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1. Introduction

In 1960, Yamabe [14] presented the following problem.

The Yamabe problem. Given a compact Riemannian manifold (M,g) of dimension

n(>3),find a conformally equivalent metric with constant scalar curvature.

He reduced this problem of finding a smooth function u together with a

constant λ satisfying the nonlinear eigenvalue problem

(Y) -κAgu + Ru = λuN~\ w>0 in M,

4(Λ2-1) In
κ = , N=-n-2' n-ϊ

where Δ^ denotes the negative definite Laplacian and R is the scalar curvature of

g. He attempted to solve equation (Y) by finding a positive extremal of the functional

(1.1) Q(u)= I (κ\Vu\2 + Ru2)dV/(\ \u\NdV)2/N.
JM JM

He claimed that for any M quation (Y) has a solution which attains the minimum

(1.2)

This constant λ(M) is a conformal invariant, which is often called the Yamabe

invariant. In 1968, however, Trudinger [13] discovered an error in Yamabe's

proof and showed that Yamabe's proof works in case λ(M) is bounded above by

a small constant. In 1976, Aubin [1] extended Trudinger's result. He proved

that if M satisfies the inequality

(1.3) λ(M) <A:= λ(S") = n(n -1)
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then the minimum λ{M) is attained by a positive smooth function on M. This

result turned the focus of the proof to the question whether M satisfies inequality

(1.3). Aubin also proved that if n>6 and M is not locally conformally flat, then

inequality (1.3) holds. In 1984, Schoen [10] proved in the remaining case that

inequality (1.3) holds unless M is conformal to the standard sphere and solved

the Yamabe problem in the affirmative. In the proof of the above results [1],

[10], [13], [14] the special minimizing sequence of approximate solutions for (Y)

is used as a basic tool.

The purpose of this paper is to study the Yamabe problem as a problem in

analysis. We shall describe the behavior of any minimizing sequence completely

under no assumption on λ(M). To prove our main theorem we apply to the

minimizing problem of the functional Q several techniques in real analysis combined

with the theory of partial differential equations. Through our main theorem we

are able to understand the condition (1.3) in analytic standpoint. Our proof is

independent of Schoen's result in [10].

We denote by HX(M) the Sobolev space of order one. Take a minimizing

sequence {UJ} a HX(M), that is, Q(uj) tends to λ(M) as j-+ oo. We may assume

that Uj is non-negative almost everywhere and | |w. | | N =l, where || | |N denotes LN

norm on M. Indeed, if {UJ} is a minimizing sequence, then so is {IM/I/II^/HN} ( s e e

[14].) We esily see that

WIHI ( M)= ί |Viι/rfK+ ί \uj\2dV,
JM JM

1

~ K

This guarantees that any minimizing sequence is bounded in Hι(M). If {UJ} has

a subsequence {uk} converging to some u in LN(M), then u is a positive smooth

function satisfying (Y) with λ = λ{M) = Q(ύ) (see [2], [7].) As pointed out in [2],

[13], however, {uΊ) is not always compact in LN(M). The main result of this

paper states how the minimizing sequence {UJ} behaves in case its compactness fails.

Main Theorem. Suppose that (M,g) is a compact connected Riemannian manifold

and that « = d i m M > 3 . Let {uj} a Hι(M) be a minimizing sequence for Q with

Uj>0 a.e. on M and | | w J N = l . Then, either {UJ} has a convergent subsequence in

Hι(M), or there exist

(i) a subsequence {k} a {/},

(ii) a point aeM,

(iii) a sequence {rk} of R+ with rk-+0 as k -* oo,

(iv) a sequence {ak} of M with ak^> a as k —• oo,
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satisfying the followings:

(1) The sequence uk converges to 0 in H]0C(M—{a}\

(2) The measure uk dV converges to Dirac measure δa weakly in the sense of

probability measures on M,

(3) The renormalized sequence uk(x) = rk

n~2)/2uk(expak(rkx)) converges to the

function

in H\0C(Rn\ Here, expflk denotes the exponentil map of M at ak and

φ ) = 2 ( w-2 ) / 2vol(5w)- ( / |-2 ) / 2 π.

(4) The Yamabe invariant λ(M) equals to A.

