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0. Introduction

Let M be a smooth compact Riemannian manifold of dimension n
with smooth boundary Γ. In this paper we consider parabolic
initial-boundary value problems as follow:

(_ + p\u(t> *) = 0 in (0, T) x M,
dt

Bu(t,x) = Q on (0,Γ)xΓ,

u(0,x) = m(x) in M,

where P=— Δ + A with a smooth vector field h on M of complex
coefficients. The boundary operator B which we consider in this
paper is related to one of the following conditions with smooth
coefficients.

(3>) the Dirichlet condition,

the Neumann condition,

the Robin's condition,

(0) the Oblique condition with parabolic condition, that is, B= h
dn

b(x,D) with the outer unit normal vector field — and a vector field
dn

b(x,D) satisfying (3.2) in §3

and

the Singular boundary condition B= —a(x) -- \-b(x) with the following
dn
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assumption (*) (See (3.3) for more general cases including that B may
depend on t.)

(*)a(x)>Qy b(x)<0 when a(x) = 0.

We note that (5^) is not a parabolic boundary value problem in the sense
of [1].

For each one of the above boundary conditions we construct an
asymptotic expansion of the fumdamental solution by means of the calculus
of the pseudo-differential operators. This asymptotic expansion leads us
both to the construction of the fundamental solution and to the asymptotic
behavior of Tt(&) = (4πt)n/2Σ?Liexp(-tλj) when t tends to 0, where {λj}JL1

are the eigenvalues of elliptic (subelliptic in case (5^)) problem (P,J3), if
the boundary operator B is independent of t. In this paper the asymptotic
expansion of the fundamental solution can be represented directly by
functions p(x,ζ) and b ( t y x , ξ ) which are symbols of P and B. This fact
is also applicable to the proof of the Gauss-Bonnet-Chern theorem for a
manifold with boundary. About this problem we discuss in the
forthcoming paper [7].

The construction of the fundamental solution for the general parabolic
boundary problems was staudied in [1]. Roughly speaking, there are
two methods of its construction applicable to get the behavior of Tt(β}
directly. The one method is to use the fundmantal solution for the
Cauchy problem on M', the double of M. This method is adapted to
the problem (®) and (ΛO by MeKean-Singer [10]. They extended P
to an operator P' defined in M''. In this case they miss the smoothess
of the coefficients of the operator P' even if P has smooth coefficients. The
other is to reduce the construction of the fundamental solution to the
construction of the Green operator of the boundary valeu problem (P,5),
using the Laplace transformation. One we solve the Direchlet problem,
construction of the Green operator of the boundary value problem (P>B)
can be reduced to solving an equation of pseudo-differntial opeators on
Γ. This method was apdapted by P.C. Greiner [4] and he calculated
Tt(2>) in case of M is a bounded domain in R2.

For the singular boundary value problem (&*), we give some
commets. S. I to [5] constructed the funcamental solution in case
b(t,x) = a(t,x) — 1. Y. Kannai [9] showed the existence of the solution of
(if} under the compatibility condition for the initial data m(x). K. Taira
[15] obtains the existence of the fundamental solution by operator
theory. About the condtion (#), S. Mizohata [11] showed that the
assumption (#) is necessary for H°° well-posedness of the problem. K.



ASYMPTOTIC EXPANISION OF FUNDAMENTAL SOLUTION 665

Taira [14] has shown that the main term of Tt(ίf) is \M\.
The Green operator for an elliptic boundary value probme (P,B) is

obtained by the integration of the fundamental solution E(t)e dt forΓj
Jo

any positive constant T and some positive constant λ. For example,
singularities of the kernel of the Green operator can be studied by this
method (cf. D. Fujiwara [3], R.T. Seely [12]).

Although we treat, in this paper, operators acting on functions on
M, we can apply our method to a parabolic system whose principal
symbol is diagonal.

In §1 we present main theorems of this paper. The reviews of both
the theory for pseudo-differential operators and construction of the
fundmanetal slutions of the Cauchy prblem are stated in §2. The
construction of the asymptotic exampansion of the fundamental solution
for intial-boundary value problem in /?+ are discussed in §3. Section 4
is devoted to the construction of an asymptotic expansion of the Poisson
operator in Rn

+. In §5 we discuss Lp theory for our operator. In §6
we construct the fundamental solution E(t). In §7 applications to the
behavior of Tt(3S) are treated.

1. Main theorems

Let P be a strongly elliptic differential opertor of the second order
on M, that is, P= — Δ-hh, where h is a vector field on M with complex
coefficients. The purpose of this paper is constructing the fundamental
solution for the boundary value problem (β) as stated in Introduction.

We say that an operator E(t) is the fundmamental solution for (&)
it E(t) satisfies

LE(t) = 0 in (0,Γ)xM,

BE(t) = 0 on (0,T)xΓ,

E(0) = I in M,

where B is one of operators stated in Introduction. For the construction
of the fundamental solution we have:

Theorem I (The existence of the solution). We can construct the
fundamental solution E(t) for (β) such that for any \ <p<co and me'Lp(M)
u(t) = E(t)m belongs to C([0,T]; Lp(Λί)) and nsH*(M) for ί>0, satisfying

as t -»0.
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Corollary. For any meC(M) there exists a solution u(t,x)ε
C°° ((0, T) x M) of (β) with

lim u(t, x) = m(x), xeM.

Owing to the precise calculus of the asymptotic expansion of the
fundamental solution E(t), we get the folowing theorem.

Theorem II. For the problem (2>), and (&) we have the

following expansion Tt(^) = ̂ =0Cj(^)t as ί->0:
For any boundary problem (38) as stated above, we have

(0)

where \M\ means the volume of M induced by the Riemannian metric g. The
second terms C±(β) are

(1)

π,.

2<dί,d2>i

where d± and d2 are real vector fields on Γ such that b(xyD) = dl-\-d2 and
\\d\\ means the norm of a vector field d induced by the metric of Γ. The
third terms C2(β) are given by

(2)

M

flux h dS,
Jr

|
Jr

bdS,
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where K is the scalar curvature and J is the mean curvature. For the
singular problem we have

'lit
(3)

under the assumption |Γ0|>0, where

Γ0 = {x€Γ ,a(X)=0},Γ1=Γ\T0.

REMARK. If the vector field &(£,#,£)) has real coefficients, we have

Moreover C1((9) = C1(«Λ/') holds if and only if b vanishes everywhere.
We remark that L. Smith [13] and T.P. Branson-P.B. Gilkey [2]

computed C3(S>), C4(^), C3(ΛO, C4(ΛO, C3(^), C4(^?) by different
methods.

2. Pseudo-differential operators and the fundamental solution
for the Cauchy problem

We introduce some notations on pseudo-differantial operators.

DEFINITION 1. For a symbol of pseudo-differential operators
p(x9ξ)€S^90(R

Λ) = Sι;ό (0<(5<p<l,<5<l), we define the seminorms \p\\m)

(/ = 0,1,2, ' ,) by

\p\™= max sup {\p$(x,ξ)\<ξ>
|α| + \β\<l (̂

We denote a pseudo-differential operator by the capital P of which symbol
is p(x,ξ). For a symbol p(t\x,ξ)eC(S™δ) we define a pseudo-differential
operator with parameter t by

P(t)u(x)^P(t^D)u(x)^Os-(2κΓn\ \ e**-»*p(t\x\ξ)u
JRnJRn

DEFINITION 2. Let poq denote the symbol of product operator
p(x,D)q(x,D). So we have

(χyξ) = Os-(2πΓn{ ί e-i^p(xί

J RnJRn
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The basic theorems for the symbol of multi product of pseudo-differential
operators are as follow.

Theorem A. // pj belong to Sffi 0'= 1 > ' " > V ) > then PιΌ- °pv=p
belongs to S™δ (m = £j= x m(j)) and satisfies the following estimate for any I.

where C and /0 are constants independent of v.

Theorem B. Let p^S^δ and qeS™*δ. Then for any integer N we
have an expansion

N-l

-̂i

where

y l(d

Sj(pyq)~^j^^
and rN(ρ>q)eS™j(p~δ}N has the estimate

I \(m-(p-δ)N) <- ̂  Y |/ι(α)|(wι~Plα|)|Λ |(w2+ί|«|)
l r Nlϊ sc 2., IP I / + / 0 lί(β)lί+/0

We review the construction of the fundamental solution U(t)

LU=(— + P)C7(ί) = 0 in (0,Γ)x/?M,

t/(0) = / on Λw,

for the Cauchy problem on JR" according to Tsutsumi [16]. Here P is
a strongly elliptic differential operator of second order defined on Rn of

which symbol is p(x,ξ). Let p(Xyζ)=p2(x>ζ)+Pι(x>ζ)+Po(x>ζ)> where
pj(Xyζ) are homogeneous of order j with respect to ξ.
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Theorem C. The fundamental solution U(t) is constructed as a
pseudo-differential operator of a symbol u(t) belonging to S® $ with parameter
t. Moreover u(i) has the following expansion for any N:

N-l
UW- Σ wjW belongs to S^,

= exp( -p2t)y Uj(t) =//*)«

where fj(i) are polynomials with respect to ζ and ί, satisfying the equation
& — 2/= — j, where k is the degree of ξ and I is that of t.

