Kasue, A Osaka J. Math. **32** (1995), 677-688

CONVERGENCE OF RIEMANNIAN MANIFOLDS AND ALBANESE TORI

ATSUSHI KASUE*

(Received July 19, 1993))

0. Introduction

The purpose of this note is to prove the convergence of the Albanese tori of compact Riemannian manifolds which collapse to a lower dimensional space while keeping their curvatures and diameters bounded.

Given a compact Riemannian manifold M, we denote by $H^1(M)$ the space of harmonic one-forms on M equipped with an inner product \langle , \rangle defined by

$$\langle \omega, \eta \rangle = \int_{M} (\omega, \eta) d\mu_{M},$$

where μ_M stands for the normalized Riemannian measure of M with unit mass, $\mu_M = d \operatorname{vol}_M/\operatorname{Vol}(M)$. Let $H^1(M)_Z$ be a lattice of $H^1(M)$ which consists of harmonic one-forms of integral periods. Dividing the dual space $H^1(M)^*$ by the dual lattice $H^1(M)_Z^*$, we obtain a flat torus, called the Albanese torus of M,

$$\mathcal{A}(M) = H^{1}(M)^{*}/H^{1}(M)^{*}_{Z}$$

We may view $\mathcal{A}(M)$ as a map of the set of isometry classes of compact Riemannian manifolds M onto that of flat tori.

Given a positive integer m, a nonnegative number x and a positive one D, we write $\mathscr{S}(m,x,D)$ for the set of isometry classes of compact Riemmanian m-manifolds M such that the Ricci curvature of M is bounded from below by $-(m-1)x^2$ and the diameter of M is bounded from above by D. Then according to Gromov [7], for a Riemannian manifold M in $\mathscr{S}(m, x, D)$, the dimension of the Albanese torus $\mathscr{A}(M)$, namely, the first Betti number $b_1(M)$, has an upper bound depending only on the dimension m of M and xD. Using this, we shall show the following

^{*}partly supported by Grant-in-Aid for Scientific Research, The Ministry of Education, Science and Culture, Japan.

A. KASUE

Theorem 1. Given $m \in \mathbb{Z}^+$, $x \ge 0$ and $D \ge 0$, there is a constant C depending only on m and xD such that

$$\operatorname{diam}(\mathcal{A}(M)) \leq C \operatorname{diam}(M)$$

for any M in $\mathcal{S}(m, x, D)$.

We would like to ask if the convergence of compact Riemannian manifolds in $\mathscr{S}(m, \varkappa, D)$ with respect to the spectral distance would imply the convergence of their Albanese tori. Here we recall the definition of a *spectral distance* between two compact Riemannian manifolds which was introduced in [9]. Given two compact Riemannian manifolds M and N, a mapping $f: M \rightarrow N$ is called an ε -spectral approximation if

$$e^{-(1/t+t)}|p_M(t, x, y)-p_N(t, f(x), f(y))| < \varepsilon$$

for all t > 0, and for all points x, y of M, where $p_M(t, x, y)$ and $p_N(t, u, v)$ denote respectively the heat kernel of M in $L^2(M, \mu_M)$ and that of N in $L^2(N, \mu_N)$. The spectral distance, SD(M, N), between M and N is by definition the lower bound of the positive numbers ε such that there exist ε -spectral approximations $f: M \to N$ and $h: N \to M$. According to [9], we know that (i) the metric space ($\mathscr{A}(m, \varkappa, D)$, SD) is precompact; (ii) the eigenvalues and eigenfunctions of compact Riemannian manifolds in $\mathcal{S}(m, x, D)$ are continuous with respect to the spectral distance in a certain sense; (iii) the topology on $\mathscr{S}(m, x, D)$ induced by the spectral distance is finer than that of measured Hausdorff convergence introduced by Fukaya [3] and hence that of the Gromov-Hausdorff distance. Moreover if we denote by $\mathcal{H}(m, x, D)$ the set of isometry classes of compact Riemmanian *m*-manifolds such that the sectional curvatures are bounded by x^2 in the absolute values and the diameters are not greater than D, then the topologies of the spectral distance and the measured Hausdorff convergence coincide on this set $\mathcal{H}(m, x, D)$. See [3], [8] and [9] for details. We note also that the spectral distance and the Gromov-Hausdorff distance induce the same topology on the set of flat tori.

The following theorem shows that the above question is affirmative if we restrict ourselves to the class $\mathcal{H}(m, x, D)$ for given numbers m, x, and D.

Theorem 2. Let $\{M_i\}$ be a sequence in $\mathcal{H}(m, x, D)$ which converges with respect to the spectral distance. Then the Albanese torus $\mathcal{A}(M_i)$ converges to a flat torus \mathcal{A}_{∞} of dimension n with $0 \le n \le \liminf_{i \to \infty} b_1(M_i)$.

Here in our convention, \mathcal{A}_{∞} stands for a point when n=0. We remark also that under the assumption of this theorem, we are able to show the convergence of the Albaness maps in a certain sense. See Section 3 for details.

