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1. Introduction
In 1960, Yamabe [14] presented the following problem.

The Yamabe problem. Given a compact Riemannian manifold (M,g) of dimension
n(=3), find a conformally equivalent metric with constant scalar curvature.

He reduced this problem of finding a smooth function u together with a
constant A satisfying the nonlinear eigenvalue problem

Y) —kAu+Ru=2""",  u>0 in M,
Mn—
e (n 1), Ne 2n ’
n—2 n—2

where A, denotes the negative definite Laplacian and R is the scalar curvature of
g. He attempted to solve equation (Y) by finding a positive extremal of the functional

(1.1) O(u)= f (KIVul + Ru)dV/( J luM dV)2/N.
M M

He claimed that for any M quation (Y) has a solution which attains the minimum
(1.2) AMM)=inf { Qu)lue C*(M), u#0}.

This constant A(M) is a conformal invariant, which is often called the Yamabe
invariant. In 1968, however, Trudinger [13] discovered an error in Yamabe’s
proof and showed that Yamabe’s proof works in case (M) is bounded above by
a small constant. In 1976, Aubin [1] extended Trudinger’s result. He proved
that if M satisfies the inequality

(1.3) AM)<A:= AS")=n(n— 1) vol(S™)?",
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then the minimum A(M) is attained by a positive smooth function on M. This
result turned the focus of the proof to the question whether M satisfies inequality
(1.3). Aubin also proved that if n>6 and M is not locally conformally flat, then
inequality (1.3) holds. In 1984, Schoen [10] proved in the remaining case that
inequality (1.3) holds unless M is conformal to the standard sphere and solved
the Yamabe problem in the affirmative. In the proof of the above results [1],
[10], [13], [14] the special minimizing sequence of approximate solutions for (Y)
is used as a basic tool.

The purpose of this paper is to study the Yamabe problem as a problem in
analysis. We shall describe the behavior of any minimizing sequence completely
under no assumption on A(M). To prove our main theorem we apply to the
minimizing problem of the functional Q several techniques in real analysis combined
with the theory of partial differential equations. Through our main theorem we
are able to understand the condition (1.3) in analytic standpoint. Our proof is
independent of Schoen’s result in [10].

We denote by H'(M) the Sobolev space of order one. Take a minimizing
sequence {u;} < H'(M), that is, Q(u;) tends to A(M) as j— co. We may assume
that u; is non-negative almost everywhere and |u;||y=1, where |- |y denotes LY
norm on M. Indeed, if {u;} is a minimizing sequence, then so is {Ju;|/|lu;lly} (see
[14]) We esily see that

”uj"Iz{l(M):J |V“j|2dV+J |“j|2dV,
M M
1 2
S;Q(uj)"_ C"uj"N'

This guarantees that any minimizing sequence is bounded in H'(M). If {u;} has
a subsequence {u,} converging to some u in LY¥(M), then u is a positive smooth
function satisfying (Y) with A=A(M)=Q() (see [2], [7].) As pointed out in [2],
[13], however, {u;} is not always compact in L¥(M). The main result of this
paper states how the minimizing sequence {u;} behaves in case its compactness fails.

Main Theorem. Suppose that (M,g) is a compact connected Riemannian manifold
and that n=dimM>3. Let {u;} ¢ H' (M) be a minimizing sequence for Q with
u;>0 ae. on M and |luj|y=1. Then, either {u;} has a convergent subsequence in
HY(M), or there exist

(i) a subsequence {k} < {j},
(i) a point ae M,
(iii) a sequence {r,} of R, with r,—>0 as k — oo,

(iv) a sequence {a,} of M with a, —»a as k — oo,
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satisfying the followings:

(1) The sequence u, converges to 0 in HL(M—{a}),

(2) The measure ul) dV converges to Dirac measure 5, weakly in the sense of
probability measures on M,

(3) The renormalized sequence i (x)=r{""2"?

function

u(exp,, (rix)) converges to the

B p (n—2)/2 0
v(x)= C(")(p_z_l‘_'—xlj) (p>0),

in H.(R"). Here, exp,, denotes the exponentil map of M at a, and
c(n) =2~ D2yol(S")~ ("= 22n,

(4) The Yamabe invariant A(M) equals to A.

