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Introduction

In [23], we studied some properties of standard L-functions attached to
sym‘( V)-valued Siegel modular forms of weight det®* ® sym’. More precisely, let
det* ® sym‘ be an irreducible rational representation of GL(%, C) with represen-
tation space sym‘(V), where V is isomorphic to C” and sym‘(V) is the /-th
symmetric tensor product of V. Let f be a sym‘(V)-valued holomorphic cusp
form of weight det* @ sym' for Sp(n, Z) (size 2%). Suppose f is an eigenform,
i.e., a non-zero common eigenfunction of the Hecke algebra. Then we define the
standard L-function attached to f by

O LGs, £, 80 =I{0-p) [ 0-ao)"p )= ap)p ™)}

where p runs over all prime numbers and a;(p) (1<7<u) are the Satake p-
parameters of f. The right-hand side of (0.1) converges absolutely and locally
uniformly for Re(s)>n+1. We put

As, £, 88): =T'(s+ el els+k+1-D{I Pe(s+k=D}LGs, £, 0,
with
I OF =7r%r<§>, I'e(s): =2(2m)~°I'(s)

and

L {0 for » even,
€ 1 for » odd.

Then we have the following (cf. Andrianov and Kalinin [Z], Bocherer [5] and
Mizumoto [19] for /=0).



548 H. TAKAYANAGI

Theorem. ([23, Theorems 2 and 3]) For k, [E2Z, k, [ >0, A(s, f, St) has a
meromorphic continuation to the whole s-plane and satisfies the functional
equation

A(s, f, St)=AQ1~s, f, St).

Suppose k>n. Then /A(s, f, St) is holomorphic except for possible simple poles at
s=0 and s=1; it has a pole at s=1 (or equivalently, s=0) if and only if f
belongs to the C-vector space spanned by certain theta series in [24] which is
invariant under the action of the Hecke algebra.

If we note that the signature of det* @ sym‘is (k+/, &, -+, k)EZ", we expect
the following [23, §3.1 Remark] :

(C). Let p be an irreducible rational representation of GL(n, C) with
representation space V whose signature is (A, Az, ***, An)EZ" with A =A== Ay
>(0. Let f be a V-valued holomorphic cusp form of weight o for Sp(n, Z).
Suppose that f is an eigenform. Then, it is expected that the completed Dirichlet
series

Als, £, 801 =Ta(s+]1 Iels+4=)L(s, £, St)
should satisfy a functional equation.

Unfortunately, within our knowledge it is not verified so far whether (C)
holds or not except det” and det* ® sym‘ cases. We will give another example
satisfying (C).

For /€Z,0<]<un, let det* ® alt’ be an irreducible rational representation of
GL(n, C) with representation space alt’( V'), where V is isomorphic to C" and
alt'(V) is the /-th alternating tensor product of V. Let MHalt'(V)) (resp.
S#alt'(V))) be the C-vector space consisting of alt’(V)-valued holomorphic
modular (resp. cusp) forms of weight det* ® alt’ for Sp(n, Z).

Suppose that € Si(alt” (V) is an eigenform. We note that the signature of
det* @ alt” ' is (k+1, -+, k+1, k). We put

AGs, £, =T(s+D{TT Fe(s+k+1-)|Tels +k=n)L(s, £, St

Then the main result of this paper is the following (cf. Piatetski-Shapiro and Rallis
[21], Weissauer [24]).

Theorem 1. Let k& be an even integer, n an odd integer and 2k=n>2.
Then A(s, f, St) has a meromorphic continuation to the whole s-plane and
satisfies the functional equation
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AGs, £, St)=A1-s, f, St).
Moreover, suppose k>n. Then, A(s, f, St) is entire.

NOTATION.

1°.  As usual, Z is the ring of rational integers, @ the field of rational
numbers, R the field of real numbers, C the field of complex numbers.