The proofs of Theorems 1 and 2 are respectively given in Sections 2 and 3. For the latter, we shall basically make use of some results in [8]. In this sense, the

present paper is a continuation of [8].

1. Albanese Tori

In this section, we shall consider a compact Riemannian manifold M endowed with a certain measure μ and define the Albanese torus and the Albanese map of such a pair (M, μ) (cf. [10], [11]).

Let $M = (M, g_M)$ be a compact Riemannian manifold of dimension m and μ a measure on M with smooth density function $\chi > 0$. A one-form ω on M is said to be μ -harmonic if ω is closed and co-closed with respect to μ , namely, $d\omega = 0$ and

$$\delta_{\mu}\omega := -\operatorname{trace}(\nabla \omega) - \omega(\nabla \log \chi) = 0.$$

In other words, μ -harmonic one-form ω can be expressed locally as the differential of an L_{μ} -harmonic function f, $\omega = df$. Here a smooth function f defined on an open set in M is called an L_{μ} -harmonic function if

$$L_{\mu}f:=\frac{1}{\chi}\operatorname{div}(\chi \nabla f)=\varDelta f+\nabla \log \chi \cdot f=0.$$

We denote by $H^1(M, \mu)$ the space of μ -harmonic one-forms on M and by $H^1(M, \mu)_z$ the lattice of $H^1(M, \mu)$ which consists of one-forms with integral periods. The vector space $H^1(M, \mu)$ is endowed with an L^2 inner product \langle , \rangle defined by

$$\langle \omega, \eta \rangle_{\mu} = \int_{M} (\omega, \eta) d\mu.$$

The norm of $\omega \in H^1(M, \mu)$ is denoted by $\|\omega\|_{\mu}$.

Similarly, given a compact Riemannian manifold N, we say a smooth mapping ψ of M into N is μ -harmonic if it satisfies

$$\tau(\psi) + d\psi(\nabla \log \chi) = 0,$$

where $\tau(\phi)$ stands for the tension field of the mapping ϕ . A μ -harmonic mapping ϕ is a stationary point of the energy functional

$$E_{\mu}(\psi) = \int_{M} e(\psi) d\mu.$$

When N is a circle of length 1, N=R/Z, we write $\mathcal{H}(M, \mu; R/Z)$ for the set of μ -harmonic mappings of M into R/Z, which forms an additive group in an obvious manner. Since the derivative $d\phi$ of a smooth mapping ϕ of M into R/Z may be considered as an integral one-form on L, we have a natural surjective homomorphism d of $\mathcal{H}(M, \mu; R/Z)$ onto $H^1(M, \mu)_Z$ whose kernel is the set of constant mappings $\theta \in R/Z$. We note that the homomorphism d preserves the norms in the sense that

$$E_{\mu}(\psi) = \langle d\psi, d\psi \rangle_{\mu}$$

for $\psi \in \mathcal{H}(M, \mu; R/Z)$.

The Albanese torus $\mathcal{A}(M, \mu)$ of a pair (M, μ) is by definition a flat torus derived from dividing the dual space $H^1(M, \mu)^*$ by the dual lattice $H^1(M, \mu)^*_z$,

$$\mathcal{A}(M, \mu) = H^{1}(M, \mu)^{*}/H^{1}(M, \mu)^{*}_{Z}$$

Let \widetilde{M} be the universal covering of M and π the projection of \widetilde{M} onto M. If we fix a point p of M and take a point \widetilde{p} of \widetilde{M} with $\pi(\widetilde{p})=p$, then we have a map $\widetilde{J}_{M,\mu}$ of \widetilde{M} into the dual space $H^1(M, \mu)^*$ defined by

$$\widetilde{J}_{M,\mu}(\widetilde{x})(\omega) = \int_{\widetilde{p}}^{\widetilde{x}} \pi^* \omega.$$

This map induces a μ -harmonic map $J_{M,\mu}$ of M into $\mathcal{A}(M, \mu)$ (with $J_{M,\mu}(p)=0$). We call $J_{M,\mu}$ the Albanese map of a pair (M, μ) .

Let $\Omega = \{\omega_1, \ldots, \omega_r\}$ be a basis of $H^1(M, \mu)_Z$ and $\Omega^* = \{\omega_1^*, \ldots, \omega_r^*\}$ the dual basis. Then a diffeomorphism T_{Ω} of $\mathcal{A}(M, \mu)$ onto R^r/Z^r is derived from a linear isomorphism of $H^1(M, \mu)^*$ onto R^r :

$$\theta_1 \omega_1^* + \cdots + \theta_r \omega_r^* \rightarrow (\theta_1, \ldots, \theta_r).$$

