Iwasaki, C.
Osaka J. Math.
31 (1994), 663-728

THE ASYMPTOTIC EXPANSION OF
THE FUNDAMENTAL SOLUTION FOR
PARABOLIC INITIAL-BOUNDARY VALUE
PROBLEMS AND ITS APPLICATION

Dedicated to Professor Hiroki Tanabe for his 60th birthday

CHisato IWASAKI

(Received October 22, 1992)

0. Introduction

Let M be a smooth compact Riemannian manifold of dimension n
with smooth boundary I'. In this paper we consider parabolic
initial-boundary value problems as follow:

(%+P)u(t,x)=0 in (0,T)x M,

Bu(t,x)=0 on (0,7 xT,

u(0,x) =m(x) in M,

where P=—A+h with a smooth vector field # on M of complex
coefficients. The boundary operator B which we consider in this
paper is related to one of the following conditions with smooth
coefficients.

(2) the Dirichlet condition,
(A") the Neumann condition,

(Z) the Robin’s condition,

0
(0) the Oblique condition with parabolic condition, that is, B= —5—-{-
n

b(x,D) with the outer unit normal vector field i and a vector field
n
b(x,D) satisfying (3.2) in §3

and

(&) the Singular boundary condition B= — a(x)ai + b(x) with the following
n
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assumption (%) (See (3.3) for more general cases including that B may
depend on t.)

(%)a(x)=>0, b(x)<0 when a(x)=0.

We note that (%) is not a parabolic boundary value problem in the sense
of [1].

For each one of the above boundary conditions we construct an
asymptotic expansion of the fumdamental solution by means of the calculus
of the pseudo-differential operators. This asymptotic expansion leads us
both to the construction of the fundamental solution and to the asymptotic
behavior of T,(#)=(4nt)"*) % 1exp(—t4;) when ¢ tends to 0, where {1;}32,
are the eigenvalues of elliptic (subelliptic in case (<)) problem (P,B), if
the boundary operator B is independent of £. In this paper the asymptotic
expansion of the fundamental solution can be represented directly by
functions p(x,¢) and b(t,x,&) which are symbols of P and B. This fact
is. also applicable to the proof of the Gauss-Bonnet-Chern theorem for a
manifold with boundary. About this problem we discuss in the
forthcoming paper [7].

The construction of the fundamental solution for the general parabolic
boundary problems was staudied in [1]. Roughly speaking, there are
two methods of its construction applicable to get the behavior of T,(%)
directly. The one method is to use the fundmantal solution for the
Cauchy problem on M’, the double of M. This method is adapted to
the problem (2) and (A") by MeKean-Singer [10]. They extended P
to an operator P’ defined in M’'. In this case they miss the smoothess
of the coeflicients of the operator P’ even if P has smooth coefficients. The
other is to reduce the construction of the fundamental solution to the
construction of the Green operator of the boundary valeu problem (P, B),
using the Laplace transformation. One we solve the Direchlet problem,
construction of the Green operator of the boundary value problem (P, B)
can be reduced to solving an equation of pseudo-differntial opeators on
I'. This method was apdapted by P.C. Greiner [4] and he calculated
T(2) in case of M is a bounded domain in R?.

For the singular boundary value problem (&), we give some
commets. S. Ito [5] constructed the funcamental solution in case
b(t,x)=a(t,x)—1. Y. Kannai [9] showed the existence of the solution of
(&) under the compatibility condition for the initial data m(x). K. Taira
[15] obtains the existence of the fundamental solution by operator
theory. About the condtion (%), S. Mizohata [11] showed that the
assumption (%) is necessary for H® well-posedness of the problem. K.
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Taira [14] has shown that the main term of T/(%) is |M]|.
The Green operator for an elliptic boundary value probme (P,B) is

obtained by the integration of the fundamental solution | E(t)e” *dt for
0
any positive constant 7 and some positive constant A. For example,

singularities of the kernel of the Green operator can be studied by this
method (cf. D. Fujiwara [3], R.T. Seely [12]).

Although we treat, in this paper, operators acting on functions on
M, we can apply our method to a parabolic system whose principal
symbol is diagonal.

In §1 we present main theorems of this paper. The reviews of both
the theory for pseudo-differential operators and construction of the
fundmanetal slutions of the Cauchy prblem are stated in §2. The
construction of the asymptotic exampansion of the fundamental solution
for intial-boundary value problem in R", are discussed in §3. Section 4
is devoted to the construction of an asymptotic expansion of the Poisson
operator in R". In §5 we discuss L? theory for our operator. In §6
we construct the fundamental solution E(t). In §7 applications to the
behavior of T(%) are treated.

1. Main theorems

Let P be a strongly elliptic differential opertor of the second order
on M, that is, P=—A+h, where 4 is a vector field on M with complex
coefficients. The purpose of this paper is constructing the fundamental
solution for the boundary value problem (%) as stated in Introduction.

We say that an operator E(t) is the fundmamental solution for (%)
it E(t) satisfies

LE(#)=0  in (0,T)x M,
(B) BE(t)=0  on (0,T)xT,
EO)=I in M,

where B is one of operators stated in Introduction. For the construction
of the fundamental solution we have:

Theorem I (The existence of the solution). We can construct the
fundamental solution E(t) for (&) such that for any 1 <p < oo and meLP(M)
u(t)=E(tym belongs to C([0,T]; LP(M)) and N H,(M) for t>0, satisfying
u(t) >meL? as t - 0.
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Corollary. For any meC(M) there exists a solution u(t,x)e

C*® ((0,T) x M) of (B) with

lim u(t, x) = m(x), xeM.
t-0

Owing to the precise calculus of the asymptotic expansion of the
fundamental solution E(#), we get the folowing theorem.

Theorem II. For the problem (2), (AN), (R) and (O) we have the
following expansion T,(.%)=Zj°=0C j(%)t‘zl as t—0:

For any boundary problem (#) as stated above, we have

0) Co(%)=IM|,

where | M| means the volume of M induced by the Riemannian metric g. The
second terms C (%) are

4

Cy(2)= —*—{EIFI,
Cl(JV)=‘/7;IFI,
1)
Cl(%)=—\é—;—|1"l,
1 1
Ci(0)= —-)dS,
{ @ ﬁfr(\/l+IIdlllz—||d2||2+2<d1,d2>i 2)

where d, and d, are real vector fields on I" such that b(x,D)=d,+d, and
|d|| means the norm of a vector field d induced by the metric of I'. The
third terms C,(#) are given by

_ [ KA J J
CZ(@)_L( T I ds,
@) Cy(N)=CH(D)+ f flux & dS,
r
Cy(B)=Cy(N)+2 f b ds,
r
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where K is the scalar curvature and J is the mean curvature. For the
singular problem we have

Tt 1
(3) T(&)=|M| +12——(|F1| —[Tol) +o(22)
under the assumption |I'g|>0, where
r0={x€F;a(x)=0}, r1=r\ro.
ReMARK. If the vector field b(t,x,D) has real coefficients, we have
C(D)<C{(O)<Cy(N).

Moreover C,(0)=C(A4") holds if and only if b vanishes everywhere.

We remark that L. Smith [13] and T.P. Branson-P.B. Gilkey [2]
computed C3(2), C4(2), Ci(N"), Cy(AN), C3(A), Cu(A) by different
methods.

2. Pseudo-differential operators and the fundamental solution
for the Cauchy problem

We introduce some notations on pseudo-differantial operators.
DerFiNiTION 1. For a symbol of pseudo-differential operators

p(x,8)eSy (RM)=S}; (0<6<p<1,6<1), we define the seminorms [pI™
(=0,1,2,---,) by

Ipli™ = max sup  {[p@&(x,&)| < &> mtelel-lbly
la] +]B] <1 (x,&)eR™ x Rn

We denote a pseudo-differential operator by the capital P of which symbol

is p(x,£). For a symbol p(¢;x,) € C(S} ;) we define a pseudo-differential
operator with parameter ¢ by

P(t)u(x) = P(t;x, D)u(x) = Os — (27) ""J J (8 3, E)u(y)dydé.

DerFINITION 2. Let pog denote the symbol of product operator
p(x,D)q(x,D). So we have

poq(x,8)=0s—(2n)™" f j e” "V p(x,E+n)gx +y,E)dydn.
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The basic theorems for the symbol of multi product of pseudo-differential
operators are as follow.

Theorem A. If p; belong to S'”(’) (=1,--,v), then pjo---op,=p
belongs to S7 5 (m= Z i=1m(y)) and satzsﬁes the followmg estimate for any l.

v
bl < C' [ Ip;i{792,

j=1
where C and l, are constants independent of v.
Theorem B. Let peSy% and qeS}%. Then for any integer N we
have an expansion
N-1
pog= Y 5{0,9) +rn(0,9),
j=0

where

s, 9)= ), —( )P(x &)Dig(x,8)e Sy 5 ° %

|a] = jO

and ry(p,q)€ S; ;¢ “ON has the estimate

Irn l(m b-9N < C Z |P(a)|(m1 ﬂlal)|q(a)|mz:5|fll)
|la|=N

We review the construction of the fundamental solution U(t)

LU=(%+P)U(t)=O in (0,7) x R",

U©0)=1I on R",

for the Cauchy problem on R" according to Tsutsumi [16]. Here P is
a strongly elliptic differential operator of second order defined on R" of
which symbol is p(x,£). Let p(x,&)=p,(x,&)+p,(x,E) +po(x,&), where
pj(x,&) are homogeneous of order j with respect to ¢.
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Theorem C. The fundamental solution U(t) is constructed as a
pseudo-differential operator of a symbol u(t) belonging to S?,O with parameter
t. Moreover u(t) has the following expansion for any N:

N-1
u(t)— Z u;(t) belongs to Sl",’(;’,

i=0
ug(t) =exp(—p,t), u(t)=f(t)uo(t) € Sy,

where f(t) are polynomials with respect to & and t, satisfying the equation
k—2l= —j, where k is the degree of & and | is that of t.

The sketch of the proof of Theorem C is the following.
{fj(t;x,f)}jzl are obtained as the solution of the following ordinary
differential opeators with parameter (x,¢&).

d

(;;u + 2 sk(p2—l)fmu0) =O) t>0,
(21) { k+l+m=jk>0,m<j

file=0=0.

In fact, for example, we have

2

fi= ‘PlH' sx(Pz;Pz),

2
f2= ‘“Pot'*“tz_{(Pl)z +51(01,02) +51(D2,01) +52(D2,02) }

0 0, 0

+{i(>(>()(

J.k= 1 aé_] aék

2.2
- ) —51(p2,51(02,13))

—3p151(p2,12)} +%{51@2»P2)}~

For any N>1, Z?’;oluj=g,v satisfies according to (2.1)

dgN
—+ =7y,
at Dogn=Tn

&nle=0=1,
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where 7y belongs to C(Sy. ¥*2) and satisfies
(2.3) ra)x, O S Cppt' < &> "N +2H 2l

for any I<¥—2. The symbol of the fundamental solution is obtained
as the solution of the form

t

(2.4) u(t) =gn(t) + f gn(t—s) o @(s)ds,

0

where ¢@(t) is the solution of

t

2.5) o)+ o(t) + f ra(t—s) o @(s)ds =0.

0

For solving (2.5) we apply the estimate of the symbol of multi-product
of pseudo-differential operators in Sf,’,t, stated in Theorem A. Then we

obtain the solution ¢(¢) in S;{*2 Also we have the estimate by (2.3)
(2.6) @ (x, OIS Cy gt <& > ~NF2H 2171l

for any I<¥—2. Thus we have u(t)—gN(t)eSf,g”. Also we have by
(2.4), (2.6) and Theorem A

(2.7) {u(t) —gn(t) };))'Sca’ﬁtl+l <&>N+2+20-]a]

for any [<¥—2. Nothing N is any number, we get Theorem C.
q.e.d.

