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Introduction

Let X=(XtJ Px; x^Rd) be a ^-dimensional pure jump type Markov process
associated with the operator — (—A)*(x)/2(O<a(x)<2). Following Bass [1], we
call it the stable-like process with exponent a(x). Under a mild regularity
condition for a(x), the process is first constructed by Bass [1] and next by
Tsuchiya [12]: Bass has done it by showing the uniqueness of solutions to the
martingale problem for the operator and Tsuchiya by showing the pathwise
uniqueness of solutions to a stochastic differential equation associated with the
operator.

In this paper, we will show the existence of a transition density and local
Holder conditions for sample paths of the process X with smooth exponent
a(x). For this aim, wre want to adapt the theory of pseudo-differential oper-
ators to the operator — (—Λ)~*(*)/2, but its symbol —1£|*<*> is not smooth.
Hence we consider the operator Lφ which is obtained from — (—Δ)*(*)/2 by cut-
ting off the support of its integral kernel (i.e. Lέvy measure) with a positive
smooth function Φ (see Section 1 for the precise definition of Lφ). There
exists a pure jump type Markov process Xφ associated with Lφ in the same sense
as the above. Since Lφ can be regarded as a pseudo-differential operator of
variable order, we introduce a class of such operators and provide the funda-
mental theorem for algebra and asymptotic expansion formula of their symbols.
Next we prove that Lφ satisfies the (H)-condition (see [7] p.83 for the (H)-
condition). These facts allow us to construct a fundamental solution, in the
sense of pseudo-differential operators, to the initial-value problem for the equa-
tion 3 / ~ L φ = 0 . Furthermore, we show that this fundamental solution has a
smooth kernel and this gives a transition density of Xφ. Using a localization
argument, we see that X also has a transition density. Finally, using certain
estimates for the symbol of the fundamental solution and expanding the method
of Khintchine [6] and Blumenthal and Getoor [3], we obtain the local Holder
conditions for sample paths of X; this result is a natural extension of that of
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[3] in the case of symmetric stable processes.
Pseudo-differential operators of variable order are treated by Unterberger

and Bokobza [14], [15], Unterberger [13], Visik and Eskin [16], [17], Beasuzamy
[2] and Leopold [9] [10], etc. They, however, do not treat the initial-value
problem for evolution equations with respect to such operators.

Section 1 is devoted to construction of a fundamental solution E( ) to the
initial-value probelm for dt—Lφ=0 (Theorem 1.3). It implies the existence
of a transition density of Xφ (Theorem 1.6) and also implies the existence of a
transition density of X (Theorem 1.7). The (H)-condition follows from The-
orem 1.1, which is a key result for the construction of the fundamental solu-
tion.

In Section 2, we prove local Holder conditions for sample paths of X (The-
orem 2.1). Lemma 2.1 is an extension of a fundamental result of Khintchine
[6]. Lemma 2.2 gives a relation between the symbol of the fundamental solution
E( ) and the characteristic function of a random variable used in [3].

I express my gratitude to Professor M. Tsuchiya for valuable discussions
and the guidance on the topic of this paper. In particular, the proof of The-
orem 1.1 was accomplished with his aid. To Professor K. Kikuchi, I also
express may appreciation for his useful advice and helpful conversations on the
theory of pseudo-differential operators.

1. Constrcution of the transition density

We begin with introducing some notations. For n—0, 1, 2, •••, °o, Cn

b(Rd)
is the space of real-valued n times differentiable functions which are defined on
Rd and have bounded continuous derivatives up to order n. C%(Rd) is the sub-
space of C°£(Rd) consisting of those functions with compact support. S or
S{Rd) denotes the Schwartz class on Rd. Cj 2([0, oo)χRd) denotes the space
of real-valued functions on [0, °°)χRd which together with first-derivative in
time variable and first two-derivatives in space variables are bounded and con-
tinuous. For a bounded function a(x) on Rd, set

ci = sup a (x) and a = inf a (#).
xt=Rd x<=Rd

Let Ω, be the space of Rd-valued c&dl&g functions ω on [0, oo) and let
Xt:Ω-*R? be the function defined by Xt(ω)=ω(t). Let 3t be the σ-field
generated by {Xs, s<t} and 3f—S£oo. Given a positive kernel v(x> dy) on
Rdχ(Rd\{0}) satisfying JV\{0}(l3>|2Λ 1) v(x> dy)<°oy we define the operator L
on C2

b(Rd) by

where z y is the scalar product in Rd, V is the gradient operator and 1£( ) the
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indicator function of a set E. We say that a probability measure P on (Ω, ίF)

is a solution to the martingale problem for the operator L starting at x if

0:=tf)=l and, for every/e=Cί 2([0,

Jo

is a P-martingale with respect to the filtration

In this paper, we will focus our attention on the following type of kernels:

where a(x) is of Cΐ(Rd) with 0<a<a(x)<a<2, and zom(x) is defined through

the L6vy-Khintchine formula

^ f o j U-cosξ.y} wΛ(x) | y |-«+-«> dy .