If we set a metric g_{Ω} on R^r/Z^r by

$$g_{\Omega} = \sum_{\alpha,\beta=1,\cdots,r} \langle \omega_{\alpha}^*, \omega_{\beta}^* \rangle_{\mu} d\theta_{\alpha} d\theta_{\beta},$$

then $T_{\mathcal{Q}}$ induces an isometry between $\mathcal{A}(M, \mu)$ and $(R^r/Z^r, g_{\mathcal{Q}})$. Moreover if we take a μ -harmonic map $\psi_{\alpha} \colon M \to R/Z$ in such a way that

$$\psi_{\alpha}(p)=0, \quad \omega_{\alpha}=d\psi_{\alpha},$$

we see that

$$T_{\mathcal{Q}} \circ J_{M,\mu}(x) = (\psi_1(x), \ldots, \psi_r(x))$$

for $x \in M$. Here we remark that

$$E_{\mu}(J_{M,\mu})=b_1(M).$$

Given a pair (M, μ) , we define a symmetric tensor $Ric_{M,\mu}$ by

$$Ric_{M,\mu} = Ric_M - \frac{1}{\chi} \nabla^2 \chi (= Ric_M - d \log \chi \otimes d \log \chi - \nabla^2 \log \chi),$$

where Ric_{M} (resp., χ) stands for the Ricci tensor of M (resp., the density function of μ , $\mu = \chi d \operatorname{vol}_{M}$). Given m, χ and D as before, we denote by $\mathscr{S}_{w}^{*}(m, \chi, D)$ the set of equivalence classes of pairs (M, μ) such that dim M = m, the diameter diam(M) of $M \leq D$, μ has unit mass, and $Ric_{M,\mu} \geq -(m-1)\chi^{2}g_{M}$. Here we say two pairs (M, μ) and (N, ν) are equivalent when there is an isometry $f: M \to N$ which preserves the measures, $f_{*}\mu = \nu$. We remark that the spectral distance SD can be defined on the set of equivalence classes of pairs (M, μ) . See [9] for some properties

of the metric space $(\mathscr{S}^*_w(m, x, D), SD)$ as mentioned in Introduction.

In what follows, when μ is the canonical Riemannian measure μ_M with unit mass, $\mu_M = d \operatorname{vol}/\operatorname{Vol}(M)$, we omit to indicate the dependency of the measure μ_M in some of the above notations (for example, $\mathcal{A}(M)$ stands for $\mathcal{A}(M, \mu_M)$).

2. Proof of Theorem 1

We recall first that there is a positive constant C' depending only on m and xD such that

(2.1)
$$e(\psi) \leq C' E_{\mu_{\mathcal{M}}}(\psi)$$

for all $\psi \in \mathcal{H}(M; R/Z)$, because the energy density $e(\psi)$ satisfies

$$\Delta e(\psi) \ge -2(m-1)x^2 e(\psi)$$

(cf. e.g., [8-a, §4]). In addition, we note that if ψ is not constant, the energy density $e(\psi)$ must be greater than or equal to $1/4 \operatorname{diam}(M)^2$ somewhere on M (otherwise, the distance between $\psi(p)$ and $\psi(q)$ in R/Z for any pair of points p, q of M would be less than 1/2, and hence the harmonic map ψ should be constant). Therefore we have

$$E_{\mu_M}(\phi) \ge \frac{1}{4C' \operatorname{diam}(M)^2}$$

for all nonconstant $\psi \in \mathcal{H}(M; R/Z)$; in other words,

$$\langle \omega, \omega \rangle_{\mu_M} \ge \frac{1}{4C' \operatorname{diam}(M)^2}$$

for all nonzero $\omega \in H^1(M)_z$. This implies that the first eigenvalue $\lambda_1(\mathcal{A}(M))$ is bounded from below by $\pi^2/C' \operatorname{diam}(M)^2$. On the other hand, we know that

$$\lambda_1(\mathscr{A}(M)) \leq \frac{C''}{\operatorname{diam}(\mathscr{A}(M))^2}$$

for some constant C'' depending only on the dimension of $\mathcal{A}(M)$, and hence on m and $\mathcal{X}D$, since

(2.2)
$$b_1(M) \leq \frac{v_m(x^2, 5\operatorname{diam}(M))}{v_m(x^2, \operatorname{diam}(M))},$$

where $v_m(x^2, r)$ stands for the volume of a metric ball in the simply connected space form of dimension *m* with constant curvature x^2 (cf. [7]). Thus the assertion of Theorem 1 is clear. This completes the proof of Theorem 1.

Let (M, μ) be a pair in $\mathscr{S}_{w}^{*}(m, x, D)$. Then it is not hard to see that the above submean value inequality (2.1) holds for any μ -harmonic map $\psi \in \mathscr{H}(M, \mu; R/Z)$ (cf. e.g., [8-a, §4]). Moreover it follows from the same reason as in deriving (2.2) that

$$b_1(M) \leq \frac{v_{m+1}(x^2, \operatorname{5diam}(M))}{v_{m+1}(x^2, \operatorname{diam}(M))},$$

because we have a Bishop-Gromov type inequality for the pair (M, μ) (cf. [9, §2]). Thus Theorem 1 holds for (M, μ) . Namely we have

Theorem 1'. Given m, x and D as before, there is a constant C' depending only on m and xD such that

$$\operatorname{diam}(\mathcal{A}(M, \mu)) \leq C' \operatorname{diam}(M).$$

for all $(M, \mu) \in \mathscr{S}^*_w(m, \chi, D)$.