A similar phenomenon to our theorem has been observed in various nonlinear

problems under the name of bubble theorem or concentration compactness theorem

(for example, see [3], [5], [9]). Our proof is inspired by the work of Brezis-Coron

[3] for //-systems. Struwe [11] proved an analogous convergence theorem for a

Yamabe-type equation in a bounded domain of Rn. Our proof differs from his

in idea. Also, we do not use the general method of concentration compactness

due to P.L. Lions [8], [9]. We only need a notion of the concentration function

intoduced in [8]. In the above theorem, we give a more precise conclusion than

both of theirs.

In Section 2 we prove the local convergence theorem, which ensures the strong

convergence of sequences under the smallness condition on their LN norm. In

Section 3 we present two propositions on the blowing up of sequences by using

the result in Section 2. In both Section 2 and 3 we discuss a more general class

of sequences which satisfy th assumption of the Palais-Smale condition. In the

final section we give the proof of Main Theorem and an example of non-compact

minimizing sequences which blows up at a given point.

Acknowledgement. The author would like to thank Professor O. Kobayashi

for his valuable advice.

2. Local Convergence Theorem

In this section we prove the following.

Theorem 2.1. Let Ω be a domain in M. Suppose that sequences {uj} cz //^Ω)

and {λj} c R satisfy
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(1) Uj->u weakly in //'(Ω),

(2) λj^λeR,

(3) κAgUj-Ruj + λj\uj\
N-2uj-+0 in i/-1(Ω) = (i

Then, there exists a positive constant ε depending only on n, λ such that if{u}) satisfies

fι<(2.1) I \uj\NdV<ε for any j ,

then Uj -> u in ///OC(Ω).

To prove this theorem, we need the following lemma.

Lemma 2.2. If a sequence {w,} converges to u weakly in Hι(Ω) and

then

\uj\N~2uj-\u\N'2u-\Uj-u\N~2(Uj-w)-*0 in T/" 1 ^)

for each Ω'cΩ.

Proof. Set Uj = u + Vj. By Rellich theorem, v7—»0 strongly in L2(Ω). Using

the mean value theorem

= {N-\)\ \u + tVj\N-2Vjdt.
Jo

Thus, we obtain

\UJ\N-2UJ-\U\N-2U-\VJ\N-2VJ = {N-1)\ (u + tVj\N-2-\tVj\N-2)V

Jo

We notice that for any ε>0, there exists a constant C(ε)>0 so that

holds. Then, we obtain

We fix any Ω' c Ω. For any ζeH^Ω') with | |C| | t f i ( Ω ) <l,
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JΩ'

Γ Γ
JΩ' JΩ'

j\\ζ\eV,
Ω'

Since Vy-̂ O in L2(Ω), we get

Ci{ε) II vj II L2(Ω) < ε> f° r sufficiently large j .

Then, we obtain

for any j large enough. This completes the proof. •

Proof of Theorem 1.1. By Rellich theorem, {UJ} converges to some u strongly

in L2(Ω). The limit u satisfies

From the regularity result of Trudinger [13], it follows that weL£c(Ω).

We set Uj = Vj-[-u. The sequence {Vj}czHι(Ω) satisfies

Vj -+ 0 weakly in /^(Ω)

strongly in L2(Ω),

Vj{x)-*0 a.e. on Ω,

Using the theorem of Brezis-Lieb [4], we have

ί \Uj\
NdV= I \u\NdV+ ί \Vj\NdV+o(l).

JΩ JΩ JΩ

Applying Lemma 1.2, for each Ω' C Ω,

\uj\N~2uj-\u\N-2u-\vj\N-2Vj-+09 in //-^Ω').

Then, we have
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κAvj + λj\vj\N-2Vj-+09 mH~l(Qf).

Since {v,} is bounded in /^(Ω), (λj-λ)\Vj\N~2Vj->0 in H~ *(Ω). Therefore, we obtain

(2.2) κAgVj + λ\Vj\N-2Vj -* 0 in //^(Ω') for any Ω' € Ω.

