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0. Introduction

The purpose of this note is to prove the convergence of the Albanese tori of
compact Riemannian manifolds which collapse to a lower dimensional space while
keeping their curvatures and diameters bounded.

Given a compact Riemannian manifold M, we denote by Hι(M) the space of
harmonic one-forms on M equipped with an inner product < , > defined by

<Cϋ, η>= / O , η)dμM,
JM

where βM stands for the normalized Riemannian measure of M with unit mass, βM
= CIVO\M/VO\(M). Let H1(M)z be a lattice of Hι{M) which consists of harmonic
one-forms of integral periods. Dividing the dual space Hι(M)* by the dual lattice
Hι(M)*, we obtain a flat torus, called the Albanese torus of M,

We may view J4(M) as a map of the set of isometry classes of compact Riemannian
manifolds M onto that of flat tori.

Given a positive integer m, a nonnegative number x and a positive one D, we
write ώ(m,x,ΰ) for the set of isometry classes of compact Riemmanian m-
manifolds M such that the Ricci curvature of M is bounded from below by — (m
— l)κ2 and the diameter of M is bounded from above by D. Then according to
Gromov [7], for a Riemannian manifold M in sH>{rn, x, D), the dimension of the
Albanese torus A(M), namely, the first Betti number bi(M), has an upper bound
depending only on the dimension m of M and xD. Using this, we shall show the
following
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Theorem 1. Given m^Z+, x>0 and D>0, there is a constant C depending
only on m and xD such that

diamU(M))< Cdiam(M)

for any M in ώ(m, x, D).

We would like to ask if the convergence of compact Riemannian manifolds in
<Λ(m, x, D) with respect to the spectral distance would imply the convergence of
their Albanese tori. Here we recall the definition of a spectral distance between
two compact Riemannian manifolds which was introduced in [9]. Given two
compact Riemannian manifolds M and N, a mapping / : M^>N is called an
ε-spectral approximation if

e^lt+t)\pM(t, x, y)-pN{t, f{x), f{y))\<ε

for all t >0, and for all points x, y of M, where piuit, x, y) and PNO, U, V) denote
respectively the heat kernel of M in L2(M, μM) and that of N in L\N, μN). The
spectral distance, SD(M, N), between M and N is by definition the lower bound
of the positive numbers ε such that there exist ε-spectral approximations / : M^>N
and h : N^M. According to [9], we know that (i) the metric space (J(m, x, D)y

SD) is precompact (ii) the eigenvalues and eigenfunctions of compact Rieman-
nian manifolds in ώ(m> xy D) are continuous with respect to the spectral distance
in a certain sense; (iii) the topology on ^5(m, x> D) induced by the spectral
distance is finer than that of measured Hausdorίf convergence introduced by
Fukaya [3] and hence that of the Gromov-Hausdorff distance. Moreover if we
denote by K{my x, D) the set of isometry classes of compact Riemmanian
m-manifolds such that the sectional curvatures are bounded by x2 in the absolute
values and the diameters are not greater than D, then the topologies of the spectral
distance and the measured Hausdorff convergence coincide on this set K{m, x, D).
See [3], [8] and [9] for details. We note also that the spectral distance and the
Gromov-Hausdorff distance induce the same topology on the set of flat tori.

The following theorem shows that the above question is affirmative if we
restrict ourselves to the class X(m, x, D) for given numbers m, x, and D.

Theorem 2. Let {Mi) be a sequence in X(m, x, D) which converges with
respect to the spectral distance. Then the Albanese torus A {Mi) converges to a
flat torus Λoo of dimension n with 0 < ^ < l i m inίi^oo

Here in our convention, jίoo stands for a point when n = 0. We remark also
that under the assumption of this theorem, we are able to show the convergence of
the Albaness maps in a certain sense. See Section 3 for details.

The proofs of Theorems 1 and 2 are respectively given in Sections 2 and 3. For
the latter, we shall basically make use of some results in [8]. In this sense, the
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present paper is a continuation of [8].

1. Albanese Tori

In this section, we shall consider a compact Riemannian manifold M endowed
with a certain measure μ and define the Albanese torus and the Albanese map of
such a pair (Af, μ) (cf. [10], [ll]).

Let M — (M, gti) be a compact Riemannian manifold of dimension m and μ
a measure on M with smooth density function χ>0. A one-form ω on M is said
to be μ-harmonic if ω is closed and co-closed with respect to μ, namely, dω = 0 and

=-tτace(Fω)-ω(F\og χ)=0.