The kernel of U(t)=u(t;x,D) is given by the integral
U(t,x,y)=(2“)_"J u(t; x,&)e' 4 dE = u'(t;%,x—y).
Rn

For u"(t;x,2) we have the following expansion for any N>1

N-1
un(t;x)z) = Z u;'(t,x,z) +kN(t;x)z))

j=0

where u;(t;x,z)=(27t)‘"f e""éuj(t;x,f)df and ky(t;x,2) have the following
RVI
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estimates for some positive contant &

n j 2
Wisx 2 <Ce i de i (=01, N-1),
u;(t;x,0)=0 Jj=odd,

|ky(t;x,2)| < Ct™

where we use (2.7) and the fact that N in Theorem C may be taken any
number. So we have the expansion

Ul %) = (6%,0)~ 3 ¢49C,),

J

where
C,-(x)=(27t)_"f uy(1;x,8)dé =u3j(1;%,0).
R’I

3. Construction of an asymptotic expansion of the funda-
mental solution on R",

In this section we construct an asymptotic expansion of the
fundamental solution E(¢#) of the following problem in Ix R":

d
(——+P)u(t)=0 in IXR",
dt
(L,B) Bu(t)=0 on IxR"" 1 x{x,=0},
lim u(t) =m(x) in R",.
t-0

We use the following notations. I=(0,T), R ={x=(x,x,): x¥eR"" 1,
x,>0}, P is the similar operator defined in §2 and the boundary operator
B is one of operators introduced in §0.

If we assume E(t)= U(t) + V'(t), where U(t) is the fundamental solution
for the Cauchy problem in R", V(t) must satisfy
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d :
(E+P)V(t)=0 in IxR",

BV()=—BU(t)  on IxR"!x{x,=0},

lim V(5)=0  in RY.

We assume the principal symbol p,(x,£) of P satisfies for some
positive constant o

{ pZ('x’yO: ﬁly in) = 53 +ﬂ(x,) é),
Bx',&) = a2,

In this section we consider the following boundary operator B.

(3.1)

B=identity, (a‘3 ) ()4 b2, ), (2)+b(%,).

x, Ox, x,,

The symbol b(¢,x',&') of b(t,x’,D’) satisfies
(3.2) Re{f(x',&)—(b(t,x',&))?} = CIE|?

for some positive constant C for any tel.

The above inequality (3.2) coincides with the assumption that a
boundary problem (L.B) is parabolic in the sense of [1] for the oblique
condition (0). We consider also

B=a(t, x’)(ai) +b(2,x"),

where a(t,x’) and b(¢,x") satisfy

(3.3) b(t,x)#0 if a(t,x")=0,

Iarggl 2§+£ in a neighourhood of {(¢,x'): a(¢,x) =0},

for some positive constant &. Y. Kannai studied the existence of the
solution under the above condition in [9].

In §3-1 we will discuss the construction of the asymptotic expansion
of V(t) for (2), (A), (#) and (0) under the restriction that b(¢,x',&’) is
indepednent of . We treat in §3-2 the general case. V(¢) for (&) will
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be constructed in §3-3.

3-1. Asymptotic expansion of V(¢) for (2), (A), (Z) and
(0). We introduce new symbol classes %, % as follow.

DerFIiniTION 3. (1) 4| is the set of all finite sum of the following
functions

{t*(x,)'r(x', &', ,); nonnegative integers I, d, re Sy (R™)},

where 7(x',&) is a polynomial with respect to £&.
(2) &/ is the set of all finite sum of the following functions

{t(x,)'r(x, &', £,); nonnegative integers [, d, re S}’ (R™)},
where 7(x,£) is a polynomial with respect to &.

DernniTION 4. We define f=f(t,x',E)=f(t,x',0,&) for a function
f(t,x,&) defined on R?"*!,

DeriNiTION 5. For a function ¢(x',x,) defined on R" we define

_ 0, if x,>0;
(1) [ (x,x..)={

o(x', —x,), otherwise.

(2) We also use the notation ¢ *(x,x,) if we extend the function ¢(x',x,)
on R" such that

(p+(x' x )={(P(x’,xn), if anO;

0, othrewise.

DEerINITION 6. Let {q;};<, be defined as

q> =p2(x,)01 6,’ én) =P*2)

0 X
9-;= P2 g1,
1+k=j,0<k<2 OX, I
Then we have for any N
~N+1
b= Z gi+q_y

j=2
with g;€ #; and q_yeF_y.
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DEeFNITION 7. For a pair (j,k) of integer j and nonpositive integer
k we define functions {@;,(t,w;b)};, as follow:

w0,0(t) én) = exp( - té:)’
wj,O(t) én) = (ifn)jwo,o(t’ én)) ]2 0)

zvj.O(t)a)) = (27[)_ IJ\ eiw-{,.,wj'o(t, én)dém ]2 0’

@; o(t, ;)= — : “fwe wi’Z( )" ldo j<—1
j0lt,0;0)= ——+——+ - . ., 40, > —1,
J \/_2\/ (—j—1)!

for k< —1 ﬁ)j,k(t,w;b)

) k-1

[ 11 p+het - J-)2+2bfd( g hi{o+ w )do, if j>0;

ﬁz\ﬂ 0 (== "2/t

+k+1J‘ (-7t J‘we-(a+:+ﬁ)2+zbﬁa(_a)—k—ldo.
fz\/ —i— "), (—k—1)

if j<—1,

b

where hj(0)= {Z)Ye ?’}e””. We define an integral operator W, (8;b) with
parameters (t,b) for a function ¢(y,) defined on R as follows.

(Wix(£:0)9)(x,) = (W; 1 (b)p)(2, x,.)

= zijk(t’xn + Vs b)(p(yn)dyn

JO

("o

= ij,k(t)xn +ymb)§0+(yn)dyn

v — o0

("0

= bevk(t’xn—yn; b)(p—(yn)dyn'

v —

We have proposition for this series of operators {W;,(t;b)};,.

Proposition 1. (1) For j>0, we have

(W o)) (%) =(2m)~ f j eOn Iy o, €)@~ (¥,)dy,dE,, 7=0.
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(2) If t>0 or x,>0, the kernel @;,(t,x,+y,;b) of W; ,(t,b) is smooth with
the estimate

2
922 | b2e(1 +2)

(3.4) le’k(t,a);b)'SC("‘\l/—,)j*-k-Fle_
t

for any positive € and 0<d<1. Also W;,(t,b) are bounded operators on
L?(RY)(1 <p<o0) with norm

1.
(3.5) W, (t:B) | < C(—) Hee?™ 1 +9),
NG

(3) The operators W ,(t;b) satisfy the following equations:

(3.6) g—piynnggw=o in Ix R,
ot 0x, ’
(3.7) (56—+b)Wj,,,(t;b)=W,.,,‘H(t;b) in IxRL, (k< —1)
0 ) =
(3.8) aWj,k(t;b)=Wj+ 1(50) in IXRY,
3.9 lim (W;,(¢;0)9)(x,) =0 in x,>0,
t—+0

for pe C(RY).
Remark 1. By (1) of the above Proposition we have
Wj.O(p(t;xn) =wj,0(t;men)(p_) ]20)

where w; o(t;x,,D,) means a pseudo-differential operator with symbol
wj.O(tygn)'

REMARK 2. In case (/") and (2) we use only {W;o} (W;,=Wji10
if b=0).

Proof. (1) and (3.4) are trivial by the definitions. (3.5) holds by
the following fact
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’ 1., .2
J |%; 4(t, 03 b)|dow < C(—7) e +o),
: N

We have by the equation (1) and Definition 7

0 0 0
EC:W;,0= Witi1,0 {a—(a;)z} Wio=0

and

limW; ,0(x,) =(ai)j(p_(x,,)=0 for x,>0

t—0 Xy

hold for j>0. In casej is negative, we get (3.8) for k=0 by the following
equation

0

~ ~

— j‘0=wj'+l,0 fOl' CUZO.

0w
(3.8) for k< —1 is proved in the same way by

0
—ﬁ')j,k=27)j+1,k for wZO.

0w
For j<—1 and k< —1 we have

0

—az)_wf,k-:_bwj,k-'-wj.k"'l for COZO.

Taking derivatives of the above equation with respect to x,, we get (3.7)
for any j, k. It is clear the following equality holds

(3.10) Wj,k(t;b)=Wj—l,k+ l(t;b)_ij—l,k(t;b) fOI‘ ks "'1

by (3.7) and (3.8). We shall prove (3.6) incase j< —3 and k< —2. Other
cases can bg obtained by differentiating (3.6). The following equation
holds for j<3 and k< —2.

1 w(—r)'f*‘drr SR S St N Bk

Djpy=—r| 27t
SV I CTES i (—k—1)!
2./t
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So we have

0 o (— (g7t i1 J‘oo
dt
\/; o (—j—1) "
241t
)2+ 2by/to — bwl(w 2\ﬁo')“" 1
(—k—1)!

X —_a (a+2¢
[ T {e” :

+ia {ezbs/;a}e—(q-ﬁﬁ)z_bw(a)——2\/20-)"’(—1
2t ¢ —h—1)

_ie th)2+2b¢tg bw((D 2\/_0») k- 2]do-
Vi (—k—2)!

On the other hand we have

0 1{3 {eZbJEa}e (,+7)2 po (0 — 2\/0) k-1
o207 (—k—1)!

24t

___J‘“’ [_ o+ +2byia = bl @ — 2\/— tg) k1
2t —k—1)!

+l (a+2_w)2+25Jta bw(w 2\/20‘) k-2
\ﬂ (—k—2)!

w — 2 to k-1
——(3 {e (6+2Jt)2+2tha bwl( \/ )~ do

Vi (= R—1)

Hence we have

3 (—1) 7! i-1 fw
dt
\/; o (—j— l)l -
24t
x[— (T )6 {e 2¢,)2+2b¢ta bw\(w 2\ﬁ0) k—1

2t \ﬂ =y

(a+2\/)2+2b~/t,7 bw((D 2\/t0') k- 1]do
2 "

00( T)J Zd‘CJ‘go
ﬁo =),

2yt
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-k-1
x[_(i_'__a_) (a+5$)2+2b¢ta bl @ — 2\/20') ldo

2" /i (—k—1)!
00( ‘L’) Jji- ZTJ‘OO
ﬁ 0o (=1 ),

241
k-1
x d{e"@* 29+ 2byia - bw}(w 2\/—‘7) do.
(=k—1)!
So we get
0. "
ot k™ = Witk
Owing to (3.10), it is sufficient to show (3.9) only forj< —1and k< —1. If
j<—1,k<—1, we have
0 -ji—1 ] _ _ -k-1
Wjp=— ! J (_T,) l d‘EJ e_"2+2"‘/“"b“’(w 2\/;6) do
NN s i (—k—1)!
24t
So we have
D, —0as t—>0
for @w>0. Then (3.9) holds. q.e.d.
Proposition 2. We have for any k<0
0. .
%ﬂ)j,k(t,w;b)=kwj,k_l(t,0);b).
Proof. We have the following equation for k< —1.
0 1,1 ®© 2 (—o) !
— W (t, ;b)) = ——(——"“J AW R LS Ny
36 NN A (—k—1)
=kg - 1
The assertion can be shown by the same way for other cases. q.e.d.

DEFINITION 8. S, is the set of all finite sum of the following functions
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9?5 = {g(t)xmyn) = td(xn)le,k(t’ Xp +ym b);
dlj,k€eZ,d>0,1>0,k<0,j+k—I1—2d<s}.

For a symbol g(t,x,,,y,,)=t"(x,,)lz5j_,,(t,x,,+ yub)e #, we define an operator
as follows:

(GB)P)(x,) = t2(x,) (W (8, D)) ().
We state Proposition 3, which is the key idea in this section. Let
By=32+b or By=identity.

Proposition 3. (1) For any ge #, we have ve #,_, such that

(%_(a_i;)z) V()=G(t)  in Ix{x,>0},

BoV(t)lx":():O in I.

