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1. Introduction

The Futaki invariant / which is a Lie algebra homomorphism (cf. [6]) is

naturally lifted to a Lie group homomorphism F by virtue of the result in [10]. In

[11], we obtained a formula to calculate 2" + 1/Γand showed that Fcan be non-trivial

even when no nonzero holomorphic vector field exists. Our purpose in this

paper is to refine the formula in [11] so that we can calculate F itself (Theorem

2.10). When M is a Kahler surface with c1(M)>0, the group of holomorphic

automorphisms of M (for generic complex structures) are classified (cf. [14]) and,

using Theorem 2.10 and the results in [18], [19], we can show that F vanishes if

and only if M admits a Kahler-Einstein metric (Theorem 3.6). Moreover we show

that F vanishes for some Kahler manifolds which are shown recently to admit a

Kahler-Einstein metric (cf. [16]). Futaki conjectured that F as well as / is an

obstruction to the existence of Kahler-Einstein metrics on a compact Kahler manifold

with cί(M)>Q. We might take the results obtained in this paper to encourage

the Futaki's conjecture.

Now let M be a compact ^-dimensional complex manifold. A Kahler metric
h is called a Kahler-Einstein (which is abbreviated to K-E hereafter) metric if there

exists a real constant k such that

where ρ(h) is the Ricci form of h and ω(h) is the fundamental 2-form of h. Note
that the first Chern class c±(M) has a definite sign (namely, c1(M)>Q, cl(M) = 0 or
cx(M)<0 according to &>0, & = 0 or k<0) if M admits a K-E metric because

is represented by ρ(h\ The converse is true when cί(M) = 0 or c1(M)<0.

Theorem 1.1. ([3], [21]) Let M be a Kahler manifold with ct(M) = 0 or

<0. Then M admits a K-E metric.
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So the preblem is whether M admits a K-E metric if c1(Af)>0.

Now let A(M) be the Lie group of all holomorphic automorphisms of M and
H(M) its Lie algebra consisting of all holomorphic vector fields on M. When
c1(M)>0 and //(M)^{0}, there exists an obstruction to the existence of K-E metrics
called the Futaki invariant (cf. see [6]). The Futaki invariant /: H(M) -» C can be
expressed as follows:

(1.2) f(χ) divh(X)p(h)"
M

for any XeH(M) where h is any Kahler metric on M and divft is the divergence
with respect to h. It is shown [6], [10] thatf(X) is determined only by the complex
structure of M and is independent of the choice of h and that / is a Lie algebra
homomorphism. (C is regarded as a trivial Lie algebra.) If A is a K-E metric,
the right term of (1.2) is equal to

which equals to 0 by the divergence formula. Since f(X) is independent of the
choice of /z, the following result can be deduced.

Theorem 1.3. [6] If M admits a K-E metric, then f(X) = Q for any XeH(M).

When H(M) — {0}, there is no known obstruction to the existence of K-E metrics,
and it is not known whether there exists an example of M such that c1(M)>0,
H(M) = {ϋ] but M does not admit any K-E metric.

On the other hand, by virtue of the result in [10], / can naturally be lifted
to a group homomorphism F:A(M)^C/Z as follows.

DEFINITION 1.4. Fix any geA(M). Let Mg denote the mapping torus
Mg = Mx [0,1]/ ~ where (p,0) ~ (g(/?),l). Let ̂ g denote the holomorphic foliation
defined by the [0,1] -directed vector field. Then, by definition,

(1.5) F(g) = Sc1+ Vί^CMJ 6 C/Z

where [_Mg~] is the fundamental cycle of Mg and

Sc\+ V(^)) e H2" + \Mg C/Z)

is the Simons character of the first Chern class cx to the power n-\- 1 for the normal
bundle v(^g) with respect to any Bott connection. (For details, see [10], [17].)
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Then, it is shown [7] that F:A(M) -> C/Zis a Lie group homomorphism where
C/Z is regarded as an additive group, and the following holds.