2°. Let m, n€Z, m, n>0. If A is an m X n-matrix, then we write it also as
A™? and as A™ if m=n. The identity matrix of size # is denoted by 1,.

3. For m, n€Z, m, n>0, and a commutative ring R containing 1, let R‘™"
(resp. R"™) be the R-module of all X n (resp. # X #) matrices with entries in R.

4. For a real symmetric positive definite matrix S, S'? is the unique real
symmetric positive definite matrix such that (S?)*=S.

5°. For matrix A™, B™" we define A[B]: ='BAB, where ‘B is the
transpose of B and B is the complex conjugate of B.

6°. For a matrix A =(an)1<;s<m @n is the cofactor of @ and A=(dGm).

7°. For n€Z, n>0, we put

h 0

TW: ={T= & . EZM|t;>0(1<j<n), tl-|ta;.

0 tn

8. For n=Z, n>0, let I'": =Sp(n, Z) be the Siegel modular group of
degree 7 and let £, be the Siegel upper half space of degree #, that is,

Hn: ={Z=X+iYeCc™|'Z=Z, Y>0).

For each »E€Z with 0<7<#, we put

* * n
Par: ={(pow pon)ET

o~ S)o-(3 )

All these are subgroups of I'".
9°. For n€Z, n=0, we put

In(s): =jljl F(S—jgl),

and
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F(s—l—n)

"\ 2

—————— for n even,

r(%

r(s): =) I-._l<s+n)
N2 for » odd,
Fn—l<8—1>

2

where I'(s) is the gamma function. We note that
r(s)=r(1—s)
Moreover, we put
£(s): =I'w(s)¢(s)=£€(1—s),

where £(s) is the Riemann zeta function.
Throughout the paper we understand that a product (resp.a sum) over an
empty set is equal to 1 (resp. 0).

1. Preliminaries

Let o be a finite-dimensional representation of GL(n, C) with representation
space V. By definition, V-valued C"-Siegel modular forms of weight o are
C=-functions from £, to V satisfying

(LD (flM)(2Z)=£(Z)

m g
A™ B
cm  pm

(fleM)(Z): =o((CZ+D)™")f(MLZ>) and MLZ>: =(AZ+B)CZ+D)™".

for all ZEH», and M=< )EP", where

The space of all such functions is denoted by M{( V).

We write | for o=det* and we omit subscripts o, £ when there is no fear of
confusion.

A holomorphic function f from £ to V is called a V-valued Siegel modular
form of weight o if it satisfies (1.1) and if it is holomorphic at the cusps when #
=1. The space of V-valued Siegel modular forms of weight o is denoted by
MIV).

We define the Siegel operator on M/(V) by

(0F)(2): =1ti§3f(<§ 2))

for ZEDn-1. Let W be the subspace of V generated by the values of @f for all
FEMV). Then W is invariant under the transformations
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p<<g 2)) 9EGL(n—1, C).

If we assume W +{0}, we get the representation ¢ of GL(z—1, C) with representa-
tion space W. Thus the operator @ defines the map

O: MXV)->M: (W).
Suppose fEMZ(V). Then it is called a cusp form if it satisfies @ =0, and we put
SKV): ={feM}V)|f is a cusp form}.

If o is an irreducible rational representation, o is equivalent to an irreducible
rational representation 0 satisfying the following condition : Let V be the repre-
sentation space of 0. Then, there exists a unique one-dimensional vector subspace
C7% of V such that for any upper triangular matrix of GL(#n, C),

gu * n
ol o)) a)e
0 Gnn

where (A1, A2, =+, A)EZ" and A== = A,
Then we call (A1, Az, ***, A») the signature of p.

REMARK. Suppose the signature of o is (4, Az, ***, A»). We note that M}( V)
={0} if A,<0 and that M V)*={0} if Ai+---+A.#=0 mod 2.