A similar phenomenon to our theorem has been observed in various nonlinear
problems under the name of bubble theorem or concentration compactness theorem
(for example, see [3], [5], [9]). Our proof is inspired by the work of Brezis-Coron
[3] for H-systems. Struwe [11] proved an analogous convergence theorem for a
Yamabe-type equation in a bounded domain of R". Our proof differs from his
in idea. Also, we do not use the general method of concentration compactness
due to P.L. Lions [8], [9]. We only need a notion of the concentration function
intoduced in [8]. In the above theorem, we give a more precise conclusion than
both of theirs.

In Section 2 we prove the local convergence theorem, which ensures the strong
convergence of sequences under the smallness condition on their LY norm. In
Section 3 we present two propositions on the blowing up of sequences by using
the result in Section 2. In both Section 2 and 3 we discuss a more general class
of sequences which satisfy th assumption of the Palais-Smale condition. In the
final section we give the proof of Main Theorem and an example of non-compact
minimizing sequences which blows up at a given point.

Acknowledgement. The author would like to thank Professor O. Kobayashi
for his valuable advice.

2. Local Convergence Theorem

In this section we prove the following.

Theorem 2.1. Let Q be a domain in M. Suppose that sequences {u;} = H'(Q)
and {A;} = R satisfy
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(1) u;—>u weakly in H'(Q),
(2) 4,-AeR,
B) KA~ Ruy+ Ajuf¥~2u; -0 in H-'(Q)=(HYQ)).

Then, there exists a positive constant ¢ depending only on n, A such that if {u;} satisfies
2.1 J‘ lui¥dvV<e  for any j,
o

then u; — u in H},(Q).
To prove this theorem, we need the following lemma.

Lemma 2.2. If a sequence {u;} converges to u weakly in H'(Q) and ue Lj2(Q),
then

[ ¥ = 2u;— ¥ " 2u—|u;—u|N " Hu;—u) > 0 in H1(Q)
for each Q' € Q.

Proof. Set uj=u+v; By Rellich theorem, v;—0 strongly in L*Q). Using
the mean value theorem

1

_ _ d _
[V~ 2w~V zuzf ;i(|u+tvj|" Hu+tv))dt,

0
1
=(N_1)J lu+tv|N~2v.dt.
0
Thus, we obtain
1
|uj|N'2uj—|u|N“2u—|vj|N_2vj=(N—l)f (v V2 —|ev N 2w dt.
0
We notice that for any ¢>0, there exists a constant C(¢)>0 so that
lut vV =2 —ev N2 <eltv )V 2+ Cle)|u|N 2,
holds. Then, we obtain
N_ - - - -
A"~ 20— ¥ = 2u— ||V = 2v; | <el vV 4+ (N= 1) CE)ulN 2| v,

We fix any Q' € Q. For any {e H)(Q) with [[{[g10y<1,
o
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J (Iuj|N_zuj—|“|N—2u—|VjIN—2vj)CdV’
o

Sef IV;I""ICIdV+(N—1)C(6)J [ul"=2v;liCleV,
Q Q'
< el 1 1 vy + (N = YOIzl 2l o
< Cie+ Co@)lvjll L2y
Since v;—0 in L*(Q), we get
CyNvjll L2 <s for sufficiently large ;.
Then, we obtain
I |“j|N—2“j"|“|N_2“_|Vj|N_2Vj"H—1(9‘)<(1 + Cye,
for any j large enough. This completes the proof. []

Proof of Theorem 1.1. By Rellich theorem, {u;} converges to some u strongly
in L%(Q). The limit u satisfies

kAju—Ru+Aul" *u=0e H'(Q).

From the regularity result of Trudinger [13], it follows that ue L{(Q).
We set u;=v;+u. The sequence {v;} = H'(Q) satisfies

v;—>0  weakly in H(Q)
strongly in L*(Q),

vi{x)—0 a.e. on Q,

Using the theorem of Brezis-Lieb [4], we have
J |uj|NdV=J luINdV—%—j [vINdV+o(1).
Q2 2] 2

Applying Lemma 1.2, for each Q' € Q,
L™ 2u;—|u|N " 2u—|v " 2v; > 0, in H Q).

Then, we have
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KAv;+Avi|""2v; >0, in H Q).
Since {v;} is bounded in H'(Q), (A;— A)|v;|* ~2v;—>0in H~(Q). Therefore, we obtain
2.2) KA+ Avi{" "2, -0 in H1(Q) for any Q' € Q.

