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0. Introduction

The purpose of this note is to prove the convergence of the Albanese tori of
compact Riemannian manifolds which collapse to a lower dimensional space while
keeping their curvatures and diameters bounded.

Given a compact Riemannian manifold M, we denote by H'(M) the space of
harmonic one-forms on M equipped with an inner product < , > defined by

{w, 7/>=L(a), 7)du,

where un stands for the normalized Riemannian measure of M with unit mass,
=dvolu/Vol(M). Let H'(M); be a lattice of H'(M) which consists of harmonic
one-forms of integral periods. Dividing the dual space H'(M)* by the dual lattice
HYM)%, we obtain a flat torus, called the Albanese torus of M,

AM)=H'(M)*[H'(M)3.

We may view A(M) as a map of the set of isometry classes of compact Riemannian
manifolds M onto that of flat tori.

Given a positive integer 72, a nonnegative number x and a positive one D, we
write S(m,x,D) for the set of isometry classes of compact Riemmanian -
manifolds M such that the Ricci curvature of M is bounded from below by —(m
—1)x* and the diameter of M is bounded from above by D. Then according to
Gromov [7], for a Riemannian manifold M in S(m, x, D), the dimension of the
Albanese torus % (M), namely, the first Betti number 5:(M), has an upper bound
depending only on the dimension 7 of M and xD. Using this, we shall show the
following
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Theorem 1. Given mEZ™", x>0 and D >0, there is a constant C depending
only on m and xD such that

diam(# (M)) < Cdiam(M)
for any M in J(m, x, D).

We would like to ask if the convergence of compact Riemannian manifolds in
&(m, x, D) with respect to the spectral distance would imply the convergence of
their Albanese tori. Here we recall the definition of a spectral distance between
two compact Riemannian manifolds which was introduced in [9]. Given two
compact Riemannian manifolds M and N, a mapping f: M—N is called an
e-spectral approximation if

e~ WO\ pu(t, x, v)—pu(t, f(x), fM)<e

for all ¢ >0, and for all points x, y of M, where pu(t, x, v) and pn(t, u, v) denote
respectively the heat kernel of M in L*(M, uu) and that of N in LN, pv). The
spectral distance, SD(M, N), between M and N is by definition the lower bound
of the positive numbers € such that there exist e-spectral approximations f : M—N
and #: N—M. According to [9], we know that (i) the metric space (JS(m, x, D),
SD) is precompact ; (ii) the eigenvalues and eigenfunctions of compact Rieman-
nian manifolds in J(m, x, D) are continuous with respect to the spectral distance
in a certain sense; (iii) the topology on J(m, x, D) induced by the spectral
distance is finer than that of measured Hausdorff convergence introduced by
Fukaya [3] and hence that of the Gromov-Hausdorff distance. Moreover if we
denote by K (m, x, D) the set of isometry classes of compact Riemmanian
m-manifolds such that the sectional curvatures are bounded by x” in the absolute
values and the diameters are not greater than D, then the topologies of the spectral
distance and the measured Hausdorff convergence coincide on this set X (m, x, D).
See [3], [8] and [9] for details. We note also that the spectral distance and the
Gromov-Hausdorff distance induce the same topology on the set of flat tori.

The following theorem shows that the above question is affirmative if we
restrict ourselves to the class K (m, x, D) for given numbers 2, x, and D.

Theorem 2. Let {M;} be a sequence in ¥ (m, x, D) which converges with
respect to the spectral distance. Then the Albanese torus #(M;) converges to a
flat torus A« of dimension n with 0<n<lim inf;.«b:i(M:).

Here in our convention, &« stands for a point when #=0. We remark also
that under the assumption of this theorem, we are able to show the convergence of
the Albaness maps in a certain sense. See Section 3 for details.

The proofs of Theorems 1 and 2 are respectively given in Sections 2 and 3. For
the latter, we shall basically make use of some results in [8]. In this sense, the
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present paper is a continuation of [8].
1. Albanese Tori

In this section, we shall consider a compact Riemannian manifold M endowed
with a certain measure ¢ and define the Albanese torus and the Albanese map of
such a pair (M, w) (cf. [10], [11]).