Now, we put

0 1
_ln 0

For g€ G*Sp(n, Q), let I'"gI' = U-1I""g; be a decomposition of the double coset
I'"gI'™ into left cosets. For fEMI V) (resp. SH V), MI(V)*), we define the
Hecke operator (I""gI"") by

1n

G*Sp(n, @): ={MeGLen, @M )= _01" 7). o) >0},

ATgr): =2 flg:
Let /€S V) be an eigenform. We define the standard L-function attached
to f by (0.1). We also define the following series :
(1.2) D(s, f): =TEZTW A(f, T)det(T)5,

T
where A(f, T) is the eigenvalue on f of the Hecke operator <F”< 0 7?_1>1"”>, T

€ T™. By Bscherer [6], we have :
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(13) 6(s) 1 €25=2))D(s, H)=L(s=n, £, St).

For k€2Z, k>0, s€ C and Z=(2;s) EHr with 2Zin : =xn~+ 1V;n, we define the
Eisenstein series by

WZ,s): = 2 det(CZ+D)* det(Im(M<2))".

M=<C*(=n) Dfm)EPn,u\

Then EX(Z, s)EME™, where M7~ is the space of C>-Siegel modular forms of
weight £. The function E#(Z, s)det(Im(Z))™® converges absolutely and locally
uniformly for £+2Re(s)>#n+1. Moreover, we have the following :

Theorem 2. (Langlands [18], Kalinin [13] and Mizumoto [19, 20]) Let »
€Z, kE2Z and n, k>0. Then for ZEHs,

k

k
EiXZ,s): :M 5(4s—2j)E,':(2, s—7>

Pn(s) 5(25)[?

j=1

.. . n+l . . .o,
is invariant under s— 5 S and it is an entire function in .

It is also known that every partial derivative (in z;»’s) of the Eisenstein series
EXNZ, s) is slowly increasing (locally uniformly in s).

Theorem 3. (Mizumoto [20]) Let n=Z, k<2Z and n, k>0.
(i) For each soE C, there exist constants 8 >0 and d = Z(d =0), depending only
on n, k and s, such that

(s—s)!EXNX+1Y, s)

is holomorphic in s for |s—so|<06, and is C* in (X, Y).
(ii) Furthermore, for given € >0 and NEZ (N =0), there exist constants a>0
and B>0 depending only on n, k, d, so, €, 6 and N such that

[(s—s0)?Dx,yEX X +1iY, s)|<a det(Im(Z))*

for Y 2¢€l, and |s—si| <0, where Dx,y is an arbitary monomial of degree N in

aih and Wajh— (léj, h< n)

The assertion above for the case N =0 has been proved by Langlands [18] and
Kalinin [13].
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2. Differential operators

In what follows, we put

Vi=Ce @ -+ @ Cen, e1=(e1, -, en),
Vo= Cens1 @ -+ @ Cezn, €2=(en+1, **, €2n).

Let alt”"'(V}) (resp. alt*"'(V2)) be the (z—1)-th alternating tensor product of Vi
(resp. V2). If we put

tj: =(—1)j_lel/\---/\ej_l/\e,-+1/\---/\en,
thes: :(_l)j_len+l/\"'/\en+j—1/\en+j+1/\"'/\ezn (1£j£n),

we can write
alt” (Vi))=Ch @ --- @ Ct» and alt" (V)= Ctns1 D -+ @ Cten.
Moreover, we put
ti: =(t, =, ta) and & =(tne1, =, tn).

If for each g= GL(n, C), g acts on e; (=1, 2) by e,g, then det* @ alt"(g) acts
on t; (j=1, 2) by

det* ® alt” (g)t; : =det(g)*t;g =det(g)*+'tig~".