Theorem 1.6. [10] We have F(exp X) =f(X) mod. Z for any XεH(M\ In
particular, we have F^—f.

Though it immediately follows from Theorem 1.3 and Theorem 1.6 that F\Ao(M)

(where A0(M) denotes the identity component of A(M)) is an obstruction to the
existence of K-E metrics on M, it is not known whether F itself is an obstruction
to the existence of K-E metrics on M or not. If the Futaki's conjecture turns
out to be true, F may become the unique obstruction which is valid even when

REMARK 1.7. In [9], / is lifted to a group homomorphism det o φ : A(M ) -> C*
( ~ C/Z). A multiple of /gives rise to a power of the lifting. Theorem 1.6 implies
that / is normalized so as to satisfy the integrability condition that f(X) is an
integer for any XεH(M) such that

2. A calculation formula for F

Let M be a compact ^-dimensional complex manifold and Mg the mapping
torus for geA(M) defined as in Definition 1.4. In [11], we showed that 2n+iF is
equal to the eta invariant of the signature operator on Mg. In this section, we
shall show a similar formula by using the spinc-Dirac operators.

Now fix an element geA(M) which we assume has a finite order p>2. (Note
that A(M) itself is a finite group if c^M) > 0 and H(M ) = {0}.) We may assume that
g preserves the Hermitian metric h on M. Then the Hermitian connection VM of the
holomorphic tangent bundle ΓM, which is uniquely determined under the conditions
that the connection form of VM is of type (1,0) and that VM preserves h, is necessarily
^-invariant.

Let X=MxD2, Y=dX=MxSί be spinc-manifolds with the spinc-structures
defined by the U(«)-structure of M and the trivial spinc-structures of D2, S1,
respective-ly. Then the cyclic group K=Zp= <g> acts on (X,Y) as follows:

for (m,reiθ)EX=MxD2;Q<r<l 0<0<2π . Note that Y/K=Mg, (TMxSl)/K
= v(3?g) and that VM naturally defines a Bott connection V^ of v(^g\ On the
other hand, we give a rotationally symmetric Hermitian metric on the complex
manifold D2 such that it is a product metric of Sl x [0,(5) near the boundary
dD2 = Sί. Then the complex structures and the Hermitian metrics on M, D2

define a Λ>invariant complex structure and a ^-invariant Hermitian metric on
X. Let Vx be the ^-invariant Hermitian connection of TX. Then Vx\γ descends to
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a Hermitian connection Vxικ of 1\X/K)\M and it can be shown

T\X/K)\Mg = (TX\Y)/K= v(J^)Θε

where ε denotes the trivial complex line bundle of all ^-directed vectors and
Vx/κ splits as

where V° denotes the globally flat connection of ε.

Now, since Mg is a stably almost complex manifold, it follows from the result

of Morita[15] that there exists a compact (2n 4- 2)-dimensional almost complex
manifold Wsuch that dW=Mg and W= X/Kne&ΐ Mg as an almost complex manifold
with a Hermitian metric. Then we have the following lemma by the same arguments
as in the proof of Theorem 3.7 in [11].

Lemma 2.1. We have F(g) = ̂ wc1(TlV)n + ί where c^(TW) is the first Chern
form of TW with repect to a unitary connection V^ of TW (namely, V^ preserves
the metric and the almost complex structure on TW) which coincides with Vxικ near Mg.

Now, let ξ be the virtual complex vector bundle over M defined by

£ _ fan+lfif-l 0\ς — (x) (ΛM —ε)

where K^1 is the anticanonical bundle of M and ε is the trivial complex line bundle
over M. Set ξx = q$ξ and ξγ = q$ξ where qx : X= M x D2 -+ M and qγ :Y=Mx Sl

-> M are the canonical projections. ξx and ξγ are virtual vector bundles with

unitary connections with respect to the metrics and the connections naturally
defined by the Hermitian metric and the Hermitian connection of TM. Using
the spinc-structures, the metrics and the connections of TX and 7Ύ, we can define the
spinc-Dirac operators (or Dolbeault operators)

x) -> Γ(E; ®ξx)(2 2)