The sketch of the proof of Theorem C is the following.
[fj(t\x,ζ)}j>ι are obtained as the solution of the following ordinary
differential opeators with parameter (#,£)•

(2.1)
m=j,k>Q,m<j

f>0,

In fact, for example, we have

(2.2)

7{ Σ &6 ί f c = l OX;

For any JV>1, Yj=oUj=gN satisfies according to (2.1)

at
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where rN belongs to C(Sϊ$+2) and satisfies

fl ̂  P**^ ~N + 2 + 2l-\Λ\

for any /<f— 2. The symbol of the fundamental solution is obtained
as the solution of the form

(2.4)

where φ(t) is the solution of

(2.5)

gN(*-*
Jo

rN(t-*
Jo

For solving (2.5) we apply the estimate of the symbol of multi-product
of pseudo-differential operators in S^δ stated in Theorem A. Then we
obtain the solution φ(t) in SΐtQ

+2. Also we have the estimate by (2.3)

(2.6) |φ|g(*,ί)|^Cβt/lί
l<{>-w + 2 + 2I-l-l

for any /<f-2. Thus we have M(ί)-,gΓjv(ί)e'S'Γ,o + 2. Also we have by
(2.4), (2.6) and Theorem A

(2.7)

for any /<f — 2. Nothing N is any number, we get Theorem C.

q.e.d.

The kernel of U(t) = u(t',x,D) is given by the integral

For u*(t\x,z) we have the following expansion for any ΛΓ>1

J V - l

where u](t\x,z) = (2n)~n eiz'ξUj(t;x,ξ)dξ and kN(t\x,z) have the following
Jπn
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estimates for some positive contant δ

^ 0 = 0,1, "v/NΓ-

y=odd,

671

where we use (2.7) and the fact that N in Theorem C may be taken any
number. So we have the expansion

where

— n^\~n

"2/1 ;*>
JR»

3. Construction of an asymptotic expansion of the funda-
mental solution on Rn

+

In this section we construct an asymptotic expansion of the
fundamental solution E(t) of the following problem in / x R +:

(L,B)

(—
t

n

on

limu(t) = in Rn+.

We use the following notations. /=(0,T), Rn

+={x = (x',xn): xfeRn~1,
xn>0}, P is the similar operator defined in §2 and the boundary operator
B is one of operators introduced in §0.

If we assume E(i)— U(t)+ V(t), where U(t) is the fundamental solution
for the Cauchy problem in /?", V(t) must satisfy
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( d

t
0 ίnIxRn

+,

BV(t)=-BU(t) on

t->0
n

We assume the principal symbol p2(x,ζ) of P satisfies for some
positive constant α

(3.1)

In this section we consider the following boundary operator B.

β-identity,
dx

The symbol b(t,x',ξ') of b(t,x',D') satisfies

(3.2) Re{β(x',ξ')-(b(t,x',ξ'))2}>C\ξ'\2

for some positive constant C for any tel.
The above inequality (3.2) coincides with the assumption that a

boundary problem (L.B) is parabolic in the sense of [1] for the oblique
condition (&). We consider also

(d

dx,

where a(t,x') and b(t,x') satisfy

(3.3)
if

a, π
|arg-| > — 4- ε in a neighourhood of {(t,x'): a(tyx

r) = 0},
b 4

for some positive constant ε. Y. Kannai studied the existence of the
solution under the above condition in [9].

In §3-1 we will discuss the construction of the asymptotic expansion
of V(t) for (^), (ΛO, (0ΐ) and (&) under the restriction that b(t,x'yξ') is
indepednent of t. We treat in §3-2 the general case. V(t) for (£f} will
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be constructed in §3-3.

3-1. Asymptotic expansion of V(t) for (®), («yΓ), (^) and
(0). We introduce new symbol classes 3F 's, ̂ s

f as follow.

DEFINITION 3. (1) 3F s is the set of all finite sum of the following
functions

{?(xn)
lr(*! Λ' ,ξn)\ nonnegative integers /, d, re Ss^Q

2d+l(Rn)}y

where r(x',ξ) is a polynomial with respect to ξ.
(2) OF s is the set of all finite sum of the following functions

{td(Xn)
lr(Xjξ',ξn) y nonnegative integers /, d, reS\

where r(x,ξ) is a polynomial with respect to ξ.

DEFNIITION 4. We define f=f(tJx',ζ)=f(t,x'ίQ,ξ) for a function
f ( t , x , ξ ) defined on R2n+i.

DEFINITION 5. For a function φ(x',xn) defined on Rn+ we define

0, if xn>0
(1) φ (x',xn) =

[φ(xf, — xn)y otherwise.

(2) We also use the notation φ + (x',xn) if we extend the function φ(x'yxn)
on Rn+ such that

0, othrewise.

DEFINITION 6. Let (<7j}j<2 be defined as

Then we have for any N

-N + l

P= Σ
j = 2

with qjG^j and qf-Ne^f_N.
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DEFNITION 7. For a pair (j,k) of integer j and nonpositive integer
k we define functions {$;,&(£, ω;b)};k as follow:

,o(*> £„)> J> 0,

Γ°°
1 «to'^.o(f, £,)<*£,, y>0,

J — oo

ί°
Jo

T, if >

where ΛJ (σ) = {(^ye~<τ2}e'τ2. We define an integral operator WM(f;Z>) with
parameters (ί,6) for a function <p(yn) defined on R\ as follows.

00Γ0

Jo
00Γ0

J

Γ=
J

- oo

00

wjιk(t,xn-yn;b)φ (yn)dyn.

We have proposition for this series of operators {Wjtk(t;b)}jtk.

Proposition 1. (1) For y>0, zo

Γ
— ooJ — o
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(2) If t>0 or xn>Q, the kernel ώjk(ί,Λ;n-f yn\b) of Wjk(t,b) is smooth with
the estimate

(3.4)

for any positive ε and 0<δ<l. Also Wjk(t,b) are bounded operators on
Lp(Ri

+)(l<p<ao) with norm

(3.5)

't

(3) The operators Wjk(t',b) satisfy the following equations:

(3.6)
ot oxn

(3.7)

(3.8) -PFM(ί;6) = ίF,.+ljk(ί;6) in
ox

(3.9) Hm(ίFM(ί; &)<?)(*„) = 0 m ^>0,
ί->+0

/or φeC^ί).

REMARK 1. By (1) of the above Proposition we have

Wjt0φ(t, xn) = wjt0(t; xn,Dn)φ " , j > 0,

where Wj^t'yX^D^ means a pseudo-differential operator with symbol

REMARK 2. In case (ΛO and (^) we use only
if 6 = 0).

Proof. (1) and (3.4) are trivial by the definitions. (3.5) holds by
the following fact
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ft

We have by the equation (1) and Definition 7

and

(xn) = 0 for xn > 0
f +O CXn

hold fory>0. In case 7 is negative, we get (3.8) for k = 0 by the following
equation

—-wj0 = tVj+10 for ω>0.
oω

(3.8) for k<— 1 is proved in the same way by

d
-~wLk = wj+^k for ω>0.
oω

For j < — 1 and & < — 1 we have

for ω > 0.

Taking derivatives of the above equation with respect to xny we get (3.7)
for any 7, /?. It is clear the following equality holds

(3.10) ^M(ί;*) = »0-ι.k + ι(ί;*)-ft»0-ιjk(ί;6) for k<-\

by (3.7) and (3.8). We shall prove (3.6) in case>< -3 and k<-2. Other
cases can be obtained by differentiating (3.6). The following equation
holds f o r y < 3 and k<—2.

77} — ___ v ' dr p-(<*+Y7t> + 2ίv'<τ ~ frωv— ~ y — / j
W: jf— —\ Cli I C έ^t dO.

J>κ Γ\ ί : ι \ ι I ( _ J ^ _ J ) j
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So we have

1 Γ*( — τ\-J-ι
dτ

x [-
2ί (-k-l)l

2t

On the other hand we have

I
- L . - ,.,,— , / ... ι~k~l

[ΊI

]dσ.
,/ί ( — κ—ι)\

Hence we have

d . 1 fβ(-τ)- '-1 , Γα

—w, k=—= dτ
st } k ^J0 (-y-i)i J^

i-k-l
, t V ^ f _,„_,_—^^2^.01. /;-_ι. Λ ,ΛltU—^,-v/ 6U *

X —

2ί



678 C. IWASAKI

x [-

So we get

3 „
—wί1r= =
dt

υj,k

Owing to (3.10), it is sufficient to show (3.9) only forj< —1 and k< — 1. If
y < — l , k < — 1 , we have

_ (-ft-l)l

So we have

wjtk -» 0 as £ -> 0

for ω>0. Then (3.9) holds. q.e.d.

Proposition 2. We have for any k<0

d ~
db™Lk >ω' wj.*-ι » » •

Proof. We have the following equation for k < — I .