(2) Foranyhe #,_, we haveve #,_, (ve #,_, if B,=identity) such that

%—(%)Z)V(t)=0 in Ix {x,>0},

BoV(®),.oo=H(®)  in I

(

Proof. SetLy,=%—(Z)% Itissufficient to prove (1) for g such that

(xn)'

I

g=td 7I)j,k(t,xn_*_yn;b)'

(Step-1). d=0,l=0. In this case, the following v=1(t) is a solution for (1).
1 1,
7)(t) = _Exnwj— l,k(taxn +ym b) +5wj—- 1,k—- l(trxn +ym b)

If B,=identity, the second term of the above equation is dropped.

(Step-2). d=0,1>1. Set

3 (xn)H-ld’
2(1+1)!

K21 -1,k
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Then V,(t) satisfies
{ LoVi()=G(®)+G(t) in Ix{x,>0},
BoVi()ly,=0=0 in 1,
where g, =%1*_');1;!z5j_1,k. So we can reduce to (Step-1) by the induction
with respect to /.
(Step-3). d>1. Set
'02=td'l)1,
where v, is the solution of
{ LoVit)=G.(t) in Ix{x,>0},
BoV1()ly,=0=0 in I,
which is obtained by (Step-2) with g, =L’-‘f,‘ﬁzbj’,‘. Then V,(t) satisfies
{ LoV,()=dt* 1V, (t) + G(¢) in Ix{x,>0},
BoV,()lx,=0=0 in I

So, by the induction with respect to d we can reduce to (Step-2). It is
clear that v belongs to J#,_, in any case.
For the proof of (2) we set h=t"zbj.k.

(Step-1). d=0. If By=32+b, It is clear that v=u;,_ is the solution
by Proposition 1. If B,=identity, v=®;, is the solution.

(Step-2). d>1. Set v, =15, where VeH 11—y (DEH ;4 if B=identity)
is the solutioin of

{ LoV(t)=0  in Ix{x,>0},
BoV(O)lx,=0=Wijy in I,

which is obtained by (Step-1). Then

{ LoVi(t)=G4(t) in Ix{x,>0},
BV (t)ly,=0=H(?) in I,

where g,(t)=dt’" 3. By (1) we get v,e #,_, (v,€#,_,) such that

{ LoVy(t)=—G(t)  in Ix{x,>0},
Bon(t)Ix’I:O:O in I.
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Then v=1v;+7v, in the solution of (2). q.e.d.
We discuss only the case (0). For other cases, in the following
argument, we take b(¢,x') instead of b(t,x',&’) in case (#). In case (A)
and (2), we take b=0. In these cases we use only {Wj,o} as Remark

at the end of Proposition 1.

DrrFINITION 9. We set J# the set of all finite sum of the following
functions

{g(t) x/’ Xn» él)yn) = td(xn)lq(x/) él)wj,k(t) Xn +yn’ b(x’) é’))e - ﬂ(x’,{')t;
dlj,keZ,d>0,1>0k<0,

q(x',&) is a polynomial with respect to & and

qe ST o(R"™") with m=s+2d+1—j—k}.

REMARK 3. Set
a,-=<zn)“‘j I Sn( ) (85, &, E,)dE,,
Rl

where u; is obtained in Theorem C. 'Then we have the following facts.
1o = BN e el
flg =g o(t, %, +yp)e €Ay, ;e _;.

Lemma 1. For tlie boundary conditions (2), (N), (R), or (O) with
parabaolic condition, g € ¥ ; has the following estimat for x,>0 and y,> 0.

1 2
3.11) |g|sC(Z)‘”exp(—éW_%lg,Zt)

for any 0<6<1 and some positive constant c¢,. Also we have

| f lg(t, ', %, &, yu)ldx, < C(—7=)exp(—col¢'1*1),
0

%_.

(3.12)

oo ’ ’ 1 s ’
J lg(t)x )xmé )yn)ldynsc(_) exp(—colf lzt)
0

N
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Proof. (0) with parabolic ondition means that
(3.13) Re{B(x,&)— (b5, = CIE”?

holds for some positive constant C. By (3.4), (3.13) and x,<x,+y, if
x,20 and y,>0, we get (3.11). (3.12) holds because of (3.5). q.e.d.

Remark 4. By (3.11)if t>0or x,>0, ge #; belongs to S;ff(R:fg’).
We get the following proposition by Proposition 1 and Proposition 2.

Proposition 4. Let g belong to #,. Then we have:
€8] (a%)"(ﬁ)ﬂgejfs_lal with the estimate

e

(%, +yn)?

y» —col&'?2).

1
< C, gmin(|&| 1, /t(—F*texp(—o
’ \ﬂ

(2) fgeHiyia.
() gt LEH siy-
4) If reFj, rg belongs to H g, ;.

DeriNiTION 10. For a symbol g(t,x',x,,&,y,) € H#,
g(t)x’)xm ﬁl)yn) = td(xn)lq(xlr é’)ﬁ"j,k(t)xn +ym b(x’r él))e_ dudety

we define an integral-pseudodifferential operator as follows.

(Go)(t,x',x,) = (G(D))(X', x,)

= f gt %', %, D', 3,)0(,y,)dy,
0

r r
=(2n)—n+l ei(x’—y‘)'é’td(xn)l

JRn-1JRn-1

X [W;(t;b(x', &Ny, N(xn)a(x', & )e™ P& dy'de
r r

=(Q2m)~"*! e VG, &)o' N (x,)dy'dl

JRn-1JRn-1
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for pe C(R%,S(R"™ 1)), where

[G(t; %', &), ) (a6) = 17(x,) TW (850, D@0, ) () g, &)~ P,

Remark 5. The kernel g(¢,x',x,,3',,) of an operator G is given by
g(t’xl) xn)y,)yn) = (2TC) n l \j‘ n lei(xl _y,).é,g(t’x,’xn! él)y")dé"
.

Owing to Lemma 1 and proposition 4 we get the following lemma
for the kernel g(¢,x’,x,,y",y,) of an operator G with symbol g(¢,x’, x,,£",y,).

Lemma 2. Let ge#,. Then we have

0,y 0 0 \p 0

2, an(_~ \B(_~_\Bng ’ ’

< C(“l")s+” + Ial + Iﬂl + |a"| + Iﬂ"lexp( —_ 6(x” +yn)2)

IRRNY 4¢
for any 0<d<1.

(2) If N>n—1, the kernel ky of the operator GA™N satisfies

1
IkN(tyxl)xmyI)yn)l S C(——t)s+ 1’

where A is the pseudo-differential operator with symbol <& >.
Proof. (1)isclear by Proposition 4 and Lemma1. Seth=g<&> "N,

Then the symbol of operator GA™V coinsides with A. The following
estimate holds by Lemma 1.

1
|h|SC(—)s+l <£l> —N.
Vi

Then ky satisfies (2) if N>n—1. q.e.d.

For the well-posedness of the operator G on LP(R",), we will discuss
in §4.
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DEeFINITION 11. Let re %, ge#,,. rog denotes the symbol of a
product operator 7(t,x,D)G.

Theorem 1 (Product formula). Let re %, ge#;,. Thenwe have

rog= Z Ej(r,g), Zj(r,g)e%sr*'sz—j’
j=0

j=

where,
a0y 0\,
Xr,g)= a;( —1) Es’«:?é_,,) ”(a—n) 2)
with
1,0 0
sorg)= Y (=l
sl(r)g) MZ_—.,-( l) a'(aé’) r(ax/)g

REMARK 6. X (r,g)=0 for large j because r is a polynomial of ¢.

Proof. Owing to Proposition 4, we have

0,,6 0 d,, 0
o ony e T , . an ys; .
(aé/) (aén) re S1 |<1| An (ax/) (axn) r€E +an
So we get the assertion. q.e.d.

DeriniTION 12. Fix a positive integer N. Set

-N+2

Q= Z qj)
j=2

where {q;} are functions introduced in definition 6.

Theorem 2. (1) For any g(t)e #, and h(t)e H,_, there exists
v(t)e Hs_, such that

(2 +d)eo()=5) mod #, , in IxRY,

(@€, +b(x', &) o v(2)l,, =o="h(t) modH_, in IXR"™ 1,
(2) For any g(t)e H; and h(t)e H ;_, there exists v(t)e A _, such that
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0
(gt-—f-(j)ov(t):g(t) mod#,_, in IxR",

(), —o=h(t) mod #,_ 5  in IxR" "'
Proof. We get the assertion by Theorem 1 and Proposition 3. q.e.d.

Corollary. (1) For any N, and g(t)e #, and h(t)e H# ,_, there exists
v(t)eH;_, (V(t)=Zi_owi(t), wit)eH;_,_;) such that

d
(a+é)°v(t)=g(t) mod #,_y  in IXR",

(i, 4B, &) 00Dl o =h((t) mod #,_y_;  in [XR".
(2) For any N, any g(tye #, and h(t)e H,_, there exists v(t)eHy_,
(v(t)=2;=0wj(t), wit)ye Hs_,_;) such that

0
(5+4)°U(t)=g(t) mod #,_y  in IXR",

v(t),,=o=h(t) mod i _y5_, in IxR" 1.

Proposition 5. Let r(X,D) be a pseudo-differential operator with
symbol r(x,E)eS™®. Then for ¢(-,x,)€ C(R%;L(R"™ 1)), we have

r(xl)xn)D’)Dn)(p+|x,.=0
=r(x',0,D',—D,)p" |

xn=0

= [(27[) -1 J‘ J ei(xn * }’n)énr(x' ’ OaD” - én)(p( ’ )yn)dyndén]x,. =0
—0d0

Proof. We note that the trace is well-defined by the boundedness
theorem for pseudo-differatnial operator. We get the assertion by the
following equalities:

r(x,)me’)Dn)(p * |x..=0

=2m)~" f | ,( e 7YYy (0,8, E) 0, V) dy,d,dy'dl
R~ 1xR"-1J —0d 0

o0
= (21[) -n J\ Jn ei(x/ —y')& —iznén
R-1xR"-1J —0d — 0
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X r(x’, 0) éls - én)(P(yl’ - zn)dzndéndy’d€,~

0
— [(271:) —n J‘ Jh ei(x’ —y') & +i(xn—zn)én
R"-1xR""1J —w0d — 0

X r(x’) 0,6’, - Cn)(p(y’: —zn)dzndéndyldél]x"=0'
q.e.d.

The fundamental solution for the Cauchy problem U(t) with symbol
u(t) has the following property owing to Theorem C. “BU(t) is also
the psedudo-differential opertator with symbol S™® if t>0". In other
word, the kernel of BU(?) is smooth if t>0. So we can apply the above
proposition for the symbol of BU(t).
Fix a positive number N in Definition 12. Set yy(t) =u(t)— Y Y2¢ " 2u(?).
Then yy() belongs to Sf,g_”_a by Theorem C. Also choosing [=%®7%—1
we have

lyn(®)F) < Ca,ﬂ\/zN‘" <&> 23l

by (2.7). By the above estimate, hy(t)=(i&,+b) o yyly, =0€S1.6 " 2 holds
the following estimate

(3.14) iy (D@ < C, g/t "< E> 227Nl
On the other hand we have
N+n+2 N
[(lén-’-b)o Z uj]lx,.=0= Zgj(taxlyf)u:))
j=o0 j=0

for some N with git,x',§)eF _;;,. Sowe obtain the following Lemma 3.

Lemma 3. It holds that

N
BU(t)(p+|x,,=0= Zgj(t)xlxD') _Dn)WO,O(pIx..=0+FN¢s
j=0

J

where
F”“’=(2”)_1J f ety (2, DY, — E)QC, ) dyadE,
—od 0

Note that g;@,o€# _;,; and apply Corollary of Theorem 2 with
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g(1)=0, h(t)= —ZV og(t, %, &, —E)bg. Then we get vy(t)e H o (vy(t)=
Z;‘:Owj(t), wJEJf_J) such that

0
(a+¢j)ov,v(t)=0 mod# _y,, in IXR",

N
(lén + b(xl) él)) ° 'UN(t)lx,.=0 = Z gj(t)x’) é’: - én)'d’oo mOd ‘#—N
j=0
in IxR"™ 1,

Then we have the following theorem for any boundary condition B and

’

for any N, owing to p—§eF _y,;.