Let M=(M, gu) be a compact Riemannian manifold of dimension # and y
a measure on M with smooth density function ¥ >0. A one-form w on M is said
to be u-harmonic if w is closed and co-closed with respect to /£, namely, dwo=0 and

Suw 1 =—trace(Fw)— w(log x)=0.

In other words, ¢-harmonic one-form @ can be expressed locally as the differential
of an L.-harmonic function f, w=df. Here a smooth function f defined on an
open set in M is called an L.-harmonic function if

L.f Z%div(fo)zdeﬂog 4 F=0,

We denote by H'(M, p) the space of p-harmonic one-forms on M and by
H'(M, p)z the lattice of H'(M, 1) which consists of one-forms with integral
periods. The vector space H'(M, 1) is endowed with an L? inner product < , >
defined by

w, 7/>#=A(w, n)dp.

The norm of wE H'(M, p) is denoted by ||| ..
Similarly, given a compact Riemannian manifold N, we say a smooth map-
ping ¢ of M into N is p-harmonic if it satisfies

o(¢)+d¢(Flog x)=0,

where 7(¢) stands for the tension field of the mapping ¢. A u-harmonic mapping
¢ is a stationary point of the energy functional

Eu#)= [ e($)ds.

When N is a circle of length 1, N=R/Z, we write J6(M, 1; R/Z) for the set of
u-harmonic mappings of M into R/Z, which forms an additive group in an
obvious manner. Since the derivative d¢ of a smooth mapping ¢ of M into R/Z
may be considered as an integral one-form on L, we have a natural surjective
homomorphism d of #(M, p; R/Z) onto H'(M, 1)z whose kernel is the set of
constant mappings §E€ R/Z. We note that the homomorphism d preserves the
norms in the sense that

E#(¢’)=<d‘/}, ago .
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for y€HX(M, 1; R/Z).
The Albanese torus # (M, ) of a pair (M, z) is by definition a flat torus
derived from dividing the dual space H'(M, 1)* by the dual lattice H'(M, 1)3,

AM, )=H'M, p)*H' (M, p)i.

Let M be the universal covering of M and « the projection of M onto M. If we
fix a point p of M and take a point 5 of M with 7(%)=p, then we have a map
J wm.. of M into the dual space H'(M, p)* defined by

T (7)) = /: ™o,

This map induces a p-harmonic map Ju.« of M into A (M, p) (with Jur,.(p)=0).
We call Ju,. the Albanese map of a pair (M, w).

Let 2={w:, ..., w-} be a basis of H'(M, 1)z and 2*={w¥, ..., w¥} the dual
basis. Then a diffeomorphism 7o of (M, 1) onto R"/Z” is derived from a linear
isomorphism of H'(M, 1)* onto R":

6160T+"‘+0rw$—>(01, ey 81")
If we set a metric go on R"/Z" by
go= 20 Lwi, wi>.d0.dbs,
BT,y

then T induces an isometry between (M, 1) and (R"/Z", go). Moreover if we
take a u-harmonic map ¢»: M—R/Z in such a way that

¢a(p)=0, Wa=d¢a,
we see that

TooJuu()=(di(x), ..., ¢-(x))

for x€M. Here we remark that
E.U(]M,#)z b1(M).

Given a pair (M, ), we define a symmetric tensor Ricu,. by
RicM,y=RicM—%l72x(=RicM—a’ log 7®d log x—F log ),

where Ricy (resp., x) stands for the Ricci tensor of M (resp., the density function
of i, p=xdvoly). Given m, x and D as before, we denote by JS%(m, x, D) the
set of equivalence classes of pairs (M, 1) such that dim M=m, the diameter
diam(M) of M <D, p has unit mass, and Ricu,.=> —(m—1)x*gu. Here we say two
pairs (M, 1) and (N, v) are equivalent when there is an isometry f : M— N which
preserves the measures, f«#=v. We remark that the spectral distance SD can be
defined on the set of equivalence classes of pairs (M, ). See [9] for some properties
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of the metric space (JS¥(m, x, D), SD) as mentioned in Introduction.