For any £eCj(Ω), we have

K f Vv, V(ί2v>/F=Λ f C2|v/dV+o(l),
JΩ JΩ

(2.3) K f \Wvj)\2dV=λ [ (Cvj)2!v/
Jβ Jβ

Using Holder inequality,

f 2 Γ N 2/π Γ
Jβ Jβ Jβ

<^+(Γ ι«Jr^F)2/n(f Kvjr
Jβ Jβ

where λ+ = max{2,0}. The sharp Sobolev inequality of Aubin [2] then states that

for any σ>0 there exists a constant A(σ)>0 such that

( \ζvj\NdV)2/n<K( + σ Ί IVKv^pέ/K+^σ) (Cv/rfF,
Jβ A JΩ JΩ

where A = n(n— 1) vol(5")2/π. Substituting this inequality, we have

\V(ζvj)\2dV< + ( +<7\\ \Uj\NdV)2" \ \V(ζVj)\2dV
Jβ A JΩ JΩ

(2.4)

We take ε>0 so that 2+ε 2 / π<Λ. Then, by choosing σ sufficiently small so that

1 - — (l+σ)ε 2 / w>0.
Λ

holds, we obtain



v Λ

This completes the proof. •
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)|2 dV= o(ϊ).ί I V(Cv,)
JΩ

REMARK 2.3.

(1) If λ<0, from (2.4) it follows directly that

1
Therefore, the conclusion of Theorem 2.1 lways holds in case λ<0.

(2) Consider the case λ>0. As in the proof of Theorem 1.1, the constant

ε in general has a bound e<(A/λ)n/2. We can take ε arbitrarily close to the

constant {A/λ)n/2.

3. Blowing up Phenomenon

We first show the following result.

Proposition 3.1. Let {«,} be a sequence of Hι(M) and {λ \ be a sequence of

R. Suppose that

(i) Uj>0 a.e. on M and | | M J | | N = 1 ,

(ii) Uj->u weakly in Hι(M),

(iii) λj -• λ for some λeR,

(iv) KAgUj-RUj + λjuf-^O, in H-\M) = {H\M))\

Then, there exist a subsequence {k} c: {/} and a (possibly empty) finite subset

y = {ao,- ,am} of M such that

(1) uk converges to u in Hloc(M—6f).

(2) For each / = 0, ,m, there exists a constant α f > 0 such that

(3.1) u»dV-+
ί = 0

weakly in the sense of probability measures on M.

Proof. We take ε = ε(n,λ) as in Theorem 1.1. We define the set £f by

(3.2) ^ = Π {jceM|lim inf | \uj\NdV>ε}.
r>0 j->co JB(x,r)



178 S. TAKAKUWA

We first show that £f is closed. Let {xk} be a sequence in £f converging to c

in M and let r be an arbitrary positive number. Then, for any r' < r, B(xk, r') a B(x9

r) holds for sufficiently large k. Thus,

lim inf | uj[N dV> lim inf | uf dV> ε.
j-*cD JB(x,r) j-»oo Jβ(χk,r')

By letting r'-*r, we get xe£f. This shows that Sf is closed in M, and hence is

compact.

Next, we show that £f is at most a finite set. For any r > 0 , we take a

maximal family {B(xu r)9 ~9B(xl9 r)} of I=I(r) disjoint geodesic blls of radius r

with center X , G ^ . By maximality Sf is covered by B(xu 2r),'-9B(xj, 2r). Since

jc fGy, for any δ>0 and each i

holds if j is sufficiently large. Summing up, we get

(3.3) /
l τ C i f l

V u^dV< uN:dV< .

This shows J4?0(y)< l/(ε(l - ^ ) ) < oo where J f ° denotes the O-dimensional Hausdorff

measure on M. Since the O-dimensional Hausdorff measure coincides with the

counting measure, £f is at most finite.

We show that a subsequence of {H,} converges strongly in H\OC(M—^). If

y in M—Sf, then there exist r > 0 and infinitely many j such that the inequality

I tήdV<ε
JB(y,r)

holds. By Theorem 2.1 we show that such Uj converges to u strongly in

Hx(B{y,rl2)). By a diagonal subsequence argument, a subsequence {uk} of {H,}

converges strongly in Hι(Ω) for each Ω C M—9*.