Theorem 3. Set Ey(t)=U(t)+ Vy(t). Then E(t) satisfies

{ LEN(t)=Gy(t) mod # _y,, in IxXR",
BEN(t)lxn=0=FN mod%-N in IX Rn_l

with Gy(t)=(P—Q)Vx(t). Moreover

lim Ey()o(x', x,) = @(x', x,,), x,>0

t—0

for e C(R"). The kernel gy of Gy satisfies

d,,0 1
T Y \By SCa ) —N+n+1+|a|+|ﬂ|.
Fy has a kernel fy such that

0 0 \o~ 1
()Pl S Cpp(—=) "N, +pl<n+1.
I(axr) (ay;)fN| .ﬂ(\/z) |<x ﬁl n

3-2. In case b(t,x',&) depends on t. Set
(3.15) Fiu(0,0;t) =%; (0,0;b(t,x',{)).

We define the integral operator {Y;,(d;t)} for a function ¢(y,) with a
kernel y;,(c,x,+y,;t) as follows.

(Y (o5 )0)(x,) = (Y; (1) p)(0,x,)

= jjj,k(a!xn +ym t)(p(yn)dyn
0
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Then Y;,(0;t) satisfies

0

0 . —
(é;—(é—;)z)ybk(a;t)=0 n IXRL,
a 4 . D1
(ax +b(t,x, &)Y (o)=Y, 4, in IXRL, (R<—1),

(3.16) 5
ﬁyj,k(o; t)= Yj+1,k(a; t) in Ix R}Fy

0x

n

lim (Y;,(0;0)9)(x,)=0 in x,>0,
c—+0
for o C(RY).
Hence Z;,(t,5)=Y; ,(t—s;t) satisfies

0o ,0 0 N 5
(57(5;)2)214((%8)=ij,k—1(t,S)ab(t,x',f) in I,x R,

n

+b(t,x,ENZ4(t,8) =Zj 4 1(t,5) in I RY, (k< —1),

d
G,

(3.17) 5
”a*Zj,k(t)s)=Zj+l,k(t)s) in ISXR!F)
X,

n

lim (Z; ,(¢,9)¢)(x,)=0 in x,>0

t—>+s

for ¢ € C(R") by Proposition 2 and (3.16), where I,=(s, T +5).

DEerFINITION 9. Set #(0;t) the set of all finite sum of the functions
of the following form

(3 1 8) {g(a’x”xm él)yn; t) = ad(xn)lq(t’x/’ é/)yj.k(a) Xy +ym t)e—ﬁ(x’,é’)a';
d,l,k,jeZ,d>0,l>0,k<0,

q(t,x',&') is a polynomial with respect to &,

(a%)'q belongs to ST o, for any » with parameter ¢t withm=s+2d+{—j—k}.

In this section we use S ((t,s)=(t—s;t) instead of ' in the
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previous section and operators G(o;t) defined by functions ge #(o;t)
in the similar way of §3-1. We can discuss the similar argument in §3-1
for s (o;t). For example ge H# (0;t) satisfies

a,, d
3.19 (—)Pg(a;t
(3.19) '(ag') (ax,) &(a;1)|
2
<C, ymin (& Iarl’\/(}lml)(i)s+ lexp(— 5M_ col&%0)
\/z; 40
for any 0<d<1. Let g be the kernel of G(o;t). Then
CNI N 1 (xn+30)°
3.20 (Vs < C, (—)TnHlal+18l —om _In?
B TPPRSCl b e (o)

for any 0<d<1. We repeat the same argument using (3.17) instead of
(3.6)~(3.9). Then we obtain

Theorem 4. For any N we have wvy(t,s)e N o(t,s) such that
Ex(t,s)p=U(t—s)@* + Vy(t,5)p satisfies
LEN(t,S)=GN(t,S) mOd X—N‘*’l in IS X R’_’*_,
B(t)En(t,9)|,,=0=Fx(t,s) mod A _y in I, xR"!

and

lim(En(t,5)Q)(x', x,) = @(x,x,)  %,>0,

t—s

with Gy(t,s) and Fy(t,s) whose kernels gy(¢,5) and fy(t,s) satiasfy

0,0 1

Y By t <C~——N+n+l+|a|+|ﬂ|)
I(ax)(ay)gn(,s)l_ ( t_s)

0

o

- 1\ _nin
)ﬂfN(t’sNSC(—\/:) N+ ’ Ia|+|ﬁlsn
t—s
Proposition 6. Let ¢ and y be smooth functions. If supp ¢ Nsupp Y
=0 and ge # (o;t), then p(x)GY(y) is a smoothing operator, that is for any
o, fp and N we have

(Y Pewmiolsca,
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where g(x,y) is the kernel of G.

Proof. By Proposition 4 we have (3% )“(aT)" g€ H s+, (0;1) and owing
to Lemma 1 we have

0 va 9 1 —O(xy +y4)°
Y \en SC__s+1+|a,.| n n_ "2 .
GG, el =<l \/;) exp(——- col¢'o)

Let xesupp @, yesuppy. Then x'#3y" or x,#y, If x'#)', then the
pseudo-local property for pseudo-differential operator leads to the above
estimate. If x,#y,, then it is clear that x,#0 or y,#0. Assume x,>¢,
then we have

oM x2
exp(— 5—0)_82—M( J) exp(—6-" a)< CpoMexp(— 5——)
for any M and §<J. So we get the assertion. q.e.d.

3-3. Asymptotic Expansion of I’(¢) for (¥). We assume that
a(t,x)=a(x"),b(t,x)=b(x") and satisfy (%) in §0. Other cases we shall
discuss at the end of this section.

We substitute the following function @;,(t,w;a,b) for @;,(t,w;d) in
Definition 7 for k< —1. Set for k< —1

D;, k(t w;a,b)

TERY P —("a)—k_l
__( e @t 0 +2”~/‘”—' fao+ )do' if 7>0,

N (—k NG

%0 -j-1 k=1
1 1 j+k+1 (=17) d‘tfwe (ag+c+7 = )2+2bJ'd(_a)___d

NCoN/ A a

b

o (—k-—1)!
if j<—1,

where k() ={(Z)e "}e".

We will give some remarks and proposition for @;,(¢,w;a,b). Note
that ‘ZZJj'k=bki5j'o if a=0. The condition (%) leads the well-posedness of the
definition of @;,. An operator W;, definied by a symbol @%;,(¢,w;a,b),
in this section, satisfies (3.6), (3.8), (3.9) and (3.7) instead of (3.7).

3.7y (a;—+B) W= Wy

0x,,
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Proposition 2'. Assume a and b are constants. Then it hold that

0

5—~j,k(t)w;a:b)=kzbj+l,k—l(t)w;ayb)) kSO
a

J -

—I;Wj'k(t,w;a,b)=k7/Uj'k_1(t,w;a,b), kSO.

Proof. It is sufficient to prove for j< —2, k< —1. We can prove
other cases by differentiating obtained equation for small j and k. For
j<—2, k< —1, we have

0
—ﬁ)j.k(t’ w;a, b)
a

_ 1 (\/' +k+1f (=9 77! tfwaat{e (aa+t+m)2+2tho}( o) k—ldo.
2

f (—=7—=Dv Jo (—k—D!
| BN (—T)—J_zdt-roe (aa+r+m2+2thoa(__Q_k__i

=ﬁ(zfﬁy o (=21 s (k=D

=k, - 1(t,0;a,b).
We can get the second equation easily. q.e.d.

DerFINITION 8. Let #, be the set of all finite sum of the functions
of the following form

{g(taxn:yn)= td(xn)laawj,k(t’xn+yn;ayb);
d’l:jakEZ’dZO)lZO,kSO,aZO, j—l—2d+max(k, —a)ss}.

Proposition 3. For any ge #, and he #,_, we have ve #,_, such
that

(aat (ai))V(t) G(t)  in Ix{x,>0},

0
(aax,,

W(Ols,—o=HE®  in L
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Proof. We may assume g={($2%=2%a) 5 Jkeéf and A=0. In other
cases we can reduce to this case by the similar method as Proposition
3. For the above g the following v of class #,_, is the solution

d 4td ss+1 -2 l+s+1-v
=‘z ) Z Z Cls,nv(za)u(_—xn')_—“—ﬁ)j—s—v+u—l k— >
45=0 (d—9)! ,Soo<v<it+s+1 (I+s+1—-v)! ’

where Cy; ,, are constants depending on I,s,u,v. In fact C, ,,=,;,Cs—
s+st+l+1) Cl,s,u,v=s+v-—qu+l_s+v—qu+l+1)(,“21) where we use qu=O
if s<gq. q.e.d.

We need another function space in this case.

DerFINITION 9. £, is the set of all finite sum of the functions of
the followig form

{g(t’ xl)xm €,’yn) = td(xn)lq(xly é:/)aazo l—[ Aiaiwj-k(t)xn +ym a(x’): b(x,))e_ﬂ(x”él)t;
i=1

dljkeZ,d>0,1>0k<0,0,>0,

q(x',&") is a polynomial with respect to &',

g belongs to ST, with m=s+2d+[—j—max{k, —cxo——z a;}},
2=

where j=%j a.
REMARK 7. For any jeZ we have
a®; 1 (t,x,;a,0) =W;_ 4 41 —bW;_4 4, k< —1.

So we may choose a5=0 in the above definition. Repeating the similar
argument of §3-1, we have

Lemma 1. ges#, has the following estimate

(%0t ¥n)* :
4 colé |2t),

~

lgl< C(%)er lexp(—o

for any 0<6<1.

1
Proof. By the nonnegativity of a we have |4,/<Ca?. Then it is
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sufficient to show

s 1 V)’ ,
(Gt ;] < () * texp( — 85I 1ezg)
\ﬁ 4t

fork<—1,aeR,,wheres= —[+j+max(k,—a). Incasej< —1 wehave

@ ______1__1_ '+k+1fw(—f)—j—ld
“tu= R G
o ()

o (—k—1)1°

. Xntyn, b -
a 1e (ut+tt+ 27t ) +2“‘/"‘du.

We note that
(E)_k_la,_1<{cu-f-l if k+a>0;
a - (A%M)—k—ﬂ”a—l(\ﬂ)kﬂ, otherwise.

Then we get the assertion. q.e.d.
Proposition 4. Let g belong to #,. Then we have:

(1) (%)a(%)ﬂgefs_lal_*_j%l Z(Jith the estimate

I

aél) (ax’)
1 2
sca,ﬂminuﬁ'l-'“',ﬁ'“b(j)”1+"2ﬂexp(—6(i"—}3’i—co|é'lzt).
t
(2) % gexs+2'
() &g & 8€H 54y
4) If reF, rg belongs to H ., ;.

Proof. It is sufficient to prove (1) for |¢|+|f|=1. In order to prove
the statement for |f|=1, we may assume ge J of the following form

g=

14

::

A4t %+ Y5 a(x'), b(x))e ™ PEE,
1

1]
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Then we have

0 n om N o
—g= Y A7t [] ASD %+ v alx),b(x))e I
0x;  p=1 i=1,i#p

n a L
+ 14508, %, 435 a(x), b )}e 1
i=1 X

-+

—

7 , , 0
AFDj (4, %, + Y5 a(x),b(x))(— —
1

B)te™Pex"
X,

1

=h1 +h2+h3.

We easily see that h;e# ., and hye ¥ ;. For h, we note that
2

0
gwj.k(t’ Xp+Vns a(x,)) b(x,))
1

0 ~ ’ ’ 0 ~ ’ ’ 0
=$‘wj,k(t’xn +yna(x'), b(x ))Al+%wj,k(t,xn +yu a(x),b(x ))5;11’

~ ’ ’ ~ ’ ’ 0
=kw]'+1,k— l(t’ »Xn +ym a(x ):b(x ))A1+kwj,k— 1(t,x,, +y,,,a(x ),b(x ))—a;-b
1

by Proposition 2'. So we get that h, belongs to #,, where
s =j+1+max{k—1,—3)"_,a;—3}. By the fact s’<s+3 we get the
assertion. It is easy to prove the asertion for |a|=1. (2)~(4) are gotten
by (3.6) and (3.8). q.e.d.