The assertion can be shown by the same way for other cases. q.e.d.

DEFINITION 8. J^s is the set of all finite sum of the following functions
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d,lJykeZyd>OJ>0,k<()J+k-l-2d<s}.

For a symbol g ( t y X n y y n ) = td(xn)
lwjk(t,xn+yn'yb)e &s we define an operator

as follows:

(G(t)φ)(xJ = td(xn)\Wjtk(t b)φ)(xn).

We state Proposition 3, which is the key idea in this section. Let
β0 = JL + j or BO = identity .

Proposition 3. (1) For any geJ&s we have vejfrs_2

 such that

ίn /χ

B0V(t)\Xn=0 = 0 in I.

(2) For any heJ#'!l-ίwe have v e «^s_2 (v e «^s_ t ifB0 — identity) such that

n

Proof. Set L0=j-t — (e^)2. It is sufficient to prove (1 ) for g such that

(x V

(Step-1). rf=0,/ = 0. In this case, the following v = v(t) is a solution for (1).

1

If B0 = identity, the second term of the above equation is dropped.

(Step-2). rf=0,l>l. Set

v. = —
2(/+l)l
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Then Vι(t) satisfies

t) in /x

n

where gl = 2(Γ-i)!^j-ι,t So we can reduce to (Step-1) by the induction
with respect to /.

(Step-3). d>\. Set

where v± is the solution of

L0Vί(t) = Gi(t) in /x {*„>()},

"QV l(t)\Xn = o = (J m 7,

which is obtained by (Step-2) with gi=^u^Wj^ Then V2(t) satisfies

L0V2(t) = dtd~iVi(t) + G(t) in /x {xn>0},

So, by the induction with respect to d we can reduce to (Step-2). It is
clear that v belongs to &s-2

 m anY case.
For the proof of (2) we set h = tdwjk.

(Step-1). d=0. If B0 = ̂  + 6, It is clear that v = wjk_i is the solution
by Proposition 1. If B0 = identity, v = wjk is the solution.

(Step-2). d>\. Set v1 = tdvy where ve^ίfj+k_1 (veJ^j+k if .B = identity)
is the solutioin of

n

in

which is obtained by (Step-1). Then

L J / ( ί ) = G(0 in

where gi(t) = dtd~iv. By (1) we get v2eJ^s_2 (v2e^s_1) such that

L0V2(t)=—Gi(t) in /x {#„>()},

n
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Then v = Vι+v2 in the solution of (2). q.e.d.

We discuss only the case (0). For other cases, in the following
argument, we take b(t,x') instead of b(tyx'yξ') in case (Sΐ). In case (ΛQ
and (®), we take 6 = 0. In these cases we use only {W^o} as Remark
at the end of Proposition 1.

DEFINITION 9. We set Jf^ the set of all finite sum of the following
functions

{ί(̂ ,*,,,̂ >O = ̂ (*,̂

q(x',ζ') is a polynomial with respect to ξ' and

qeST^R"-1) with m = s + 2d+l-j-k}.

REMARK 3. Set

ύ~(2π)^ \ e^^'^u^t^'^^dξ^
JjRi

where Uj is obtained in Theorem C. Then we have the following facts.

Lemma 1. For the boundary conditions (@)y (ΛO, (^?), or (Θ) with
parabaolίc condition, g e ̂ s has the following estίmatfor xn > 0 andyn > 0.

(3.11)

for any 0<<5<1 and some positive constant c0. Also we have

(3.12)
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Proof. (&) with parabolic ondition means that

(3.13) Re{β(x',ξ')-(b(t;x',ξ'»2}>C\ξ'\2

holds for some positive constant C. By (3.4), (3.13) and xn<xn+yn if
xn>0 and %>0, we get (3.11). (3.12) holds because of (3.5). q.e.d.

REMARK 4. By (3. 11) if ί > 0 or *„ >0, # e ̂ Ts belongs toSϊ^R"^,).

We get the following proposition by Proposition 1 and Proposition 2.

Proposition 4. Let g belong to ^fs. Then we have:

(1) Φ'GsF/^^V ™th the estimate

(2)

(3)

(4) // re^ , rg belongs to Jfs+j.

DEFINITION 10. For a symbol #(£,*', tfn.^'.

we define an integral-pseudodifferential operator as follows.

(Gφ)(t, x', xn) = (G(ί)φXx', *„)

Γ00

= g(t,x',xa,D',yn)φ( ,yn)dyn

Jo

-n + l f Γ

X ίW (t hίv' F'\\m(v' \\(v \n(v' f'\p-ft(χ' ^L / fe\ > t/Vw ) Vj //τ^\-X > / J V n)"ί\ > S /

f «*'-,•)•«•
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for φeC(Rl

+,S(R"~1)), where

[G(t;x', ξ')φ(y', •)](*„) = t\Xn)
l[Wjtk(t b(x', £') W, ')](*M*, ί>~ β(x ''™

REMARK 5. The kernel g(t,x',xn,y',yn) of an operator G is given by

Owing to Lemma 1 and proposition 4 we get the following lemma
for the kernel g(t,x',xn,y',yn) of an operator G with symbol g(t,x',xn,ζ',yn).

Lemma 2. Let geJ^s. Then we have

for any 0<δ<\.

(2) // N>n— 1, the kernel kN of the operator GA~N satisfies

where Λ is the pseudo-differential operator with symbol <ξ'> .

Proof. (1) is clear by Proposition 4 and Lemma 1. Set h=g<ξ'> ~N.
Then the symbol of operator GA~N coinsides with h. The following
estimate holds by Lemma 1.

V*
Then kN satisfies (2) if N>n-l. q.e.d.

For the well-posedness of the operator G on LP(J?+), we will discuss
in §4.
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DEFINITION 11. Let re^sι, geJΊfS2. rog denotes the symbol of a
product operator r(t,x,D)G.

Theorem 1 (Product formula). Let re^SίJ ge^ίfS2. Then we have

where,

α > 0 β! Gζn OXn

with

REMARK 6. Σ j ( r ί g ) = 0 for large j because r is a polynomial of ξ.

Proof. Owing to Proposition 4, we have

So we get the assertion. q.e.d.

DEFINITION 12. Fix a positive integer N. Set

-N + 2

5= Σ 4j>
j = 2

where {̂ -} are functions introduced in definition 6.

Theorem 2. (1) For any g(t)e^fs and h(t)eJ^s.^ there exists
v ( t ) e J ί f s _ 2 such that

(— + q)°v(t)=g(t) mod^ίfs_1 in IxR\,
dt

n

(2) For any g(t)eJJfs and h(t)eJ^s.2 there exists v(t)θJ^s.2 such that
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( — + Q)°υ(t)=g(t)
ot

n

n

Proof. We get the assertion by Theorem 1 and Proposition 3. q.e.d.

Corollary. (1) For any N, andg(t)e&\ and h(t)e3?s-ι there exists
v(t)ej^s_2 (v(t) = Σ^=0Wj(t)y W j ( t ) e 3 ί ? s _ 2 _ j ) such that

ot

v
+ Q)°v(t)=g(t) in IxRn

+y

n

(2) For any Ny any g(f)e3tfs and h(t)eJ>ίfs_2 there exists v
--) such that

/ x(- + q)°v(t)=g(t) modJ>ίfs_N~
ot

n

™ IxR""1.

Proposition 5. Let r(X,D) be a pseudo-differential operator with
symbol r(x9ξ)eS~(X). Then for φ( yxn)eC(Ri

+'9^(Rn~i))y we have

1 \ Γ
J -ooJθ

Proof. We note that the trace is well-defined by the boundedness
theorem for pseudo-differatnial operator. We get the assertion by the
following equalities:

r(x',Xn,D',Dn)φ + \Xn=

= (2π)- ί Γ
J R Π - I xR«- ιJ -

= (2π)-»[ Γ Γ
J j l w - l x R w - l J - oo J -
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x r(x',0,ξ', -ξn)φ(y', -zn}dzndξndy'dξ .

Γ I
Ί-I xβ"-ιj -ooJ -<

x r(X',Q,ξ',-ξn)φ(y', -za)dzndξndy'dξ']Xn=0.
q.e.d.

The fundamental solution for the Cauchy problem U(t) with symbol
u(t) has the following property owing to Theorem C. "BU(t) is also
the psedudo-differential opertator with symbol 5"°° if t>0". In other
word, the kernel of BU(t) is smooth if £>0. So we can apply the above
proposition for the symbol of BU(t).
Fix a positive number ΛΓ in Definition 12. Set yN(t) = u(t) — ^j^Q+2Uj(t).
ΎhenyN(t) belongs to S^~n~3 by Theorem C. Also choosing / = ̂ f^-1,
we have

by (2.7). By the above estimate, hN(t) = (iξn + b) GyN\Xn = 0eS^Q ~n~2 holds
the following estimate

(3.14) IMO

On the other hand we have

N+n+2

for some N with gj(t , x' , ξ) E 3? _ j + A . So we obtain the following Lemma 3 .