Dγ '. Γ(Ey®ξy) -̂  Γ(Eγ®ξγ)

where Ex denote the half spinor bundles over X and EY = EX\Y = EX\Y is the spinor
bundle over Y. (For details of spinc-Dirac operators and Dolbeault operators on
almost complex manifolds, see [12],[13].) Since the metric and the connection
of TX is ΛΓ-invariant and is product near dX= Y, Dx and DY are ΛΓ-invariant and
Dx can be expressed as

(2.3) Dx =

on the collar Yx [0,(5) c X where u is the coordinate of [0,(5) and σ is a bundle
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isomorphism.

Theorem 2.4. [1] We have

Index(jDx) =

where Index(Dx) is the index of Dx with a certain global boundary condition,
Ch(ξx) is the Chern character form of ξx with the unitary connection, Td(X) is the
Todd form of (TX,VX), ηγ is the eta invariant of Dγ and λy = dim(KerJDy).

Now, let ξg = ξγ/K be a virtual vector bundle over Mg with a unitary connec-
tion. Then, since Dγ is ^-invariant, Dγ naturally defines a differential operator
Dp which is the ξg-valued spinc-Dirac operator on Mg = Y/K. Our first result is
the following.

Theorem 2.5. We have

F(g)=-ηg (mod.Z)

where ηg is the eta invariant of Dg.

Proof. Set

where ε denotes the trivial complex line bundle over W. Note that /\n+ί TWΊs also a
complex line bundle over W. The unitary connection V^ of TW naturally defines a
unitary connection of ξw. Then the spinc-Dirac operator

Dw : Γ(E£®ξw) -> Γ(E^®ξw)

is defined similarly as in (2.2). It can be seen that ξw\M = ξg and, similarly as in (2.3),
Dw can be expressed as

on the collar Mgx[0,(5)c: W. Hence it follows from the Atiyah-Patodi-Singer's
theorem (cf. Theorem 2.4) that

L =-faιr + /ϋ (mod.Z)
2\ig g> v

where Ch(ξw) is the Chern character form of ξw, Td(ίV) is the Todd form of TW
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and hg = dim(Ker Dg). Since

and the leading term of Td(W) is equal to 1, it follows from Lemma 2.1 that

1
--(ηg + hg).

Therefore the theorem follows from Lemma 2.6 below.

Lemma 2.6. We have ^hg = 0 mod.Z.

Proof. Since the spinc(2« 4- l)-structure of Mg comes from the natural U(«)-
structure of Mg9 the spinor bundle Eg = EY/K on Mg splits into Eg = Eg®E~ and

Dg splits into Dg = Dg®D~ where

D+:Γ(Eί®ξg)-+Γ(E;®ξg)g - g g

- =(D+)*:Γ(Eg-®ξg) -+ Γ(E+®ξg

Hence we have

hg = dim(Kerig = dim(Ker D+) + dim(Kerί) ~).

On the other hand, since the dimension of Mg is odd, it follows that

Index(Z) +) = dim(Ker D+) - dim(Ker(D +) *) = 0.

Therefore we have

dim(Ker Dg) = dim(Ker(£/)*) = di

and hence we have

This completes the proof.

Now, let Ω(k) c X be the fixed point set of gkeK (\<k<p-\) which is the
disjoint union of compact connected complex submanifolds N. Note that the

fixed point set Ω(k) c: X of the ^-action on X coincides with the fixed point set

Ω(fc) c M= M x {0} c X of the /-action on M. Let v(N,X), v(N,M) be the normal

bundle of N in X, M, respectively. Then v(N,M) is decomposed into the direct
sum of subbundles

(2.7) v(N,M)=®jv(N,θJ)
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where gk acts on v(N,θj) via multiplication by eiθj.

DEFINITION 2.8. We define the characteristic class i^(v(N9θj)) by

) (r = rank(v(JV,0,.)))

where Πfc(l+.xfc) equals to the total Chern class of v(N,θj).