Owing to Lemma 1’ and proposition 4’ we get the following lemma
for the kernel g(¢,x',x,,5',y,) of operator G by the same way as Lemma 2.

Lemma 2'. (1) Assume a symbol g belong to #,. Then we have

d,,6 0 J0.,, 0
a O, B,
GG GG,

1 (%, +¥,)°
< C(—=2)stntlal + 18] +lan| +|Bnl g T
) exp( =07

Yrg(t, &', %, 3", ¥l

for any 0<d<1.

(2) If N>n—1, the kernel ky of the operator GA™Y satisfies
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1
|kN(t) x,)xn’yl)yn)l < C(—')s+ 1)

N
where A is the pseudo-differential operator with symbol <& >.

For the well-posedness of the operator G on LP(R",), we will discuss
in §4.

Theorem 1’ (Product formula).

reg= sz(r’g)’ zj(r)g)e” i
j=0 51+Sz—2

with the same notation of Theorem 1.

Theorem 2. For any g(t)eH, and h(t)e H,_, there exists
v(t)e H;_, such that

0
((—9;+q)ov(t)=g(t) mod # | in IXR",,
s—2
(a(x")i&, +b(x")) o v(2)l,, =0 =h(t) in IxR" 1.
REMARK 8. In this case we note that
(até,+b)cv=2y(ail,+b,v)=aXy(i,,v)+bv

because a(x’) and b(x’) are independent of &'

Corollary. For any N, any g(t)ye #, and h(t)e H,_, there exists
v(t)eH _, (v(t)=Zj-ow(t), wi(t)eH X j) Such that
s=2-2

0
(a+é)°v(t)=g(t) mod #,_5  in IXR",

(a(x")il, +b(x")) o ()|, =o=h(t) mod ' _5_, in IxR" 1.

If a(t,x’) or b(t,x") depends on t, we introduce symbols J;,(c,w;t)=
@; (0, w;a(t,x'),b(t,x')) and repeat the similar argument in §3-2. In this
case, the operator Z;,(t,5)=Y;,;(t—s;t) satisfies (3.18) of which the first
equation replaced by
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0

0
o G,

ox,

(

0 0
)Z)Zj,k(t»s) =RZ; 45— l(t,s)aa(t,x') +RZ; ;- 1(t,5)5£b(t,x')-

So Theorem 4 holds for (¥).

We note that in the above arguemt the following estimate is not
necessary.

0 1
|—al < Ca2.
ot
Now we consider the case that a(t,x’) and b(¢,x’) are complex valued

function satisfying (3.3). In this case we replace the integral domain
[0,00) in the definition of #@;, by the following line A.

A={re'® ) 0 <r<oo},

where 0 is chosen as

cos(0— arg(g)) <0, 10| < g

For example the definition of @, ,(t,w;a,b) is defined by

1,1 \k+1 —g) k-1 —(ag+=25)2+ 2bt .
Do = { _3:(2—\/;) .,'A((_—gl}_:me (ac 2~/t) Jddo-’ if a(t)x,)?éo;
0,k — i
B i a(t, ) =0.

4. Construction of an asymptotic expansion of the Poisson
operator

We discuss the construction of an asymptotic expansion of the Poisson
operator with respect to () in this section. The similar arguments can
be repeated for other boundary conditions.

Proposition 7. Let g(o;t) belong to H (o;t). If s<1, the following
operator has the limit

t
lim J g(t—o,x',x,,D',0;t)h(o, )do

xn—=>+0J 0

for h(t,x)e C((0,T); #(R"™1)).
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Proof. By (3.19) we have

o

“ta 1 x2 ,
<C,p<i'> lal(ﬁ)ﬁlexf)(—é@—com |20') (0<d<).

Ve(o,x',x,,&,0;)|

For x,>0 the above operator is well-defined for any s and smooth with
respect to x. If s<1, the operators is well-defined even in x,>0.
q.e.d.

For the special case of s=1, we have

Proposition 8. (1) If t>0, then we have

lim J t @, o0, x,)h(t— 6)do = —%h(t)

xn—0J 0

for he C((0,T)).
(2) We have

Xn_

t 1 (vt
J Wy,0(0,X,)h(t — 0)do = h(t)——J exp(—0?)do

o J
— f N (o x”)a{fh(t —00)d0}do
0

0
for he CY((0, T)).

Proof. We can write

t t 2
by,0(0,x,)h(t —0)d =—J h(t )do.
J‘Owl,o o,x o)do \/_ \/_3exp o)do

Set ,u=2—"j‘;. Then

2
Xn

5.
4pu?

Jt Dy o(0,x,)h(t—0)do=—F+ f exp(— uz)h(t—

0

Hence when x, tends to 0, this tends to i;jgoexp(—az)dah(t)= —3h(2).
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q.e.d.

Corollary 1. Let g(t,x',%,,&,5,) =, o(t, %, +y,)e 2" Then

t

1
lim | g(t—o,x',x,,D',0)h(o, )doc= —Eh(t,x') t>0,
xn—0J 0

for he C((0, T)); S (R"™1)).

Corollary 2. Let ¢(t,s) be a C' function satisfying the following
inequalities for a positive constant M

()] < C(t—s)™, %«p(t,snscu,sw-‘.

Then the following estimate

t
|j 2Z’l,O(t - a)xn)<p(a’ s)dal < C(t - S)M
holds.

Proof. Apply Proposition 8 (2) for ¢(c,s). Then we have

t—s

t
f wl,O(t —0a, x,,)(p(a,s)da = J‘ zz}1.()(0-1 xn)(p(t —0, S)dO'

s 0

| (i = 9
= (p(t,s)jf exp(—az)da—f @, o(0, x,,)a{J‘aqo(t—Ga,s)dO}da.
m 0

© 0

We get the assertion by the assumption for ¢ and the following facts
W, o(0,x,)0 is bounded and [t—o—s|<|t—00—s|<|t—s|, for 0<OLI.

q.e.d.

Theorem 5. Let N be any integer.

(1) Wecan findvge A o(t,s) for Brelatedto (N"), (R) and (O) such that
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0
(5+¢j)ovl,=s~ in I, xR",,

Bov,,+227)1'0(t—s,x,,+y,,)e'ﬁ(’_s)|xn=o=r~ in [ x R"™ 1,
with syeA _yi1(t,s) and rye A _y(t,s).

(2) We can find vge A ((t,s) for B related to (D) and (&) such that

0
(5;+(j)ovB=sN in I,x R",,

B°vB+2ib1’0(t_s)xn+yn)e_ﬁ(t_8)lxn=0=rN n stRn_l’
with sy€ A _y4+1(L,s) and rye A _\(t,s)

Proof. In any case the main term of wvp(t,s) is —2%@; _;(t—s,x,+y,:
b(t,x',E))e Pt~ Apply Theorem 2 or Theorem 2. we get the
assertion. q.e.d.

DerFINITION 13. For a function he C((0, T); Z(R"™ 1)) we set
t
(Zgh)(t.s)= j vg(t—0,x',x,,D',0;t)h(o,")do.

Proposition 9. For x,>0,(Zgh)(t,s) is well-defined and
L(Zgh)(t,9)=(Sh)(t,s)  in I,xR",,

lim B(t)(Zgh)(t,s)=h(t) + (Rh)(t,s)  in I,x R"™ 1,

xn—0

lim(Zgh)(t,5)=0  in R",

t—s

where S and R are integral operators of the form

ts(t,a,x,,)h(a)da, (Rh)(t,s)= ft r(t,0)h(0c)do

S

(Sh)(t,5)=f

S
with smoothing kernels in the sense

Jd,, 0 1 dx?
a i} t, \X, Sca —N+n+1+|a|+|B| _ n
o) Gy St "’(\/ﬁ) (=3

)

I
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d,, 0 1
a B t, SC —N+n+|a|+|ﬂ|.
I(ax/) (ay/) T( .Y)l a,ﬂ(\/;)

Proof. By the definition of Zg we have

L(Zgh)(t,s) =limvg(t—s,x",x,,D',0; t)h(s,")

st

+ Jt(%+ O)Vy(t—a;t)h(a, )do + r(P— O)V(t—o;t)h(a, )do

= f Sy(t—o;t)h(a,")do + f t(P—Q)VB(t—a; t)h(o,")do,

s s

where we used that lim,, Vg(t—s;t)f=0 at x,>0 for any continuous
function f. By the facts that ry(o;t)e # _y(0;t), sy(o;t)€H _Ny(0;0),
vg(o;t)e Ho(0;t),P—QeF' 5,y and (3.20), we get the first part of the
assertion. From Theorem 5 it holds that

t
B(t)(Zgh)(t,s)= J B(t)vg(t—o0,x',x,,D',0;t)h(0,")do
t
= 2[ Wy o(t—a,x,)e” =P DIp(q, \do

t
+ f ry(t—o,x',x,,D',0;t)h(a, )do.

s

By Proposition 7, Proposition 8 and the above equation we get

lim B(t)(Zgh)(t,s)=h(t) + f trN(t—a,x’,O,D’,O; t)h(a,")do.

xn—=0 s

q.e.d.

5. LP(R") boundedness of operators of 7

In this section we shall show that

Proposition 10. Let g(o;t) belong to # (0;t). Then an operator
G(o;t) corresponded to g(o;t) is a bounded operator on LP(R") for 1 <p< o0
if 6>0 or s<0. Moreover we have the estimate
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IG@DI <y (O<o<T).

N

Theorem 6. For operators U(t) constructed by Theorem C and V y(t,s)
constructed tn Theorem 4, we have

limU(t)p=¢ in LP(R")

t—0

and

lim Vy(2,0)p=0 in LP(R")

-0
for any @ e LP(R") and for any integer N.

For the proof of Proposition 10 and Theorem 6 we prepare the
following lemma and propositions.

Lemma 4. Let q(x',v,& ,w) satisfy

0,,0

(G G/l < Cap<t> 11" PIH (@),

where H(v,w) satisfies for an interval J in R
(5.1) JH(v,w)dvsCO, fH(v,w)dwsCo.
J J
Then Lq(x',v,D',w)(p(-,w)dw defined by
Qm)~"* IJ J e T a(x v, & w)p(y ,w)dy' dE dw
JJRn-1xRn-1
is a bounded operator on LP(R"™ ! xJ) for 1 <p<oo with some constant C
||J q(x’,v,D’,w)(p(-,w)dwlle(Rn- xS CC, ”‘P”Lx’(nn- 1 x Jy-
J
Proof. Set

u(x',v)= f q(x',v, D', w) (-, w)dw
J
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=Q2mn)~"* 1f f e g(x' 0, & w)p(y ,w)dy' dE' dw.
JJR-1xRn-1

Then the boundedness of pseudo-differential operators of class S‘L,(R”‘l)
on LP(R"™ ') indicates that there exist / and C such that

(5.2) IIu(',v)Hmnn—n)SC’J- lgC, 0, W1 @(,w) || Logn-1de0.
J

By the assumption we have
la(, 0,7, w)l® < CH(v, ),

where C;=max ;4 5<iC,p- So the Hausdorff-Young theorem concludes

to
(5.3) J {J laC:, 2, W)i”l9(, @)l Locgn- ndw}?do < CECE|| @ | Lo qgn- 1 x 1)-
7 Ji

By (5.2) and (5.3) we get the assertion, taking C=CC,. q.e.d.

Proof of Proposition 10. For the operators corresponding to (2),
(A), (0) and (#) we can apply Proposition 7, taking

2
H(v,w)= (L_)s + 1exp( — 5(0 +w)

7. " ),  J=(0,c0).
g

Then we get the assertion. But in case (&) we can not apply the above
argument to Proposition 4'-(1). In case (&) we have the following
estimate for g(o;1?).

