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1. Introduction

The Futaki invariant f which is a Lie algebra homomorphism (cf. [6]) is
naturally lifted to a Lie group homomorphism F by virtue of the result in [10]. In
[11], we obtained a formula to calculate 2"* ! F and showed that F can be non-trivial
even when no nonzero holomorphic vector field exists. Our purpose in this
paper is to refine the formula in [11] so that we can calculate F itself (Theorem
2.10). When M is a Kéhler surface with ¢,(M)>0, the group of holomorphic
automorphisms of M (for generic complex structures) are classified (cf. [14]) and,
using Theorem 2.10 and the results in [18], [19], we can show that F vanishes if
and only if M admits a Kéhler-Einstein metric (Theorem 3.6). Moreover we show
that F vanishes for some Kéhler manifolds which are shown recently to admit a
Kaéhler-Einstein metric (cf. [16]). Futaki conjectured that F as well as f is an
obstruction to the existence of Kidhler-Einstein metrics on a compact Kdhler manifold
with ¢,(M)>0. We might take the results obtained in this paper to encourage
the Futaki’s conjecture.

Now let M be a compact n-dimensional complex manifold. A Kihler metric
h is called a Kédhler-Einstein (which is abbreviated to K-E hereafter) metric if there
exists a real constant k such that

p(h)=ka(h)

where p(h) is the Ricci form of & and w(h) is the fundamental 2-form of A. Note
that the first Chern class ¢,(M) has a definite sign (namely, ¢,(M)>0, ¢;(M)=0 or
¢,(M)<0 according to k>0, k=0 or k<0) if M admits a K-E metric because
c,(M) is represented by p(h). The converse is true when c¢,(M)=0 or c,(M)<O0.

Theorem 1.1. ([3], [21]) Let M be a Kdhler manifold with ¢,(M)=0 or
<0. Then M admits a K-E metric.
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So the preblem is whether M admits a K-E metric if ¢,(M)>0.

Now let A(M) be the Lie group of all holomorphic automorphisms of M and
H(M) its Lie algebra consisting of all holomorphic vector fields on M. When
¢y(M)>0 and H(M)+# {0}, there exists an obstruction to the existence of K-E metrics
called the Futaki invariant (cf. see [6]). The Futaki invariant f: H(M) — C can be
expressed as follows:

(1.2) s =

J div,(X)p(h)"

for any Xe H(M) where h is any Kéhler metric on M and div, is the divergence
with respect to . It is shown [6], [10] that f(X) is determined only by the complex
structure of M and is independent of the choice of 4 and that f is a Lie algebra
homomorphism. (C is regarded as a trivial Lie algebra) If 4 is a K-E metric,
the right term of (1.2) is equal to

f(X)=Mk"J div(X)lly
2n M

which equals to 0 by the divergence formula. Since f(X) is independent of the
choice of A, the following result can be deduced.

Theorem 1.3. [6] If M admits a K-E metric, then f(X)=0 for any Xe H(M).

When H(M)={0}, there is no known obstruction to the existence of K-E metrics,
and it is not known whether there exists an example of M such that ¢,(M)>0,
H(M)={0} but M does not admit any K-E metric.

On the other hand, by virtue of the result in [10], f can naturally be lifted
to a group homomorphism F:A(M)— C/Z as follows.

DerINITION 1.4. Fix any geA(M). Let M, denote the mapping torus
My,=M x[0,1]/ ~ where (p,0) ~ (g(p),1). Let %, denote the holomorphic foliation
defined by the [0,1]-directed vector field. Then, by definition,

(1.5) F(@)=Sci" ' M(F)[MeC/Z
where [M,] is the fundamental cycle of M, and
SciH W F ) e H* (M, ; C/Z)

is the Simons character of the first Chern class ¢, to the power n+ 1 for the normal
bundle v(#,) with respect to any Bott connection. (For details, see [10], [17].)
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Then, it is shown [7] that F: A(M) — C/Z is a Lie group homomorphism where
C/Z is regarded as an additive group, and the following holds.