For any (e C}(Q), we have

KJ ij-V(szj)dV=/1f ClviiNdV+o(1),
Q P

(2.3) KJ‘ IV(Cvj)IZdV=Af v Iv)I¥N =2 dV +o(1).
Q Q
Using Hoélder inequality,

KJ IVQv)?dv < i*(f IV,-I”dV)Z/"(f |LoY dVY* +o(1),
(2] (o] Q

Sl*(f Iu,-INdV)Z’"(j 1Lv" dV)*™ +o(1),

where A* =max{4,0}. The sharp Sobolev inequality of Aubin [2] then states that
for any ¢>0 there exists a constant 4(s)>0 such that

1
(f oot ayyem <L) f V@) dV -+ Alo) f @,
Q A Q Q
where A=n(n—1) vol(S")?". Substituting this inequality, we have

f Vw2 dV< 4#( f N dvy j V)P v
(2] (¢] (2]

2.4)
1+ A(o)

K

+ Ilu,-ll%‘zf (Cv)?dv+o(1).
2
We take £¢>0 so that A*e?"<A. Then, by choosing ¢ sufficiently small so that

A‘+
1 —=—(1+0)e*">0.
A

holds, we obtain
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l+
(1 —X(l +o)sz/”)f V(v dV=0(1).
Q
This completes the proof. [

REMARK 2.3.

(1) If A<0, from (2.4) it follows directly that
J IVv)I2dV=o0(1).
Q2

Therefore, the conclusion of Theorem 2.1 Iways holds in case A<0.

(2) Consider the case 1>0. As in the proof of Theorem 1.1, the constant
¢ in general has a bound e<(A/A)"2. We can take ¢ arbitrarily close to the
constant (A/A)"2.

3. Blowing up Phenomenon

We first show the following result.

Proposition 3.1. Let {u;} be a sequence of H'(M) and {A;} be a sequence of
R. Suppose that

() ;=0 ae. on M and |ujl|ly=1,

(i) w;—u weakly in H'(M),

(iii)y A;—A for some A€R,

(iv) xAu;—Ru;+2u¥"1 50, in H '(M)=(H'(M)*.

Then, there exist a subsequence {k} <{j} and a (possibly empty) finite subset
& ={ag, - an} of M such that

(1) u, converges to u in HL(M—%).

(2) For each i=0,---;m, there exists a constant o;>0 such that

(3.1 uydV—>u"dV+ Y ad,,

i=0

weakly in the sense of probability measures on M.

Proof. We take e¢=¢(n,A) as in Theorem 1.1. We define the set & by

r>0 j-©

(3.2 ¥ = () {xeM|lim infj lu¥ dV=e}.
B(x,r)
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We first show that & is closed. Let {x,} be a sequence in & converging to x
in M and let r be an arbitrary positive number. Then, for any ' <r, B(x,, ') < B(x,
r) holds for sufficiently large k. Thus,

lim infj lu|¥N dV > lim infj luNdV>e.
B(x,r) B(xk,r’)

Jj— Jj= o

By letting r' —r, we get xe&. This shows that & is closed in M, and hence is
compact.

Next, we show that & is at most a finite set. For any r>0, we take a
maximal family {B(x,, r),--,B(x;, r)} of I=I(r) disjoint geodesic blls of radius r
with center x;€ . By maximality & is covered by B(x,, 2r),---, B(x;, 2r). Since
x;€ &, for any 6>0 and each i

J uy dv=¢(1-9),
B(xi,r)
holds if j is sufficiently large. Summing up, we get

(3.3)

uydv
(1 —0)i=1J i 8( 1- 5) 8( 1- 5)

This shows #°(¥) < 1/(e(1 —8)) < oo where #°° denotes the 0-dimensional Hausdorff
measure on M. Since the 0-dimensional Hausdorff measure coincides with the
counting measure, & is at most finite.

We show that a subsequence of {u;} converges strongly in Hj (M —%). If
y in M —%, then there exist r>0 and infinitely many j such that the inequality

J uydv<e
B(y,r)

holds. By Theorem 2.1 we show that such u; converges to u strongly in
H'(B(y,r/2)). By a diagonal subsequence argument, a subsequence {u,} of {u;}
converges strongly in H'(Q) for each Qe M —%.