We note that wΛ(x) is a positive function of C^(Rd), Then the operator L can

be regarded as a pseudo-differential operator with symbol —\ξ\Λ{x) hence,

in the following, we will denote the operator L by — (—Δ)"ω / 2 . By a result

of Bass [1] or Tsuchiya [12], for each starting point, there exists a unique solution

to the martingale problem for the opeartor — (—Δ)"(*)/2. Therefore, the family

of solutions to the martingale problem defines a Markov process on Rd, and

it is called the stable-like process with exponent a(x).

The purpose of this section is to show the existence of a transition density

of the process. To conclude this, we consider the kernel vΦ defined by

i/Φ(*, dy) = wΛ{x)Iy I -C'+-«> Φ(\y\)dy,

where Φ is a function of Cj°([0, oo)) satisfying the conditions:

(1) 0 < Φ < l o n [ 0 , oo),

(2) there exists a real number ro>O such that Φ(£)=l for any t^[0, r0],

(3) Φ(f)=0 for any ίG[l , oo).

Let Lφ denote the operator corresponding to this kernel. Then the unique-

ness of solutions to the martingale problem for Lφ also holds and hence there

exists a unique Markov process Xφ associated with Lφ in the same sense as the

above (cf. [12]). At first, we will construct a transition density of this Markov

process and obtain some estimates for the density. Then, using them, we show

the existence of a transition density of the original stable-like process.

Now, the operator Lφ can be regarded as a pseudo-differential operator with

symbol pφ:

(1.1) p*{x,ξ) =

To adapt the theory of pseudo-differential operators for LΦ, we start to discuss
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some properties of the function pφ. For a multi-index n=(nun2, * ,Wj), let

8?=8"i/8fΪi θ '/ΘK* and Dx=(-i)^ 9«, where \n\ =n1+n2+-"+nd.

Theorem 1.1. (1) pΦ is ofCΐ(RdχRd).
(2) For any multi-indices m and n, there exists a constant Cmt1t>0 such that for
any(x,ξ)<ΞRdχRd

(1.2) | 8 | Dΐρ.{x,ξ)\£CUtU(\ζ\ Vl) ( - w - w ) (l+log( |e | VI))1"1 .

(3) There exist constants R>0 and CQ>0 such that for any x<=Rd and \ξ\>R

(1.3)

REMARK. If we set C^, n =C m t Λ /C 0 , then

(lβ4) ι 8 ? p ? / ^ g )

P*(x, ξ)

for any x^Rd and | ξ \ >R. This implies the (H)-condition.

Proof of Theorem 1.1. In the proof, C denotes different positive con-
stants. Let Sd~1 be the unit sphere of Rd and s be the uniform measure on
Sd~1. Since s is invariant under rotation, we have

(1.5) p*(x,ξ)= j] ^(cosrfl-g-l) " f f , y drs(dθ)

hence

(1.6) QTp9(x, ξ) = Σ ak(x) J] {l0g

rϊl(f
{r) dr j ^ (cos rθ ξ-1) s{dθ) ,

where the function ak(x) is a linear combination of derivatives up to order k
of a(x) and toa(x). Then ak{x) (k=ly 2, —) are of Cϊ(Rd). Hence, to obtain
the estimate for d™pΦ, it is sufficient to evaluate the following integral:

For II;I ̂ 1 , noting \cosrθ ξ—1| <h^, we see that

I It I ̂ i - β (S"-1) Γ r 1 " ^ (log r)*
Z Jo

When I g I > 1, putting q=r | f | and f=g/1 g |, we can rewrite Ik as follows:

^ ( C O 8„.(_
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Since

Hence, we have

From (1.6), it follows that for any m=(mu m2, •••, τ«rf), «=(%, «2, ••• , «i) (I»I > 1)

Therefore, we will estimate the integral:

If I ? I < 1 and n>2> then we immediately see that

tt,fl —- / I I \ j,4_l ^

( | M | - σ ) m

When | » | = 1 and | ? | ^ 1 , noting

we have

((
Jo

Next, we consider the case when | ξ | > 1. We rewrite Knk in the form:

K... _ if I - - έ(*) (-.og my \:

X f exp(i}« f) (<
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We will evaluate the integral

* ; j -l-l

X Js,exp(»j0 f) (iθJXi

We divide itΛ,y into two parts J ξ ^ and Jt^J :

X J ^ exp(^ f) (i

and

X Jg</i e x p ^ f) (ί^)"1

Adopting the same method as in estimating of KHik for | ξ | < 1, we can show that

l ^ K o o if \n\>ί.