Theorem 1.6. [10] We have F(exp X)=f(X)mod.Z for any Xe HM). In
particular, we have F, =f.

Though it immediately follows from Theorem 1.3 and Theorem 1.6 that F|, .,
(where Ao(M) denotes the identity component of A(M)) is an obstruction to the
existence of K-E metrics on M, it is not known whether F itself is an obstruction
to the existence of K-E metrics on M or not. If the Futaki’s conjecture turns
out to be true, F may become the unique obstruction which is valid even when
H(M)={0}.

ReMARK 1.7. In [9], fis lifted to a group homomorphism deto ¢ : A(M) - C*
(~ C/Z). A multiple of f gives rise to a power of the lifting. Theorem 1.6 implies
that f is normalized so as to satisfy the integrability condition that f(X) is an
integer for any Xe H(M) such that exp X=1.

2. A calculation formula for F

Let M be a compact n-dimensional complex manifold and M, the mapping
torus for ge A(M) defined as in Definition 1.4. In [11], we showed that 2"*!F is
equal to the eta invariant of the signature operator on M,. In this section, we
shall show a similar formula by using the spin‘-Dirac operators.

Now fix an element ge A(M) which we assume has a finite order p>2. (Note
that A(M) itself is a finite group if ¢,(M)>0 and H(M)={0}.) We may assume that
g preserves the Hermitian metric # on M. Then the Hermitian connection VM of the
holomorphic tangent bundle TM, which is uniquely determined under the conditions
that the connection form of VM is of type (1,0) and that V™ preserves 4, is necessarily
g-invariant.

Let X=MxD? Y=0X=M x S* be spin‘-manifolds with the spin‘-structures
defined by the U(n)-structure of M and the trivial spin‘-structures of D2, S!,
respective-ly. Then the cyclic group K=Z,= <g> acts on (X,Y) as follows:

g(m,re®)=(g(m), re'®* 2™

for (mre®y)e X=M xD*;0<r<1, 0<0<2n . Note that Y/K=M,, (TM x S")/K
=W(#,) and that VM naturally defines a Bott connection V¥ of WF,). On the
other hand, we give a rotationally symmetric Hermitian metric on the complex
manifold D? such that it is a product metric of S'x[0,6) near the boundary
0D?=S'. Then the complex structures and the Hermitian metrics on M, D?
define a K-invariant complex structure and a K-invariant Hermitian metric on
X. Let VX be the K-invariant Hermitian connection of TX. Then V|, descends to
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a Hermitian connection V¥X of T(X/K)|y, and it can be shown
TX/K)m, =(TX )/ K=WF 5)De

where ¢ denotes the trivial complex line bundle of all #,-directed vectors and
VXK splits as

VX/K= Vf@v0

where V° denotes the globally flat connection of e.

Now, since M, is a stably almost complex manifold, it follows from the result
of Morita[15] that there exists a compact (2n+ 2)-dimensional almost complex
manifold W such that W= M, and W= X/K near M, as an almost complex manifold
with a Hermitian metric. Then we have the following lemma by the same arguments
as in the proof of Theorem 3.7 in [11].

Lemma 2.1. We have F(g)={yc,(TWY'*' where c,(TW) is the first Chern
form of TW with repect to a unitary connection V¥ of TW (namely, V¥ preserves
the metric and the almost complex structure on TW) which coincides with V¥'* near M,

Now, let £ be the virtual complex vector bundle over M defined by
E=@" (K —¢)

where K;;! is the anticanonical bundle of M and ¢ is the trivial complex line bundle
over M. Set &y=q¥¢ and &, =q¢ where gx: X=MxD?> > M and qy: Y=M x S*
— M are the canonical projections. éx and &, are virtual vector bundles with
unitary connections with respect to the metrics and the connections naturally
defined by the Hermitian metric and the Hermitian connection of TM. Using
the spin‘-structures, the metrics and the connections of TX and TY, we can define the
spin‘-Dirac operators (or Dolbeault operators)

Dy:T(Ex ®¢x) - T(Ex ®¢x)

(2.2)
Dy :T(Ey®¢&y) = T(Ey®Ly)

where E5 denote the half spinor bundles over X and E,=Ej|y=Ex|y is the spinor
bundle over Y. (For details of spin‘-Dirac operators and Dolbeault operators on
almost complex manifolds, see [12],[13].) Since the metric and the connection
of TX is K-invariant and is product near X=1Y, Dy and Dy are K-invariant and
Dy can be expressed as

(2.3) DX=O'<£+DY>
ou

on the collar Yx[0,0) = X where u is the coordinate of [0,0) and o is a bundle
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isomorphism.