In what follows, when g is the canonical Riemannian measure gy with unit
mass, uu=dvol/Vol(M), we omit to indicate the dependency of the measure s
in some of the above notations (for example, (M) stands for & (M, uu)).

2. Proof of Theorem 1

We recall first that there is a positive constant C” depending only on # and xD
such that

Q.1 e(P)< C'Eund)
for all ¢EJ6(M ; R/Z), because the energy density e(¢) satisfies
de(¢)=—2(m—1)x*e(¢)

(cf. e.g., [8-a, §4]). In addition, we note that if ¢ is not constant, the energy density
e(¢) must be greater than or equal to 1/4 diam(M)? somewhere on M (otherwise,
the distance between ¢(p) and ¢(q) in R/Z for any pair of points p, ¢ of M would
be less than 1/2, and hence the harmonic map ¢ should be constant). Therefore
we have

1
End )2 50 dtam(in

for all nonconstant ¢ (M ; R/Z); in other words,

1
(@, @u= 4C’diam(M )?
for all nonzero @wE H'(M);. This implies that the first eigenvalue A/(A(M)) is
bounded from below by 7°/C’diam(M)?. On the other hand, we know that
A(A( M))<~—.—C”——
= diam(4 (M))?
for some constant C” depending only on the dimension of (M), and hence on 7

and xD, since

vn(x?, 5diam(M))
vn(%?, diam(M)) °

(2.2) bh(M)<

where vn(x? 7) stands for the volume of a metric ball in the simply connected
space form of dimension m with constant curvature x* (cf. [7]). Thus the assertion
of Theorem 1 is clear. This completes the proof of Theorem 1.

Let (M, 1) be a pair in JS#%(m, x, D). Then it is not hard to see that the above
submean value inequality (2.1) holds for any g-harmonic map ¢E¥#(M, 1; R/Z)
(cf. e.g., [8-a, §4]). Moreover it follows from the same reason as in deriving (2.2)
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that

Um+1(x%, bdiam(M))
Vmi(x?, diam(M)) °

h(M)<

because we have a Bishop-Gromov type inequality for the pair (M, u)(cf. [9, §2]).
Thus Theorem 1 holds for (M, x). Namely we have

Theorem 1. Given m, x and D as before, there is a constant C’ depending
only on m and xD such that

diam(# (M, p))<C’diam(M).
for all (M, p)E S%(m, x, D).

REMARKS. (1) When x=0 in Theorem 1, the classical Bochner theorem says
that any harmonic one-form is parallel, so that /i is a Riemannian submersion
with totally geodesic fibers and in particular the diameter of (M) is less than or
equal to the diameter of M (C=1 in Theorem 1). This is also true for Theorem
I’ (cf. [12]). (2) A slightly different proof of Theorem 1 is presented in [6].

3. Proof of Theorem 2

The proof of the theorem is divided into 4 steps and the same notations as in
the preceding sections will be used.

Step 1. We shall start with recalling the notions of convergence of Gromov-
Hausdorff distance and measured Hausdorff topology introduced by Gromov [7]
and Fukaya [3] respectively. Given a sequence of compact Riemannian manifolds,
{M;} , we say that M; converges to a compact matric space X with respect to the
Gromov-Hausdorff distance, if there are a sequence of positive numbers {e:} with
lim;-. &;=0 and mappings /;: M;—X such that the e-neighborhood of f:(M;)
covers X and |du(x, v)—dx(f:(x), f:(y))|< e for all x, y of M;. Moreover we say
that M;=(M;, uu.) converges to a pair (X, ) of X and a Borel measure ¢ on X
with respect to the measured Hausdorff topology, if f; are Borel measurable and the
push-forward fixuu, of the normalized Riemannian measure f; via f; converges to
£ in the weak™ topology.