Now, let η=qξ. Then

To estimate i£«*}, we use the following result of Jones ([5] p.9):

(1.8) j ^ exp(i, β) s{dθ) = ω, 2

where ω l ί=2\/^/Γ(ίί/2) and / v is the Bessel function of index v={d—2)β.
Let

Taking the |n\ -th derivative of both the sides of (1.8), we have the equation

9; I d i exp(tη θ) S(dθ) = Σ Cj ηn^~21^ ηn

2-
2l2...ηy-2ld F*+\n\-u[{rj)y

where i=(lu l2, - , ld), n=(nly n2y ..., nd), [n/2]=([Wl/2], [w2/2], -[nrf/2]) and [.] is
Gauss' symbol, Ct is a constant depending on only /; hence

(1.9) δ
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From (1.7) and (1.9), it follows that

where b^ξ) denotes a polynomial of f. Therefore, we have to estimate the
integral

f '* '( io g g ) '

Using the asymptotic expansion formula for Bessel functions (cf. [4] ρ.230),
we obtain

Λ y 2*
f "«ι ( - l ) ^ ( l o g g ) / φ ( g / | ^ j ) ί cos {q-{v+ \n\ - |/ |)w/2-»/4> 1

x Jj g«ω+3/2+*+v+2|,|-ι»ι ίsin-C^—^+IwI —1/1)^/2—τr/4> J ?

rι*ι(iogg)/φ(g/[g|)

J l Λ*(*)+3/2+ί+V+2|/|-|n| ^ ^ ^

If N is a sufficiently large integer,

r (toggy
Jx ^U)+3/2+

- | n |

Thus, it is sufficient to prove the boundedness of the integrals:

Y Φ(ql\ξ\) \ c

Repeating the integration by parts and using the property Φ ( / )(l) = 0 (/=0,1,2, ),
we see that the integrals of the type (1.11) are represented by a linear combina-
tion of the following formula:

cos

+c cos(q+cπ) (or c ύn(q+cπ)) (j, u,v = 0, 1, 2, •••).

Therefore, it is enough to show the boundedness of the integral with the
form:
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" " dq;
+v+s+u

q«

it is easily verified by the use of the integration by parts. Consequently, we
prove the assertions (1) and (2). Next, we show the assertion (3). From (1.8),
we see that

JJ'^i!^ j )} s(dθ)

&22pp\Γ(p+p+ί)

The convergence radius of the power series Σ~=2(—1)* (fpβ2p p\T(y-\-p-\-\) is
infinite and it is equal to zero at q=0. Hence, there is a sufficiently small
number qo>O such that, for any q^[0, q0],

22Γ(i,+2) /

Therefore,

^ ^ t ! C ° ^ ^ f o r a n y f w i t h

hence the assertion (3) is verified. Consequently Theorem 1.1 is proved.

Since Lφ can be regarded as a pseudo-differential operator of variable
order, extending the theory for pseudo-differential operator of constant order,
we prepare a general theory for such operators of variable order in the following.
In what follows, for simplicity, we let

and, in particular,

DEFINITION 1.1. Let ζ be a bounded function on Rd.
(1) We say that a function p(x,ξ) of C°°(RdxRd) is a symbol of the class
S £ , δ ( 0 < δ < p < l , δ < l ) , if for any multi-indices m and n, there exists a constant
Cm,n such that

(1.12) \pΐMχ, ξ)\
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for any {x, ξ) £ΞRdxRd, where < f > = ( l + IfΓ)1/2 We set

(1.13) S — = Π Sθ

p8 and S;8= U S

(2) We jβy ώatf Λ /znαzr operator P: S(Rd)->S(Rd) is a pseudo-differential
operator with symbolp(x, ξ) of class Sp>8, if Pu can be represented by

(1.14) Pu(x) = \exp(iχ.ξ)p(x,ξ)ύ(ξ)dξ for

where dξ=(l/2π)d dξ, and ύ is the Fourier transform of u. In this case, we write
P=p(x, Dx)^Sp-t8, and we also denote the symbol p{x,ξ) of P by σ{P)(x,ξ).
Moreover the semi-norms \p\ί(k=\, 2, •••) are defined by

\p\ί = max sup i\p{n

m\(x9 f)|<f>-KW+»ι«ι-Pi i)} .
\m+n\<,k C*,ξ)eΛxβd

DEFINITION 1.2. (1) We say that a function a(η,y) ofC°°(RdχRd) belongs
to the class ̂ ΛltK{—°°<θ<iooί 0 < δ < l , 0<κ), if for any multi-indices m and n3

there exists a canstant Cm§n such that

I a? d;a(η,y)\ <cmtn<v>θ+w<y>κ.

We set

Jί= u u u Jilκ.

(3) For an element a(η,y) of <JL, we define the oscillatory integral Os[e~iy'v a] by

Os[eiy'v a] = Os— \ \ exp(-iη'y) a(η,y) dη dy

= I™ j j exp(—iv-y) X(£v, By) a{η,y) dη dy ,

where X(ΞS(RdX Rd) and X (0, 0)=1.

Theorem 1.2. Assume that 0 < δ < p < 1.
(1) Let ζj(j= 1,2) be a bounded function on Rd and PΊ =pj(x, Dx) G Sζ/8(j= 1,2).
Then P=PrP2 belongs to Sζ

p]6

+ζ* with symbolp{xs ξ) :

(1.15) p(x, ξ) = Os- J j exp(-*V:v) A(*, ξ+v)p2(*+y, S) dη dy

and it has the asymptotic expansion formula:

(1.16) p(x, f ) - Σ ^ , jjn'Xx, £)&</>(*>

for any integer N>1.
(2) LetP=p(x,Dx)<=Sίs. We define P* by

(PU,Ό) = (U,P*Ό) for u,v<EiS{Rd).
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Then P*(x, Dx) is a pseudo-differential operator of the class Sζ

p>B and its symbol
p*{x, ξ) is given by

p*(x, ξ) = Os— j j exp(—iη-y)p(x+y, ξ+η) dη dy ,

and it has the asymptotic expansion formula:

for any integer N>1.