Lemma 3. It holds that

where

- o o θ

Note that £/#o,oee^-./+ι anc^ aPply Corollary of Theorem 2 with



ASYMPTOTIC EXPANISION OF FUNDAMENTAL SOLUTION 687

= 0, h(t)= -Σf=0£/ί, *',£', -£M),o Then we get vN(t)e J^Q (vN(t) =

=0Wj(t), WjEJίf_j) such that

,d v( — H#)°%(0 = 0 modJf _N + 1 in IxRn

+yot
N

vN(t)\Xn = 0=- Σ£/*X,<Γ,-<U*oo mod^_N
7 = 0

in /xΛ"- 1 .

Then we have the following theorem for any boundary condition B and
for any JV, owing to p —

Theorem 3. 5te EN(t)=U(t)+VN(t). Then E(t) satisfies

N+i in IxRn+,

in IxR"'1

with GN(t) = (P-@)VN(t). Moreover

lim EN(t)φ(xT, xn) = φ(xf

9xn)9 xn
*->o

/or φeC(Λ+). TΛβ kernel gN of GN satisfies

N Λαs α kernel fN such that

3-2. In case b(t,x' ,ξ') depends on t. Set

(3.15) j?M(σ, ω; ί) = «SM(σ, ω; ft(ί , α/, {')).

We define the integral operator {Yjk(σ\i)} for a function φ(;yπ) with a
kernel :v/jk(0">#w+:yπ;0 as follows.

) = ( Yj.k(t)9)(
Γ°°= yΛfc^j

Jo
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Then Yjtk(σ;i) satisfies

C. IWASAKI

(3.16)
oxn

n

;ί n

for

lim (Yy^σ; t)φ)(xn) = 0 in *„ > 0,

Hence Z j k ( t y s ) = Y j k ( t — s\t) satisfies

(3.17)

n

n

= n

') in 7.x

for φeC(Λ + ) by Proposition 2 and (3.16), where Is = (s>T + s).

DEFINITION 9'. Set Jf5(σ;ί).the set of all finite sum of the functions
of the following form

(3.18) X,*,,̂ yιl;0 = ̂

£,#',£') is a polynomial with respect to £',

( — )rq belongs to S™ 0, for any r with parameter t with m = s + 2d+l—j— k] .
dt

In this section we use — s\i) instead of 3?s in the
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previous section and operators G(σ\t) defined by functions g e J ί f s ( σ y t )
in the similar way of §3-1. We can discuss the similar argument in §3-1
for J^s(σyt). For example ge3fs(σ\t) satisfies

(3-19) i '

for any 0<<5<1. Let g be the kernel of G(σ\t). Then

(3.20) \(—Y(—)βg\<CΛβ(—)»+" + H + l*lexp(-/*Λ+y>>) )
dx dy ' y/σ 4σ

for any 0<<5<1. We repeat the same argument using (3.17) instead of
(3.6)-(3.9). Then we obtain

Theorem 4. For any N we have vN(t,s)eJίΓ0(tys) such that
EN(t,s)φ= U(t — s)φ+ + VN(t,s)φ satisfies

3N(t,s) = GN(t,s) modJΓ_N + 1 in IsxRn

+y

and

with Gjv(t,s) and FN(tys) whose kernels gN(t,s) and fN(t,s) satiasfy

t-s
|α| + \β\<n.

Proposition 6. Let φ and φ be smooth functions. If supp φ n supp ψ
= 0 and geJ^fs(σ\t), then φ(x)Gψ(y) is a smoothing operator, that is for any
α, β and N we have

oy
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where g(x,y) is the kernel of G.

Proof. By Proposition 4 we have (wT(^)ΛnSe 3PS+ \Λn\(σ\ t) and owing
to Lemma 1 we have

Let xesuppφ, yesuppψ. Then x'^y' or xn^yn. If x'^y', then the
pseudo-local property for pseudo-differential operator leads to the above
estimate. If xn¥^yny then it is clear that xn=£0 or ^7^0. Assume xn>ε,
then we have

M 2

for any Λf and 5<^. So we get the assertion. q.e.d.

3-3. Asymptotic Expansion of V(t) for (Sf). We assume that
a(t,x') = a(x'),b(t,x') = b(x') and satisfy (*) in §0. Other cases we shall
discuss at the end of this section.

We substitute the following function Wjk(t,ω;a,b) for Wjk(t,ω;b) in
Definition 7 for k<-\. S e t f o r & < - l

wjk(t,(o;a,b)

~ k ' 1 σ , i fJo
+1

o (-y-l)l o (-*-!)!

where

We will give some remarks and proposition for Wjk(tyω-9ayb). Note
that wjk = bkWjι0 if a — 0. The condition (=^) leads the well-posedness of the
definition of Wjιk. An operator W^k definied by a symbol Wjk(tyω\ayb),
in this section, satisfies (3.6), (3.8), (3.9) and (3.7)' instead of (3.7).

(3-7)'
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Proposition 2'. Assume a and b are constants. Then it hold that

d ~
da

8 ~
SfWj,k >ω,α, - Wj,k-ι ,ω,α, ,

Proof. It is sufficient to prove for j< —2yk< — 1. We can prove
other cases by differentiating obtained equation for small j and k. For
/<—2, k< — 1, we have

I
•ΓJo

σdτ{e~

v-k-1

o (-J-2)!

We can get the second equation easily.

(-ft-l)l
dσ

q.e.d.

DEFINITION 8'. Let $s be the set of all finite sum of the functions
of the following form

Proposition 3'. For any and he&. we have veJifs,2

 sucrι

that

K n
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Proof. We may assume g = (~ffld(~ π*n)* wjkeJ^s and h = 0. In other
cases we can reduce to this case by the similar method as Proposition
3. For the above g the following v of class ^s_2 is the solution

\d-ss+l

.. tJt | l tV— 5)! μ = o o < v < ί + s + ι (/ + S+1— v)!

where Clsμv are constants depending on Z,s,μ,v. In fact C|S 0 V = S + VCS —

S + VC5 + | + 1, C/jS^v = s + v_μC s + /-s + v_μC s + z + 1,(μ>l) where we use SC9 = 0
if 5<g. q.e.d.

We need another function space in this case.

DEFINITION 9". Jf s is the set of all finite sum of the functions of
the followig form

q(x'yζ') is a polynomial with respect to £',

1 π

^ belongs to *S7o w^ m — s + 2d+l— j— max{/e, — α0 -- Σ αj}}>
2j=ι

where ̂  = ̂  Λ.

REMARK 7. For any jeZ we have

<*Wj,k(t,Xn><*,b) = ™j-ι,k + ι-bwj-1,k, k<-\.

So we may choose α0 = 0 in the above definition. Repeating the similar
argument of §3-1, we have

Lemma V. g€J#*s has the following estimate

for any 0<<5<1.

Proof. By the nonnegativity of a we have \Aj\<Ca*. Then it is
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sufficient to show

for k< — 1, aeR + , where 5= — l+j+max(k, — α). In casej< — 1 we have

~T) ' dτ

)o(-k-iγα*~1(

We note that

α (u^1)~k~'*μ'*~1(^/t)k+α, otherwise.

Then we get the assertion. q.e.d.

Proposition 4'. Let g belong to Jfs. Then we have:

(1) (&)%&y*e.*Vw+J4l with the estimate

(2) ϊt

(3)

(4) // re^ , rg belongs to J^s+j.

Proof. It is sufficient to prove (1) for |α| + |/?| = l. In order to prove
the statement for \β \ = 1 , we may assume g e 3? s of the following form

g=



694 C. IWASAKI

Then we have

p=l

l

ΠΛ*0Mfr* .+Λ;"<A^^

= A 1 + Λ 2 + Λ3.

We easily see that h ^ e J f f s ^ L and h3£3ίfs. For A2 we note that
2

—#/,*(*» *„ 4-j;,,; φ:'), *(*'))

/•) /^ r\

— wM(ί , ̂ M + yn\ a(x'}, b(x')}Al + —wjtk(t, xn + yn\ a(x'} , b(x'
oa όb

t,xn+yή

by Proposition 2'. So we get that h2 belongs to J^s>, where
s'=j+l +maχ{^— 1,— i£"=iOj— ̂ }. By the fact s'<s+i we get the
assertion. It is easy to prove the asertion for |α| = l. (2)~(4) are gotten
by (3.6) and (3.8). q.e.d.

Owing to Lemma Γ and proposition 4' we get the following lemma
for the kernel g(t,xf yXnyy

r >y^) of operator Gby the same way as Lemma 2.

Lemma 2'. (1) Assume a symbol g belong to J>ίfs. Then we have

n

1 )a+l> + l

for any 0<<5<1.

(2) If N>n— 1, the kernel kN of the operator G\~N satisfies
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where Λ is the pseudo-differential operator with symbol <ξ'>.

For the well-posedness of the operator G on Lp(/? + ), we will discuss
in §4.

Theorem Γ (Product formula).

g), Σ (r,g)eJf j ,
Sl+S2~2

with the same notation of Theorem 1.