If we put a=(a, -+, a»)E C", det* ® alt”'(g) acts on 2-1a,t;=t'e<alt" (1)
and k'a<alt” (V) by

det* ® alt” (g)(tfa) : =det(g)*t; 7 a=det(9)* 'tig 'a (=1, 2).
Thus we get the action of det* ® alt”™! on alt” (V) (j=1, 2).
Let ¢ be the isomorphism from Vi to V defined by c(e;)=en+; 1<j<n). It
induces the isomorphism (also denoted by ¢) from alt” *( V4) to alt” *( V2). For a
alt”"'( V1)-valued function f on 9, and for ZEH,, we define ¢(f) by

(NZ): =f(2)).

Z(n) (n)
For a function /' on Dz, <‘U‘”’ V(IJ/(,,)>Euf)zn, we define the pullback d* by

@y w):=F((5 w)

We consider I X I'" imbedded in I'*" by

A 0 B 0
(A(n) B(ﬂ)) (A/(n) B/(n)>H 0 A 0 B
C(n) D(ﬂ) C/(n) D/(n) C 0 D 0 y
0o ¢ 0 D
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and when convenient will identify I'* X I'* with its image in 1",

We summarize some facts on differential operators obtained from invariant
pluri-harmonic polynomials in Ibukiyama [12]. Let po (resp. po) be an irreducible
rational representation of GL (%, C) with representation space V (resp. V’), where
oo is equivalent to po’. For n, kEZ, n, k>0, let X=(x,»)be a variable on C"?*.
We put

o 2k 32
Ajh ' —vgl 8xjv3xhu ’

A polynomial P(X) on C"** is called pluri-harmonic if 4;xP=0 for each j, &
with 1< <h<m.
From now on, we assume that 22>#%. Suppose that a polynomial map

P: O O LY ® V'
satisfies the following three conditions :
(2.1) P(Xi, Xo) is pluri-harmonic for each X; (=1, 2),
(2.2) P(Xig, X:9)=P(X,, Xz) for each g= O(2k),

23)  PlarXy, a:X2)=(po(a1) ® 0'o(a2))P(Xi, X;) for each a,=GL(n, C) (5
=1, 2).

Then there exists a unigue polynomial map § on C®” such that

XX XltX2)

PG, X)=Q( 3 ek

Let 3=(z;») be a variable on £2.. We put

d . :<1+8jh d )
8,8 : 2 aZjh lsj,hszn’

where, for zin=~2%;n+ Vn,

0 _1( 0 ;0 9 19 . .0)
0zin 2\ Oxjn lay,-;. Y 0Zn 2\ 0xn oVin )’

If we put

we have the following :

Theorem 4. (Ibukiyama [12]) Let n, kEZ and 2k=n>0.
(i) Let F be any C-valued C*-function on H2n. If we put p=det* @ po and
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Zm U(n)

o’'=det* ® o', then for each (g, g)ESI'""XI'" and 8=<'U(’" I

)E»ﬁzn, we
get the following commutation relation :
(DF)\o(9)zle(g)w)(B)=(D(Flx(g, g)))(B),

where ( )z (resp. ( )w) denotes the action on Z (resp. W).
(ii) The operator D sends modular forms to modular forms :

D: MP™=—MXV)*Q M} V')

Moreover, D is a holomorphic operator and it satisfies

D: Mi"—MXV) Q MHV).

Now we apply it to det* ® alt”' cases. Let po=alt”™" (resp. p’o=alt""?) be
the representation of GL(n, C) with representation space alt”*(Vi) (resp.
alt”"!(V%)). For a variable 3=(zs) on $2., we put

0

win: =2inen(1<7, h<m), U™ : =(u;») and ViR =< 83,, >1s,-hs,,'

For functions on £z, we define the differential operator 0 by

D: a4ttt

Then we have :
Proposition 1. Let n, kEZ and 2k=n>2.
(i) Let F be any C-valued C*-function on D:n. Then for each (g, g)=I"

<rvana 3=(Z, U

(D F)lo(9)zlo(9)w)(B)=(D(Fla(g, gD))(B).

(ii) The operator D sends modular forms to modular forms :

D MP=—MHalt" (V1)) @ MHalt" '(3))>.