Since v(N9X) is decomposed into the direct sum

andg* acts on the trivial complex line bundle ε over TV via multiplication by e2πίk/p, the

following lemma can be deduced from Theorem 1.2 in [5]. (See also Lemma

3.5.4 in [12] and (4.6) in [2].)

Lemma 2.9. Fix any gk (\<k<p—\\ Suppose that gk acts on K^\N via

multiplication by eiψ(k\ Then we have

Index (/>„/) = £ - - ί̂ ^C/K*^
N c Ω f c l — e ιy

where Index (Dx,^) is the index of Dx with the global boundary condition in

Theorem 2.4 evaluated at gk, namely,

Index (DX9gft = Ύr(gk\KerDχ) - Ύτ(gk\CokeτDχ)

(Note that Index (Dx,l) = Index(Dx))9 Ch(K^\u) is the Chern character ofK^l\N, Td(N)

is the Todd class of TN9 \_N~] is the fundamental cycle of N and ηγ(gk) is the eta

invariant ofDY evaluated at gk (cf. [5]). (Note that ηγ(V) is equal to ηγ in Theorem 2.4.)

Using Lemma 2.9 and the fact that

Ch(K~l\ ) = e

Cl(KMί\^ = ed(TM\N)_ecί(N) + cί(v(N,M))

where c^N) is the first Chern class of TN9 we can obtain the following theorem.

Theorem 2.10. In the notation of the above lemma, we have

-'Σ Σ -, - ̂ ^p k=iN<=Ω(k)i—e v
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Proof. Similarly as in (3.6) in [5], we have

Hence it follows from Theorem 2.4, Theorem 2.5 and Lemma 2.9 that

p(g)=-PΣ Σ i — ^^^w+e^^+^-ιr+1τd(N)Un^tp k=iN^Ω(k)l—e ιv j

+-( Ch(ξx)Td(X)-- Σ^Trfe\erDr)-l £ Index (ZW)
PJx p k=\2. P k = ι

mod.Z. Here it follows from the same arguments as in Lemma 3.1 1 in [1 1] that

ίCh(ξx)Td(X)=0
X

and from Lemma 2.11 below that

P

£ Index (Dx,g
k) = 0 mod./?.

Therefore it suffices to show that

]Γ - Tr(gfc|KerI)ιr) = 0 mod./?.

Now, since the spinc(2« + l)-structure of Y=MxS1 comes from the U(«)-structure
of M, the spinor bundle Eγ splits into Eγ = Eγ®Eγ and Dγ splits into Dγ = Dγ ®Dγ

where

ξγ)^ Γ(Eγ ® ξγ)

Dϊ=(DΪ)*: Γ(Eγ ® ξγ) -> Γ(Eγ~ ® ί y)

as in Lemma 2.6. Since gfc (1 <k<p — ί) acts freely on Y, it follows from the fixed

point formula that

Index (D+ ,gft) = Tr(gfc|Ker DJ ) - Tr(gfc|Ker(D. )4) = 0

for any \<k<p — \. Moreover, since the dimension of Y is odd, it follows as in

Lemma 2.6 that

Hence it follows from Lemma 2.11 below that
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erD ί) = 0 mod./;.
k=ι

This completes the proof.

Lemma 2.1 1. For any finite dimensional Zp-module V where Zp = < g > , we have

) = 0 mod./7.

p

Proof. Apply the next (2.12) to the eigenvalues λj(l<j<dim V) of g\v.