0 a d B 1 ais+1+Lﬂl _ (xn+yn)2_ n2
|(a£/) (ax/) gl Sca,ﬁ(léll"'f;) (\/;) 2 exp( 5 4g COIé | 6)'

Now let Y(x) be a smooth funcion such that

1, if |r7|<1;

V= {0, if > 2.
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Set

g(0;0) =Y (&1 /0)g(o;t) + (1 =Y (&' /0))g(o; 1) =g, + 5.

Then g,(0;t) satisfies the assumption of Lemma 4 with §=1. On the
other hand, g,(0,x",x,,D’,y,;t) has a kernel g,(0,%",x,,y’,¥,; t) defined below

gl(aax,’xn)y,)yn; t) = (277:)_(”_ l)J\
Rn

V(E1/0)8(0,x %, 5,y ) TY7EdE
-1

=(2n)“"“’f (a8 %0 i t)
Rn— 1
x {14 (— AoV o(1€1/0)A + 0N —y|2M)~1de,

N>§. So we have

' 1 _ V)
810,550,305 )] < Ol Lexp( — 5 V)
\/(; 40

« A= Yoonge 1)
A \/;) (

where F(2)=(1+2*")"!. Then

<2 ),
Jo

J‘ Igl(a;xlaxnry’)yn; t)ldxly J Igl(o-)x’axmylyyn; t)ldy’
Rn-1 Rn-1

< C(—l—)s+ lexp{— 5(—96—"-’—3)—")2}

- \/g 40

Then we are able to apply Proposition 11 below and get the
assertion. q.e.d.

Proposition 11. Let r(x',v,y’,w) satisfy

J |r(x', 0,y ,w)|dx’ < H(v,w),
Rn—l

f [r(x',v,y", w)ldy' < H(v,w),
Rn—l
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with H(v,w) satisfying (5.1). Then an operator (Rp)(x',v) defined by
(Rp)(x',v)= j JfR,.-;r(x',v,y’,w)<p(y’,w)dy’dw is a bounded operator on
LP(R" ' x J) for 1<p<c0.

For the proof of Theorem 6 we prepare

Proposition 12. The fundamental solution U(t) constructed in Theorem
C satisfies

M U™ - ¢ in LX(R%)
as t tends to 0.

(2) Set v={ o(t,%,, +¥,)— 2b(t,x" Do _1(t,%,+ ¥, a(t,x),b(t,x'))}e #" or
v= {w0,0(t)xm +yn)—2b(tyxlyél)w0,— l(t)xn+yn;b(t’x,)é,))}e_ﬂt' Then

V(t)yp —0 in LP(R")

as t tends to 0.

Proof. The fundamental solution U(t) for the Cauchy problem is
a pseudodifferential operator of which symbol has the following expansion
by Theorem C.

u(t) =uo(t) +u(t) +u () +--- +uy(t)+ -,
where u;(t;x,8)=fi(t;x,)exp(—p,(x,&)t). These functions fi(t;x,{) are
polymonials with respect to ¢ and ¢, satisfying the equation k—2]/= —j,

where k is the degree of { and [ is that of . 'The operator u;(t;x,D) has
kernel

ﬁj(t;x,x—y)=(2n)‘”f u,(t; %, E)e' ™~ ed¢
R"

y—X
),

T

where Kj(t;x,2) satisfies

J K {(t; %, 2)ldz < C /1.
R"

It is well-known that pseudo-differential operators of class SY , are
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L?(R™-bounded for 1<p<oo. The symbol u, convergences to 0 in
the weak sense, that is, limuy(s;x,£)=0 for {{;||<B}. This indicates

-0
that

lin(';UO(t))5=x in L?(R")
-
for a bounded continuous function y defined on R". We have
lirr;Uj(t)x=0 in LP(R") g=1)
-
by the similar methods of Proposition 10. Then we get
lin(}U(t)x=x in LP(R").
-

We have the assertion (1) for a function ¢ e L?(R"), applying the above
arguments for ¢ 7.

(2) Set v;=wgee . Then V,(t)p=Uy(t)¢~ by the following
equality given in Remark 1.

Wo,00(t,x,) =wo,0(t; %5, D)~ .
By (1) we have

lLimV,(t)p=¢~  in LP(R").

t—0

So we have

limV,()¢=0  in LP(R").

t—0

Setv,=v—v,. Incase(9D),(AN), (&), v,belongsto# _;. Hence we get

limV,(t)p=0  in LP(R")

t=0

by Proposition 10. It is nessesary to consider only cases (0) and (¥). We
can write the operator I7,(t) corresponding to a symbol v,(t) as follows.

Vz(t)‘l’(xn) = f ’Uz(t,x,,me’,yn)‘P(',yn)dyn-
0
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We extend the operator V,(#) as an integral-pseudodifferential operator
V'5(t) on LP(R") of symbol v,(¢,x',x,,&,y,) which is defined as

Va(t)f=J~ v3(6, %, %, D', 3,) f (Y)Y,

where

V(8% %0, 8\ y), i X, +9,20;
0, otherwise.

'03(t,x',x", é’)yn) = {

Then for x,>0 we have
(5.4) Vo)) =V3(t)p™ (x,).

Assume that

(5.5) mVyOW =y  in LAR"),
t-0
where
l‘/;(x”“x"n) =0
for (0), or
(56) !Z(x’,x”)= { O_lp(x', ——x")’ if a(o,xi)=0’
’ otherwise.

for (). Then by (5.4) it is clear that V,(f)¢ —» 0 in L?(R").

For the proof of (5.5), repeating the same argument of Proposition
10, we have L?(R") boundedness for I/5(¢). So it is sufficient to prove
(5.5) for smooth functions. Set for case (0)

© (4, [th(t,x', D) _ 1024 2bie— e D
Vi = f f 4/tb(t,%, ) )=t ur+2byia=pix PUAGY (-, — 5, + 24/ tp0)dt.
0 Jo T

v

Then we have Vit —v,(t,x",D'W(, —x,) converges to 0 in LP(R") as
t — 0, where

® [*4 /th(t,x',E") _ " P
04=JJ \/( é)e (a+u)2+2thado.due B(x', &t
oJo n

Jr

=Jw2\ﬁ{e—(a2+2b¢ia_e—az}do.e—p(x',g')z.
0



AsyMPTOTIC EXPANISION OF FUNDAMENTAL SOLUTION 707

On the other hand v,(¢,%",D)WY(:, —x,) converges to 0 in L?(R") as t —» 0,
where we use the fact

[e{e o +2ovie e~ o*}dge P4 weakly onverges to 0 in S, as ¢t — 0.

Set for case (&)
o (04 4 , , _ o

Vs(t)|//=j J _\@).(t_"ﬁe-(a(t.x)a+u) +2bJte — B(x ‘D)'da'l,b(',—x,,+2\/iu)dﬂ.
0do

Then we have V()Y —vs(t,x',D')W(:, —x,) converges to 0 in L?(R") as
t — 0, where

vg= f"’f’%ﬁb(t, d )e—(a(x',;')a+,4)2 + 2bJ;ada.d#e—ﬁ(x',{')t
oJo T

B { 02/ n{e Ve o= dge N i a(x,0)#£0;

— e BN otherwise.

On the other hand vs(t,x’,D')(-, —x,) converges to |/ defined as (5.6) in
LP(R™ as t— 0. q.e.d.

Proof of Theorem 6. The symbol of V(t,0) is obtained by
oy =(@o,0—2b(t)Dg,_1)e 7'+,

with v'€ # _; or v e # _1 (for the problem (<)). By Proposition 10 and
Proposition 12 we get the assertion. q.e.d.

Set an integral operator (S h)(t) of the following form
t
(Jgh)(t)=f g(t—o,x',x,,D',0;t)h(c, )do.
0

By the same method of Proposition 10 we have the following Lemma

. , vy
5. In this case, we apply Lemma 4 taking H(v,w)=( \/v—l_—‘;)s 1o=30-w),

Lemma S. Let g(o;t) belong to # ((a;t). Then (S h)(t) is a bounded
opertor on LP(R" ™! x (0, T)), if x,>00rs<1. Moreover we have the estimate
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Cx{™s*D|h|, if s>1;
O { W s>
Cllh|, otherwise.
Theorem 7. If vy is the symbol which is constructed in Theorem 5,
we have

BZh(t,0) - h(2) in LP(R"™ ! x (0, T))
as x,— 0.

Proof. Noting Zz=.#, , we obtain the assertion by Corollary 1 of
Proposition 8 and the above LLemma 5.

6. Global construction of the fundamental solution and the
proof of Theorem I

Let {Q,},.« be a finite open covering of M. Let A" be a subset of
A such that Q,(ue A") are diffeomorphic to domains Q, in R",, with the
property I'nQ,(ue A") are diffeomorphic to domains in {(x',x,);x,=0}
and dis(Q,,I)>0>0 for ue #\N". Let {¢,},.4 be a partition of unity
subordinate to the covering {Q,},.4 and let {y,},. 4 be CP(Q,) functions
such that y,=1 on supp ¢,.

In each local patch (€,),.4 the problem is reducecd to the following
form.

(1)For ue NV
E o
(—+P‘,)uu=0 in I, xR",
ot
(L,,B,) B,u,l, -0=0 in I,xR" !
Uyly =g =m,(x) in R".
(2)For pue H\N
0
(&+P‘l)uu=0 in I;xR"
(L) |
uu|,=s=mu(x) in R"

where P,=P on Q,, B,=B on Q,nI',m,=¢,m.

By the assumption P, can be extended to be strongly elliptic in
R". Choosing a covering {Q,},. 4 sufficiently small, we can assume that
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P, satisfies the assumption (3.1).

Let U*(t)(ue #\N) be the fundamental solution for the problem (L)
which is consructed in §2. ER(¢,s)(ue A") be the approximate solution
for (L,,B,) constructed in §3, that is,

L EN(t,s)—G"(t,s)e A _yi4(2,5),
BuE}‘G(t,S)—Fu(t,S)Gf_N(t,S),
Eit,)=1.

By Theorem 4 G*(t,s) and F*(t,s) are smoothing operators with kernels
g'(t,s), f*(t,s) which saisfy

0,0
6.1 (—)Pg"(e, <C, —N+n+1+|a|+|ﬂ;’

3., 0
ax/) (ayl

0\, =~
VG (19 < Col

)—N+n+|a|+|ﬂ|+|ﬂ,,].
ayn \/t—S

(6.2) I
Set

EN(t’s):‘ Zwu %(t)s)(pu"_ Z quu(t_s)(pu‘

ueN neM\N

Then

LEy(t,8)= Y {V,LENt, )9, + [L,Y,]EN(2,5)9,}

ueN

+ 2 (Y LUNt—5)p,+ LY, Ut —5)p,}

neM\N

= Y {¥,.G"(t,9)0,+ [P,V IEL,5)p,}

peN

+ Z {[P"//u]Uu(t_s)(pu},

peM\N

BME(,9)lr= Y, {,B.(DEN2,9)¢, + B, (1), Y, JENt,5)9,}Ir

ueN

=Y {Y,F"(t,9)p,+[B,(0), ¥, EN(t, )0} r,

neN

Extt)= Y Y, Ex@t Do, + Y Y U t—1e,

neN neM\N
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Hence we have

Proposition 13. For any fixed N, Ey(t,s) defined above satisfies

LEy(t,s)=G(t,s),
B(t)EN(t)s) = F(t,S),
EN(t’ t) = I)

where G(t,s) and F(t,s) are operators whose kernels §(t,s) and f(t,s) satisfy
(6.1) and (6.2) respectively.

Proof. supp[Pu,lllﬂ]nsupp(pu=(0, supp[B,,y,]nsuppp,=0 by the
definition of §,. Owing to the above fact and the pseudo-local property
of #((o;t) and ST, (6.1) and (6.2) hold for g(¢,s) and f(t,s) respectively.

q.e.d.