)E@n, we get the following commutation relation :

Moreover, D is a holomorphic operator and it satisfies

D ME—Mi(alt" (V1)) @ Mi(alt™ ' (V2)).

Proof. Let X; (=1, 2) be variables on C™**, If we put

the polynomial #Xi°Xz‘t: satisfies the three conditions (2. 1), (2. 2), (2. 3).
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Therefore we get Proposition 1 by Theorem 4. [ ]

3. Proof of Theorem 1

We prove Theorem 1 according to Bocherer’s method in [5]. We first apply
the differential operator & to the Eisenstein series £3"(8, s). For this, we use the
coset decomposition by Garrett :

Lemma 1. (Garrett [9] and Mizumoto [19, Appendix B])
(i) The double coset Pono\I'*"/[""XI'" has an irredundant set of coset
representatives

1. 0 0 0
([ O 1n 0 0
i O A P &
T 0 0 1,
where T=<g TO(,)
(ii) The left coset Pino\Pano g7(I'""XI'") has an irredundant set of coset
representatives gr 31923192,

516 Gn,r, ngPn,r\F", §'1EF7(T)\Gn,r, gl2EPﬂ,T\[m,

), TET® (0<r<n).

where
Iy 0 0 0
_ Am B [0 AT 0 B JfA B r
Gn,r: = <C«(n) D(m)_ 0 0 1, 0 sr <C D)EF
0 C(r) 0 D(T)

and for TET™,

r(7): Z{QEF’

(7 " lz Ty )er)

Now we prove the following (cf. Bocherer [4, Satz 9], [5, Satz 3]):

Proposition 2. Let k be an even integer, n an odd integer and s a complex
()
number such that k+2Re(s)>2n+1. Suppose that 2k=n>2. For 8=<‘U‘")
U(n) Z(n) 0
W(ﬂ)>e*ﬁ2n, 80:< 0 W(”)>Ef)2n’ we get

(DEF(, s)

“Tita ey B (2@ W (g i), Jaescry
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I'(2k+2s+1)

+ I'k+2s—n+2)

R(Z, W, s),

where

P(Z, W, s)
» = 2, {det(Im(2))*det(Im(W))*|det(W + Z)[*o(W +2)~)(& ‘&)}(9)z,

and

R(Z, W,s): =
TET™ g, Fua\* € Paa N G1€Cancs §1€ I NG
. {det(Im(g))idet(Im( VZ))sldet(ln —TWTZ)|™%
(L= TWTZ) "N T NG Dwl(G1)z2l(g"2) wl(g2)z.

Proof. It follows from Proposition 1 and Lemma 1 that

(DET(S, s)=3

7r=0 TET" GEPu, \I"" §2€EPar\I" GI€Gnr §1ET(T)\Gar

{D(det(ImB)°leg )H( G D)wl(G1)zl(9"2) wl(ge)z.

- * *
If for each 7" we put gf=<@(2n) @(zm>’ we get

D (det(ImB)°|xg ) =det(63o +D)~* D (det(E3+D)*~*det(Im(8))°),
by the form of & and that of det(Im(3)),
=det(€80+D) *det(Im(8,))° D (det(€3+D)~*~°).

As an example, we compute
~

0

*
d aunn

(det(C3+D)~*~%).
Let ©» be the symmetric group of degree m. We put

5: =det(SB+D), dv: =det(SB0+D), dn: =g (1<), h<n)
and, for m, q€Z, 0<m and 0<¢g<m,

Ly ={(11, v I)EZ™1,20 1< y<m), lgl,,=m—q, élulL,:m}.