(2.12) λp = 1 => £ λk=0 mod./?.
k = l

3. F of Kahler surfaces with positive first Chern class

It is an immediate consequence of Theorem 1.6 and a known fact for /
(cf. [8, plOO]) that F does not vanish for the blowing-up of CP2 at one or two
points. Here, however, we compute F of those complex manifolds as examples
of Theorem 2.10. First, let M be the surface obtained from CP2 by blowing up

one point [1:0:0] where [z0

:zι ' Z2\ is the homogeneous coordinate on CP2. Let
g be an element of A(M) which is naturally induced by the element of
A(CP2) = PGL(3 C) represented by

/ 1 \

where α = e2πίlp for an integer p > 2. Then the fixed point set Ω(fc) c: M of gfc-action

(1 <k<p — l) is independent oϊk and is equal to the disjoint union of the exceptional
divisor E over [1:0:0] and the hyperplane H defined by z0 = 0. Here the normal
bundle v(E,M ) is equal to the tautological line bundle / and the normal bundle
v(H,M) is equal to its dual /* g* acts on / via multiplication by of and on /*
via multiplication by α~ fc. Let

u e H2(£) = H^GP1) = Z, v e H2(//) = H^CP1) = Z

be positive generators such that w[£] = 1 and v[H] = 1 where [£]> [#] denote the
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fundamental cycles. Then we have ci(E) = 2u and cl(H) = 2v and hence we

have
Td(E) = 1+ M, Td(H) =!+». Furthermore, since

{(J)=-U9

we have, by setting θ = 2πk/p,

1 α- fc

" ι_α* (i_α*)2

Thus it follows from Theorem 2.10 that

p fe=ι

Now it follows from (2.12) that

p-l

£ α j fc= — 1 mod./? for any integer j.
k=i

Hence it follows that

/rfe)=!(-4-2+10)=- mod.Z.

\ αfc \

r̂;̂ ^
-α* (l-αfc)2 /

In particular,
Secondly, let M be the surface obtained from CP2 by blowing up two points

[1:0:0], [0:1:0] and π:M-» CP2 the canonical projection. Let g be an element
of A(M) which is naturally induced by the element of A(CP2) represented by
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(' . \
where a = e2πi/p for an odd integer p>3. Then the fixed point set Ω(&) c M of

^-action (1 <k<p—l) is independent of k and is equal to the disjoint union of five

points /71,/72, ̂ 3, /74,/75 where pλ =π~1([0:0: Y]\p2επ~l([\ :0:0]) is the point in M

defined by the l i n e i Z j =0 through the point [1 : 0:0] in CP2,/?3eπ~1([l :0:0]) is the

point in M defined by the Iine:z2 = 0 through the point [1:0:0] in CP2,
p4eπ~l([Q: 1 :0]) is the point in M defined by the Iine:z0 = 0 through the point

[0 : 1 : 0] in CP2 and p5 e π~ *([0 : 1 : 0]) is the point in M defined by the line : z2 =0

through the point [0:1:0] in CP2. Let Tj=g\TpM denote the transformation of

the tangent space Tp.M induced by g.

~2

,-2

Then we can see that

~l

7-5 =

Now it follows from Theorem 2.10 that

where αr(7), αs0) are the eigenvalues of Tr Hence, by setting ock = β, we have

where

p k=ι

i i
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R

where Q(β) is a polynomial of /? and ReC. Here we can see that β(l)= —8 and
R = 4. Hence it follows from (2.12) that

) = 8 mod./;.
fc=l

Therefore it follows that

ι / p-i 4
(3.1)

Thus F ( ^ 0 if

=-(2/? + 6)=- mod.Z.
P P

REMARK 3.2. Let gl9 g2, g^ τ be the elements of A(M) which are naturally
induced by

/ α \ / 1 \ / 1 \ / 0 1 0 V
1 α 1 1 0 0

\ I / , \ 1 A \ α / , \ 0 0 1 /,

respectively. Then it follows immediately from (3.1) that

(3.3) F(g2) + 2F(g3)=- (mod.Z).
P

Moreover it is clear that

(34)

Using (3.3) and (3.4), we can obtain that

(3.5) Ffe1)=Ffe2)=--, ffe3) = - if/>^0 mod.3.
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Now, let M be a 2-dimensional Kahler manifold with c1(M)>0, which is

classified as one of M= CP1 x CP1, CP2 or CP2(m) where CP2(m) denotes the surface

obtained from CP2 by blowing up w-points (l<m<8) in general position, (cf.