REMARKS. (1) When x=0 in Theorem 1, the classical Bochner theorem says that any harmonic one-form is parallel, so that J_M is a Riemannian submersion with totally geodesic fibers and in particular the diameter of $\mathcal{A}(M)$ is less than or equal to the diameter of M (C=1 in Theorem 1). This is also true for Theorem 1' (cf. [12]). (2) A slightly different proof of Theorem 1 is presented in [6].

3. Proof of Theorem 2

The proof of the theorem is divided into 4 steps and the same notations as in the preceding sections will be used.

Step 1. We shall start with recalling the notions of convergence of Gromov-Hausdorff distance and measured Hausdorff topology introduced by Gromov [7] and Fukaya [3] respectively. Given a sequence of compact Riemannian manifolds, $\{M_i\}$, we say that M_i converges to a compact matric space X with respect to the Gromov-Hausdorff distance, if there are a sequence of positive numbers $\{\varepsilon_i\}$ with $\lim_{i\to\infty} \varepsilon_i = 0$ and mappings $f_i: M_i \to X$ such that the ε -neighborhood of $f_i(M_i)$ covers X and $|d_{M_i}(x, y) - d_X(f_i(x), f_i(y))| < \varepsilon$ for all x, y of M_i . Moreover we say that $M_i = (M_i, \mu_{M_i})$ converges to a pair (X, μ) of X and a Borel measure μ on X with respect to the measured Hausdorff topology, if f_i are Borel measurable and the push-forward $f_{i*}\mu_{M_i}$ of the normalized Riemannian measure μ_{M_i} via f_i converges to μ in the weak* topology.

Let M_i be a sequence in $\mathcal{H}(m, x, D)$ which converges to a compact metric space M_{∞} with respect to the Gromov-Haussdorff distance. Then there is a smooth manifold F_{∞} with metric of class $C^{1,\alpha}$ (for any $\alpha \in (0, 1)$), on which the orthogonal group O(m) acts by isometries in such a way that the quotient space $F_{\infty}/O(m)$ is isometric to M_{∞} . In fact, F_{∞} is a limit of the set of the frame bundles FM_i of M_i equipped with a canonical metric so that the action of O(m) is isometric, the projection of FM_i onto M_i is a Riemannian submersion with totally geodesic fibers, and the sectional curvature of FM_i remains bounded uniformly in *i*. When M_{∞} is smooth, there is a fibration $\Phi_i: M_i \rightarrow M_{\infty}$ (for large *i*) and a sequence of

positive numbers $\{\varepsilon_i\}$ with $\lim_{i\to\infty} \varepsilon_i = 0$ satisfying

(1) for all $z \in M_{\infty}$, the diameter of $\Phi_i^{-1}(z) \le \varepsilon_i$;

(2) Φ_i is an ε_i -almost Riemannian submersion, that is, for all $z \in M_{\infty}$, $x \in \Phi_i^{-1}(z)$ and $X \in T_x M_i$ normal to the fiber $\Phi_i^{-1}(z)$,

$$(1-\varepsilon_i)|d\Phi_i(X)| \le |X| \le (1+\varepsilon_i)|d\phi_i(X)|;$$

(3) the second fundamental form of the submersion Φ_i is bounded uniformly in *i*.

For these assertions, see [2], [4] and [5].

Now as in Theorem 2, we suppose that M_i converges to $(M_{\infty}, \mu_{\infty})$ with respect to the spectral distance and hence the measured Hausdorff topology. Then we may assume that the push-forward $\Phi_{i*}\mu_{M_i}$ of the canonical Riemannian measure μ_{M_i} of M_i converges to μ_{∞} in the weak^{*} topology. In case M_{∞} is smooth, the density function χ_{∞} of μ_{∞} is a positive function of class $C^{1,a}$. Moreover we may assume that the above submersion Φ_i has the following property : for all smooth function h on M_{∞} ,

(4)
$$|\mathcal{\Delta}_{M_i} \Phi_i^*(h) - \Phi_i^*(L_{\mu_{\infty}} h)| \leq \varepsilon_i \Phi_i^*(|Ddh| + |dh|).$$

See [8-a] for this and further properties of Φ_i .

In the following Steps 2 and 3, we consider the case that the limit metric space M_{∞} is a smooth manifold, and assume that the metric of M_{∞} and the density χ_{∞} are smooth, to avoid some technical argument of approximation. Moreover $\{\varepsilon_i\}$ stands for a sequence of positive constants which tends to zero as *i* goes to infinity.