Theorem 2'. For any g(t)eJ^fs and h(t)e^ίfs.2 there exists
v(t)eJtf?

s-2 such that

(- + g) o v(t) =g(t) mod Jf i tit / x /?"+,
C7£ s-2

REMARK 8. In this case we note that

(aiξn + b)oV = Σ0(aiξn + 6, υ) = αΣ0(^w,z;) + bv

because a(xr) and 6( '̂) are independent of ξ'.

Corollary. For any N, any g(t)eJ^s and h(t)eJfs_2 there exists
v(t)eJ^s^2 (v(t) = Σ1j=Qwj(t)J Wj(t)eJ4f ,) such that

s-2-2

ίd

\St s-N + >

If a(tyx') or b(tyx') depends on ty we introduce symbols yjίk(
σ>ω:>i) =

Wj k(σyG)',a(t,x')yb(tyx')) and repeat the similar argument in §3—2. In this
case, the operator Zjtk(t,s)=Yjtk(t — s;t) satisfies (3.18) of which the first
equation replaced by
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r\ A /•}

So Theorem 4 holds for

We note that in the above arguemt the following estimate is not
necessary.

Ot

Now we consider the case that a(tyx') and b(t,x') are complex valued
function satisfying (3.3). In this case we replace the integral domain
[0,oo) in the definition of w^k by the following line Λ.

Λ = {r^-arβfl): 0<r<oo},

where θ is chosen as

cos(0-argφ)<0, |0|<ί

For example the definition of wQk(tyω\a,b) is defined by

F^

4. Construction of an asymptotic expansion of the Poisson
operator

We discuss the construction of an asymptotic expansion of the Poisson
operator with respect to (&) in this section. The similar arguments can
be repeated for other boundary conditions.

Proposition 7. Let g(σ\t) belong to 3tfs(σ\i). If s<\, the following
operator has the limit

lim

for h(t,x)eC((Q,T);^(Rn-ί)}.

im g(t-σ,xf,xn,D
r^

->+θJ 0
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Proof. By (3.19) we have

For xn>0 the above operator is well-defined for any s and smooth with
respect to xf. If s<l, the operators is well-defined even in xn>0.

q.e.d.

For the special case of 5=1, we have

Proposition 8. (1) // £>0, then we have

Plim wio(σyxn)h(t —
n-»oj o

I ~ 1
lim I wi 0(σ,xn)h(t — σ)dσ = ——h(t)

χn-

for AeC((0,Γ)).

(2) We have

L 1

π.

- wlι0(σ,Λ;n)σ{ h(t-θσ)dθ}dσ
J o Jo

for

Proof. We can write

f r Γ* Λ: Λ;2

*ι,o(σ>Λ;π)Λ(ί-σWσ=- — " exp(--^)/?(^-
J o J o4x/πx/σ3 4(Jl^/π^/σ:

ι = ̂ =. Then

*ι,o(σ^w)Λ(^-
J o

σ)dσ =
v 4μ2

Hence when xn tends to 0, this tends to -y=f^exp( — σ2)dσh(t)= — ̂ h(t).
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q.e.d.

Corollary 1. Let g(tyx'yxnίξ' ,yj = w^(t,xn+yn)e-β{**'*. Then

lim g(t-σyx'yxnyD'yO)h(σy')dσ=--h(tyx') ί>0,
*n->θj 0 2

Corollary 2. L#£ φ(tys) be a C1 function satisfying the following
inequalities for a positive constant M

\φ(t,s)\<C(t-s)M,
ot

Then the following estimate

P
I wltQ(t-a,xn^(a,s)da\<C(t-s)M

J S

holds.

Proof. Apply Proposition 8 (2) for φ(σ,s). Then we have

P , x , ,., Γ'"s ,zvi0(t — σyxn)φ(σys)dσ= wiQ(σyxn)φ(t — σys)dσ
J s J o '

Xrt

i (V^ r*- pa
= φ(tys)—^= exp( —σ2)rfσ— ^ι,o(σ>Λ;w)σ{ —φ(t — θσys)dθ}dσ.

^/nj <x> Jo Jo^

We get the assertion by the assumption for φ and the following facts
™ι,o(σjχn)σ is bounded and \t — σ — s\<\t — θσ — s\<\t — s\y for 0<0<1.

q.e.d.

Theorem 5. Let N be any integer.

(1) We can find vBeJf0(tys) for B related to (ΛO, (̂ ?) and (Φ) such that
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(-
ot

n

n

with sNeJf_N + 1(t,s) and r N e J ί f _N(tys).

(2) We can find vBe^^(t,s) for B related to and (9*) such that

—
ot

in IsxR"+y

n

with t y s ) and rN

Proof. In any case the main term of vB(t,s) is — 2w1 t-ι(t — s,xn+yn:
b(t,xr,ξ')}e~β(t~s\ Apply Theorem 2 or Theorem 2'.' we get the
assertion. q.e.d.

DEFINITION 13. For a function ΛeC((0,T);5%Rw~1)) we set

= vB(t-
J s

Proposition 9. For xn>Q,(ZBh)(tys) is well-defined and

) in IsxRn

+y

n

) = 0 in R\,

where S and R are integral operators of the form

(Sh)(t,s) = s(t,σ,Xn)h(σ)dσ, (Rh)(t ,s)= r(ty

J s

σ)h(σ)dσ

with smoothing kernels in the sense
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Proof. By the definition of ZB we have

Λ p Λ
+ (- + Q)VB(t-σ;t)h(σ, )dσ + (P-Q)VB(t-σ;t)h(σ, )dσ

Jsdt J s

P P
= Sw(ί-σ;ί)Λ(<v)<fr + (P-0)Fj(ί-σ;ί)Λ(<V)Λr,

J s J s

where we used that lims_>r VB(t — s;t)f=0 at xn>0 for any continuous
function /. By the facts that rN(σ\t)e ffl _N(σ;ί), sN(σ\t)e^f _N+1(σ;0,

^(σ OeJ^oί^Oi^P— Oe ^-jv + ι and (3 2°)> we Set tne πrst Part of tne

assertion. From Theorem 5 it holds that

B(t)(ZBh)(t, ,s)= B(t)vB(t-σ,x',xn,D',0;
J s

rN(t-σ,x',xn,D',0 ,t)h(σ, )dσ.
J S

By Proposition 7, Proposition 8 and the above equation we get

Γr

q.e.d.

5. L%RΠ+) boundedness of operators of 2P0

In this section we shall show that

Proposition 10. Let g(σ\t) belong to 3tfs(σ\i). Then an operator
G(σ\t) corresponded to g(σ\t) is a bounded operator on Lp(/? + ) for \ <p<co
if σ>0 or s<0. Moreover we have the estimate
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(0<σ<T).

Theorem 6. For operators U(t) constructed by Theorem C and VN(t,s)
constructed in Theorem 4, we have

\imU(t)φ = φ in
ί->0

and

= n
ί->0

for any (peL%R+) and for any integer N.

For the proof of Proposition 10 and Theorem 6 we prepare the
following lemma and propositions.

Lemma 4. Let q(x',v,ξf,w) satisfy

Iφ'φ'ίl < CM < ί' > - w + wH(v, w),

where H(v,w) satisfies for an interval J in R

Γ Γ(5.1) H(v,w)dv<C^ H(vyw)dw<C0.
Jj Jj

Then \jq(x' \v,D \w)φ(->w)dw defined by

(2πΓn + 1 I I e«x'-™fq(*f,v,ξr,w)φ(y\ιvWdξrdw
J/Jϋ"-1xJR''-1

is a bounded operator on Lp(/?n-1 x J) for l<p<oo with some constant C

|| q(x'ίvίD
f

y

Jj

Proof. Set

u(x',v)= q(xr,v,D',
Jj
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ifJjJlt"-1 χ f l n - 1

Then the boundedness of pseudo-differential operators of class S® δ(Rn 1 )
on L^R""1) indicates that there exist / and C such that

<C| \q(',v^w)\
Jj

(5.2) N

By the assumption we have

where C^max^ + ̂ ^^^β. So the Hausdorff-Young theorem concludes
to

Γ Γ
.3) { |$(s^,*tOlί0)M^^^

Jj Jj
(5.

By (5.2) and (5.3) we get the assertion, taking C = CCZ. q.e.d.

Proof of Proposition 10. For the operators corresponding to
, (&) and (0f) we can apply Proposition 7, taking

= (0,oo).

Then we get the assertion. But in case (£f) we can not apply the above
argument to Proposition 4'-(l). In case (Zf) we have the following
estimate for g(σ\i).