[4, p.321]) Note that the complex structure of CP2(m) (5<m<8) depends on the

position of the m-points. When M=CPi x CP1 or CP2, M clearly admits a K-E

metric. When M=CP2(ί) or CP2(2), as was seen in this section, there exists
geA0(M) such that F(g)^Q and hence M does not admit any K-E metric, (cf.

Theorem 1.3 and Theorem 1.6.) When M=CP2(m) (3<m<8), Tian-Yau [18],[19]
proved recently that M admits a K-E metric. Here we have the following.

Theorem 3.6. Let M be a Kahler surface with c1(M)>0. Assume that the
complex structure is generic in the sense of [14] when M= CP2(m) (5<m< 8). Then
F does not vanish if and only if M=CP2(\] or CP2(2).

Proof. When M=CP2, F(g) = Q for any geA(M) because A(M) is connected
and /(*) = () for any XeH(M\ (cf. Theorem 1.3 and Theorem 1.6) When M = CP2(1)

or CP2(2), as was seen in this section, there exists g e A 0(M) such that F(g) Φ 0. When

M=CPixCP1 or CP2(3), F(g) = Q for any geA0(M) because f(X) = 0 for

any XεH(M) (cf. [8, plOO]). Now we can see that A(CPl x CP^/A^CP1 x CP1) is
isomorphic to Z2 and it follows from the Theorem in [14] that

(D(\2) denotes the dihedral group of order 12.)

A(CP2(4)) = symmetric group 5(5), A(CP2(5)) = ®4Z2,

^ί(CP2(6))-{l}, ^(CP2(7))-Z2, A(CP2(Z)) = Z2.

Hence it suffices to show that

(3.7) F(g) = 0 if the dimension of M is 2 and the order of gεA(M) is 2.

Now fix any geA(M) of order 2. Let Ω c M be the fixed point set of g, which

consists of ̂ -points/?!, p2, -',pq and r-curves Dl9 D2, '" >Dr. Then it follows from

Theorem 2.10 that

(3.8)
4 s=l ί=l

where

Φ(ps)HeCί(ps)+Cί(v(ps'm + iφ-^

and
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Now it is clear that cί(ps) = cί(v(pS9M)) = Q and we have eiφ=\ because g acts on
KMI\PS via multiplication by 1. Hence it follows that Φ(/?s) = 0 for any 1 <s<q. On
the other hand, let a, b denote Cjφ,), Cι(v(Dt,M))9 respectively. Then, we have
el* = — 1 because g acts on KM 1 \Dt via multiplication by — 1 and moreover we have

Hence it follows that

~ 1)3(1 +iflχ 1 + 1
2 2 4

]=0 mod.4 (\<t<r).

Thus it follows from (3.8) that F(g) = 0.
This completes the proof.

4. Other examples and some remarks

Now let M c CPn+r be a complete intersection of degree (dl9d2,-'9dr) defined by
the simultaneous equations

Assume that [d^d2, -9dr} has the greatest common divisor p > 2. Assume moreover
that fljΌ^0 for some j and that Λ^=Mn{z0 = 0} c CP^1""1 defined by

is also a complete intersection in CPn+r~1. Then Zp= <g> acts on M by

1:...:zπ+r] where ct = e2κil*.
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Theorem 4.1. F(g) = Q for any n, r and any (d^d2,-",d^.

Proof. The fixed point set Ω c= M of ^-action (1 <k<p—l) is the hypersurface

7V=Mn{z0 = 0} in M. Let L be the hyperplane bundle of CPn+r~l

9 which is the

dual bundle of the tautological bundle of CPn+r~l. Set

Then xn~l\_N] = D and cl(N} = (nΛ-r-d)x where D = d1d2 --dr and d=d1+d2+

-\-dr. Now, since

it follows that

Λ π—
l-e-'J M djX

Moreover, since TM\N=TN®(L\N) and gk acts on L\N via multiplication by αk, it

follows that

cι(v(N,M)) + t>(fc) = k(n + r + 1 - d)x

1— α

Hence it follows from Theorem 2.10 that

Thus we have

n p
^fe)=-

p k = ι

where C(fc) denotes the ^"^coefficient of

x +r

Now,

Λ:""1 -coefficient of

ί-e-'J V/-ι djX Jl-«-*.
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=x~ 1 -coefficient of