For each j, we define the (signed) Radon measure p; on M by

u,(A)=J WY —uMdV  for Ac M.
A

By Fatou’s lemma
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ll 45l sj W) +u™dV<1+lim inff ul dv=2,
M M

Jj= o

where || is the total variation of u; Then a subsequence {u,} converges to
some non-negative Radon measure pu weakly. Since M is compact, ul dV — u®
dV+pu weakly in the sense of probability measures on M. Since {u,} converges
to u in HL (M—%), the support of the measure u is contined in the finite set

m
&. Thus, we have pu=) «d, for some «,>0 (i=1,---,m) where we set
i=0

F={ag, s Ap}.
We show each o; is positive. Fix any a;e€ &#. For arbitrarily small r>0, we
take n, e CP(M) satisfying 0<#,<1 in M and

1 if x € B(a;, 1),

)= {0 if x ¢ Bla, 2r)

By the definition of & we have

(3.4 e<lim infj ul dV < lim J nuy dv < ai+J uNdv,
B(ay,r) M

k- 0 k=00 B(ai,2r)

Letting r tend to 0, we obtain a;>¢0. This complete the proof. []

Corollary 3.2. Suppose that sequences {u;}, {A;} are as in Proposition 3.1.

(1) If <0, then & is empty.

(@) If A<A and & is not empty, then & ={a,} for some aye M, u=0 and
the probability measure uf dV converges to Dirac measure d,, weakly.

() If A<p?"A for some integer p >2, then & consists of at most p— 1 points.

Proof. (1) From Remark 2.3 (1), if A<0, then {u,} converges to u strongly
in HY(Q) for each domain Q=M. Thus, the set & is empty.

(2) From Remark 2.3 (2), we can chooe ¢ =1— ¢ for sufficiently small 6>0. By
(3.3), (3.4) we have

WO(V)S—1—~<2, e=1—-06<ay,<l.
(1-9)

This leads to & ={a,}, ap=1and u=0. (3) From Remark 2.3 (2), we may taken
¢>1/p. Passing to the limit in (3.1), we have
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1= lim f u,’i’dV:J uNdV+Y .
M M i

k= oo i

Since a;>&>1/p holds for each i, we have #°(¥)<p(1—|u|N)<p. O
We next consider the behavior of {u;} near the blowing up set &.

Proposition 3.3. Let {u;}, {A;} be as in Proposition 3.1. Suppose a is an
arbitrary point in . Then, there exist

(i) a subsequence {k} < {j},

(ii) a sequence r of R with r, -0 as k — 0,

(i) a sequence a of M with a,— 0 as k — o©
such that

(1) the renormalized sequence fi(x)=r{""2"?u, (exp,(rix)) converges to some
Sunction v in HL(R"),
(2) the limit v i a positive smooth function on R" and satisfies

—kAv=2W"""1 in R",

(3.5)
f |Vv|2dx < o0, J wWdx < c0.
R'I RVI

Proof. We take a normal coordinate neighborhood W of a and a normal
coordinate system x of M centered at a. Through this coordinate we identify W
as a neighborhood of the origin 0 in R". So we note that the metric g satisfies
8ap=0,3+O(|x|?) in the x-coordinate. Let B(x,r) be the open ball with center x
and radius r and let B(r)=B(0,r). We note that for any integrable function fon W,

(3.6) (1—C,R? |f|stJ Ifldx<(1+C,R*»| |f|dV
B(R) B(R) B(R)

holds. We choose R>0 small enough so that #NB(2R)={0}.
As in [8], we introduce the concentration function

JUE supj uYdx  for 0<t<R
B(y,t)

yeB(R)

Each function Q; is continuous and non-decreasing in ¢, and Qf0)=0. We fix
an arbitrary small § >0. By the definition of & and (3.6)

Q,(R)ZJ uldx > e(1—96)

B(R)
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holds for sufficiently large j. Here, the constant ¢ is taken as in Theorem 2.1. By
continuity of Q;, there exist 0<r;<R and a;e B(R) such that

ofr) ul dx =¢(1 —26).

B(aj,rj)
Since the origin is a unique point in ¥NB(2R), we obtain
ri=»0 and a;—0 as j-— oo.
We set U(j)=B(a;/r; 2R/r) = R" and
dx)=r""ufa;+rx).

Since a; lies in B(R/2) for sufficiently large j, we have B(R/r;) < U(j) which leads
to U(j) » R" as j— oo. Then, we have
(3.7 J |Vii|2dx < C,, J aYdx<1+CR%.

uG) uG)
From the definition of a; and r;, @; satisfies

(3.8) f it dx = g(1 — 26).
B(1)

From the assumption we have
KAJﬁj—R(al-i-rj)rfﬁ,ﬁ-lﬁ:’_l —‘0 in H—I(R")

where A; is the Laplacian with respect to the metric g;=g(a;+r;"). Since the
metric g is Euclidean up to second order,

(A;—A)i; - 0, in H,M(R").
Then we get
(3.9) KA+ A8 "1 >0, in H M (R").