On the other hand in §4 we construct the approximate Poisson operator
Z in R", for any pue A" such that

t
(Z3(t,9)h)(x',x,) = J vg, (t—0,%',x,,D',0;t)h(0,")do
satisfies
L, (Z(t,5)h) = S"(¢,5)h in I, x R",

lim B,()(Zi(t,5)k) = h(t)+ R*(t,s)h  in I;x R"™!

xn—0

lim(Z%(t,s)h) =0 in R,
t—s
where S*(t,s) and R*(t,s) are integral operators of the form

t
(S*(t,)h)(x', x,) =f f s(t,0,%,;%',y)h(0,y")dy'do,
s Rn—l

(RH(t,9)h)(x") = f f (t,0;x",y")h(0,y")dy'do
sJ Rn-1
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with smoothing kernels in the sense

d,, 0 0 1
6.3 _a___a.._ﬁut’ \ X} 'y SC“ —N+n+1+|a|+[an|+|ﬂ|’
( ) I(ax/) (axn) (6y') sH(2, s, %% y)l § mﬂ(\/:)
(6.4) l(i)a(-a—)ﬁr“(t,s;x’,y’)lgCa ﬂ( )—N+n+|a|+|ﬂ|_
0x"” "0y’ = St—s

Set Zy(t,s) =Zue«4’ Y, Z(t,s)p,. By the similar argument to Ey(t,s), we
get that Zg(t,s) satisfies the following equations

LZg(t,s)=S(t,s) in I;x M,
B(t)Zg(t,s)=1+R(t,s) in I;xT,

limZy(t,5)=0  in M,

t—s

where opeators S(¢,5) and R(¢,s) have kernels §(¢,s) and #(t,s) satisfying
(6.3) and (6.4), respectivily.

Proposition 14. We can construct an operator Zyg of the form
(Zg(t,5)h) = ['Dp(t,0)h(0)do such that

LZg(t,s5)=S,(t,s)  in I,x M,
B(t)Zg(t,s)=I  in I,xT,

limZy(t,5)=0  in M,

t—s

with S,(t,s) of which kernel §,(t,s) satisfies (6.3).

Proof. Let ¢(t,s) be the solution of the equation

t

r(t,s)+ o(t,s)+ J r(t,0) @(0,s)da=0,

s

where 7(t,0)  ¢(0,s) means that

(r(t,0) @(0,5))(x',2") = I r(t,0;%,y")p(0,sy,2)dy'.
r
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Then @(t,s) also satisfies (6.4). Set

vg(t,s)= Z w”vﬂﬂ(t—s,x’,x,,,D’, 0;)p,.

neN

Then ZB(t,s)h=j§vB(t,0')h(a)da by the definition. Let 7z be the solu-
tion of

t

27B(tas) = UB(l,S) + J vB(t) O') ’ (P(U,S)da-

Then we have

Zﬂ(t)s)h =ZB(tys)hl)
where h(t) =h(t) +I§(p(t,,u) -h(u)dp. So we obtain the following equation:
LZy(t,s)h=S(t,5)h,

=S(t,s)h+J §(t,0)( J ¢(o,u)" h(p)dp)do

t t
=S(t,s)h+f (J §(t,0) @(o,u)do) h(p)dp
sJp
=.S,(¢,5)h.
The kernel §,(t,s) of an operator S,(t,s) is given by

(6.5) §,(t,5) =5(t,5) + f 's(t,a)-cp(a,s)da.

So §,(t,s) also satisfies (6.3). On the other hand on I' we have

B(t)Zy(t,s)h=h,(t) + R(t,5)h,

=h(t)+ f @(t, 1) h(u)dp

§

+f r(t,0) (h(0) +J @(o, ) h(pdp)do

s s

t

=h(t)+ f (r(t,0) +9(t,0) + J r(t, 1) @(u,0)dp) h(o)do

a
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=h(t).

The last equation follows by the definition of ¢(t,s).
q.e.d.

Proof of Theorem I. Let EN,w(t,s)=EN(t,s)—Z_B(t,s)f(~,s). Then
( LEN'm(t,S)=G(t,8)—Sl(t,S)f(',S)=G1(t,S) in st M)
B(t)Ey (t,5)=0 in I, xT,

limEy ,(t,5)=1 in M,

t—s

where G(t,s) has the kernel g,(¢,s) defined by
t i~
(6.6) §1(t,8)=§(t,8)—f51(1,6)'f(0,8)d6-

So g,(t,s) also satisfies (6.1). Let Y/(¢,5) be the solution of the followig
equation

£1(t,8)+y(t,5)+ J t§1(t,a)®t//(o,s)da=0,
where g,(t,6)Oy(0,s) means that
&(t,0)OY(0,9))(x,2) = Lﬁl(t,a;x,y)l//(o,S;y,z)dy-
Then the following &(t,s)
(6.7) &(t,5) = ey o(t,5) + f teN,w(t,a)ow(a,s)da

is the kernel of the fundamental solution. In fact it is easy to show the
kernel of LE(t,s) coincides with g,(¢,s) +¥(z,s) + [1§,(t,6)OY(a,s)do, which
is equal to 0 by the definition of g,(¢,s). Now (¢,0) also satisfies (6.1)
because §,(¢,0) satisfies (6.1). By the definition of Ey ,(t,s) it holds

(6.8) éNyw(t,s)=§N(t,s)—JtﬁB(t,a)-f(o,s)a’a.
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We note also that

|é(2.5) — én(t,5)| < C/t—sN "o,

if we prove the following Lemma 6. Ey(t,s) is LP?(M)-bounded by
Proposition 10. So E(t,s) is also LP(M)-bounded. Moreover we have
lim,_, E(t,s)m=m in L?(M) by Theorem 6. q.e.d.

Corollary. The Poisson operator is obtained of the form Z(t,s)h
= [42(t,0)h(0)do, where

2(t,s)=Tg(t,s)— fe(t, 0)OS§,(0,s)do.

Lemma 6. If Y(o,s) satisfy (6.1) or (6.3), then

(6.9) IJIEN(t,a)Ow(a,s)dal <C(/t—sN " No
(6.10) l ~rff’m,m(t,tf)(Dtlf(O',S)dal <C(/t—sN 7" Mo,

If #(t,s) satisfy (6.2) or (6.4), then
(6.11) I J tva(t,o)-?(a,s)dalsC(\/z—:s)”‘"‘”",

where N, is a fixed integer such that Ny>n—1.

Proof. Owing to that the symbol ef of E% belongs to #, we
have

|kernel of (E%(t,0)A~N)|<C

t—o

for No>n—1 by Lemma 2. By the assumption we have

1
[kernel of (AYW(a,s))| < C(——==) N +n*Not1,
o—s
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So (6.9) holds. (6.10) is clear by the fact that j‘f(u, o)OVY(o,s)do satisfies
(6.2) and by the following equation.

J (EN, > —&n)(t,0)OY(0,5)do
= “f {J Ty(t,w) f(u,0)du} Oy (o, s)do

=— J 5B(t,u)'{Jvf(u,a)Qt//(a,s)da}du-

For the proof of (6.11) we devide into two cases.
1°.  For (0),(N),(R).

It is cleat that vg, belongs to #,. So we have

|vg,(t,0)| <C !
t1—o

and also we get by Lemma 2

1
|kernel of (VB#A_N")l <C
t—ao

for No>n—1. We also get
(6.12) Ikernel of (AYR(g,s))| < C(—r) N +n+No
o—sS

by (6.2). So we get

IJ‘t{)B(t,O')-r(o',s)dﬂ < C(\/:g)N—n—N(ﬁ iy

2°. For (2) and (¥).

It is clear vg, belongs to ;. We apply Proposition 15 below and (6.12)
to the main term @, ge (@ _ e~ #) of vg, for (2)((¥)), respectively.
Then we get (6.11). q.e.d.
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Proposition 15. Let g(t,x',x,, &)=, _(t,x,)e P or g(t,x,x,,
&)=, o(t, x,: a,b)e P Then the operator A =_[;g(t—a,x’,x,,,D’)R(a,s)
do has the kernel G which satisfies |6 < C(\/t—s)¥ " ~No under the assumption
that R(o,s) has the kernel 7(c,s) which satisfies (6.2) or (6.4).

Proof. By the definition of g we have

t
A= J Dy o(t—a,x,)e PPN DN (D)~ NoA(D'YNOR(a, 5)do.
Choose Ny>n—1. The kernel of e A*"DN-9A (D)~ NoA(D')N°R(a,s) is

estimated by C(/o—s)""""N°_ So we can apply the argument of Corollary
2 of Proposition 8, which completes the proof. q.e.d.

7. Applications to the asymptotic behavior

We calculate T,(#) for all boundary value problems introduced in
§0 and give the proof of Theorem II.

For any fixed point x°e M, choose an open covering as stated in
the previous section such that {Q,},, x°€Q, and choose a partition of
unity {¢,} subordinate to {Q,} such that ¢,(x°)=1, Then we obtain

é(t,0;x°,x%) — &x(¢,0; x°,x°) = o(z")

for any N as stated in the proof of Theorem I. If x°¢TI", the difference
of the fundamental solution of the intial-boundary value problem and
that of the Cauchy problem is of any power of t. Thus we have

&(t,0;4°,2%) ~ UM(1;x°,x%) = (t;2%,0)~ 3 £72HIC (x%),
j=0

where

Cj(x°)=(2n)_”f uy(1;%°,&)de.
R"

If x%°eT", the approximate of the fundamental solution E} for the
intial-boundary value problem (L,,B,) is obtained in the previous section
as Ex(t)=U"(t)+ Vy(t,0). We have out of T’

trVx(t,0) ~o(t") for any [
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for any boundary problem considered in this paper owing to Theorem
3, Lemma 2 and Lemma 2'. Also we have the expansion

trV3(t0)~ Y £ 2424 (x)
i=0

J

on I for (2), (A), (#) and (O) because of Theorem 3 and the definition
of #;.
We will prove in this section that
ftrV},(t,O)dx,,~ Z t
o .

ji=0

-3+3+ip (v
Dj(x)

and calculate Dy(x"),D,(x') for (2), (N), (&) and (0). We consider the

singular problem in 4°.

19 The asymptotic behavior of the trace of the fundamental solution for the
Cauchy problem.

Let U(t) be the fundamental solution for the Cauchy problem, that is,

d
LU=(E+P)U(t)=0 in (0,T)xM,
Uuio)y=1 on M.
In a local patch U(t) can be obtained as a pseudo-differential operator

with symbol u(t) =uy(t) +u,(t)+u,(t)+---, where u;(t)=f(t)uo(t) are
defined as (2.1) and (2.2). If we calculate

Cj(x)=(2n)‘"J u,j(1;,8)d¢,
R'l
we get

tr(U(t)) ~ iot‘%+fcj(x).

J

Let g be the Riemannian mertic of M. Set

0 0 . _
g =28 ), &F=(g) "

A YA D
Ox; 0x,
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Then the symbol of P=—(A+h) is given by

pr= Z”: g‘ikfjfk,

Jk=1

——wZ{Z ot Zy%L—G+mMp

j=1 k= 1
P0=0’
where G =det(g").

Now we fix a local coordinate such that g" satisfies the following
conditions at a fix point x°. The first derivatives of g vanish at x° and
gij(x°)=5,-j. For simplicity we put x°=0. Then we have by (2.2)

( uo(t)O) é) = exp(— 'é'zt)) uj(t90) é) =f](t’ O) é)uo(t’ O) é) (]2 1),
110,01 3 O,

n 2

fﬂtOér———{Z(th)L+2§:( R)O0)EE+2 Y, %aa g7)(0)&¢;
l

jl=1 xl i,j,l=1

n 9 ) n a
+ ) ((5“)28’")(0)5151"’(;(0) 2 ( )G(0)¢:&;5}
ijl=1 0x; ii=1 0x,0%;
2 3 n 62

2 Goant VO

3 i,j,lbm=1

“+—

where h=Z;3=lhj(x)a—f;;. Then we have
r
(2m)" fzm1oo& By,

IRI0)  divh(0)

Qn)- f u_(1;0,&)dé = (F(Z)){

4 2
4 S (2Pe0- $ (2o,
6:_1:1 i,j=1 ax;a j
Noting the following equation
S gl o i _
L;%)X);&%ﬂ@JK
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we get
r 1
C0(0)=(_¥)ﬂ’
T
_ Ty K IRIO)  divh(0)
CI(O)_( 27[){3 2 > 3.