Theorem 2.4. [1] We have
1
Index(Dx)= f Ch(C)TdX )—i(ny+hy)
X

where Index(Dy) is the index of Dy with a certain global boundary condition,
Ch(&y) is the Chern character form of &y with the unitary connection, Td(X) is the
Todd form of (TX,VX), ny is the eta invariant of Dy and hy=dim(Ker Dy).

Now, let &, =¢y/K be a virtual vector bundle over M, with a unitary connec-
tion. Then, since Dy is K-invariant, Dy naturally defines a differential operator
D,, which is the £,-valued spin‘-Dirac operator on M,=Y/K. Our first result is
the following.

Theorem 2.5. We have
1
F(g):i 1, (mod.Z)
where 1y is the eta invariant of D,.

Proof. Set
w= ®n+ 1(/\"+1 TW—E)

where ¢ denotes the trivial complex line bundle over W. Note that A"*! TWis also a
complex line bundle over W. The unitary connection V¥ of TW naturally defines a
unitary connection of £. Then the spin‘-Dirac operator

Dy : F(E;’®6W) - T(Ex®&y)

is defined similarly as in (2.2). It can be seen that {yly, = &g and, similarly as in (2.3),

Dy, can be expressed as
0

on the collar M, x[0,6) < W. Hence it follows from the Atiyah-Patodi-Singer’s
theorem (cf. Theorem 2.4) that

f Ch(éW)Td(W)=%(ng+hg) (mod.Z)
w

where Ch(¢y,) is the Chern character form of &y, Td(W) is the Todd form of TW
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and h,=dim(Ker D,). Since
Ch(&y)={Ch(A"* ' TW)—1}"* ! ={c (TW)}"*!

and the leading term of Td(W) is equal to 1, it follows from Lemma 2.1 that
1
F(g) =5 (g +hy).

Therefore the theorem follows from Lemma 2.6 below.
Lemma 2.6. We have } h,=0 mod.Z.

Proof. Since the spin°(2n+ 1)-structure of M, comes from the natural U(n)-
structure of M,, the spinor bundle E,=E,/K on M, splits into E,=E; ®E, and
D, splits into D,=D/ ®D, where

D, :T(E; ®&) - T(E; ®&,)
D; =(D3)*:T(E; ®&) — T(E; ®F)
Hence we have
h,=dim(KerD,) =dim(Ker D)+ dim(KerD,).
On the other hand, since the dimension of M, is odd, it follows that
Index(D;)=dim(Ker D, ) —dim(Ker(D,;)*)=0.
Therefore we have
dim(Ker D, ) =dim(Ker(D;)*) =dim(KerD,)

and hence we have

% hy=dim(Ker D)€ Z.

This completes the proof.

Now, let Q(k) = X be the fixed point set of gke K (1<k<p—1) which is the
disjoint union of compact connected complex submanifolds N. Note that the
fixed point set Q(k) = X of the g*-action on X coincides with the fixed point set
Q(k) = M=M x {0} = X of the gk-action on M. Let v(N,X), v(N,M) be the normal
bundle of N in X, M, respectively. Then v(N,M) is decomposed into the direct
sum of subbundles

2.7 WN,M)=@® ¥(N,0))
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where g* acts on v(N,0)) via multiplication by €.

DEFINITION 2.8. We define the characteristic class 7" (v(N,0)) by

r

Y (N, 0)=T]

k=11—e

eH*{N;C) (r= rank(V(N,B,-)))

=X —i0;
where IT,(1+x,) equals to the total Chern class of v(N,0)).