Using the diagonal subsequence argument, we can take a subsequence {k}< {;}
so that

i, >v  weakly in H'(Q) for each domain Q¢ R",

i (x) = v(x) a.e. on R",
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for some ve HL (R") with v>0 a.e. By (3.7) we have
J |Vv|?dx < oo, f vWdx < 0.
R'I R'l

Passing to the limit in (2.9), we see that v is a weak solution of
(3.10) KAv+ " "1=0  in R".

Using the regularity theorem of Trudinger [13], ve C*(R" and v satisfies (3.10)
in the classical sense. By the maximum principle, we see that v is either positive
everywhere or identically zero.

We prove that {#,} converges in Hi,(R"). Fix any ze R". By the definition

of a;, r;, we have

(3.11) J ﬁf’dxsj aYdx <g(1—20)<e.
B(z,1) B(1)

By Theorem 2.1, ii; converges to v strongly in H'(B(z,1/2)). Also, we obtain v#0,
that is, v is positive everywhere. This completes the proof. []

REMARK 3.4. In the proof of Proposition 3.3 the fact U(j)— R" implies that
|a,l/re = o0 as k — oo.

4. Proof of Main Theorem
We now give the proof of Main Theorem.

Proof of Main Theorem. We note that Q is a C? functional and for any
ue H'(M) with |lu|y=1, Fréchet derivative Q'(u) is given by

Q'(u)= —2(xAu— Ru+ Qu)|u|¥ ~2u)e H™*(M).
Hence, if {u;} is a minimizing sequence with ¥;>0 and |lu|y=1, then

A= Q(u;) - (M),
kAu;—Ru;+Au) ="' -0 in H™'(M).

From the result of Aubin [1], the inequality A(M)<A holds for any M. By
Corollary 3.2, we may assume A(M)>0 and ¥ ={a,}. Otherwise {u;} has a
strongly convergent subsequence in H'(M). Then there exist {r.}, {a,} and v as
stated in Proposition 3.3. The positive smooth function v satisfies (3.5) with
A=AM). By the theorem of Gidas-Ni-Nirenberg [6], positive solutions of (3.5)
are completely described. Thus we get
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4n(n—1) (n—2)/4 ) (n—2)/2
1 = S
@D ") < AM) ) <p2+|x—b|2) ’

for some p>0 and beR". Passing to the limit in (3.11), we have

J‘ vWdx < j vWdx  for any zeR".
B(z,1) B(1)

This implies that v is radially symmetric. Then, we have =0 in (4.1). By the
result of Talenti [12] on Sobolev inequality in R", such v satisfies

2/n K
(j v"dx) =—j |Vv|2dx.
Rn A g
J Wdx= (——A——>n/2.
R MM)

Using Fatou’s lemma, we have

A n/2
15(—> =J vWdx < lim infj dYdx<ay<l1.
A(M) R" Jj U(j)

Therefore we obtain A(M)=A. This completes the proof. []

Thus we have

From Main Theorem we easily observe that any minimizing sequence is
compact in the strong topology of H'(M) if (M, g) satisfies A(M)<A. Finally we
remark that the blowing up phenomenon in Main Theorem may occur at each
point of M if it occurs at one point.

Proposition 4.1. Let M be a compact Riemannian manifold with AM)=A. For
each pe M, there exists a minimizing sequence {u;} < C*(M) satisfying
(1) 20 and Jujly=1,

) u§" dV — 6, weakly in the sense of probability measures on M.

Proof. We take a radial cutoff function ne CF(R") satisfying

(x)_{1 if x| <1,
=0 if|x|>2,

4.2)
0<n<li, |Vn|=|on/or|<2.
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We take normal coordinates of M centered at p. For small ¢>0 and ¢> 0 we define

(n—2)/2
4.3) U (x)= '7(%) (;z‘ﬁ) .

The calculation [1], [7, Lemma 3.4] gives

A< Q0. ) <A+ Cie)1 + Cy).

Taking sequences ¢;—0 and ¢;—0 as j— o0, we obtain the sequence u(x)=u,,, (x)/I
uc,.,In having the desired properties. [
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