Let M; be a sequence in K (m, x, D) which converges to a compact metric
space Mw with respect to the Gromov-Haussdorff distance. Then there is a smooth
manifold Fe. with metric of class C"* (for any @< (0, 1)), on which the orthogonal
group O(m) acts by isometries in such a way that the quotient space Fw/O(m) is
isometric to Mw. In fact, F» is a limit of the set of the frame bundles F'M; of M;
equipped with a canonical metric so that the action of O(m) is isometric, the
projection of FM; onto M; is a Riemannian submersion with totally geodesic
fibers, and the sectional curvature of FM; remains bounded uniformly in ;. When
M is smooth, there is a fibration @;: M;— M. (for large 7) and a sequence of
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positive numbers {&;} with lim;-« £;=0 satisfying

(1) for all 2E& M, the diameter of @7 (z)<e;;

(2) O: is an e;-almost Riemannian submersion, that is, for all 2E M., xE
0;7%(z) and X E T«M; normal to the fiber @7!(2),

(1—e)ldo(X)|<|X|<(1+e)ldp (X)) ;

(3) the second fundamental form of the submersion @; is bounded uniformly
in 1.

For these assertions, see [2], [4] and [5].

Now as in Theorem 2, we suppose that M; converges to (M, 1) with respect
to the spectral distance and hence the measured Hausdorff topology. Then we may
assume that the push-forward @;«uu, of the canonical Riemannian measure i of
M; converges to (. in the weak™ topology. In case M. is smooth, the density
function xe of i« is a positive function of class C"®, Moreover we may assume that
the above submersion @; has the following property : for all smooth function % on

M°°9
4) |4y, @F (1) — OF (L p.h)| < &:0F(| Ddh| +|dh).

See [8-a] for this and further properties of @..

In the following Steps 2 and 3, we consider the case that the limit metric space
M. is a smooth manifold, and assume that the metric of M. and the density Y. are
smooth, to avoid some technical argument of approximation. Moreover {&;} stands
for a sequence of positive constants which tends to zero as 7 goes to infinity.

Step 2. Given a fo-harmonic one-form wE H (M, i), the pull-back @Fw
can be uniquely expressed as

OFw=TIw)+dA(w)
according to the orthogonal decomposition of d-closed one-forms Z(M;) of M;,
Z\(M:)=H"M:, pm)DdC>(M,).
Here the function A:(®) is chosen in such a way that
A{i Ailw)du:=0.
Now we claim that

(3.1) |0F w—T'(@)|counn=|dA{®)|comn < &:

for any wE H' (M, () with unit norm, |w|..=1. Indeed, we fix a sufficiently
small ¢ and consider the metric ball B«(p, 3@) of M« around a point p of radius
3a. Let f be an Le-harmonic function on Bw(p, 3a) such that w=df and

Aam,za)fduw =0.
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Then applying the Poincaré inequality, we have first

2 2
g Pe=Cif | laffdu=Ci

for some constant Ci. Since f is Le-harmonic, it follows from the standard elliptic
regularity estimates that

|flcra(aatp2ay < Co

for some constant C,, where ¢<(0, 1). Hence in view of the property (4) of @;, we
see that

|AM1@?f|$Ei
on O7(B«(p, a)). This shows that
| A w)|< e,

since dOff=I(w)+dA{w) and I'(w) is harmonic. Finally it follows from the
regularity estimates again that

| A @) wroot, o < €1,
where p=(1, o) (cf. [8-a, Lemma 1.3]), and hence
|[Ad@)|cremy < €.

This proves (3.1).
Now this estimate (3.1) together with the property (3) of @, implies that

(3.2) (1-edlolu<IT()u=<1+ el ]

For all w€ H'(Mw, (). In particular, I} is injective (for large 7). We observe
further that I; maps the lattice H'(Mew, 1)z into the lattice H'(M:)z,

Fi(Hl(Meo, ﬂoo)z)CHl(Mi)z.