Proof. By Theorem 3.1 in Chap. 2 of [7], we obtain that

(1.18) p(χ, £ ) - Σ , T j - l ^ ί 5V'»

Moreover, noting that, when |/ | = 0,pχ(x, ξ)p2(x, ξ) is the symbol with variable
order ζ1(x)+ζ2{x) and, when | / | ^ 1 , the order of p['\x, ξ)ρ2ω(x, ξ) is ζj.(x)+
ζjx)-\l\(β-δ), we have

Therefore the assertion (1) holds. In the same way as the above, we can verify
the assertion (2).

DEFINITION 1.3. We say that a sequence {pk}k^ι °f Sl.s converges weakly to
p^Sjt8 as &->°o if, for each h>l, there is a constant Mh such that \p\ζ

h<Mhj

and, for any multi-indices m and n, we have

(1.19) ί $ o - * ί ί f t as k->oo on RdxRd .

DEFINITION 1.4. Let I be an interval of R1 and V be a Frέchet space. For
a mapping φ: I->φ(t)^V, we write ψ E ^ " " 1 ^ V) if φ is \m\-times continuously
differentiable in I in the topology of V and each derivative Ώ\ φ is bounded

From Theorem 1.1, we see that Lφ is a pseudo-differential operator of
the class S?)δ, where δ is any positive number less than 1. Now we will con-
struct a fundamental solution in the sense of pseudo-differential operators
to the initial-value peoblem for the evolution equation with respect to Lφ:

(1.20) {dt-U}u=f in (0,Γ),

lim u(t) = φ in L2(Rd).
/->0

By virtue of Theorems 1.1 and 1.2, we can adapt the argument used in
the proof of Theorem 2.1 in Section 2 of Chap. 8 in [8] to the proof of the next
theorem.
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Theerem 1.3. There exists a fundamental solution £"(•) to the initial-value
problem for the evolution equation (1.20) such that it satisfies the following con-
ditions : for each T>0,

(1)

(1.21) E(t) = e(t, x, Dx)e=&((p, T\\ S?,a) n ^ ( ( 0 , T\\ S?iθ)

and,foranyt0e(0, T),

(1.22) E(t)e=&{[tt,T\',S-)= n

(2) for any t(Ξ(0, T),

(1.23) (9 ί -L Φ )£( ί ) = 0;

(3)

(1.24) β(ί, x,ξ)-*l in S?,δ weakly as t -> 0

(4)

(1.25) ro(ί, x, I) = β(ί, *, f ) -

in Sϊ$~S) weakly as t-*0

and

(1.26) ro(t, x, ξ)/teJ8"((0, Γ] S ? . ^ " " ) .

Proof. Let eo(ί, *, ξ) = exp(i^(«, ^)). Then this function satisfies the
equation:

(1.27) <d,-p*(x, ξ)} eo(t, x, ξ) = 0

Φ, *, f) = 1

Furthermore, for any multi-indices w and n,

(1.28) 9? Z>? eo(t, x, ξ) = Σ ' W ^ ^MΪ) (*> f) *β(ί, *, f ) ,

where

((PΛYA = Σ oΐfc^p^x, f )j>.S,(*, f) ί.ffi(*, I)

and the summation is taken over multi-indices mi and ny (7= 1,2, •••,£) such

that Σy-i m'=my Σ ί - i wy=n and Cn

min

mΊ '['nmk denotes a constant depending only

on mj and nJ(j=l>2, - ,k). From (1.3), there exists a constant CΊ>0 such

that for any (*, ξ)tΞRdxRd
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Therefore, putting C=exp(—ΓQ), we have, for any (t, x, £)e(0, T]xRdXRd,

(1-29) eo(t, x, f )<Cexp(-ίC 0 <f >*<*>).

Since (*<£>*w)*ex:p(-*Co<£>*w) is bounded in (t,x,ξ) of (0, T] X Rd XR d,
there exists a constant C4,» such that

for any (ί, *, f)e(0, Γ J x ^ x Λ 1 ' . Hence

(1.31) \dΐD:dte0{t,x,ξ)\

'f ' w-ι.ι+«ι-ι exp(-ίC0<f>-«)

for any (ί, Λ, f)e(0, 71] XRdXΛrf, where CQtm>ntk is a constant depending only
on m> n, and k. These estimates (1.30) and (1.31) yield that

, T]; S?,δ) Π^((0, Γ]; Sf.β),

and it is clear that eQ—>0 weakly as t—>0.