Step 2. Given a μ_{∞} -harmonic one-form $\omega \in H^1(M_{\infty}, \mu_{\infty})$, the pull-back $\Phi_i^* \omega$ can be uniquely expressed as

$$\Phi_i^*\omega = \Gamma_i(\omega) + d\Lambda_i(\omega)$$

according to the orthogonal decomposition of d-closed one-forms $Z(M_i)$ of M_i ,

$$Z^1(M_i) = H^1(M_i, \mu_{M_i}) \oplus dC^{\infty}(M_i).$$

Here the function $\Lambda_i(\omega)$ is chosen in such a way that

$$\int_{M_i} \Lambda_i(\omega) d\mu_i = 0.$$

Now we claim that

$$(3.1) \qquad \qquad | \boldsymbol{\Phi}_{i}^{*} \boldsymbol{\omega} - \boldsymbol{\Gamma}_{i}(\boldsymbol{\omega}) |_{C^{0}(M_{i})} = | d\boldsymbol{\Lambda}_{i}(\boldsymbol{\omega}) |_{C^{0}(M_{i})} \leq \varepsilon_{i}$$

for any $\omega \in H^1(M_{\infty}, \mu_{\infty})$ with unit norm, $\|\omega\|_{\mu_{\infty}} = 1$. Indeed, we fix a sufficiently small *a* and consider the metric ball $B_{\infty}(p, 3a)$ of M_{∞} around a point *p* of radius 3*a*. Let *f* be an L_{∞} -harmonic function on $B_{\infty}(p, 3a)$ such that $\omega = df$ and

$$\int_{B_{\infty}(p,3a)} f d\mu_{\infty} = 0.$$

Then applying the Poincaré inequality, we have first

$$\int_{B_{\infty}(p,3a)} |f|^2 d\mu_{\infty} \leq C_1 \int_{B_{\infty}(p,3a)} |df|^2 d\mu_{\infty} \leq C_1$$

for some constant C_1 . Since f is L_{∞} -harmonic, it follows from the standard elliptic regularity estimates that

$$|f|_{C^{2,a}(B_{\infty}(p,2a))} \leq C_2$$

for some constant C_2 , where $\alpha \in (0, 1)$. Hence in view of the property (4) of Φ_i , we see that

$$|\Delta_{M_i} \Phi_i^* f| \leq \varepsilon_i$$

on $\Phi_i^{-1}(B_{\infty}(p, a))$. This shows that

$$|\Delta_{M_i}\Lambda_i(\omega)|\leq \varepsilon_i,$$

since $d\Phi_i^* f = \Gamma_i(\omega) + d\Lambda_i(\omega)$ and $\Gamma_i(\omega)$ is harmonic. Finally it follows from the regularity estimates again that

$$|\Lambda_i(\omega)|_{W^{2,p}(M_i, \mu_M)} \leq \varepsilon_i,$$

where $p \in (1, \infty)$ (cf. [8-a, Lemma 1.3]), and hence

 $|\Lambda_i(\omega)|_{C^{1,\alpha}(M_i)} \leq \varepsilon_i.$

This proves (3.1).

Now this estimate (3.1) together with the property (3) of Φ_i implies that

(3.2)
$$(1-\varepsilon_i)\|\omega\|_{\mu_{\infty}} \leq \|\Gamma_i(\omega)\|_{\mu_i} \leq (1+\varepsilon_i)\|\omega\|_{\mu_{\infty}}$$

For all $\omega \in H^1(M_{\infty}, \mu_{\infty})$. In particular, Γ_i is injective (for large *i*). We observe further that Γ_i maps the lattice $H^1(M_{\infty}, \mu_{\infty})_z$ into the lattice $H^1(M_i)_z$,

$$\Gamma_i(H^1(M_\infty, \mu_\infty)_Z) \subset H^1(M_i)_Z.$$

Step 3. Given any number K, Theorem 4.3 in [8-a] says that for large i, a harmonic one-form ξ on M_i with integral periods must belong to the image $\Gamma_i(H^1(M_{\infty}, \mu_{\infty})_z)$, whenever the L^2 norm $\|\xi\|_{\mu_i}$ is less than K. In other words, there is a positive constant K_i with $\lim_{i\to\infty} K_i = \infty$ such that

 $\|\xi\|_{\mu_i} \ge K_i$

for any $\xi \in H^1(M_i)_Z \setminus \Gamma_i(H^1(M_{\infty}, \mu_{\infty})_Z)$ (if it exists).

Let us now take a basis $\Omega = \{\omega_1, \ldots, \omega_r\}$ of $H^1(M_{\infty}, \mu_{\infty})_z(r = b_1(M_{\infty}))$ in such a way that an element ω of $H^1(M_{\infty}, \mu_{\infty})_z$ is a linear combination of $\omega_1, \ldots, \omega_{s-1}$ whenever $\|\omega\|_{\mu_{\infty}}$ is less than $\|\omega_s\|_{\mu_{\infty}}$ (cf. [1, Chap. VIII]). Then we choose a basis Ω_i $= \{\omega_{i,1}, \ldots, \omega_{i,r_i}\}$ of $H^1(M_i)_z(r_i = b_1(M_i))$ in such a way that

$$\omega_{i,s} = \Gamma_i(\omega_s) \quad (s=1,\ldots,r)$$

and any element ω is linearly dependent of $\omega_{i,1}, \ldots, \omega_{i,s-1}$ whenever $\|\omega\|_{\mu_i}$ is less than $\|\omega_{i,s}\|_{\mu_i}$ for s > r. We note that

$$\|\omega_{i,s}\| \ge K_i$$

for s > r (if $r_i > r$).