For (4, **+, In)E L%, let A(L, -+, In) be the set consisting of JESn such that, if /;
+0 (1< y<m),

r=1 r=1
1£](§0u1y+ y/l+1><--'<]<§0ulu+ yA+ y)ém (0<A< L)

and
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13](2:ulu+1><]<§]:ulu+ 7—|—1>< ---<]<:2:)Vly+ 7(1,—1)+1)g
Then we get

52@ sgn(z)dizqy 3n—1r<n-1)>(6”"s)

-5 &a —k—s—(n-1-q)
S hsms)as
x d* 2 B sen(@aka; (- bo))O),
1€Gn1 (h, =, l-1))ELj

where A=A(4, -+, I,-1) and

n-1
g ; (b, -, ln—l))(5)=El{(aru(am» ot Ors(ar+m) ()
X aee

X (Ozr(ar+7(tr-1+1)) *** 3r<1<a7+1)))(5)}

with @”: =2020 vl, 0:gey: =0y cue).
For each ¢ (0<g<n—2), (4, -, ln-1)E L}, 1E6G,_1 and JE A, we define

(5 o)

where, for 22 L+1<E<D [, and D2 L+1<9<200 L, (ADer is a ¥ X
7’ matrix. In the same way, we define

<((B’)en)"' o b*nn>’

(a.l(j)r(f(h))) =

(bj(;) T(J(h)))

* B

where (€80+9D) '€= ( *

) and .Bz(bjh)
Then we have

d* = > sgn(r)dlq; (L, -+, 1-1))(8)
on(o) 11" d* det((Af)eo(a)}

0EG, ;% {
by d* det((ADee)(8)=(y+1)! 8 det((Boee) (X121 L+1<E<Z-1 L),

n-1 n—1-
=a = TG+ 31 {sen(o) quet((Bé)ee)}
r=1 0E€G,/II5=1&7 é=1
~ n-1
=887 T+ D1

- —1\)
Since the number of elements of A is <I;[ >( D (;E(nl—).l)')’"‘“ we

obtain
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n—-2-q

-2
IT

£=0

3.1y Jd* om(87 %) =(—1)""1 2 _{an (q) (23+2k+2/1)} 5 b,

where

an(@)=(=1)2""""m! 3 (f:I( H)h) (0<m, 0<g<m).

(b, =+, In)E L%
In the same way, we have
i)(det(@SJrED)"“s)
—(~1"" B an(@)

n—-2-q

1

£=0

(23+2k+2ﬂ)}det(@30+‘b)_k_s(t15§ tts)

and

2—

D (det(Im8)*|gr) =(—1)"! ‘{a,, (@'l q(23+2k+2p)}
Xdet((§80 'HD) det(Im(gr<80>)) (tljgttz).

On the other hand, we obtain

det(€8,+9D)* det(Im(g+<80>))*(t1 B tz) _
=det(Im(2))® det(Im( W))*|det(1n— TWTZ)| *°0((1n,— TWTZ) ). T't).

Therefore we have only to prove

n-2

Eo{an—l(Q)nﬁ;q(Zs +2k+2,u)}=:I;Iz(2s +2k—p).

To prove the formula above, we put x=2s+2k and m=n—1. Then we have to
prove

(3.2) g{am(c})m,ﬁ;q(xﬂﬂ)}=;ﬁ:(x—#).

We put an(q)=0 if g=m, 0>¢q or 0=m. We use induction on m. If m=1, the
assertion is trivial. We suppose

Zgﬁl{am'(q)m’ﬁ_q(x +2u)} = tljol(x — ).

#=0

for any 7'<m. Then we have
,,ﬁ;(x‘ )={7ﬁ2(x—#)}(x—m+l)
{ {dm—l(Q)m;z_q
mZ=‘. {am (@)1 (x+2p)}
- ;{<3m—2q—1>am_1<q—1>’”i‘1“’<x+z#>}