By the fact IMdivth=O, we get the (0) and half part of (2) of
Theorem I1.

2°  The asymptotic behavior for Dirichlet and that of Neumann
boundary conditions. We calculate the trace of the opeator I(2).

Take a local coordinate as in §6. We consider about the Neumann
condition. From Lemma 3 in this case we must solve the following
equation asymptotically.

(%+tj)ov(t)=0 in IxR",

@b (i) o v(®)ls =0 =k(t, %, &', =)D in IXR'T,

where k(t’ x') é’y én) = k(tr x,) é) = 1Zjv=+0n * 2(5;1 ou ‘)(l) xl) 0) é)(uo(ts x’)O) f)) -1 .
Here we use the asymptotic expansion u(t)~ 2 izottj(t) (ui(t)=fi()uy(t)).
We will calculate k(t,x’,£). Set

Jj Fi 2
u}(t)=k;o[(§)“u,-_k(t)1*:—!.

Then we have
u(t)~ Y, uj(v),
j=0
where

ujf(t)=hj(t,x,f',€,,)u6(t), with h;e F _;.

Using the above notations, we have k(¢,x',&)= —i&,—i& by —GLh ) +F
with K'e # _;. We get specially

0
pZ)*xn'

ho=1, h1=ﬁ—(ax
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We will calculate the asymptotic y(¢) of v(¢) such that v—ye# _,. Set
w=w; —v(t), where

0 .
(72) wy = {1 +f1(t)x) é,’ - én) +xnt(5;p2)*(xl) 6,) - in)}w0,0exp(_ﬂt)'

Then w must satisfy

(£+é)ow(t)=_(§;+q)owl(t) in IxXR",

@) ow(t)y,-o=0 in IxR"!

(7.3)

The main part of the above equation (7.3) is

0 . Vs =Bt n
—w+) (g2, w) = —{p1 — B +x,(r, +7,)} Do o€ in IxXR',

ot
(&) cw(t)l,,=0=0 in IxR" !

(7.4)

where we used the following notations:
! a *
ﬁl(t)x)5)=p1(t)x>€)_én)) 72=(£p2) .

If the boundary condition is the Dirichlet condition or the Neumann
condition, according to the above argument we get the main part of V(¢)
as follows.

Lemma 7. Set

ky=(F; +tx, 7)) Do 0e Pled _,,

ky={p1— D} +x,(rs+7,)} g oe PeH _,.
Then we get
(1) (Dirichlet) v(t)—yp(t) belongs to H _, with

Yp=—Dg e ¥ —k;+wp,

where wp€ H# _, is the solution of the following equations.

0
awl)"i‘ZO(qZ,wD):kz mOd%o in Ix R'_'*,,

wp(t)ly,=0=0 in IxR" 1!,
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(2) (Neumann) v(t)—yy(t) belongs to H# _, with
yN=ZT)0’Oe—BI+k1 +wN,

where wy€ H _, is the solution of the follwing equations.

0
‘a“th'*'Zo(‘Iz’wN):—kz mod g in IxRY,
(iw) own(Bly,=0=0 in IxR""'.

We prepare some statement to calculate the trace of Iy for the
Dirichlet problem and the Neumann problem.

Lemma 8. Let v, and v_ be the solution of the following equation

0

o+ Tola00) =" ")f o Mf(,E)  in IXRY,
()00, (Dlyoo=0 in IXRY,

a ( n)l —pt : n
R YR (&) in IxRY,

v_(t)|y,=0=0 in IxR" 1

Then we have

)

~

+ ~
Dj_y-s0+Cii1®j_1-2.0}

e (zxn)l+1—s
€ f(x,i){0§<l T

where

1 1 -
Cs=2(—1)s+1, Cz++1=i(—1)l, Cryy=0.

(2) We can calculate tr V ,.(t) corresponding to v, as

J\ tr V. (t)dx,
0
_(=1yc,0

t1+ 2 (2 )—n+1 J‘ e—ﬁ(x’,{')tf(xl’é/)dé/,
16I'(54+2) o
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where
C,.(h)=1+3, C_(D=I1+1.

Here we used Proposition 16 below to obtain (2) of Lemma 7.

Proposition 16. For any fixed positive consant &, we have

2x,)! .
J!tr[( 7'”) W, 0e” P&"DVf(x' . D")]dx,
0 .

N(_il).l 5 ~-n+1 = p(x", &)t r oz ’
TR f f,&)dE,

where

L W0 ]y 20, L =0 (pez.)
M(—p+D) 2 =0 1 -

Corollary. Let g(t) belong to ;. Then
j+n—1
ftr G(t)dx,=0(t"" 2 ).
0

By Theorem 3 and the above Corollary we have

Theorem 8. We have the following expansion for Vy(t) which is
constructed in Theorem 3 for the Dirichlet problem and the Neumann problem

j=0

2 n 1 i
J!tr Vit x)dx,~ Y. t72Y2*2D ("), t—0.
0 j=

Thus
f tr Vy@)dV~ Yy,
M j=

n 1 i
tT2*2+2 JDj(x')dS, t—0.
i=0 r

Let calculate the main term in the above Theorem 8. In a local patch

Q such that QNI"'#0, we choose a local coordinate of Q as follows.
gjk(0)=6j,k: 1<j,k<n,

g"(x',0)=0, 1<j<n-—1,
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2 dm0)=0, 1<jlm<n—1.
Ox

J

Setr, =% py)" =1 =1d%¢&;. Then the terms in Lemma 7 are calculated
as

—p=—1¢,a,,
where

ao=d—J+2hn

with d=d™, d=Y72! d*. So we have
~ ~ 1 ~ ~ ~ ’ -
kl={txn()’wo,o—dwz,o)“iaot‘wl,o*'tz(le,o—dws,o)+k1}e o,

ky={—ao@y o+ 2x,(yBg o — di, o) }e ¥,

wherey=Y"71, dV¢£;, k) is a polynomial of odd degree with respect to &'.
By Proposition 16 and Lemma 7 we have

Lemma 9.

(1) For the kernel k(t,x',x,,y',v,) of the operator K, corresponding to the
symbol ky, we have

~ (2) a4 d
J:tl‘ k(t,O,meyxn)dxn 27'5\/_ \/;(SF(%) 41"(%))

(2) For the kernel wWp(t,x',x,,y',y,) of the operator Wy, corresponding to the
symbol wy, defined in Lemma 7, we have

I“(z),, . tl(ao 2d N d
n\/ 16T3) I3 TG

(3) For the kernel wy(t,x',x,,y',y,) of the operator Wy corresponding to the
symbol wy defined in Lemma 7, we have

).

f tr @p(t,0,x,,0,x,)dx, ~(
0

3a, _ + 2d
6T(3) F(z) r'G)

J‘tr wN(t’O’me)xn)dx”fv — F(Z) n 1 _(
(1]

ond?

From Lemma 7 and Lemma 9 we obtain the following theorem.

).
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Theorem 9. Let Y(t,x',x,) and Yy(t,x',x,) be operators correspond-
ing to yp(t) and yy(t) which are the main term of the fundamental
solutions. Then we have

: (FO i1 N
J:tr Yp(t,x',x,)dx,~ 27: ) (— 1 121_‘(2)J+O(t))

and

I'(3) )n 1(__ \ﬂ J+ \ﬁ flux A+ 0(2)),

tr Yy(t,x',x,)dx, ~
J: N o 4 12" 2T

where J is the mean curvature, that is, J=— ;,32-g", luxh=—h, in this
case.

3%, Oblique Problem and Robin’s Problem.

For oblique problem the main term of V(¢) is
Vo(t) = (B, — 26y, _ 1)e 7",

which belongs to #,. The main term means that v(¢) —vo(t)e# _,. We
get Theorem II by the following fact and Proposition 17.

. 1
J!tr[WO,Oe_ﬂ(x P )t]dxn (2) n ! - O))
0

27r\/ 4. /det Bo(x') (
where B(x',&")= <Bo(x)¢, ¢ >.

Proposition 17. If the symbol b(x',&') is defined by b(x',&)=B(x') &
with a vector B(x'), then we get

J\ tr[b(x', D YW, _ e~ P*"PMdx,
0

Ty 1 1 1
2n\/ 4, /detﬂo(x \/1—<ﬂ0(x’)“B,B>)

REMARK 9. The inequality Re(1 — <B,(x') " !B,B>)>0 holds by the
fact that the boundary condition is parabolic.

(t - 0).

(7.5  ~(

Proof. By change of variables the left hand side of (7.5) coincide with
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( f ? (B-exp{— (0 +w)?
0

1 ..,,—1
211\/2) (ﬁ) fn”‘l 0

+206B-{— <ol ,{>}dadwd(

Loy =L Ooex —0%>+20B-{—
'"(En—\ﬂ) (2ﬁ)Jm_1f0 p{—0?+20B-{— <fol,{>}

—exp{—02— < Bol,{>}dadl.
q.e.d.

In case Robin’s problem b =b(x) is independent of £’. So we have

(iff,,+b')ou=ié,,u+5(z«u+bu.

n

Set v=w,; + @, where w, is defined by (7.2). Then @ must satisfy

0 0
(a+é)°@(t)=—(&+é)owl(t) in IxR",
(7.3
(&, +b)otw(t) |y, —o=—2bBgo in IXR"L,

Set @ =w, + w3, where w, and w; are solutions of the following equations.

0 ” N - . n
awz‘*‘zo(%,wz):“{‘h—‘11+2xn"2}wo,oe b in IXR’,

(7.4)
(@, +b)owy(D)y,—o=0 in IXR" L
0 .
Eiw3+20(q2’w3)=0 in IxR",
(7.6)

(1€n+b)ows(t) |, = 0= —2b%g o in IxR""!
Repeating the similar argument with that of for Neumann condition, we
get w, and its trace. For example Lemma 8 and Proposition 16" for

Robin’s problem are as follows.

Lemma 8. Let v be the solution of the following equation
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0 (2x,)'
5;”+20(‘12>U)= l!) w

(& +b)ov(t)|,,=o=0 in IxR" 1.

joe PFGE)  in IXRY,

Then

e L (296‘ )l+1 s
v=e ﬁf(x,f){oszsg (l"‘li)wj 1- s0+ (—1)w, I-1,-1)>

where C; are the constants defined in Lemma 8.

Proposition 16'. For any fixed positive constant &, we have

1
ft (20, et g, D,

—1)y*? N 3 £ Q. b/ O™ - o e
~%—<2n) TS o= :m/)lﬂ) e e

So the main term of the asymptotic behavior of tr W; _, is the same
with that of W;_, ,. Hence the main term of the asymptotic behavior
of tr W, comc1des with that of Wy for Neumann problem. On the
other hand the solution w; of (7.6) is —2bw, _;. Then by Proposition
16’ we have

r<z) - b(x')\/

W ydx, ~(
J:tr 3 2nJ \/—«/detﬂo(x

as t > 0. Then we get Theorem II.

4% Singular boundry problem.
In this case v=wy+w,, wo=(Dg o—2bDy, _1)e ¥, w, € ;. So we get
-2
Theorem 11 by the following lemma.

Lemma 10. (1) If g(t)e A,

itn

tr G(t)=0(t""2).

(2) Ifgyest;,

f tr G(ydx, =0t~ 2 ).

0
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(3) For W, corresponding to wo= (@, o— 2bw,, _ Ve Pt we have

1 .
. F(z) 1-,. _ 4. /det Bo(x')’ if a(x')#0;
lim tr Wodx,= o '
t—0 ZNJ 0 T 4ydetfo(x)’ otherwise.

Proof. (1) and (2) are clear by Lemma 2. (3) is obtained by the
following equation.

J‘ Z,I)O,O(t’xn + xn) - Zbﬁo,l(t)xn + Xpy a)b)dxn
0

® 1
- f [ exp(—w
t—0 0 27t

exp u+2\/;1

] Y S
Jr o

———+

vl
if a(x')#0;

otherwise.

sl

—~A
K

B
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