For each j9 we define the (signed) Radon measure μ, on M by

μμ) = (u? - uN) dV for AaM.
JA

By Fatou's lemma
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\\μjj\\< ί (uy + uN)dV<l + liminϊ ί ttf dV=:

where | | μ j is the total variation of μy Then a subsequence {μk} converges to

some non-negative Radon measure μ weakly. Since M is compact, ukdV-^uN

dV-\-μ weakly in the sense of probability measures on M. Since {uk} converges

to u in Hloc(M—£f\ the support of the measure μ is contined in the finite set
m

Sf. Thus, we have μ=YJ0Liδa. for some α ( > 0 ( ι = l , - ,m) where we set
ι = 0

We show each αf is positive. Fix any a^y. For arbitrarily small r>0, we

take ηreC^{M) satisfying 0<>/r<l in M and

{
(0 iϊxφB(ai,2r),

By the definition of S? we have

(3.4) ε < lim inf I t£ dV< lim f ifμ^ dV< a, + \ uN dV,

k->oo JB(ai,r) k^coJM JB(au2r)

Letting r tend to 0, we obtain α f>ε0. This complete the proof. •

Corollary 3.2. Suppose that sequences {M7}, {λj} are as in Proposition 3.1.

(1) If λ<0, then <f is empty.

(2) If λ<A and £f is not empty, then ^ — {a0} for some aoeM, M = 0 and

the probability measure u% dV converges to Dirac measure δao weakly.

(3) Ifλ <p2/nΛfor some integer p > 2, then £f consists of at mostp — 1 points.

Proof. (1) From Remark 2.3 (1), if λ<0, then {uk} converges to u strongly

in //^(Ω) for each domain Ω c M . Thus, the set £f is empty.

(2) From Remark 2.3 (2), we can chooe ε = 1 — δ for sufficiently small δ > 0. By

(3.3), (3.4) we have

1 ε = l - ( 5 < α o < l .

This leads to ^ = {a0}, α o = 1 and w = 0. (3) From Remark 2.3 (2), we may taken

ε>l//?. Passing to the limit in (3.1), we have
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= lim Γ ifidV= ί

Since αI>ε>l//? holds for each i, we have ^%90<P(l-IMlJv)^/7- D
We next consider the behavior of {uj} near the blowing up set Sf.

Proposition 3.3. Let {w,}, {λj} be as in Proposition 3.1. Suppose a is an
arbitrary point in ϊf. Then, there exist

(i) a subsequence {k} cz {/},

(ii) a sequence r of R with rk -> 0 as k -» oo,

(iii) a sequence a of M with ak -> 0 as k -•> oo

(1) ί/ze renormalized sequence uk{x) = r{

k~
1)l2uk (expflfc(rkx)) converges to some

function v *>z H\oc{Rn\
(2) /λe Λ'w/7 v i a positive smooth function on Rn and satisfies

in

(3.5)

|Vv | 2 ί/x<oo, vNdx<oo.
J Rn J Rn

Proof. We take a normal coordinate neighborhood W of a and a normal
coordinate system x of M centered at a. Through this coordinate we identify W
as a neighborhood of the origin 0 in Rn. So we note that the metric g satisfies
gΛβ — δaLβΛ-O{\x\1) in the x-coordinate. Let B(x, r) be the open ball with center x
and radius r and let B(r) = B(09 r). We note that for any integrable function/on W9

, Γ Γ , f
(3.6) ( l - Q i ί 2 ) | / | ^ F < |/|rfx<(l + CVR2) \f\dV

JB(R) JB(R) JB(R)

holds. We choose JR>0 small enough so that ^nB(2R) = {0}.
As in [8], we introduce the concentration function

Qj(t)= sup uN

}dx for 0<t<R.
yeB(R)JB(y,t)

Each function Q, is continuous and non-decreasing in t, and β/0) = 0. We fix
an arbitrary small <5>0. By the definition of Sf and (3.6)

u^dx>ε(l-δ)
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holds for sufficiently large/ Here, the constant ε is taken as in Theorem 2.1. By

continuity of Qp there exist 0<Γj<R and ajeB{R) such that

Since the origin is a unique point in £fnB(2R), we obtain

r, ->0 and aj-*0 as j->co.

We set U(j) = B(aj/rp2R/rj)czRn and

Since α, lies in B(R/2) for sufficiently large y, we have B{R/r^ a U(j) which leads

to U{j) -> /?" as y -> oo. Then, we have

(3.7) ί \Wuj\2dx<C2i ί w7rfx<l + C ^ 2 .