Since v(N,X) is decomposed into the direct sum
VN, X)=v(N,M)®¢

and g* acts on the trivial complex line bundle ¢ over N via multiplication by e2™*/? the
following lemma can be deduced from Theorem 1.2 in [5]. (See also Lemma
3.54 in [12] and (4.6) in [2].)

Lemma 2.9. Fix any g¢ (1<k<p—1). Suppose that g acts on Ky'|y via
multiplication by €“®. Then we have

1 .
Index (Dy,g)= 3 55" ®Ch(Ky'In)— 1" ' TdN)[ [¥ ((N,0)[N]

Neaml—e

1
3 (14(8") + Tr(g" |k er ny))

where Index (Dy,g*) is the index of Dy with the global boundary condition in
Theorem 2.4 evaluated at g*, namely,

Index (Dy,g")=Tr(g" |k, Dx)— Tr(g" coker Dx)

(Note that Index (Dy, 1) =1Index(Dy)), Ch(Ky|y) is the Chern character of K|y, Td(N)
is the Todd class of TN, [N] is the fundamental cycle of N and ny(g*) is the eta
invariant of Dy evaluated at g* (cf. [5]). (Note that ny(1) is equal to ny in Theorem 2.4.)

Using Lemma 2.9 and the fact that
Ch(K;l1IN)=e01(K;,'|N)zecx(TM|N)=et1(N)+Cl(V(N,M))

where ¢,(N) is the first Chern class of TN, we can obtain the following theorem.

Theorem 2.10. In the notation of the above lemma, we have

1228 1 .
F@== ¥ 3 e im0 o)y TN T4 (N, 6 ))[N]
J

P k=1NCQ(k)1 —e
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Proof. Similarly as in (3.6) in [5], we have
1 121
Sfg== 2, 58"
2 & P k§12 Y
Hence it follows from Theorem 2.4, Theorem 2.5 and Lemma 2.9 that
p—1 1

1 .
F(g)=— Z Z - Znik/p(ecl(NHc((v(N,M))+z¢(k)_ 1)n+ 1 Td(N)HV(V(N,BJ))[N]
J

P k=lNC!2(k)1 —e
1 1 21 ' 12 x
+=| Ch()Td(X)—~ 3. - Tr(g"kerp,)—= 2. Index(Dy.g")
pPlx P k=12 D=1
mod.Z. Here it follows from the same arguments as in Lemma 3.11 in [11] that
J Ch(&x)Td(X)=0
X
and from Lemma 2.11 below that

) 4
Y Index(Dy,g")=0 mod.p.
k=1
Therefore it suffices to show that

r1
ZETr(gle:rDy)=0 mod.p.
k=1

Now, since the spin“(2n+ 1)-structure of ¥=M x S* comes from the U(n)-structure
of M, the spinor bundle Ey splits into E, = E{ @ Ey and Dy splits into Dy=D{ ® Dy
where

Dy :T(Ef @&y) - T(Ey @&y)
Dy =(D{)*:T(Ey ®&y) - T(Ey ®&y)

as in Lemma 2.6. Since g* (1<k<p—1) acts freely on Y, it follows from the fixed
point formula that

Index (D;- :gk) = Tr(gkIKerD;) - Tr(gleer(D;)") =0

for any 1<k<p—1. Moreover, since the dimension of Y is odd, it follows as in
Lemma 2.6 that

Index (Dy)=Tr(g lxer p;) — Tr& lker p3)?) =0.

Hence it follows from Lemma 2.11 below that
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? 1 21

kzlz Tr (gleerDy) = kzl'z‘{’rr (gkIKerD;) +Tr (gkIKerD;)}
P 1

=)y

. Z{Tr (gk|KerD;;) +Tr (glecr(D,*; )
=1

p
=), Tf(gk|xcrn;)=0 mod.p.
k=1
This completes the proof.