αV-1 \ί-e

I

(where C(z) is a sufficiently small counterclockwise loop around the origin)

1 Γ α(l{α*(M+l)"+| +1-</-l}"+1(M+l)n+r ' - - ,
- φ - -- : - I I - - - u U

2π/JC(u) α f c(W+l)~l "W + Γ M "'

(via the substitution w = ̂ z— 1, where C(u) is a counterclockwise loop around the
origin)

— u~ ^coefficient of

- "
w + r ^ J Λ ;;

(where /z/w) is an integral polynomial of order > 1 in u)

= un~ί -coefficient of

-
Set

Then it follows from the calculation above that it suffices to show that the
w""1 -coefficient of P(u)Q(u) is 0 mod./?. Note that P(u\ Q(u) can be expanded to
convergent power series around w = 0. Note moreover that P(S\Q) is an integral
multiple of !̂ because P(u) can be expanded to a convergent power series with
integral coefficients.

Now set
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Then we can see that, for any integer s with 0<^<w + l,

8s

(4.2) —Φ|M=O=^!(/)S(Λ:)(Λ: — I)/I+I s for some integral polynomial φs.dus

Actually it is clear that

d* n+l-s

du*

for some integral polynomial μs. On the other hand, since Φ can be expanded to a
convergent power series of u around w = 0 whose coefficients are integral
polynomials of x, it follows that

ds

dus M = °

for some integral polynomial vs. Hence it follows that

Since the top order term of (jc-l)n+1~5 is equal to 1, it follows from (4.3) that

μs(x) = slφs(x) for some integral polynomial φs,

which implies (4.2).
Now, for m<n— 1, we have

m

= m\Σ Σ(-l)m~V)2 + m"Wα fe)(α fc-l)w~1"m

k=ίs=0

Hence it follows from the fact (See (2.12).)

p-i
£ Ψ(αk)= -Ψ(l) mod.^ for any integral polynomial Ψ

J t = l

that Q(m)(0) is an integral multiple of p ml if m<n — 2 and is equal to an integral
multiple of (n-l)l if m = n-ί. Therefore it follows that
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1' ' "m)(θ)β(m)(θ)}

i
(Λ-l)! o(n-l-m)\ ml

is equal to 0 mod./? because P(0) is equal to did2 --dr which is an integral multiple
of p. Thus it follows that

un ~ 1 -coefficient of P(u)Q(u) = 0 mod./?.

This completes the proof.

REMARK 4.4. Let M be the Fermat cubic surface

M:zl + zl+z3

2+z3=Q in CP3

and

S [z0 : zj : z2 : z3] = [e2πl'/3z0 : Zi : z2 : z3].

Then A(M) is a finite group generated by g and the transposition of coordinates
whose order is 2. Hence it follows from Theorem 4.1 and (3.7) that

F(g) = Q for any geA(M).

Note that the Fermat cubic surface is isomorphic to the six points blowing-up of

CP2 with non-generic complex structure in the sense in section 3.

REMARK 4.5. In [16] certain kinds of complete intersections including the
case that r = 1 , IL^L < d± < n -f 1 are shown to admit K-E metrics, and no example of a

complete intersection which does not admit any K-E metric is known.

REMARK 4.6. Using the ®w+1(ΓM-εw)-valued spinc-Dirac operators (where

ε" denotes the trivial bundle M x C") instead of the ®n+i(K^1 — ε)- valued spinc-Dirac
operators, we can obtain a formula similar to Theorem 2.10.

REMARK 4.7. We can see that the lifted Futaki invariant F is interpreted as
a "holonomy" of a ®w+1(ΓM-ε")-valued spin'-Dirac operator (cf. [20]).
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