In other words, μ-harmonic one-form ω can be expressed locally as the differential
of an Lμ-harmonic function /, ω — df. Here a smooth function / defined on an
open set in M is called an Lμ-harmonic function if

We denote by Hι(M, μ) the space of μ-harmonic one-forms on M and by
Hι{My μ)z the lattice of Hι(M, μ) which consists of one-forms with integral
periods. The vector space Hι(M, μ) is endowed with an L2 inner product < , >
defined by

o, η)dμ.

The norm of ω^H1(M, μ) is denoted by \\θ)\\μ.
Similarly, given a compact Riemannian manifold N, we say a smooth map-

ping ψ of M into N is μ-harmonic if it satisfies

where τ{φ) stands for the tension field of the mapping φ. A /i-harmonic mapping
φ is a stationary point of the energy functional

Eμ(φ)= f e(φ)dμ.
J M

When TV is a circle of length 1, N=R/Z, we write Jβ(M, μ R/Z) for the set of
μ-harmonic mappings of M into R/Z, which forms an additive group in an
obvious manner. Since the derivative dφ of a smooth mapping φ of M into R/Z
may be considered as an integral one-form on L, we have a natural surjective
homomorphism d of 36(M, μ R/Z) onto Hι{M, μ)z whose kernel is the set of
constant mappings Θ^R/Z. We note that the homomorphism d preserves the
norms in the sense that

Eμ(φ) = <dφ, dφ>μ
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for φ^J6(M} μ; R/Z).
The Albanese torus A(M, μ) of a pair (Af, μ) is by definition a flat torus

derived from dividing the dual space H\M, μ)* by the dual lattice Hι(M, μ)*,

μ) = H\M, μ)*lH\M, μ)t

Let M be the universal covering of M and π the projection of M onto M. If we

fix a point p of M and take a point f of M with π(]))=p, then we have a map

/M,// of M into the dual space H\M, μ)* defined by

)= / π*ω.

This map induces a //-harmonic map JM^ of Λf into J4(M, μ) (with jM,μ(p) = 0).

We call /M,/i the Albanese map of a pair (Af, μ).

Let Ω = {ωi, . . . , cyr} be a basis oΐH\M, μ)z and β * = {cyf, . . . , ω*} the dual

basis. Then a diffeomorphism TΩ of J4(M, μ) onto Rr/Zr is derived from a linear

isomorphism of Hι(M, μ)* onto 7?r :

If we set a metric ^β on Rr/Zr by

s = Σ <ey?, ω*>μdθadθβ,
a,β=l,—,r

then Tβ induces an isometry between J4(M, μ) and (Rr/Zr, go). Moreover if

take a /i-harmonic map 0« : M-^R/Z in such a way that
we

we see that

for x G M . Here we remark that

Given a pair (M, μ), we define a symmetric tensor RicM,μ by

^ log ^ - / 7 2 log x),

where /?/CM (resp., ^) stands for the Ricci tensor of M (resp., the density function

of μ, μ = χdvolM). Given m, x and D as before, we denote by sλ%{my x, D) the

set of equivalence classes of pairs (Af, μ) such that dim M = τn, the diameter

diam(Af) of M <D, μ has unit mass, and RicM,μ>—{m — \)x2gM. Here we say two

pairs (Aί, //) and (N, v) are equivalent when there is an isometry / : M~^N which

preserves the measures, f^μ—v. We remark that the spectral distance SD can be

defined on the set of equivalence classes of pairs (M,μ). See [9] for some properties
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of the metric space {JΛfon, x, D), SD) as mentioned in Introduction.
In what follows, when μ is the canonical Riemannian measure βM with unit

mass, μM = dvol/Vo\(M), we omit to indicate the dependency of the measure βM
in some of the above notations (for example, J4{M) stands for J4{M, βM)).