Now let ψ(x) be a smooth funcion such that

1, if |r|<l;

0, if |r|>2.
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Set

g(σ t) = ψ(\ξ'\yfi)g(σ , t) + (1 -ψ(\ξ'\Vσ))g(σ . 0 =8ι +82-

Then g2(σ;t) satisfies the assumption of Lemma 4 with δ = \. On the
other hand, gι(σ,x' ,xn, D',yn; t) has a kernel g\(σ,x',xn,y',yn\ t) defined below

<"-1> ί
jRn-l

N>-. So we have
2

,*',*,,,/ ,Λ; 01 < C(-

where F(^) = (l +|^|2Λr)~1. Then

-l^iiff.ac'^B.y.^Olrf*', \gι(σ,χ',χn,y',yn;t)\dy'
J R" - ' J R" - »

Then we are able to apply Proposition 11 below and get the
assertion. q.e.d.

Proposition 11. Let r(x',v,y'yw) satisfy

\r(x',v,
jRn-l

\r(x',v,
J R n - l

<'<H(v,w),
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with H(v,w) satisfying (5.1). Then an operator ($φ)(xr

 yv) defined by
(έ%φ)(x'yv)=§j§Rn-ιr(x'yv9y'yw)φ(y',w)dyfdw is a bounded operator on
L%R"-1xJ) for l<p<oo.

For the proof of Theorem 6 we prepare

Proposition 12. The fundamental solution U(t) constructed in Theorem
C satisfies

(1) U(t)φ+-+φ m

as t tends to 0.

(2) Set v = {ww(t,xn,+yn)-2b(t,x')wt9-^ or

-ϊb(tJΛ')&*.-&^^ Then

> n

as t tends to 0.

Proof. The fundamental solution U(t) for the Cauchy problem is
a pseudodifferential operator of which symbol has the following expansion
by Theorem C.

where Uj(t'yxyξ)=fj(t'yx,ξ)exp(—p2(Xyζ)t). These functions fj(t\x,ζ) are
polymonials with respect to ξ and t, satisfying the equation k — 2l——jy

where k is the degree of ξ and / is that of t. The operator Uj(t;x,D) has
kernel

Uj(t',x,x-y) = (2πΓn \ ufax9

JR»

where Kfax.z) satisfies

jRn

It is well-known that pseudo-differential operators of class S®>0 are
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Lp(/?w)-bounded for !</><oo. The symbol u0 convergences to 0 in

the weak sense, that is, Iimu0(tyxyξ) = 0 for {^ l^l^β}. This indicates
->ί->0

that

χ n
ί->0

for a bounded continuous function χ defined on Rn. We have

n

by the similar methods of Proposition 10. Then we get

limU(t)χ = χ in LP(R").
ί->0

We have the assertion (1) for a function φeLp(/? + ), applying the above
arguments for φ + .

(2) Set vi=w0^e~βt. Then Vi(t)φ=U0(t)φ~ by the following
equality given in Remark 1.

By (1) we have

φ n
ί->0

So we have

\ΊmVi(t)φ = 0 in LP(R\).

Setv2=v — vi. Incase (^), C/Γ), (^), v2 belongs to ffl __±. Hence we get

= 0 in Lp(Rn

+)

by Proposition 10. It is nessesary to consider only cases (0) and (&*). We
can write the operator V2(t) corresponding to a symbol v2(t) as follows.

Λo

V2(t)φ(xH)= v2(t,xf

yxnyD
f

jyn)φ('yyn

Jo
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We extend the operator V2(t) as an integral-pseudodifferential operator
F3(ί) on LP(/?M) of symbol v3(tyx',xn,ξ'yyn) which is defined as

W/= Γ
J — o

where

), otherwise.

Then for xn>0 we have

(5.4) V2(t)φ(Xn)=V3(t)φ+(Xn).

Assume that

(5.5) HmF3(OιA = <A in L*W)>
ί->0

where

for (0), or

,m 7 , , , f -<A(*',-O> if *(0,*') = 0;
(5.6) ψ(xίxn)= <

[ 0, otherwise.

for (50. Then by (5.4) it is clear that V2(t)φ-*Q in l.p(R\).
For the proof of (5.5), repeating the same argument of Proposition

10, we have !/(/?") boundedness for V3(t). So it is sufficient to prove
(5.5) for smooth functions. Set for case (&)

= Γ \
Jo Jo

Then we have V^(t)^/-v^(t,xf

yD')\l/(-,-xn) converges to 0 in Lp(Rn) as
t -»0, where

Π
X)4 /tb(t x' £''^v ισ\l>x >s

7=—
3 V π

j 00

Jo
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On the other hand v4(tyx
f

ίD
f)φ(',—xn) converges to 0 in L,p(Rn) as t -> 0,

where we use the fact

-e-σ2}dσe-β(x' *'* weakly onverges to 0 in S% as t -* 0.

Set for case

=
J oo J o χ π

^

Then we have V3(t)ψ — v5(tyx'yD
f)ψ(-y — xn) converges to 0 in L%RΠ) as

t -> 0, where

o Jo

- β(x',ξ')t

e-σ2}dσe-β(x'^\ if α(^,

-e~β(x''ξ'}t

y otherwise.

On the other hand v5(tyx
f ,D')ή/(-, — xn) converges to \jί defined as (5.6) in

Lp(Rn) as ί^O. q.e.d.

Proof of Theorem 6. The symbol of VN(t,Q) is obtained by

with v'etf '_! or v'etf _L (for the problem (^)). By Proposition 10 and
Proposition 12 we get trie assertion. q.e.d.

Set an integral operator (<fgh)(t) of the following form

J o
= g(t-σyx'yxnίD',0',t)h(σ, )dσ.

o

By the same method of Proposition 10 we have the following Lemma

5. In this case, we apply Lemma 4 taking H(vyw) = (-r=^)s*1e~4(v~w).

Lemma 5. Let g(σ\t) belong to J^s(σ\t). Then (<#gh)(i) is a bounded
opertor on L%RW ~ J x (0, T)), ifxn > 0 or s < 1 . Moreover we have the estimate
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C\\h\\,

if ί>l;

otherwise.

Theorem 7. // VB is the symbol which is constructed in Theorem 5,
we have

BZBh(t,0) -> h(t) in lx(0,T»

as xn -» 0.

Proof. Noting ZB = ̂ VB, we obtain the assertion by Corollary 1 of
Proposition 8 and the above Lemma 5.

6. Global construction of the fundamental solution and the
proof of Theorem I

Let {Ωμ}μ€^ be a finite open covering of M. Let Jf be a subset of
Jί such that ΩμίμGi/Γ) are diffeomorphic to domains Ωμ in R\, with the
property ΓnΩμ(μe«yf) are diffeomorphic to domains in {(#',#„);#„ = ()}
and dis(Ωμ,Γ)>(5>0 for μeJi\Λr. Let {φμ}μe^i be a partition of unity
subordinate to the covering {Ωμ}μe^ and let {ψμ}μe^( be C^(Ωμ) functions
such that ψμ=l on supp φμ.

In each local patch (Ωμ)μe^ the problem is reducecd to the following
form.

(l)For

(-
fe

n

in I.xR"'1,

I in /?1.

(2)For

=0 n

n

where Pμ = P on Ωμ, Bμ = B on Ώtμr\Y,mμ = φμm.

By the assumption Pμ can be extended to be strongly elliptic in
Rn. Choosing a covering {Ωμ}μe^ sufficiently small, we can assume that
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Pμ satisfies the assumption (3.1).
Let Uμ(t)(μ e Jf\N) be the fundamental solution for the problem (Lμ)

which is consructed in §2. !?&(£, ί)(μeΛO be the approximate solution
for (LμyBμ) constructed in §3, that is,

By Theorem 4 Gμ(t,s) and Fμ(t,s) are smoothing operators with kernels
gμ(t,s)y /μ(M) which saisfy

(6.1)
oy t-s

(6.2)

Set

Then

dy ΰyn

LEN(t,s}=

B(t)EN(t,s)\Γ=

= Σ {

Σ ΨμU
μ(t-t)φμ



710 C. IWASAKI

= /.

Hence we have

Proposition 13. For any fixed N, EN(t,s) defined above satisfies

where G(tys) and F(t,s) are operators whose kernels g(t,s) and f ( t , s ) satisfy
(6.1) and (6.2) respectively.

Proof. supp[Pμ,^Jnsuppφμ = 0, supρ[jBμ,^μ]nsupρφμ = 0 by the
definition of ψμ. Owing to the above fact and the pseudo-local property
of tfs(σ\t) and S™jθJ (6.1) and (6.2) hold for g(t,s) and f ( t , s ) respectively.

q.e.d.

On the other hand in §4 we construct the approximate Poisson operator
Z£ in /?+ for any μtJf such that

=
J s

satisfies

n

in IsxR"

lim(Z5(ίfs)A) = 0 in R"+ί
ί-»s

where Sμ(t,s) and Rμ(t,s) are integral operators of the form

(S*(t,s)h)(*,xJ= Γί s"(t,σ,Xn;X',y')h(σ,y'Wdσ,
J s J Rn - J

(Λ"(ί,ί)A)(*')= Γ ί r»(t,σ;X',y')h(σ,y'Wdσ
JsJll"-1
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with smoothing kernels in the sense

(6.3) \(—)"(—)""(—„

(6.4) |ώ«(

711

Set ZB(tys) = Σnejr t/V^S(M)<Pμ ^Y tne similar argument to EN(tys)y we
get that ZB(t,s) satisfies the following equations

LZB(tys) = S(ty s) in Is x My

) in 7 sxΓ,

\imZB(tys) = 0 in M,

where opeators S(t,s) and R(tys) have kernels s(tys) and r(tys) satisfying
(6.3) and (6.4), respectivily.