Let $\Omega_i^* = \{\omega_{i,s}^*\}$ $(s=1, \ldots, r_i)$ be the dual basis of Ω_i and Γ_i^* : $H^1(M_i)^* \to H^1(M_{\infty}, \mu_{\infty})^*$ the dual mapping of Γ_i . Then Γ_i^* is surjective and its kernel is spanned by $\omega_{i,s}(s=r+1, \ldots, r_i)$. Hence Γ_i^* induces a surjective homomorphism, denoted by $[\Gamma_i^*]$, from the Albanese torus $\mathcal{A}(M_i)$ of M_i onto $\mathcal{A}(M_{\infty}, \mu_{\infty})$. Then in view of (3.2) and (3.3), $\mathcal{A}(M_i)$ converges via $[\Gamma_i^*]$ to $\mathcal{A}(M_{\infty}, \mu_{\infty})$ with respect to the Gromov-Hausdorff distance. We observe that $[\Gamma_i^*]$ is affine, namely the second fundamental form vanishes identically. Moreover if we take a point p_{∞} of M_{∞} and choose p_i as a fixed point of M_i in such a way that $\mathcal{O}_i(p_i)$ $= p_{\infty}$, then the mappings $J_{M_{\infty},\mu_{\infty}}$ and $[\Gamma_i^*] \circ J_{M_i}$ are close for large i in the sense that

$$\max_{x \in M_i} \operatorname{dis}(J_{\mu_{\infty}} \circ \Phi_i(x), [\Gamma_i^*] \circ J_i(x)) \leq \varepsilon_i.$$

To be precise, let $T_{\mathcal{Q}_i}: \mathcal{A}(M_i) \rightarrow (R^{r_i}/Z^{r_i}, g_{\mathcal{Q}_i})$ and $T_{\mathcal{Q}}: \mathcal{A}(M_{\infty}, \mu_{\infty}) \rightarrow (R^r/Z^r, g_{\mathcal{Q}})$ respectively be isometries described in Section 1, and let $\pi_i: R^{r_i}/Z^{r_i} \rightarrow R^r/Z^r$ be a canonical projection such that $\pi_i(\theta_1, \ldots, \theta_{r_i}) = (\theta_1, \ldots, \theta_r)$. Then $T_{\mathcal{Q}_i} \circ J_{M_i}$ and $T_{\mathcal{Q}} \circ J_{M_{\infty},\mu_{\infty}}$ respectively can be expressed as

$$T_{\Omega_i} \circ J_{M_i} = (\psi_{i,1,\cdots}, \psi_{i,r_i})$$

and

$$T_{\mathcal{Q}} \circ J_{M_{\infty},\mu_{\infty}} = (\psi_1, \ldots, \psi_r),$$

where $\psi_{i,s}$ is the harmonic mapping of M_i to R/Z corresponding to $\omega_{i,s}$ and also ψ_s is the μ_{∞} -harmonic mapping of M_{∞} to R/Z corresponding to ω_s . We note that for each s, $1 \le s \le r$, $\psi_{i,s}$ is homotopic to $\psi_i \circ \Phi_i$ and further that

$$|\psi_{i,s} - \psi_s \circ \Phi_i|_{C^{2,a}(M_i)} \leq \varepsilon_i$$

(cf. [8-a, §4]). Thus the mappings $J_{M_{\infty},\mu_{\infty}} \circ \Phi_i$ and $[\Gamma_i^*] \circ J_{M_i}$ (for large *i*) are close with respect to the $C^{2,\alpha}$ topology.

Step 4. It remains to prove Theorem 2 in case M_{∞} is not smooth. In this case, we consider the frame bundle FM_i of each M_i equipped with a canonical metric \overline{g}_i in such a way that the sectional curvature and the diameter are bounded uniformly in *i*. We denote by ρ_i the canonical projection of FM_i onto M_i . Observe that the pull-back $\rho_i^* \omega$ of a harmonic one-form ω on M_i is harmonic on FM_i and further that this correspondence preserves the inner products,

$$\langle \rho_i^* \omega, \rho_i^* \omega' \rangle_{\overline{\mu}_i} = \langle \omega, \omega' \rangle_{\mu_i}$$

A. KASUE

For this reason, the space of harmonic one-forms $H^1(M_i)$ on M_i endowed with the L^2 inner product can be considered as a subspace of $H^1(FM_i)$. In the same way, we identify the lattice $H^1(M_i)_Z$ and the group $\mathcal{H}(M_i; R/Z)$ respectively with a sublattice of $H^1(FM_i)_Z$ and a subgroup of $\mathcal{H}(FM_i; R/Z)$. Under this identification, an element $\overline{\psi}$ of $\mathcal{H}(FM_i; R/Z)$ belongs to the subgroup $\mathcal{H}(M_i; R/Z)$ if and only if $\overline{\psi}$ is O(m)-invariant.