2. Proof of Theorem 1

We recall first that there is a positive constant C depending only on m and xD
such that

(2.1) e{φ)<CEμM{Φ)

for all φ^3β{M R/Z), because the energy density e{φ) satisfies

Δe{φ)>-2{m~ΐ)x2e{φ)

(cf. e.g., [8-a, §4]). In addition, we note that if ψ is not constant, the energy density
e{ψ) must be greater than or equal to 1/4 diam(M)2 somewhere on M (otherwise,
the distance between ψ{p) and φ{q) in R/Z for any pair of points p, q of M would
be less than 1/2, and hence the harmonic map φ should be constant). Therefore
we have

4C'diam(M)2

for all nonconstant φ^Jβ{M R/Z) in other words,

for all nonzero ω^H1(M)z. This implies that the first eigenvalue λι{A{M)) is
bounded from below by π2/C'di3.m(M)2. On the other hand, we know that

for some constant C" depending only on the dimension of J4(M), and hence on m
and xD, since

Λ h ( λ ί \ < vm(x2, 5diam(M))
( 2 2 ) b l [ M ) - vm(x\ diam(M)) '

where vm(x2, r) stands for the volume of a metric ball in the simply connected
space form of dimension m with constant curvature x2 (cf. [7]). Thus the assertion
of Theorem 1 is clear. This completes the proof of Theorem 1.

Let {My μ) be a pair in d>%{m, x, D). Then it is not hard to see that the above
submean value inequality (2.1) holds for any //-harmonic map φ^M{M, μ R/Z)
(cf. e.g., [8-a, §4]). Moreover it follows from the same reason as in deriving (2.2)
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that

2, 5diam(Af))
Vm+i(x2, diam(M)) '

because we have a Bishop-Gromov type inequality for the pair (M, μ)(cf. [9, §2]).
Thus Theorem 1 holds for (M, μ). Namely we have

Theorem Γ. Given m, x and D as before, there is a constant C depending
only on m and xD such that

diamU(M, μ))<Cdmm(M).

for all (M, μ)^sA%(my x, D).

REMARKS. (1) When # = 0 in Theorem 1, the classical Bochner theorem says
that any harmonic one-form is parallel, so that JM is a Riemannian submersion
with totally geodesic fibers and in particular the diameter of A(M) is less than or
equal to the diameter of M (C = l in Theorem 1). This is also true for Theorem
Γ (cf. [12]). (2) A slightly different proof of Theorem 1 is presented in [6].

3. Proof of Theorem 2

The proof of the theorem is divided into 4 steps and the same notations as in
the preceding sections will be used.

Step 1. We shall start with recalling the notions of convergence of Gromov-
Hausdorff distance and measured Hausdorff topology introduced by Gromov [7]
and Fukaya [3] respectively. Given a sequence of compact Riemannian manifolds,
{Mi} , we say that Mi converges to a compact matric space X with respect to the
Gromov-Hausdorff distance, if there are a sequence of positive numbers {εj with
lim ôo<Sz = 0 and mappings /i : Mr^X such that the ε-neighborhood of ft(Mi)
covers X and \dMt(x, y)~dx(fi(x)f fi(y))\<ε for all x, y of Mi. Moreover we say
that Mi —{Mi, μMi) converges to a pair (X, μ) of X and a Borel measure μ on X
with respect to the measured Hausdorff topology, if fi are Borel measurable and the
push-forward fi*μMt of the normalized Riemannian measure μMt via /*• converges to
μ in the weak* topology.

Let Mi be a sequence in JC(m, x, D) which converges to a compact metric
space Moo with respect to the Gromov-Haussdorff distance. Then there is a smooth
manifold F«> with metric of class C1>a (for any tf€=(0, 1)), on which the orthogonal
group O(m) acts by isometries in such a way that the quotient space Foo/0(m) is
isometric to Moo. In fact, Foo is a limit of the set of the frame bundles FMi of Mi
equipped with a canonical metric so that the action of O(m) is isometric, the
projection of FMi onto Mi is a Riemannian submersion with totally geodesic
fibers, and the sectional curvature of FMi remains bounded uniformly in i. When
Moo is smooth, there is a fibration Φi: Mr^Moo (for large i) and a sequence of
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positive numbers {εj with lim^oo £z = 0 satisfying

(1) for all 2EMM, the diameter of Φτ\z)<£i

(2) Φi is an εz-almost Riemannian submersion, that is, for all

Φϊ\z) and I G TxMt normal to the fiber Φϊ\z\

(3) the second fundamental form of the submersion Φi is bounded uniformly

in i.

For these assertions, see [2], [4] and [5].