Step 3. Given any number K, Theorem 4.3 in [8-a] says that for large 7 , a
harmonic one-form & on M; with integral periods must belong to the image
TI'(H'(Mw, tt)z), whenever the L? norm | €|, is less than K. In other words, there
is a positive constant K; with lim;.. K;=00 such that

"6”/‘i2Ki

for any £€ H'(M;)\I'( H (M, 1t=)z) (if it exists).

Let us now take a basis 2={w,, ..., ©+} of H'(Mew, tt)z(7 = b1(M)) in such
a way that an element @ of H'(Mw, =)z is a linear combination of @i, ..., Ws-1
whenever ||| x. is less than ||@s|x. (cf. [1, Chap. VIII]). Then we choose a basis £2:
={wi, ..., wir) of H(M:)z(r:=b:(M;)) in such a way that
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wi.S:n(ws) (Szly MR 7’)

and any element w is linearly dependent of w.,1, ..., ®:s—1 whenever || is less
than IICI):’,S”M for s>7. We note that
(3.3) lw:sl|l=K:
for s>» (if :>7).

Let Q*={w?s} (s=1, ..., 7)) be the dual basis of £ and I}*:
H'Y(M:)*—> H' (M, t)* the dual mapping of I. Then I'* is surjective and its
kernel is spanned by w;s(s=7+1, ..., 7:). Hence I* induces a surjective

homomorphism, denoted by [/7*], from the Albanese torus #(M;) of M; onto
A(Ma, tts). Then in view of (3.2) and (3.3), #(M:) converges via [I?*] to
A (M, ) with respect to the Gromov-Hausdorff distance. We observe that [17*]
is affine, namely the second fundamental form vanishes identically. Moreover if we
take a point p of M and choose p: as a fixed point of M; in such a way that @.(p;)
= pw, then the mappings Ju.... and [[7*]° ]y, are close for large 7 in the sense that

max dis(/u.> @:(x), [[*]e]:x))<e..

To be precise, let To,: A(M;)—=(R"/Z", go,) and To: A (Me, tt=)—(R7/Z7, ga)
respectively be isometries described in Section 1, and let 7;: R™/Z"—R"/Z" be a
canonical projection such that 7:(@;, ..., 6-)=(6, ..., 6r). Then To,°Ju, and
TooJu.,u. respectively-can be expressed as

TQ,-°]M1:(¢i,1,--~,¢i,n)
and
TQOIMa.ﬂw=(¢ly ceey ¢’r),

where ¢;,s is the harmonic mapping of M; to R/Z corresponding to w;,s and also
¢s is the tw-harmonic mapping of M« to R/Z corresponding to ws. We note that
for each s, 1<s<7, ¢:s is homotopic to ¢;°®@; and further that

[i,s— 5o Qi cramy < &:

(cf. [8-a, §4]). Thus the mappings Jix.c®@: and [I¥]e [y, (for large 7) are close
with respect to the C** topology.

Step 4. It remains to prove Theorem 2 in case M is not smooth. In this case,
we consider the frame bundle FM; of each M; equipped with a canonical metric g
in such a way that the sectional curvature and the diameter are bounded uniformly
in 7. We denote by o; the canonical projection of FM; onto M;. Observe that the
pull-back pfw of a harmonic one-form @ on M; is harmonic on FM; and further
that this correspondence preserves the inner products,

Ko¥w, ofw>rn=<{w, &' 4.
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For this reason, the space of harmonic one-forms H'(M;) on M; endowed with the
L? inner product can be considered as a subspace of H (FM;). In the same way,
we identify the lattice H'(M;); and the group J6(M:; R/Z) respectively with a
sublattice of H'(FM;); and a subgroup of J6(FM;; R/Z). Under this
identification, an element ¢ of J(FM:; R/Z) belongs to the subgroup
J¥(M;; R/Z) if and only if ¢ is O(m)-invariant.