Lemma 2.11.  For any finite dimensional Z -module V where Z,= <g>, we have

14
Y. Tr(g",)=0 modp.
k=1

Proof. Apply the next (2.12) to the eigenvalues 4;(1<j<dim V) of g|,.

p
2.12) P=1= Y =0 mod.p.

k=1

3. F of Kibhler surfaces with positive first Chern class

It is an immediate consequence of Theorem 1.6 and a known fact for f
(cf. [8, p100]) that F does not vanish for the blowing-up of CP? at one or two
points. Here, however, we compute F of those complex manifolds as examples
of Theorem 2.10. First, let M be the surface obtained from CP? by blowing up
one point [1:0:0] where [z,:z,:z,] is the homogeneous coordinate on CP2. Let
g be an element of A(M) which is naturally induced by the element of
A(CP?)=PGL(3; C) represented by

1
-
o

where a=e™/? for an integer p>2. Then the fixed point set Q(k) = M of gk-action
(1<k<p—1)is independent of k and is equal to the disjoint union of the exceptional
divisor E over [1:0:0] and the hyperplane H defined by z,=0. Here the normal
bundle v(E,M) is equal to the tautological line bundle J and the normal bundle
v(H,M) is equal to its dual J* g* acts on J via multiplication by o and on J*
via multiplication by o~ Let

ueHYE)=HXCP")=2Z, »eH¥H)=HXCP)=2Z

be positive generators such that u[ E]=1 and s[H]=1 where [E], [H] denote the
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fundamental cycles. Then we have c¢;(E)=2u and c{(H)=2v and hence we

have
TdE)=1+4u, Td(H)=1+v. Furthermore, since

c(MEM)=c\())=—u, c((H,M))=c,(J*=2,

we have, by setting 0=2nk/p,

¥ (W(E,0)= I

1 o

Y (W(H, —0))= 1— ak—mv.

Thus it follows from Theorem 2.10 that

F=1"y 1:(O¢"e“~1)3(1+u)< L u)[E]
pi=il—ak l—a™* (1—a7k?
1r=t 1 o

+; k§1—41 e o " ke3v— 1)3(1 +D)<1 _ak——-—(l _ak)2U>[H]

= ! pil {a®*(o* — 1)+ 40 u}[E]
P k=1

1rct

+-Y (a1 —a™H+Q2a~*— 100 *p}[H]
Pk=1
=
=— ) (4a®* +207*— 1002
D=1

Now it follows from (2.12) that
p-1
Y a*=—1 modp for any integer j.
k=1

Hence it follows that

4
F(g)=—1—(—4—2+ 10)=- mod.Z.
p p

In particular, F(g)#0 if p+#2,4.

Secondly, let M be the surface obtained from CP? by blowing up two points
[1:0:07, [0:1:0] and n: M — CP? the canonical projection. Let g be an element
of A(M) which is naturally induced by the element of 4(CP?) represented by
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e

where a=e2™/? for an odd integer p>3. Then the fixed point set Q(k) = M of
gk-action (1 <k <p—1) is independent of k and is equal to the disjoint union of five
points py, p,, P3, Pa» Ps Where p; =n~1([0:0:1]), p,en~*([1:0:0]) is the point in M
defined by the line: z, =0 through the point [1:0:0] in CP?, pyen~'([1:0:0]) is the
point in M defined by the line:z,=0 through the point [1:0:0] in CP?
paen Y([0:1:0]) is the point in M defined by the line:z,=0 through the point
[0:1:0] in CP? and psen” !([0:1:0]) is the point in M defined by the line:z,=0
through the point [0:1:0] in CP?. Let T;= ngij denote the transformation of
the tangent space T, M induced by g. Then we can see that

o2 ot o
ne(" ) () ()

Now it follows from Theorem 2.10 that

123 1 1
F(g)——f Z Z (aru)k S(l)k__l)3

P K== 11_ — Tk sk

where o'?, o*) are the eigenvalues of T;. Hence, by setting o*=p, we have

F@)=""Y. Pp)
P k=1

where
iogp L
Pp)= T(ﬂ /321—[}
L 1y 1
o 1—131 B2
2 __L___L_
e
_ 1 1
o Y

1 _1y 1
o l—ﬂl -
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_ BB B - B BB+ D)+ -
- B+1

R
= Q(ﬁ)+/?ﬁ

where Q(f) is a polynomial of § and Re C. Here we can see that Q(1)= —8 and
R=4. Hence it follows from (2.12) that

p—1
kzl Q0(p)=8 modp.