Now as in Theorem 2, we suppose that Mi converges to (Moo, μ«>) with respect

to the spectral distance and hence the measured Hausdorff topology. Then we may

assume that the push-forward Φi*βMi of the canonical Riemannian measure μMt of

Mi converges to //» in the weak* topology. In case Moo is smooth, the density

function χ«> of /ioo is a positive function of class C1'*. Moreover we may assume that

the above submersion Φi has the following property : for all smooth function h on

Moo,

(4) \ΔMiΦKh)- Φt{LμΛ)\ <SiΦΐ(\Ddh\ + \dh\).

See [8-a] for this and further properties of Φi.

In the following Steps 2 and 3, we consider the case that the limit metric space

Moo is a smooth manifold, and assume that the metric of Moo and the density %<*> are

smooth, to avoid some technical argument of approximation. Moreover {εj stands

for a sequence of positive constants which tends to zero as i goes to infinity.

Step 2. Given a /ioo-harmonic one-form ω^Hι(Moo, μoo), the pull-back Φfω

can be uniquely expressed as

according to the orthogonal decomposition of ^/-closed one-forms Z(Mi) of Mi,

Here the function Λi(ω) is chosen in such a way that

f Λi(
JMi

Now we claim that

(3.1) iΦfω-ΓiM

for any ω^Hι(Mo*, μ^ with unit norm, 11̂ 11̂  = 1. Indeed, we fix a sufficiently

small a and consider the metric ball Boip, 3a) of Moo around a point p of radius

3a. Let / be an Loo-harmonic function on β»(i>, 3a) such that ω = df and

f
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Then applying the Poincare inequality, we have first

for some constant Ci. Since / is Loo-harmonic, it follows from the standard elliptic
regularity estimates that

for some constant C2, where tf€Ξ(0, 1). Hence in view of the property (4) of Φi, we
see that

\ΔMίΦtf\<ei

on Φi\Boo{p, a)). This shows that

since dΦ*f=Γi(ω) + dΛi(ω) and Γi(ω) is harmonic. Finally it follows from the
regularity estimates again that

where p^(l, °°) (cf. [8-a, Lemma 1.3]), and hence

This proves (3.1).
Now this estimate (3.1) together with the property (3) of Φi implies that

(3.2) (l-εi)\\ω\\μm^\\Π(ω)\\μMl + ei)\\ω\U

For all ω^Hι(Moo, μ«). In particular, Γi is injective (for large i). We observe
further that Γi maps the lattice Hι(Mooy μ^)z into the lattice H\Mt)z,

Step 3. Given any number K, Theorem 4.3 in [8-a] says that for large i , a
harmonic one-form ξ on Mi with integral periods must belong to the image
ΓiiWiMco, μ°o)z), whenever the L2 norm \\ξ\\μi is less than K. In other words, there
is a positive constant Ki with lim^oo Ki —00 such that

for any ξ^H\Mt)z\Γi(H\MoOJ μjz) (if it exists).
Let us now take a basis Ω = {ωι, . . . , ωr} of Hι{Moo, μJ)z(r = b\(Ma$) in such

a way that an element ω of Hι{M«>y μ*)z is a linear combination of cϋi, . . . , ωs-i
whenever \\ω\\μβa is less than ||cys|U. (cf. [l, Chap. VIIl]). Then we choose a basis Ωi
= {ύ)i,i, . . . , Cθi,n} of H1(Mi)z(ri = bι(Mi)) in such a way that
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ωi,s=Γi(ωs) (5 = 1, . . . , r)

and any element ω is linearly dependent of cϋi,i, . . . , ω^s-i whenever \ω\μi is less

than ||ey, ,s|U, for s>r. We note that

(3.3) \\<Di,8\\>Ki

for s>r (if Ti>r).

Let Ω* = {ω*8} (s = l, . . . , rz ) be the dual basis of Ωi and Γt*:

Hι(Mι)*-*Hι{Moo, //»)* the dual mapping of 7*. Then 77* is surjective and its

kernel is spanned by ωitS{s=r + li . . . , rt). Hence 77* induces a surjective

homomorphism, denoted by [/7*], from the Albanese torus A{Mi) of Λί* onto

jtf(Af«,, /A*). Then in view of (3.2) and (3.3), j4(Mt) converges via [77*] to

J4(MOO, /ioo) with respect to the Gromov-Hausdorff distance. We observe that [77*]

is affine, namely the second fundamental form vanishes identically. Moreover if we

take a point poo of Moo and choose pi as a fixed point of Mi in such a way that Φi(pi)

=poo, then the mappings /M»,/i« and [77*] °/M* are close for large i in the sense that

max άis(Jμm°Φi(x\ [ΓJ*]°Ji(x))<εi.