#=0

(x+2,u)}(x+(2m—2—2q)—(3m—3—2q))
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m=1 m-1-q
=5 {(@ns(@)~Bm=20=Dan-a=D)"TL e+ 20},
If we note 34+ +(m+1)ln-1=3m—2g—1 in L%, we have

an-1(q)—Bm—2q—1)an-1(g—1) L l
=L(_1)q2—(m—q)m! 2{(11_‘_1}( 2" /m =1 (y+1) 7)}

L+1)! \7 =2 !
_( 1)02 (m=q) 401 §.‘{<ﬁ1 (7+1) ><2(7+1)(lr+1+1) 17':?1 yﬂy-l)}
—(=nyzmom (1 L i 1)
=an(q).
Thus we get (3.2). ]

REMARK. Under the notation above, we note that the formula
d* (67 =(~1)" TT 25+ 2k— )85~ 05
which is obtained from (3.1) and (3.2), and the formula
a*(det( 77 ) )6 =(~1)" TT (25 + 2k — w85 det(T)
in [4, Satz 9], [5, Satz 3] have the same meaning.

For 2721 @jtn+i, 200=1 bitnr;Ealt™ (V2), we define the inner product of them
by

n n n _—
(X @stnei, 2 bitnrs? 1 =23 a;b
J=1 J=1 J=1

Suppose f, g Mi(alt”'(V2))*. The Petersson inner product of f and g is defined
by

f, 9): = /r'\&(p’(\/_(_j)lm WNF(W), o (JIa(W))g( W)>det(Im( W))~""'dXdY

if the right-hand side is convergent. Here W =X+ /Y with real matrices X =(x;s)
and Y'=(y);

=TI dxn, dY : =11 dvim;
j<h i<h

the integral is taken over a fundamental domain of I'"\9.. We write dW=dXdY
when there is no fear of confudion.

Theorem 5. Let k be an even integer, n an odd integer and 2k=>n>2. If
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FESKalt” ' (V2)) is an eigenform,

(r@m((T07 2)552)
=2 T Rl () A(s, f, S(CNANZ).

If Theorem 5 is proved, the functional equation of /A(s, 7, &)is obtained from
that of E2"(8, s). Since it follows from Theorem 3 that the location of poles of
E%(8, s) is invariant under the operation of 2, its holomorphy is proved in the
same way as that by Mizumoto [19, Theorem 1] (cf. Weissauer [24]). Thus we get
Theorem 1.

Proof of Theorem 5. It follows from Theorem 3 that (f, (@Eﬁ”)(( _OZ 2), ?))

converges absolutely and locally uniformly for £+2Re(s)>2n+1. We note that
R(Z, W, s) is orthogonal to S#(alt”"'(V2)) in the variable W by the same reason
as that in Klingen [15, Satz 2]. Since the Hecke operators are Hermitian operators
and f is an eigenform, we have

(@7 3) %))

_ T'2k+2s+1) 5 _

by the definition (1.2). If we compute the integral (f, 2(—Z, *, 5)) according
to Klingen [14, § 1] (see also [5], [7], [23]), we obtain

(f, j_‘)(_Z—, *’ §)):2n(n—2.s—k)+zl'nk+n—l¢(6—1(f))(Z)
and
—_~~
o= [ det(1,—55)+((1,~ S5 )'pal)as,

where p&™: =(0, =+, 0, 1) and 8": ={S€C™|S="S, 1,— SS>0}. Moreover,
by Hua [10, § 2.3] (see also [5], [7], [14], [23]), we get

ﬂmnz_ﬂz< 2k+2s—n+1\I'(k+s—n) ' T'Qk+2s—2n+1+2/)

9= 7 JTrTs¥1) /& TQR+ 2s—ntit)) -

Thus, by (1.3), we obtain

cwen((y 25

—gna-ozjmien-1 g 2 (g y )1 .Ii ¢(2s+2n—25)"
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and Theorem 5 is proved. ]
References

[1]  AN. Andrianov: The multiplicative arithmetic of Siegel modular forms, Russian Math. Surveys
34 (1979), 75-148 ; English translation.