Therefore it follows that
(31) F(g)=—(8+ 5 _)
p
1 p_1 k
== <8+ ¥ (2—2itan”_)>
p k=1 p
1 6
=-(2p+6)=- mod.Z.
p p

Thus F(g)#0 if p#3.

REMARK 3.2. Let gy, g5, g5, T be the elements of A(M) which are naturally
induced by

O G

respectively. Then it follows immediately from (3.1) that
6
(3.3) F(g,)+2F(g3) =; (mod.Z).

Moreover it is clear that

F(g,)=F("'g,1)=F(g,),
F(g,)+F(g,)+F(gs)=F(1)=0.

Using (3.3) and (3.4), we can obtain that

3.4)

(3.5) F(g1)=F(g2)=—§, F(g3)=g if p£0 mod.3.
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Now, let M be a 2-dimensional Kihler manifold with ¢,(M)>0, which is
classified as one of M = CP! x CP!, CP? or CP*(m) where CP*(m) denotes the surface
obtained from CP? by blowing up m-points (1<m<8) in general position. (cf.
[4, p.321]) Note that the complex structure of CP%*(m) (5<m<8) depends on the
position of the m-points. When M= CP* x CP! or CP?, M clearly admits a K-E
metricc. When M =CP?*(1) or CP?(2), as was seen in this section, there exists
geAy(M) such that F(g)#0 and hence M does not admit any K-E metric. (cf.
Theorem 1.3 and Theorem 1.6.) When M = CP*m) (3<m<8), Tian-Yau [18],[19]
proved recently that M admits a K-E metric. Here we have the following.

Theorem 3.6. Let M be a Kdihler surface with ¢,(M)>0. Assume that the
complex structure is generic in the sense of [14] when M= CP*(m) (5<m<8). Then
F does not vanish if and only if M=CP*(1) or CP*(2).

Proof. When M =CP? F(g)=0 for any ge A(M) because A(M) is connected
and f(X)=0 for any Xe H(M). (cf. Theorem 1.3 and Theorem 1.6) When M = CP?(1)
or CP?(2), as was seen in this section, there exists g € 4o(M) such that F(g)#0. When
M=CP'xCP! or CP*3), F(g)=0 for any geAy (M) because f(X)=0 for
any Xe H(M) (cf. [8, p100]). Now we can see that 4(CP! x CP')/4,(CP! x CP") is
isomorphic to Z, and it follows from the Theorem in [14] that

A(CP*(3)) = 4,(CP*(3))- D(12),

(D(12) denotes the dihedral group of order 12.)

A(CP?*(4))=symmetric group S(5), A(CP*(5)=®*Z,,

ACPY6)={1}, ACP(T)=Z,, A(CP*®})=2Z,.
Hence it suffices to show that

3.7 F(g)=0 if the dimension of M is 2 and the order of ge A(M) is 2.

Now fix any ge A(M) of order 2. Let Q = M be the fixed point set of g, which
consists of g-points p,, p,, ---, p,and r-curves Dy, D,, ---, D,. Then it follows from
Theorem 2.10 that

(38) F@)= =ild><ps)+ gl‘P(D,)}

where
O(py) = (e P 1@ MI*io _ 1y L Td(p )y (v(ps, 1)) [ps]
and

W(D,) = (PO s COMITY 1 ITD ) ¥ (WD, m)LD,].
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Now it is clear that c¢,(p,)=c,(v(p,M))=0 and we have e'?=1 because g acts on
Kit'l,, via multiplication by 1.  Hence it follows that ®(p,)=0 for any 1<s<g. On
the other hand, let a, b denote ¢(D,), c;(W(D,M)), respectively. Then, we have
e = —1 because g acts on Ky '|,, via multiplication by —1 and moreover we have

ecl(D:) +c1(v(De, M) — 1 + (a + b)
1
TdD)=1+a

11
Y Dy =——— ==+~ b,
Do) = 53"

Hence it follows that
WD) =(—1+(=Na+b)— 1+ aX E+ 1 oD
2 2 4
=—8@+b)[D,]J=0 modd4 (I1<t<r).