To be precise, let TΩi: A(Mi)-^{RriIZr\ gOi) and Γa : jtf(M«,, μJh>(Rr/Zr, go)
respectively be isometries described in Section 1, and let 7zv : Rri/Zri—*Rr/Zr be a

canonical projection such that πi(θi, . . . , θri) = (θi, . . . , (9r). Then TQ^JMI and

TΩ°jMoa,μoo respectively can be expressed as

and

where ψi,s is the harmonic mapping of Mi to i?/Z corresponding to Q)i,s and also

0s is the /ioo-harmonic mapping of Moo to R/Z corresponding to cos. We note that

for each 5, l < s < r , ψiiS is homotopic to ψi°Φi and further that

(cf. [8-a, §4]). Thus the mappings jM^μ^Φi and [77*]°/^ (for large /) are close

with respect to the C2'a topology.

Step 4. It remains to prove Theorem 2 in case Moo is not smooth. In this case,

we consider the frame bundle FMi of each Mi equipped with a canonical metric g'i

in such a way that the sectional curvature and the diameter are bounded uniformly

in /. We denote by Pi the canonical projection of FMi onto Mi. Observe that the

pull-back pfω of a harmonic one-form ω on Mi is harmonic on FMi and further

that this correspondence preserves the inner products,
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For this reason, the space of harmonic one-forms Hι(Mι) on Mi endowed with the

L2 inner product can be considered as a subspace of Hι(FMi). In the same way,

we identify the lattice Hl(Mt)z and the group M(Mi R/Z) respectively with a

sublattice of H\FMι)z and a subgroup of Jβ(FMi\ R/Z). Under this

identification, an element ψ of X(FMί R/Z) belongs to the subgroup

M(Mi R/Z) if and only if ψ is O(m)-invariant.

In what follows, we suppose that this sequence {FMi} converges in the topol-

ogy of measured Hausdorff convergence. Let M» and JIoo be the limit space and

measure respectively. Then according to Fukaya [4, 5], Moo is a smooth manifold

with Riemannian metric gΌo of class Cha , on which the orthogonal group O(m)

acts as isometries in such a way that the quotient space Moo/O(m) is isometric to

Moo. Moreover there are O(m)-equivariant almost Riemannian submersions Φi:

FMr^Moo such that ΦZ*/Ϊ>M, converges to JIoo in the weak* topology, where JΪFMi

stands as before for the normalized Riemannian measure of FMi. We note that the

limit measure /ioo on Λf« coincides with the push-forward p<χ>* JIoo of JIoo via the

projection Poo: Moo—•M* and the density χ<* of JIoo with respect to the Riemannian

measure of gΌo is O(m)-invariant.

Now perturbing the submersion Φi in the Cly<x topology, we can obtain an

almost Riemannian submersion Φi of FMi onto Moo, to which we can apply the

same arguments as in the preceding steps. To be precise, we write first

Jβ(Moo, /ioo R/Z) for the subgroup of J6(Moo, /!«, R/Z) consisting of 0(m)-

invariant /Zoo-harmonic maps ψ : Moo—>i?/Z. We note that X(Moo, /ioo R/Z) is

determined by the pair (Moo, μJ) itself (cf. [8-a, §4]). Then we denote by

Hι{M*oy μoo)z and Hι(M<x>, μ™) respectively the sublattice of Hι{Moo, ~μ^)z corre-

sponding to Jβ(Moo, /ioo R/Z), Hι(Moo, μoo)z = dJβ(Moo, μ^ R/Z), and the vector

space spanned by Hι(Mooy μ<*)z. Set

Then we obtain an O(m)-invariant /ϊΌo-harmonic map JMCM*: MOO-^J4(MOO, /ioo),

from which a Lipschitz map JM^M* : Moo-^A(Mooy /ioo) is derived. This map 7^.,^-

is /ioo-harmonic on the set of regular points of Moo. Moreover as we have seen in

Steps 2 and 3, Φi (for large i) induces a surjective homomorphism [/V] : A{FMZ)

~^J4(FOO, JIOO) such that JMm,μm° Φi and [/V]°7JW, are close in the C 2 'α topology.