[2]  AN. Andrianov and V.L.Kalinin: On the analytic properties of standard zeta function of
Siegel modular forms, Math. USSR-Sb. 35 (1979), 1-17; English translation.

[3] S.Bocherer: Uber die Fourier-Jacobi-Entwicklung Siegelscher Eisensteinreihen, Math. Z. 183
(1983), 21-46.

[4] : Uber die Fourier-Jacobi-Entwicklung Siegelscher Eisensteinreinreihen 11, Math. Z. 189
(1985), 81-110.

[5] : Uber die Funktionalgleichung automorpher L-Funktionen zur Siegelschen Modulgruppe,
J. Reine Angew. Math. 362 (1985), 146-168.

[6] . Ein Rationalititssatz fiir formale Heckereihen zur Siegelschen Modulgruppe, Abh. Math.
Sem. Univ. Hamburg 56 (1986), 35-47.

[7]1  S.Bocherer, T.Satoh and T.Yamazaki: On the pullback of a differential operator and its
application to vector valued Eisenstein Series, Commentarii Math. Univ. St. Pauli. 42 (1992), 1-22.

[8] P.Feit: Poles and residues of Eisenstein series for symplectic and unitary groups, Mem. Amer.
Math. Soc. 61 no. 346, Providence, Rhode Island, 1986.

[9] P.B.Garrett: Pullbacks of Eisenstein series ; applications, Automorphic Forms of Several Vari-
ables, Progress in Math. 46 , 114-137, Birkhduser, Boston-Basel-Stuttgart, 1984.

[10] L.K.Hua: Harmonic analysis of functions of several complex variables in the classical domains,
Trans. Amer. Math. Soc. 6, Providence, Rhode Island, 1963.

[11] T.Ibukiyama: Invariant harmonic polynomials on polysheres and some related differential
equations, preprint.

[12] : On differential operators on automorphic forms and invariant pluri-harmonic
polynomials, preprint.

[13] V.L.Kalinin: Eisenstein series on the symplectic group, Math. USSR-Sb. 32 (1977), 449-476;
English translation.

[14] H.Kligen: Uber Poincaréche Reihen zur Siegelschen Modulgruppe, Math. Ann. 168 (1967), 157-
170.

[15] : Zum Darstellungssatz fiir Siegelsche Moduformen, Math. Z. 102 (1967), 30-43.

[16] R.P.Langlands: Problems in the theory of automorphic forms: Lecture Notes in Math. 170, 18
-86, Springer, Berlin-Heidelberg-New York, 1970.

[17] : Euler products, Yale Univ. Press, 1971.

[18] : On the functional equations satisfied by Eisenstein series, Lecture Notes in Math. 544,
Springer, Berlin-Heidelberg-New York, 1976.

[19] S.Mizumoto : Poles and residues of standard L-functions attached to Siegel modular forms,
Math. Ann. 289 (1991), 589-612.

[20] : Eisenstein series for Siegel modular groups, Math. Ann. 297 (1993), 581-625.

[21] I Piatetski-Shapiro and S. Rallis: L-functions for the classical groups, Lecture Notes in Math.
1254, 1-52, Springer, Berlin-Heidelberg-New York, 1987.

[22] G.Shimura: On Eisenstein series, Duke Math. J. 50 (1983), 417-476.

(23] H. Takayanagi: Vector valued Siegel modular forms and their L-functions ; applications of a
differential operator, Japan. J. Math. 19 (1993), 251-297.

[24] R. Weissauer: Stabile Modulformen und Eisensteinreihen, Lecture Notes in Math. 1219, Springer,

Berlin-Heidelberg-New York, 1986.



ON STANDARD L-FUNCTIONS 563

Department of Mathematics

Keio University

3-14-1 Hiyoshi Kohoku-ku Yoko-
hama, 223 Japan

Current Address

Department of Business Administra-
tion

Sakushin Gakuin University

908 Takeshita-machi Utsunomiya-
city

Tochigi-pref., 321-32, Japan