Proposition 14. We can construct an operator ZB of the form
(ZB(tys)h) = γsϋB(t,σ)h(σ)dσ such that

n

B(t)ZB(t,s) = I in 7 sxΓ,

UmZB(t,s) = 0 in M,
f-»s

with S^tyS) of which kernel s^(t,s) satisfies (6.3).

Proof. Let φ(t,s) be the solution of the equation

J s

tyσ)-φ(σys)dσ = 0y

where r(tyσ)-φ(σys) means that

( r ( t y σ ) φ(σys))(x'yz')= r(tyσ-yx'yy')φ(σys yy'\z')dy''.
Jr
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Then φ(t,s) also satisfies (6.4). Set

Then ZB(t,s)h = γsvB(tyσ)h(σ)dσ by the definition. Let VB be the solu-
tion of

- vB(t,(.
J s

,σ) φ(σ,s)rfσ.
J s

Then we have

where h1(t) = h(t) + γsφ(tjμ) h(μ)dμ. So we obtain the following equation:

f'~, , A" ,• I s ( t ) G ) ' ( I φ\(T,
L L

= S(t,s)h+ ί(ί,σ) (| φ(σ,μ) h(μ)dμ)dσ

- S(t,s)h+\ ( s(t,σ) φ(σ,μ)dσ) h(μ)dμ
S J β

The kernel s^t^s) of an operator S^tyS) is given by

P(6.5) ?1(ί,5) = f(ί,5)4- s(t,σ)-φ(σ,s)dσ.
J s

So ίι(M) als° satisfies (6.3). On the other hand on Γ we have

= h(t)+ φ(t,μ) h(μ)dμφ(t,
J s

+ r(t,σ) (h(σ)+ φ(σ,μ) h(μ)dμ)dσ
J S J S

= h(t)+\ (r(t,σ) + φ(t,σ)+\ r(t,μ) φ(μ,σ)dμ) h(σ)dσ
J s J σ
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=h(t).

The last equation follows by the definition of φ(tys).
q.e.d.

Proof of Theorem I. Let EN^(tys)=EN(tys)-ZB(tys)f(-ys). Then

) — S i ( t y s ) f ( - y s ) = Gi(tys) in / sxM,

00(ί,5)=0 in / s xΓ,

limENtao(t,s) = I in My

where G^(tys) has the kernel g^(tys) defined by

Γ(6.6) @ι(tjs)=g(tys)— s1(tyσ)-f(σys)dσ.
J s

So gι(tys) also satisfies (6.1). Let ψ(tys) be the solution of the followig
equation

Γgι(tys) + ψ(tys) + gι(tyσ)Qψ(σys)dσ = Qy

J s

where gι(tyσ)Qψ(σys) means that

(gi(tyσ)Q\l/(σys))(xyz)= gι(t,σyxy}
JM

Then the following e(tys)

(6.7) e(tys) = eN (t s)

is the kernel of the fundamental solution. In fact it is easy to show the
kernel of LE(tys) coincides w i t h g i ( t y s ) - ^ \ l / ( t y s ) - \ - ^ s g i ( t y σ ) Q \ l / ( σ y s ) d σ y which
is equal to 0 by the definition of gι(tys). Now ψ(tyσ) also satisfies (6.1)
because gι(tyσ) satisfies (6.1). By the definition of EN>00(ί,s) it holds

(6.8) eN ao(tys) = eN(tys)— vB(tyσ)-f(σys)dσ.
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We note also that

if we prove the following Lemma 6. EN(t,s) is Lp(M)-bounded by
Proposition 10. So E(t,s) is also Lp(M)-bounded. Moreover we have
limt^sE(tys)m — m in LP(M) by Theorem 6. q.e.d.

Corollary. The Poίsson operator is obtained of the form Z(tys)h
= ̂ sz(tyσ)h(σ)dσy where

-
J s

Lemma 6. // ψ(σ>s) satisfy (6.1) or (6.3), then

(6.9) I \eN(t,σ)Oψ(σ,s)dσ\<C(^/t^s)N-"-N°,
J S

(6.10) I eN ao(t,σ)Qφ(σ, ^Ά-ri^rv /7Z7 »w-»-*<>
J, '

// r(ί,ί) ίflfίts/y (6.2) or (6.4), then

(6.11) II \vB(ty

J s

where N0 is a fixed integer such that N0>n— 1.

Proof. Owing to that the symbol e^ of E^ belongs to ^0, we
have

1
(kernel of (££(*, σ)Λ-N°)|< C-

for ΛΓ 0 >w— 1 by Lemma 2. By the assumption we have

Ikernel of
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So (6.9) holds. (6.10) is clear by the fact that Jlf(μ,σ)O^(σ,s)A7 satisfies
(6.2) and by the following equation.

S
J I

βjv.oo. -eN)(t,σ)Qψ(σ,s)dσ

= - { vB(t,μ) ?(μ,σ)dμ}θψ(σ,s)dσ
J s J σ

= - vB(t,μ) { f(μ,σ)Oψ(σ,s)dσ}dμ.
J S Js

For the proof of (6.11) we devide into two cases.

1°. For (0),(ΛO,(Λ).

It is cleat that VB belongs to ̂ 0. So we have

Kμ(ί,σ)|<C—1=
Jt-σ

and also we get by Lemma 2

v*~σ

for ΛΓ 0>n—1. We also get

(6.12) [kernel of (\N°R(σys))\<C( * )"NH

by (6.2). So we get

2°. For (3) and

It is clear VB belongs to Jίfi. We apply Proposition 15 below and (6.12)
to the main term u>ι,oe~βt(™ι,-ιe~βt) °f vBμ f°r (^)((«^))> respectively.
Then we get (6.11). q.e.d.
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Proposition 15. Let g(tyx
f

yxnίξ') = wlj_i(t,xn)e~β(x^ξΊt or g(tyx'yxn,
ξ') = w1,o(t>xn' <*>b)e-β(χf>ξΊt. Then the operator A=$t

sg(t-σyx',xn,D')R(σys)

dσ has the kernel a which satisfies \a\<C(^/t — s)N~n~N° under the assumption
that R(σ,s) has the kernel r(σ,s) which satisfies (6.2) or (6.4).

Proof. By the definition of g we have

A = wlt0(t-σJxn)
J s

Choose N0>n-l. The kernel of e-β(x'^(t-σ}\(DfΓNo\(Df)NoR(σ,s) is

estimated by C(^/σ — s)N~n~N°. So we can apply the argument of Corollary
2 of Proposition 8, which completes the proof. q.e.d.

7. Applications to the asymptotic behavior

We calculate Tt(£S) for all boundary value problems introduced in
§0 and give the proof of Theorem II.

For any fixed point x°eMy choose an open covering as stated in
the previous section such that {Ωμ}μ, #°eΩv and choose a partition of
unity {φμ} subordinate to {Ωμ} such that <pv(#°) = l, Then we obtain

for any N as stated in the proof of Theorem I. If x°φΓ, the difference
of the fundamental solution of the intial-boundary value problem and
that of the Cauchy problem is of any power of t. Thus we have

J = 0

where

If Jc°eΓ, the approximate of the fundamental solution EV

N for the
intial-boundary value problem (LvyBv) is obtained in the previous section
as Ev

N(t)= Uv(t)+ F^(ί,0). We have out of Γ

tτF];(*,0)~o(ίl) for any /



ASYMPTOTIC EXPANISION OF FUNDAMENTAL SOLUTION 717

for any boundary problem considered in this paper owing to Theorem
3, Lemma 2 and Lemma 2'. Also we have the expansion

7 = 0

on Γ for (®), (ΛO, (̂ ?) and (Θ) because of Theorem 3 and the definition
of tfj.

We will prove in this section that

00 tι 1 ί

1ί(t9Q)dxn^ fV
7 = 0

and calculate DQ(yf),D^(oί) for (0), (ΛO, (Λ) and (φ). We consider the
singular problem in 4°.

1° The asymptotic behavior of the trace of the fundamental solution for the
Cauchy problem.

Let U(t) be the fundamental solution for the Cauchy problem, that is,

LU=(— + P)Γ7(f) = 0 in (0,T)xM,
dt

C7(0) = 7 on M.

In a local patch ί7(ί) can be obtained as a pseudo-differential operator

with symbol u(t) = uQ(t)-{-ui(t)-{-u2(t)-\ ---- , where w/ί) =fj(t)uQ(t) are
defined as (2.1) and (2.2). If we calculate

we get

7 = 0

Let ^ be the Riemannian mertic of M. Set

gjk=g(^- ,τ— ), gJk = (gjkΓ
OXj OXk
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Then the symbol of P=— (Δ-h/z) is given by

p2= Σ *%&,

— Σ { Σ -**+} Σ
j = 1 fc = 1 CWfc ^k = 1

where G = detfe°).