We can define {*,•(*)}Γ-i and {?y(ί)>Γ-i ( 0 < ί < Γ ) inductively by

(1.32) qj(t) = Σ

and

Then the solution ^-(ί, Λ?, f) of (1.33) has the form:

(1.34) ej(t, x, ξ) = ^(ί, *, f) Γ It*'*'?* ds .
Jθ ^0(ί,Λ?,f)

We will show the following estimate:

(1.35) \e/A(ty x,ξ)\<\ c

J;m' ^ > Λ ω _ y ( 1 _ δ ) _ | n l + δ l ; w l

for any (f,#,?)e(0, Γ ] χ i 2 J x Λ J ( y > l ) , where CjιMfU and C<)W1,Λ are constants
depending only on j , m and n. In fact, assume that the inequality

(1.36)
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holds for j<,jo—l. Then, combining (1.34) with (1.36), we have

(1.37)
eo{t,x,ξ) Λ-)1

2cyo-D

^<Vi,«,» Σ (ί<g>-«)*<g>-w -«o- >-ι ι+ ι.ι
* = 2

for any (ί, *, £)e(0, T]xRdxRd. Note that

(1.38)

ι/ι=i V eo(t,x,ξ)

for any (ί, Λ?, | ) e ( 0 , ΓJX^XΛ*. Then, from (1.34), we see that the inequality
(1.36) holds for j=j0. Thus, by induction, it holds for any j > 0 . Hence, from
(1.29), (1.34) and (1.38) for j=jOy we see that the first inequality of (1.35) holds
when j=j0. Moreover, writing (ί<f >*C x ))*=( ί<f>- u )) (KξyM)*-1 and using a
similar argument to the above, we obtain the second inequality of (1.35). This
means that

(1.39) βj{t, x, g ) e . 3 ([0, T] SΓ/δ

(1-δ>) Π^([0, T] S?^ 1 "*)) .

Next, put Ej(t)=ej(t, x, Dx) (j >0). Then, by Theorem 1.2, we can write

(1.40) σ{U EM) (x, ξ)

= p9(x, ξ) ej(t, x, ξ^^^j-pOXx, ξ) ejU)(t, x, ξ)

+rNJ(t,x,ξ) (j= 0,1,2, »N-1).

From Theorem 1.1 and 1.2, the first inequality of (1.35) and (1.40), we find
that

(1.41) r ^ ή e ^ O , η Sr/"-8') j = 1, 2,



202 A. NEGORO

Similarly, replacing the first inequality of (1.35) by the second one of (1.35), we

have

(1.42) rN,j(t)lte&((0, T\ S\y»^) j = 1,2, - .

From the above discussion, we have a sequence {ey}~.o of symbols satisfying

^eSί^~ δ ) . Therefore, we can construct an operator

(1.43)

with an analogous argument used in Theorem A.I of [8] (ρ.238-239). Indeed,

let ψ be a function of C(Γ((0, °°)) with

0<ψ(t)<l, ψ(t) = 0 (0<t<l) and ψ(t) = 1 (t>2).

Putting ^ y ( ? ) = ^ ( ^ y l f I) ( j = l , 2, •••) for any sequence {£y}ŷ >i of positive

numbers, we have the estimate

I dξ D™(ej(t> xy ξ) ψj

for any (£, x> ?)^(0, T]χRdχRd and any multi-indices m and n. Now, we

inductively choose the sequence {£y}ŷ >i satisfying

0<Sj<2~H max (C. w J ) " 1

and

and define the symbol e by

£(£, x9 ξ) = eo(t, x, ξ)-\- Σ ŷ(̂ ) ̂ > ?) ψj(%)
3=1

for any (ί, xy ?)^(0, Γ J x ^ X i ? ^ . Then the symbol e satisfies the following

properties:

(i)

(1.44) e^x.D-^e^x,,
3=0

(1.45) e(t) -> 1 and e^-^βe^t) -* 0 weakly in S?,β
y=o

as t->0 for any JV>1 (see [8] in detail). Let R(t)=(dt-LΦ) E(t). For any

positive integer N, we rewrite R(t) in the form

(1.46) R(t) = (8,-L ) (Jl
y=o

Σ
i=o
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Then from Theorem 1.2 and (1.44), we see that, for any positive integer N,

(1.47) {d-U) (£(t)- g£y(i))e^°((0, T}; &:,»<>-»).

Moreover, it follows from (1.32), (1.33) and (1.40) that

(1.48) <ri{dt-U)"Σ

Σ | ; | + Σ t < y * ( * , ξ)««(«, *, ξ)- %rNti{t, *,

for any positive integer N and (t, x, f)e(0, Γ lx^xΛ 1 ' . Therefore, (1.41) and
(1.42) yield that

(1.49) (8#-LΦ) (Σ^yWJ

n^((0, T\; SϊχN<*-

Hence, it follows from (1.47) and (1.49) that

(1.50) Λ(ί)e.3 0ί(O,Γ];S—).