In what follows, we suppose that this sequence $\{FM_i\}$ converges in the topology of measured Hausdorff convergence. Let \overline{M}_{∞} and $\overline{\mu}_{\infty}$ be the limit space and measure respectively. Then according to Fukaya [4, 5], \overline{M}_{∞} is a smooth manifold with Riemannian metric \overline{g}_{∞} of class $C^{1,\alpha}$, on which the orthogonal group O(m)acts as isometries in such a way that the quotient space $\overline{M}_{\infty}/O(m)$ is isometric to M_{∞} . Moreover there are O(m)-equivariant almost Riemannian submersions $\widetilde{\Phi}_i$: $FM_i \rightarrow \overline{M}_{\infty}$ such that $\widetilde{\Phi}_{i*} \overline{\mu}_{FM_i}$ converges to $\overline{\mu}_{\infty}$ in the weak* topology, where $\overline{\mu}_{FM_i}$ stands as before for the normalized Riemannian measure of FM_i . We note that the limit measure μ_{∞} on M_{∞} coincides with the push-forward $\rho_{\infty*} \overline{\mu}_{\infty}$ of $\overline{\mu}_{\infty}$ via the projection $\rho_{\infty}: \overline{M}_{\infty} \rightarrow M_{\infty}$ and the density $\overline{\chi}_{\infty}$ of $\overline{\mu}_{\infty}$ with respect to the Riemannian measure of \overline{g}_{∞} is O(m)-invariant.

Now perturbing the submersion $\widetilde{\Phi}_i$ in the $C^{1,\alpha}$ topology, we can obtain an almost Riemannian submersion $\overline{\Phi}_i$ of FM_i onto \overline{M}_{∞} , to which we can apply the same arguments as in the preceding steps. To be precise, we write first $\mathcal{H}(M_{\infty}, \mu_{\infty}; R/Z)$ for the subgroup of $\mathcal{H}(\overline{M}_{\infty}, \overline{\mu}_{\infty}; R/Z)$ consisting of O(m)invariant $\overline{\mu}_{\infty}$ -harmonic maps $\overline{\phi}: \overline{M}_{\infty} \rightarrow R/Z$. We note that $\mathcal{H}(M_{\infty}, \mu_{\infty}; R/Z)$ is determined by the pair $(M_{\infty}, \mu_{\infty})$ itself (cf. [8-a, §4]). Then we denote by $H^1(M_{\infty}, \mu_{\infty})_Z$ and $H^1(M_{\infty}, \mu_{\infty})$ respectively the sublattice of $H^1(\overline{M}_{\infty}, \overline{\mu}_{\infty})_Z$ corresponding to $\mathcal{H}(M_{\infty}, \mu_{\infty}; R/Z)$, $H^1(\overline{M}_{\infty}, \overline{\mu}_{\infty})_Z = d\mathcal{H}(M_{\infty}, \mu_{\infty}; R/Z)$, and the vector space spanned by $H^1(M_{\infty}, \mu_{\infty})_Z$. Set

$$\mathcal{A}(M_{\infty}, \mu_{\infty}) = H^1(M_{\infty}, \mu_{\infty})^* / H^1(M_{\infty}, \mu_{\infty})^*_Z.$$

Then we obtain an O(m)-invariant $\overline{\mu}_{\infty}$ -harmonic map $\overline{J}_{M_{\infty},\mu_{\infty}}: \overline{M}_{\infty} \to \mathcal{A}(M_{\infty}, \mu_{\infty})$, from which a Lipschitz map $J_{M_{\infty},\mu_{\infty}}: M_{\infty} \to \mathcal{A}(M_{\infty}, \mu_{\infty})$ is derived. This map $J_{M_{\infty},\mu_{\infty}}$ is μ_{∞} -harmonic on the set of regular points of M_{∞} . Moreover as we have seen in Steps 2 and 3, $\overline{\Phi}_i$ (for large *i*) induces a surjective homomorphism $[\overline{\Gamma}_i^*]: \mathcal{A}(FM_i)$ $\to \mathcal{A}(F_{\infty}, \overline{\mu}_{\infty})$ such that $\overline{J}_{M_{\infty},\mu_{\infty}} \circ \overline{\Phi}_i$ and $[\overline{\Gamma}_i^*] \circ J_{FM_i}$ are close in the $C^{2,\alpha}$ topology. Finally we obtain a surjective homomorphism $[\Gamma_i^*]: \mathcal{A}(M_i) \to \mathcal{A}(M_{\infty}, \mu_{\infty})$ from $[\overline{\Gamma}_i^*]$ such that $J_{M_{\infty},\mu_{\infty}} \circ \Phi_i$ and $[\Gamma_i^*] \circ J_{M_i}$ are close in the C^0 topology for large *i*, where $\Phi_i: M_i \to M_{\infty}$ is a Lipschitz map derived from the O(m)-equivariant submersion $\widetilde{\Phi}_i$. As *i* goes to infinity, the Albanese torus $\mathcal{A}(M_i)$ converges to the torus $\mathcal{A}(M_{\infty}, \mu_{\infty})$ via the surjective homomorphism $[\Gamma_i^*]$. This completes the proof of Theorem 2.