From the definition of α7 and r̂  , M; satisfies

(3.8) I tfdx = e(l-2δ).
JB(1)

From the assumption we have

Uy-1 ->0 in H-\Rn)

where Δ, is the Laplacian with respect to the metric gj=g{aj + ry). Since the

metric g is Euclidean up to second order,

( , ) , 0 , in H.

Then we get

(3.9) KAuj + λjU1?-1^0, in H

Using the diagonal subsequence argument, we can take a subsequence {&}<= {/}

so that

wfc->v weakly in //^Ω) for each domain Ωc/?w,

"fcW ~* v(χ) a e o n "̂»
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for some veH}0C(Rn) with v>0 a.e. By (3.7) we have

|Vv|2fifcc<oo, vNdx<oo.
JRn JR")Rn JR"

Passing to the limit in (2.9), we see that v is a weak solution of

(3.10) κAv + λvN~ι=0 in Rn.

Using the regularity theorem of Trudinger [13], V6C°°(/?W) and v satisfies (3.10)

in the classical sense. By the maximum principle, we see that v is either positive

everywhere or identically zero.

We prove that {uk} converges in Hloc(Rn). Fix any zeRn. By the definition

of aj9 rp we have

(3.11) ύ^dx<\ ύ^dx<ε(l-2δ)<ε.
JB(2,D JB(1)

By Theorem 2.1, ttj converges to v strongly in Hι(B(z, 1/2)). Also, we obtain v^O,

that is, v is positive everywhere. This completes the proof. •

REMARK 3.4. In the proof of Proposition 3.3 the fact U(j)-*Rn implies that

\ak\/rk -* °° as A: -^ oo.

4. Proof of Main Theorem

We now give the proof of Main Theorem.

Proof of Main Theorem. We note that Q is a C2 functional and for any

ueHι(M) with | | M | | Λ Γ = 1 , Frechet derivative Q(u) is given by

Q\u) = - 2(κAgu -Ru + Q(u)\ u\N~ 2u) e H~ \M).

Hence, if {w,} is a minimizing sequence with w,>0 and | |w | | N =l, then

ι -> 0 in H~

From the result of Aubin [1], the inequality λ(Λ/)<Λ holds for any M. By

Corollary 3.2, we may assume λ(M)>0 and ̂  = {a0}. Otherwise {uj} has a

strongly convergent subsequence in Hι(M). Then there exist {rk}, {ak} and v as

stated in Proposition 3.3. The positive smooth function v satisfies (3.5) with

λ = λ(M). By the theorem of Gidas-Ni-Nirenberg [6], positive solutions of (3.5)

are completely described. Thus we get
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n \(n-2)/2

(4.1) φ r ) = ' "'v' *'» ' P

MM,

for some p > 0 and beRn. Passing to the limit in (3.11), we have

JB(Z,1) Jl

vNdx for any ze/f".
B(l)

This implies that v is radially symmetric. Then, we have 6 = 0 in (4.1). By the

result of Talenti [12] on Sobolev inequality in R\ such v satisfies

Thus we have

r
vNdx-f / Λ V'2

c =
}Rn \λ(M)J

Using Fatou's lemma, we have

/ A V' 2 Γ Γ

1< = vNrfjc<liminf ύ^dx<oc0<L
\λ(M)J JRn j->ao JU(J)

Therefore we obtain λ(M) = A. This completes the proof. •

From Main Theorem we easily observe that any minimizing sequence is

compact in the strong topology of HX(M) if (M, g) satisfies λ(M)<Λ. Finally we

remark that the blowing up phenomenon in Main Theorem may occur at each

point of M if it occurs at one point.

Proposition 4.1. Let M be a compact Riemannian manifold with λ(M) = Λ. For

each pεM, there exists a minimizing sequence {uj} c: C°°(Λ/) satisfying

(1) w,.>0 and ||w;IU = l,

(2) u* dV-+δp weakly in the sense of probability measures on M.

Proof. We take a radial cutoff function η e Co(Rn) satisfying

η(x) = <
10

(4.2)

\ = \dη/dr\<2.
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We take normal coordinates of Mcentered at/7. For small ε>0 and t>0 we define

v / t \(n-2)/2(4'3) 0)
The calculation [1], [7, Lemma 3.4] gives

Taking sequences 8j-+0 and tj->0 asy->oo, we obtain the sequence w/̂ ) = Mej,f

uejttJ\\N having the desired properties. •
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