Now, let {Wv(0}vsi be a sequence of operators defined by

W1(t)=-R(t)

and

= (' W1(t-s) Wv-r(s) ds .
JO
(
JO

Then, using the same method as in the proof of Theorem 2.1 in Chap. 8 of
[8], we see that

converges in the topology of -S°((0, T] S~°°). If we set

(1.51) E(t) = E(t)+^ E(t-s) W(s) ds ,

then we have

(dt-LΦ) E(t) = Rίή+Wiή+i*R(t-s) W(s) ds = 0
Jo

for any ίe(0 , T\. We get (1.21) from (1.44) and (1.50). The relations (1.24)
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and (1.25) follow from (1.45) and (1.51). Moreover, with the same argument
as in Theorem 2.1 in Chap. 8 of [8], we see that, for any positive number
*b€Ξ(O, Γ],

T];S-~) j = 1,2,-..

The proof of Theorem 1.3 is complete.

Let Hs{— oo<^<oo) be the Sobolev space with the norm || | | s (see [7]

p.116 for the definition). Then, using the Z2-b°undedness theorem (cf. [7],

Chap. 2, Theorem 4.1), we have

Theorem 1.4. Let ζ be a bounded function on Rd and P=p(x,Dx)^

S%tδ(8<ρ). Then, for any s^R, P defines a continuous mapping P: Hs+ξ->Hs

and there exist an integer k and a constant C such that

(1.52) \\Pu\\s<C\p\l\\u\\s+ι for utΞHs+τ.

It is well-known that if K and s are real numbers and pj-*p in Spt8 weakly
asy-^oo, then

(1.53) pj(X, Dx) u-+p(X, Dx) u in Hs as j^°o for u(=Hs+κ

(cf. [7] p.157). Immediately, from Theorem 1.3, Theorem 1.4, and (1.53), we

get the following theorem.

Theorem 1.5. Let E(>) be the same one as in Theorem 1.3 and let s be any

realnumber. Then Jo? φeΉs,u( )=E( )φ belongs to $P([0, T] Hs) Π ^ ( ( 0 , Γ\;

Hs-^) for each J I > 0 and is a solution to the initial-value problem for the evolution

equation (1.20).

Now, we state the main theorems in this paper.

Theorem 1.6. Let e(t, x, ξ) be the symbol of the fundamental solution E(t)

given by Theorem 1.3. Then, the function defied by

(1.54) K(t, x,y) = j exp(ι(*-JO £) e(t, x, ξ) dξ

, oo), χ9y&Rd) is a transition density of the Markov process Xφ.

Proof. Let φ<=Co(Rd) and u(t, x)=E(t) φ(x). Then u(t)9 dt u(t) and LΦφ

belong to S. From Theorem 1.3, Theorem 1.5 and (1.53), we see that, for any

s(=R,

lim u(t) = φ in Hs,

9, u(t) I / = 0 =
 l ί m 9ί u(t) = l i m £* uif) = L*Φ i n Hs-«
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Noting that for any multi-index m and any real number s> | m \ -\-dj2

:φ(x)\
(s-ίm» dξ\V2\\u(t)-φ\\s,

we have d"u(t)->d?φ uniformly on Rd as ί-»0. Similarly, we have d,u(t)^ Lφφ

uniformly on Rd as t^O. These facts imply that M G C J 2 ([0, T]xRd). Put

f(s,x)=u(t-s,x)(O^s<t). Ύhen,f(ΞC\ 2([0,t]χRd) and /satisfies

( dj(s, x) = -Uf{s,x) (0<s<t)

\f(t,x) = φ(x).

Let Px be a solution to the martingale problem for LΦ starting at x. Then

(1.56) /(*, X,)-/(0, *) = j] (dsf(s9 Xs)

+LΦ f(s, Xs)} ds+a P,-martingale.

Using (1.55) and (1.56), we have

(1.57) u(t,x) =

On the other hand, from Theorems 1.3 and 3.3 in Chap. 2 of [7], it follows

that

(1.58) u(ty x) = ί dK(ty x,y) φ(y) dy for t>0 and x

Since (1.57) and (1.58) hold for any φ<=Co(Rd), we see that the function

K(t, x,y) (t>0y xyy^Rd) is a transition density of the Markov process XΦ.

Theorem 1.7. Let {P(ty xy Γ); t>0, x<=Rd, Γ^£B(Rd)} be the transition

function of the stable-like process with exponent a{x). Then, for each (t, x)^(0, oo)

XRd

y P(ty Xy dy) has β J^wίy with respect to Legesgue measure.

Proof. We first show that the short time behavior of the process X co-

incides with that of the process Xφ. Using polar decomposition, we rewrite

v and vΦ in the following forms:

v(x; dy) = l(o,ro](r) - ^ dr s(dθ)+l(ro>oo)(r) ff^ drs(dθ)

and

Pφ(xf dy) = l(O>ro](r) *^x) dr s(dθ)-{-l(r0too)(r) *^—^ dr s(dθ),

where r0 is the same constant as in the definition of the cut-off function Φ.

We set
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G2(x; X) = J ^ ) " ' ^ dr

and

\m.{xY1^^άr (λ>r0),

where g(x)= Γ wΛ(x)lr
1+«M dr and £Φ(tf)= Γ ^ ( x ) Φ(r)/r1+Λ(af) rfr. In the follow-

. Jro Jr0

ing, G(xy •) denotes the right continuous inverse function of G(x, •), that is,

G(xf I) = inf {λ>0: G(x, λ)</} .