Finally we obtain a surjective homomorphism [Γt*] : A(Mί)-^A(Moo, /ioo) from

[Γι*] such that jM^μ^Φi and [Γι*]°jMi are close in the C° topology for large i,

where Φi: Mr^M^ is a Lipschitz map derived from the O(m)-equivariant submer-

sion Φi. As i goes to infinity, the Albanese torus A (Mi) converges to the torus

J4(MOO, /ioo) via the surjective homomorphism [Γ*]. This completes the proof of

Theorem 2.

It is possible to apply the same arguments as above to a sequence of certain

pairs (Miy μ, ) (cf. [8-a, Remark 3.3]). In fact, we can show the following
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Theorem 2. Let {(Mi, μτ)} be a sequence in sAw(m, x, D) which converges

to (Moo, //oo) with respect to the measured Hausdorff topology. Suppose that the

sectional curvature of Mi is bounded uniformly and also the density function Xi

of βi satisfies

\DdXi\<C

for some constant C. Then for large i, there is a surjective homomorphism Θi of

the Albanese torus A (Mi, μί) onto a flat torus A (Moo, μ™) of dimension n such

that 0<^<liminf^ooέi(M z ) and A (Mi, μt) converges to A (Moo, μj) with respect

to the Gromov-Hausdorjf distance via Θi.

Moreover there are a Lipschits map Φi of Mi onto Moo through which

(Mi, μi) converges to (Moo, μJ) and a (μoo-harmonic) map JM^* : Moo--> A (Moo, μ^

such that jM-,μ-°Φi and Φi°]MUμi are close in the C° topology, namely,

lim max dis(fM^oo° Φi(x), Θi°JMi,μi(x))=0.
i^oo xeMi

The convergence holds in the C2'a topology when Moo is a smooth manifold.

As an immediate consequence of Theorem 2\ we have the following

Corollary 3. Given numbers m, x and D, and given a flat torus T of

dimension n , there is a constant such that the rank of the Albanese map JM of

a manifold M in K(m, x, D) is greater than or equal to n, if the Gromov-

Hausdorff distance between M and T is less than r, and in addition, JM is a

submersion if bi(M) = n.

Finally we refer the reader to [12] for some results and problems related to this

corollary.

References

[l] J.W.S. Cassel: An introduction to the geometry of numbers, Springer-Verlag, Berlin-Hidelberg-

New York, 1959.

[2] J. Cheeger, K. Fukaya and M. Gromov: Nilpotent structures and invariant metrics on collapsed

manifolds, J. Amer. Math. Soc. 5 (1992), 327-372.

[3] K. Fukaya: Collapsing Riemannian manifolds and eigenvalues of the Laplace operator, Invent.

Math. 87 (1987), 517-547.

[4] K. Fukaya: A boundary of the set of the Riemannian manifolds with bounded curvatures and

diameters, J. Differential Geom. 28 (1988), 1-21.

[5] K. Fukaya : Collapsing Riemannian manifolds to ones of lower dimension II, J. Math. Soc. Japan

41 (1989), 333-356.

[6] I. Fukuyama : Master Thesis, Osaka University, 1993.

[7] M. Gromov : Structure metrique pour les varietes riemanniennes (redige par J. Lafontaine and P.

Pansu), Cedic/Fernand Nathan, Paris, 1981.



688 A. KASUE

[8] A. Kasue: (a) Measured Hausdorff convergence of Rίemannian manifolds and Laplace opera-

tors, Osaka J. Math. 30 (1993), 613-651 (b)—II, Complex Geometry (ed. by G. Komatsu and Y.

Sakane), Marcel Dekker, New York, 1992, 97-111.

[9] A. Kasue and H. Kumura : Spectral convergence of Riemannian manifolds, Tohuku Math. J. 46

(1994), 147-179.

[lO] A. Lichnerowicz: Applications harmoniques et varietes kdhleriennes, Symp. Math. I l l Bologna

(1970), 341-402.

[ l l ] A. Lichnerowicz: Varietes kahleriennes ά premiere classe de Chern nonnegatίve et varietes

riemanniennes ά courbure de Ricci generalisee nonnegative, J. Differential Geom. 6 (1971), 47-94.

[12] T. Yamaguchi : Manifolds of almost nonnegative Ricci curvature, J. Differential Geom. 28 (1988),

157-167.

Department of Mathematics
Osaka City University
Sugimoto, Sumiyoshi-ku, Osaka 558,
Japan




