)<β<inί σe(T2),

which implies θd(T2)Φfd.
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