Thus it follows from (3.8) that F(g)=0.
This completes the proof.

4. Other examples and some remarks

Now let M = CP"*" be a complete intersection of degree (d,,d,,-,d,) defined by
the simultaneous equations

dy dy dy
a1020' +ay 21+ -+ +ay,4,2,4,=0

d3 d2 dy __
A07¢° +a5,2+ - +a,3,4,2%,=0

d, d, d,
a7020r+arlzlr+ +arn+rzn':f-r=0

Assume that {d,,d,,--,d,} has the greatest common divisor p>2. Assume moreover
that a;,#0 for some j and that N=Mn{z,=0} =« CP"*"~! defined by

d dy
6111211+ +a1n+rznl+r—0
d d _
a2+ - +ay,4,25%,=0
d,- dr .
a,zy+ - +arn+rzn+r_0
is also a complete intersection in CP"*"~'. Then Z,= <g> acts on M by

g [20:21::zpar]=[0zg:2y: 2 2,4,] wWhere a=e>™P.
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Theorem 4.1. F(g)=0 for any n, r and any (d,,d,,---,d,).

Proof. The fixed point set Q = M of g*-action (1 <k <p—1) is the hypersurface
N=Mn{z,=0} in M. Let L be the hyperplane bundle of CP"*"~!, which is the
dual bundle of the tautological bundle of CP"*"~!, Set

x=cy(Lly)e H¥N).

Then x"~![N]=D and ¢,(N)=(n+r—d)x where D=d,d, ---d, and d=d, +d,+ ---
+d,. Now, since

TCP"* " |y=TN®®j-;®(Lly),
it follows that

ntr r 1 _ ,—djx
Td(N)=<1 x_x> lme™™

[

—e j=1 djx

Moreover, since TM|y=TN@®(L|y) and g* acts on L|y via multiplication by o, it
follows that

en(N)+c1(v(N,M))+ ip(k) _ ake(n+r+ 1 —d)x’

1

o ke >

VN0 =—

Hence it follows from Theorem 2.10 that

F(g):l pil%{ake(n+r+l—d)x_1}"+1< x x>"+r<l—[1~€_'"x\ 1 [N].

pi=il—a 1—e” =1 djx J1—a ke *
Thus we have
D P2l
F(g== ), Ck)
P k=1
where C(k) denotes the x"~!-coefficient of

{ake(n+’+1—d)x—1}"‘“(%)"‘“(1:[1—-e—djx\ 1 EC[[X]]

1—e” j=1 djx /l—oz_"e"‘

1
1—a™*

Now,

~Lcoefficient of

n+tr/ —dix
D{ake(n+r+1-—d)x—1}"+1< X ) (I—Il—e df\ 1

1—e” j=1 d

X
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=x"!-coefficient of

k,xf k,(n+r+1—d)x__ 1\n+1 n+r p
ake*{ake VR ) [T(1—e~4)
oke*—1 \1—e*

j=1

kf ki zyn+r+1—d__ 1 \n+1 z \ntr/ r (,2\d;__
- L{ e 1 e (st l)ezdz
cw \e—l

2mi aker—1 ji=1 ()Y

(where ((z) is a sufficiently small counterclockwise loop around the origin)

B 1 ak{ak(u+1)n+r+1—d_1}n+1(u+1)n+r r (u+1)"f—1
270 Jew au+1)—1 s w1y

(via the substitution u=e*—1, where C(u) is a counterclockwise loop around the
origin)

=u"'-coefficient of

ak{ak(u+1)n+r+1—d__1}n+l(u+1)n+r—-d r
d.+h
u+1)—1 v HLuldihi)

(where hfu) is an integral polynomial of order >1 in u)