Let

, U2 = (-l,0)xSd-1 and V^VX\}U2.

We denote a generic element of U as w=(/, 0). Now, let {p(t)} be a stationary
Poisson point process defined on a probability space (Ω, £F, P) with values in Z7
and the characteristic measure n(du)=dls(dθ). Np(dsχdu) denotes the count-
ing measure defined by ip(t)} and Np(dsχdu)=Np(dsXdu)—dsn(du). If we set
a(xy u)=a(x, l)=Ox(x, /), b(x, u)=b(x, l)=g{x) 02(x, l+ί) and bΦ(x, u)=bΦ(x, I)=
gφ(x) όΦt2(x, /+1), then the processes X and Xφ starting at x are respectively
realized as solutions of the stochastic differential equations with jumps:

X(t) = * + Γ ( a(X(s.)y u) Np(dsxdu)
JO Jί/i

b(X(s.),u)Np(dsxdu),(
O JU2

[i[ a(X*(s-),u)Np(dsxdu)

(
o JU2

Since the coefficient a(x, u) satisfies the Lipschitz condition with respect to the
measure n(du) (see [12]), they have unique solutions in the pathwise sense. For
specifying the starting point u of the processes, we denote them by X(t, x) and
XΦ(t, x), respectively. Let σ=inf {t>0: Np((0, t] X U2)=l}. Then for t<σ

X(t) = x+\ \ a(XΦ(s-),u)Np(dsχdu)
JO JUX

and

XΦ(t) = x+\ I a(Xφ(s-),u)Np(dsχdu) ,
Jo Ji/j

because, for Axc:Uι and A2aU2> the Poisson processes Np((0, ί ] x Λ ) and
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, t] XA2) almost surely do not jump simultaneously. Therefore

P(}{t«r) X{t, x) = \[t<«) Xφ(t, X),

We next show the absolute continuity of the transition probability of X. Let
σo=O and

<rn = mί(t>σn-i;Np((t}xU2)=l} (n = 1, 2, ...) .

Then σi=σ and P(σn=t)=0 for each f>0. Therefore, for each ί>0, x<=Rd

and Borel set Γ of Rd,

= fj P(X(t, x)*ΞT; σn<t<σn+1)
» = 0

= Σ3 ^
ft = O

Hence, if the Lebesgue measure of Γ is equal to zero,

for any £>0 and x^Rd\ consequently we have the conclusion.

2. The Behavior of Sample Paths near t=0

In this section, we investigate the behavior of sample paths of the stable-
like process X=(X(t), Px) with exponent a(x). At first, we state the main
result in this section.

Theorem 2.1. Let x be an arbitrarily fixed point.
(1) Ifa{x)<β,then

(2.1) P,(lίm I X(t)-x I /t1/β = 0) = 1 .

(2) Ifa(x)>β>0,then

(2.2) P,(lim sup | X(t)-x\ /t1/β = oo) = 1 .

We provide two lemmas for the proof of this theorem. The first lemma
is a modification of Khintchine's result [6]. It is obtained only for processes
with stationary independent increments. However a stable-like process is
not such a process in general. Accordingly we modify Khintchine's result in
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the following form, where, for simplicity, we restrict the consideration to con-
servative processes.

Lemma 2.1. Let Y=(Y(t), Px) be a standard process on Rd and let h be a
non-decreasing positive function on (0, λ) with \imt<_Q h{t)=fd, where λ is a positive
number. Ur(x) is the open ball with center x and radius r. P^r{x\ ) (c>0) is the
function defined on (0, λ) by

(2.3) py\t) = sup P,( I Y(t)-y | >ch(t)).
y<=ur(χ)

Let x0 be a point of Rd. If there exist positive numbers c0 and r such that

(2.4) [* P?'<*o\t)ltdt<oo
Jo

for any c^(0, c0), then

(2.5) P,0(lim I Y(t)-x0 \ /h(t) = 0) = 1.

Proof. Let Uj be the open ball with center Λ;0 and radius jrβ ( j = l , 2, 3).
It is clear that, for any positive number a and *ie[0, ί],

Px{\Y(t)-x\>a)

<,Px{\Y{t1)-x\>aβ)+Px{\Y{t)-Y{tι)\>aβ, \ Y(t1)-x\ <aβ).

By the Markov property of Y, we get

(2.6) sup P,( |Y(ί)-* |>«)

<: sup Px(\Y(t1)-x\>al2)
* e σ , +i

+ sup Px(\Y(t-t1)-x\>al2)

for any βe(0, rβ), h^[0, t] and_/=l, 2. In particular,

(2.7) sup Px(I Y(t)-x\ >a)<2 sup Px{\ Y{tβ)~x\ >aβ)

for any αe(0, r/3) andy= 1,2. In the same way as the above, we have, for any
α>0 and tu t2, ί3e[0, t] {h<t2<t3),

Px(\Y(t)-x\ >a)<Px{\ Y{h)-x\ >β/4)

+PX(I Y(t2)-Yfr)I >d/4, I y(ίx)-x| <α/4)