In what follows, we suppose that this sequence {FM.} converges in the topol-
ogy of measured Hausdorff convergence. Let Mw and /= be the limit space and
measure respectively. Then according to Fukaya [4, 5], M is a smooth manifold
with Riemannian metric g of class C* , on which the orthogonal group O(m)
acts as isometries in such a way that the quotient space M./O(m) is isometric to
Mw. Moreover there are O(m)-equivariant almost Riemannian submersions (5:1
FM;— M such that @ Zry, converges to [ in the weak* topology, where Zru,
stands as before for the normalized Riemannian measure of FM;. We note that the
limit measure o on Ms coincides with the push-forward Owx ffw Of e via the
projection QOe : M M. and the density X~ of Z~ with respect to the Riemannian
measure of g is O(m)-invariant.

Now perturbing the submersion @ in the C"* topology, we can obtain an
almost Riemannian submersion @; of FM; onto M, to which we can apply the
same arguments as in the preceding steps. To be precise, we write first
H (M, pto; R/Z) for the subgroup of #(Mw, Hw; R/Z) consisting of O(m)-
invariant Ze-harmonic maps ¢ : M«—R/Z. We note that (M, te; R/Z) is
determined by the pair (Mo, ftoo) itself (cf. [8-a, §4]). Then we denote by
H"(Me, peo)z and H'(Me, ) respectively the sublattice of H'(Mw, HZ=)z corre-
sponding to H(Mw, fteo; R/Z), H' (M, fix)z=dH(Me, t; R/Z), and the vector
space spanned by H'(Me, tt)z. Set

A (Mo, pte)=H"'(Meo, ftoo)*/H' (Moo, f10)3.

Then we obtain an O(m)-invariant Ze-harmonic map J se e : Me— A (Mo, to),
from which a Lipschitz map Jue,ue : Mew— 4 (Mo, 1) is derived. This map Jae,u.
is fto-harmonic on the set of regular points of M.. Moreover as we have seen in
Steps 2 and 3, @ (for large 7) induces a surjective homomorphism [C*]: #4(FM,)
— i (Fw, =) such that J yeu.o@; and [ I*]o e, are close in the C** topology.
Finally we obtain a surjective homomorphism [I7¥]: #(M;) > A (M, te) from
[T#] such that Ju.u.oc®; and [I7*]eJu, are close in the C° topology for large 7,
where @;: M~ M. is a Lipschitz map derived from the O(m)-equivariant submer-
sion D;. As i goes to infinity, the Albanese torus (M) converges to the torus
A(Ma, 1) via the surjective homomorphism [/7]. This completes the proof of
Theorem 2.

It is possible to apply the same arguments as above to a sequence of certain
pairs (M, p:) (cf. [8-a, Remark 3.3]). In fact, we can show the following



RIEMANNIAN MANIFOLDS AND ALBANESE TORI 687

Theorem 2. Let {(M:, 1)} be a sequence in S3i(m, x, D) which converges
10 (M, 1) with respect to the measured Hausdorff topology. Suppose that the
sectional curvature of M; is bounded uniformly and also the density function x:
of w: satisfies

|Ddxi| <C

for some constant C. Then for large i, there is a surjective homomorphism O; of
the Albanese torus $ (M., ;) onto a flat torus A (M, (=) of dimension n such
that 0<n<lim inf;-«b1(M:) and A4 (M;, p:) converges to (M, 1) with respect
to the Gromov-Hausdorff distance via ©..

Moreover there are a Lipschits map ©: of M; onto Mw through which
(M, i) converges to (Me, 1) and a (t-harmonic) map Juw . : Mo A (Mo, i)
such that Jy.u.c@: and @:°Ju.u are close in the C° topology, namely,

lim max dis(/iu,u.® @:(x), O:°Ju,ulx))=0.

i—w0 XEM;

The convergence holds in the C*® topology when M. is a smooth manifold.
As an immediate consequence of Theorem 2’, we have the following

Corollary 3. Given numbers m, x and D, and given a flat torus T of
dimension n , there is a constant such that the rank of the Albanese map Ju of
a manifold M in X' (m, x, D) is greater than or equal to n, if the Gromov-
Hausdorff distance between M and T is less than v, and in addition, Ju is a
submersion if bi(M)=n.

Finally we refer the reader to [12] for some results and problems related to this
corollary.
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