It is possible to apply the same arguments as above to a sequence of certain pairs (M_i, μ_i) (cf. [8-a, Remark 3.3]). In fact, we can show the following

Theorem 2. Let $\{(M_i, \mu_i)\}$ be a sequence in $\mathscr{S}_w^*(m, x, D)$ which converges to $(M_{\infty}, \mu_{\infty})$ with respect to the measured Hausdorff topology. Suppose that the sectional curvature of M_i is bounded uniformly and also the density function χ_i of μ_i satisfies

$$|Dd\chi_i| \leq C$$

for some constant C. Then for large *i*, there is a surjective homomorphism Θ_i of the Albanese torus $\mathcal{A}(M_i, \mu_i)$ onto a flat torus $\mathcal{A}(M_{\infty}, \mu_{\infty})$ of dimension *n* such that $0 \le n \le \liminf_{i \to \infty} b_1(M_i)$ and $\mathcal{A}(M_i, \mu_i)$ converges to $\mathcal{A}(M_{\infty}, \mu_{\infty})$ with respect to the Gromov-Hausdorff distance via Θ_i .

Moreover there are a Lipschits map Φ_i of M_i onto M_{∞} through which (M_i, μ_i) converges to $(M_{\infty}, \mu_{\infty})$ and a $(\mu_{\infty}$ -harmonic) map $J_{M_{\infty},\mu_{\infty}}: M_{\infty} \to \mathcal{A}(M_{\infty}, \mu_{\infty})$ such that $J_{M_{\infty},\mu_{\infty}} \circ \Phi_i$ and $\Phi_i \circ J_{M_i,\mu_i}$ are close in the C^0 topology, namely,

 $\lim_{i\to\infty}\max_{x\in M_i}\operatorname{dis}(J_{M_{\infty,\mu_{\infty}}}\circ \boldsymbol{\Phi}_i(x), \ \Theta_i\circ J_{M_i,\mu_i}(x))=0.$

The convergence holds in the $C^{2,\alpha}$ topology when M_{∞} is a smooth manifold.

As an immediate consequence of Theorem 2', we have the following

Corollary 3. Given numbers m, x and D, and given a flat torus T of dimension n, there is a constant such that the rank of the Albanese map J_M of a manifold M in $\mathcal{K}(m, x, D)$ is greater than or equal to n, if the Gromov-Hausdorff distance between M and T is less than r, and in addition, J_M is a submersion if $b_1(M) = n$.

Finally we refer the reader to [12] for some results and problems related to this corollary.

References

- [1] J.W.S. Cassel: An introduction to the geometry of numbers, Springer-Verlag, Berlin-Hidelberg-New York, 1959.
- [2] J. Cheeger, K. Fukaya and M. Gromov: Nilpotent structures and invariant metrics on collapsed manifolds, J. Amer. Math. Soc. 5 (1992), 327-372.
- K. Fukaya: Collapsing Riemannian manifolds and eigenvalues of the Laplace operator, Invent. Math. 87 (1987), 517-547.
- [4] K. Fukaya: A boundary of the set of the Riemannian manifolds with bounded curvatures and diameters, J. Differential Geom. 28 (1988), 1-21.
- [5] K. Fukaya: Collapsing Riemannian manifolds to ones of lower dimension II, J. Math. Soc. Japan 41 (1989), 333-356.
- [6] I. Fukuyama : Master Thesis, Osaka University, 1993.
- M. Gromov: Structure métrique pour les variétés riemanniennes (rédige par J. Lafontaine and P. Pansu), Cedic/Fernand Nathan, Paris, 1981.

A. KASUE

- [8] A. Kasue: (a) Measured Hausdorff convergence of Riemannian manifolds and Laplace operators, Osaka J. Math. 30 (1993), 613-651; (b)-II, Complex Geometry (ed. by G. Komatsu and Y. Sakane), Marcel Dekker, New York, 1992, 97-111.
- [9] A. Kasue and H. Kumura: Spectral convergence of Riemannian manifolds, Tohuku Math. J. 46 (1994), 147-179.
- [10] A. Lichnerowicz: Applications harmoniques et variétés kählériennes, Symp. Math. III Bologna (1970), 341-402.
- [11] A. Lichnerowicz: Variétés kählériennes à première classe de Chern nonnegative et variétés riemanniennes à courbure de Ricci généralisée nonnegative, J. Differential Geom. 6 (1971), 47-94.
- [12] T. Yamaguchi : Manifolds of almost nonnegative Ricci curvature, J. Differential Geom. 28 (1988), 157-167.

Department of Mathematics Osaka City University Sugimoto, Sumiyoshi-ku, Osaka 558, Japan