Now we fix a local coordinate such that gu satisfies the following
conditions at a fix point x°. The first derivatives of glj vanish at x° and

x°) = δij For simplicity we put Λ?° = 0. Then we have by (2.2)

,0,ξ) = exp(-\ξ\2t), uj(t,0,ξ)=fj(t,0,ξ)u0(t,0,ξ)

+ Σ

3 Σ (
i, j,/,m=l

where Λ=Σj=ι^XΛ:)?Λ/ Then we have

Γ ,r(±χ
(2πΓn u0(l;0,ξ)dξ = (-^-)n,

Γ . r. . „• /ΠiXnr IIh 11(0) divΛ(O)(2n)~ I u (I'O ζ)dζ = (—-—) f v x

JRn "2 ' ' 2π 4 2

Σ ((-)VO(0)- Σ (
j j = i OXi /,j = 1

Noting the following equation

Σ (AWo)- Σ
i,j = l OXi i,j = l
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we get

.
2 π 3 4 2

By the fact JMdivλί/F=0, we get the (0) and half part of (2) of
Theorem II.

2° The asymptotic behavior for Dirichlet and that of Neumann
boundary conditions. We calculate the trace of the opeator V(t).

Take a local coordinate as in §6. We consider about the Neumann
condition. From Lemma 3 in this case we must solve the following
equation asymptotically.

( • + $)» f (0 = 0 in 7xΛ"+,

where k(t,x\ξ\ξn) = k(t,x\ξ)= -i^^^o^x'^ξ^u^x'^ξ))-'.
Here we use the asymptotic expansion «(0~Σjsou./(0 (w/ί) =//0Mo(0)-
We will calculate ^(i,x',^). Set

Then we have

where

Mj(ί) = Λχί,Λ:,ί/,ί>o(0, with hj

Using the above notations, we have k(t,x'^)= —iξn — iξnh\—(^nhi)*
with k'e^r_1. We get specially
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We will calculate the asymptotic y(t) of v(t) such that v—ye<2ίf-2. Set
w = wi — v(t)y where

Then w must satisfy

d

(7.3)

n

n

The main part of the above equation (7.3) is

3 V --ί *-

(7.4) St

(iζn)°w(t)\x =Q = 0 in IxR"~1,

where we used the following notations:

P1(t,x,ξ)=p1(t,x,ξ',-ξlt), r2
(-
dx

If the boundary condition is the Dirichlet condition or the Neumann
condition, according to the above argument we get the main part of V(t)
as follows.

Lemma 7. Set

Then we get

(1) (Dirichlet) v(i)-yD(t) belongs to 3F _ 2 with

where _^ is the solution of the following equations.

d_
dt

n

n
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(2) (Neumann) v(t)—yN(t) belongs to Jf _ 2 with

721

where wNe3Ίf _ A is the solution of the follwίng equations.

τ-
ot

n

n

We prepare some statement to calculate the trace of VN for the
Dirichlet problem and the Neumann problem.

Lemma 8. Let v + and v _ be the solution of the following equation

d
—v.
dt

in IxR"'1,

n

Then we have

(1)

0<s<l ('+ 1 —^

where

^s ,\ *• / y vn-ι ^\ */ > vι-t-

(2) W7^ can calculate tr F±(ί) corresponding to v± as

tr F
ίJo
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where

Here we used Proposition 16 below to obtain (2) of Lemma 7.

Proposition 16. For any fixed positive consant ε, we have

Corollary. L^ί ^(ί) belong to Jfj. Then

tr

By Theorem 3 and the above Corollary we have

Theorem 8. We have the following expansion for V^(t) which is
constructed in Theorem 3 for the Dίrichlet problem and the Neumann problem

Γtr VN(t,X'>Xn)dXn~ £
Jo J=o

Γ/ZMS

ί tr VN(ί)dV~ £ r^+i+i I Z)̂ )̂ , ί->0.
JM j=o Jr

Let calculate the main term in the above Theorem 8. In a local patch
Ω such that QoΓ^O, we choose a local coordinate of Ω as follows.

\<j,k<n,
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Set r2 = (^p2T — Σu = i dίjζiζj Then the terms in Lemma 7 are calculated
as

where

a0 = d— d+2hn

with d=άn\ J=Σ?=ι dί*. So we have

-dw2t0)--aQtw^tQ +

where 7 = X?J= i dljξιξj, k\ is a polynomial of odd degree with respect to ξr.

By Proposition 16 and Lemma 7 we have

Lemma 9.

(1) For the kernel ί*(t9x',xH9y',yn) of the operator K1 corresponding to the
symbol k±, we have

Γ
Jo

tr -
o

"-1 -̂̂ - --- -\V V ;

(2) For the kernel wD(t,x' 'yxnίy' yyn) of the operator WD corresponding to the
symbol WD defined in Lemma 7, we have

(3) For the kernel wN(t,x' \xn,y
f \y^) of the operator WN corresponding to the

symbol WN defined in Lemma 7, we have

From Lemma 7 and Lemma 9 we obtain the following theorem.
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Theorem 9. Let YD(t,x'yxn) and YN(t9x',xn) be operators correspond-
ing to yD(t) and yN(t) which are the main term of the fundamental
solutions. Then we have

ίo ° Ίπjt ' 4

and

P tr Yκ(t x' x )dx '
Jo ' " "

where J is the mean curvature, that is, J= — ̂ i^ndb^"' flux A = — hn in this
case.

3°. Oblique Problem and Robin's Problem.

For oblique problem the main term of V(t) is

which belongs to Jf 0. The main term means that v (t) — v0(t) £ Jίf _ x . We
get Theorem II by the following fact and Proposition 17.

1<
where β(X',ξ')=<β0(X')ξ',ξ'>.

Proposition 17. // the symbol b(x',ξ') is defined by b(x',ξ') = B(x') ξ'
with a vector B(x'), then we get

/•Jo

1-1 I Λ

(7.5) x

REMARK 9. The inequality Re(l - <j80(^)~1^,^>)>0 holds by the
fact that the boundary condition is parabolic.

Proof. By change of variables the left hand side of (7.5) coincide with
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V"^) ί , Γ
Λ ί π Jβ"-1 Jo Jo

+ 2σB ζ - < β0ζ,ζ > }dσdωdζ

= (_l-)"-i(-Zl) ί Γ
2π^/t 2x/π Jn"- ιJ

-exp{-σ2- <β0ζ,ζ>}dσdζ.
q.e.d.

In case Robin's problem b = b(x) is independent of ξ'. So we have

—-u + bu.
dxn

Set v — w^-\-W) where w± is defined by (7.2). Then w must satisfy

d

te'
(7.3)'

(*4 + *)°

Set w — w2 + w3 , where w2

d
— 2£j,_ -4- ΣπίOΌ ί

df

a
•h tf) ° w(t) = ( h Q) c

δί

w(OL = o=-26«'o.o

and ε^3 are solutions

^2) = — {<?ι — <?ι + 2#M

>w1(ί) in 7xί? + ,

in /X jR"" 1 .

of the following equations.

γ _ >^(}Λ Λ^ 11̂  _/ X J\ ,

'

(7.4)'

(7.6)

n

n

n

Repeating the similar argument with that of for Neumann condition, we
get w2 and its trace. For example Lemma 8' and Proposition 16' for
Robin's problem are as follows.

Lemma 8'. Let v be the solution of the following equation
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n

(iξ + b)°v(t)\Xn=0 = inlxR "'1

Then

where Cs are the constants defined in Lemma 8.

Proposition 16'. For any fixed positive constant ε, we have

p (2*
L"I-Ί?

(h ΓtV

So the main term of the asymptotic behavior of tr Wj _ 1 is the same
with that of Wj_ l f 0 . Hence the main term of the asymptotic behavior
of tr W2 coincides with that of WN for Neumann problem. On the
other hand the solution w3 of (7.6) is — 2bw0 _ t . Then by Proposition
16' we have

I"
as £-»0. Then we get Theorem II.

4°. Singular boundry problem.

In this case v = w0 + wiy w0 = (w0 0 — 2bwQ _ j

Theorem II by the following lemma.

Lemma 10. (1)

A. So we get
-2

tr

(2) ,
ί1

Jo
tr
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(3) For WQ corresponding to WQ = (w0i0 — 2bw0_i)e~ftt we have

lim(^%-» f tr W0dXn =
t-o2πjt Jo ~ 4Vdet/*0(*r otherwise.

Proof. (1) and (2) are clear by Lemma 2'. (3) is obtained by the
following equation.

w()ι<)(t,xn + xn)-2bw()ίi(t,xn + xn;ayb)dxn

Jo

Λx> 1 o A /j. px>

-> [ — exp(-w;2)H -- r̂- exp{-(aσ + w)2 + 2b^/tσ}dσ]dw
t->o Jo 2π /π Jo

1 i- +
4 , / π o

, if

i, otherwise.
q.e.d.
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