=u"" !-coefficient of

ak{ak(u+1)n+r+l—d_1}n+l r
(u+ 1" 4[] (d; +h ().
ot"(u+l)——l \u ) ]l:[l( J j(u))

Set
Pu)=@+ 1" ][ (d;+hu)
j=1
p—1 1 ak{ak(u+1)n+r+l—d_1}n+1

Q(u)zk;l—a"‘ fu+1)—1

Then it follows from the calculation above that it suffices to show that the
u"~ '-coefficient of P(u)Q(u) is 0 mod.p. Note that P(u), Q(u) can be expanded to
convergent power series around u=0. Note moreover that P“Y0) is an integral
multiple of s! because P(u) can be expanded to a convergent power series with
integral coefficients.

Now set

(I)(x,u)={x(u+ 1)n+r+l—d_l}n+1'
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Then we can see that, for any integer s with 0<s<n+1,

4.2) 56—;(I)|,,=0=s!d>s(x)(x—1)"“‘s for some integral polynomial ¢,.
u

Actually it is clear that

o -
%(DL, —o=px -1

for some integral polynomial u,. On the other hand, since ® can be expanded to a
convergent power series of u around u=0 whose coefficients are integral
polynomials of x, it follows that

as
—O@|,_o=s!v{(x
P li=0 (x)

for some integral polynomial v,. Hence it follows that

4.3) () — 1)t TS =5ty (x).

Since the top order term of (x—1)"**"% is equal to 1, it follows from (4.3) that
ufx)=sl¢(x) for some integral polynomial ¢,

which implies (4.2).
Now, for m<n—1, we have
p—1 (ak)2 m

o™= ¥ Z(T)Qa*(w1)—1}“)<”'”(0)<{a*(u+1)”*'“‘”—1}"“)“«0)

k
k=10°—15=0

p—1 (ak)2 m

- X (m)(—l)m'S(m—s)!(a")"'“(a"— 1) 7 Llgh oYtk — 171

k
k=100 — 1;:0 S

p—1m

=m! Z Z (_ l)m—s(ak)2+m—s¢s(ak)(ak~_ 1),,_ 1 -m

k=1s=0
Hence it follows from the fact (See (2.12).)
p—1

Y ¥(@)=—¥(1) modp for any integral polynomial ¥
k=1

that Q™(0) is an integral multiple of p-m! if m<n—2 and is equal to an integral
multiple of (n—1)! if m=n—1. Therefore it follows that

1 (n— 1),
(——(n i PO (0)
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1),{1"(0)Q‘" (0)+ Z( )P‘" 17m™(0)Q™(0)}

Q"~10) , "SHPPTIT(0) 0(O)
n—1)  n=o(r—1—m) m!

= P(0)

is equal to 0 mod.p because P(0) is equal to d,d, --- d, which is an integral multiple
of p. Thus it follows that

u"~ '-coefficient of P(u)Qu)=0 mod.p.

This completes the proof.

REMARK 4.4. Let M be the Fermat cubic surface
M:zi+z}+z3+2z3=0 in CP?

and

2mi/3

g lz0:2,:2,:25)=[€*™°zy:2,:25:25).

Then A(M) is a finite group generated by g and the transposition of coordinates
whose order is 2. Hence it follows from Theorem 4.1 and (3.7) that

F(g)=0 for any ge A(M).

Note that the Fermat cubic surface is isomorphic to the six points blowing-up of
CP? with non-generic complex structure in the sense in section 3.

REMARK 4.5. In [16] certain kinds of complete intersections including the
case that r=1, 231 <d, <n+1 are shown to admit K-E metrics, and no example of a
complete intersection which does not admit any K-E metric is known.

REMARK 4.6. Using the ®"*!(TM —¢")-valued spin®-Dirac operators (where
¢" denotes the trivial bundle M x C") instead of the ®"*!(K;,! —¢)-valued spin°-Dirac
operators, we can obtain a formula similar to Theorem 2.10.

REMARK 4.7. We can see that the lifted Futaki invariant F is interpreted as
a “holonomy” of a ®"*!(TM —¢")-valued spin®-Dirac operator (cf. [20]).
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