+PX( I

+P,( I Y(t)- Y(t3) I >β/4, I Y(t3)-x\

Furthermore, using the Markov property again, we obtain

(2.8)
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Px(\Y(t1)-x\>al4)

+ sup Px(\Y(t2-ti)-x\>al4)

+ sup Px{\Y(t3-t2)-x\ >α/4)

+ sup px(\Y(t-t3)-x\>al4)

for any fl6(0, rβ), tu t2, ί 3e[0, t] {h<t2<t3) a n d ; = l , 2, and particularly

(2.9) sup Px{ I F(i)-xI > α ) ^ 4 sup Px( \ Y{tft)-x \ >α/4)

for any «G(0, r/3), and 7=1, 2. Next, we will show that, for any positive num-
ber c less than cθ9

(2.10) sup Px( I Y(t)-x I >ch(tl4)) -> 0 as * -> 0 .

In fact, let ch(t)H<rβ and ίe(0 , λ). Then, it follows from (2.6) that

(2.11) P%{t) = sup Px{\ Y(t)-x\ >±
χ&j2 4

< sup Px{I Y{h)-x\ >±

+ sup Px(I Y(t-tl)-x\ >-|- Λ(ί-ίχ)

for any ̂ e[0, ί]. Hence, if ίe(0, λ) and ch(t)/4<rβ,

(2.12) nίW^AfcO+PfAC-'i) v ί i e [θ, ί]

Moreover, if ί e ( 0 , λ) and c/t(ί)/4<r/3, then

(2.13)

(Λ i log2Jί/2

t( p ( s p f j )
log2J</2 ί log2J</2 t—s

" l o g 2 Jo «

Thus

sup Px(\ Y(t)-x
log 2 Jo ' s
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for *<Ξ(0, λ) with ch(t)jA<rβ. Under the condition (2.4), this means (2.10).
Let c and t be positive numbers satisfying ch{tjA)<rj(y and *e(0, λ), and let
σCtt be the hitting time defined by

σcΛ = inf is>0: \ Y(s)-

Then, the strong Markov property of Y yields that

(2.14) PH(\ Y(t)-xo\ >±hm)>PXo{<rc,t<t, I Y(t)~ Y(σttt)I < | - Λ(ί/4))

= ί P,{ I Y(t-s)-y I £± h(tl4)) I.^.y-n*.*) dPXΰ

On the other hand, by virtue of (2.10), we can find a sufficiently small £>0 satis-
fying

(2.15) inf Px{\ Y(t)-x\ ^h(t))>\
•ê i 3 2

Therefore, from (2.14) and (2.15), it follows that for sufficiently small ί > 0

(2.16) PXΰ(σc^t, F(<rί,()eC/1)^2PIO(| Y(t)-x0\>j-h(tl4)).

Set τ=inf {s>0: | Y(s)- Y(s.) | >r/6}. Then

(2.17) P,0(<r

It follows from (2.16) and (2.17) that if cA(ί/4)<r/6 and t is sufficiently small,
then

(2.18) P, 0 ( σ M <ί<τ)<2P, 0 (l Y(ί)-*ol > y <

Now, put

wm = Pxo( sup I Y{t)-xo\lh{t)>6, 2 - * + 1 < τ ) ,

where 6 is anj; small positive number. It follows from the increasing property
of h that

(2.19) wm<PXQ{ sup I Y(t)-xo\ >Sh(2-^+% 2 - + 1 < τ ) .
2 C l ) 2

Let m be a sufficiently large integer and choose 0W as any number greater than
2~m. The relationship (2.19) implies that
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wm <PXo( sup I Y{t)-xo\

(2.20) wm <PS0{ sup I Y(t)-xa I >εh(ΘJ4), 2-»+ 1<t)

^ί,,k?.<«.<τ).

Therefore, from (2.9), (2.16), (2.17), (2.18) and (2.20), we have

for any θme(2~m, 2~m+1). Let θm=2'-' and integrate both the sides of the last
inequality with respect to z from m— 1 to w. Then, for sufficiently large in-
teger m, we have

.& \m

mι P &

Under the condition (2.4), this relationship implies that the series Σ ^« con-
verges. By virtue of the Borel-Cantelli lemma, this means that

(2.21) P I O(limsup{ sup | Y(ί)-*J/*(*)>*, 2->»+1<r}) = 0 .

Accordingly, for convenience sake, set

Fm ,= { sup I Y(t)-xo\lk(t)>6} , and Gm = {τ>2~m+1} .

Then, noting that

PΛ0(lim inf (Fm Π Gm)c) = P,o( U ̂ =o{( Π ̂ ( f ί Π G J ) U (Π m>N Gc

m)})

and P*0(lim infOT̂ c« Gm)=0, from (2.21), we obtain

P,0(lim inf Fc

m) > P,0(lim inf F^ Π Gm) = 1

hence (2.5) holds. The proof is complete.

Lemma 2.2. Let γ δ^ a positive number. The characteristic function
ΦΊ{x, •) o/ί/te random variable t~1/y(XΦ(t)—x) admits the representation

(2.22) ΦT(*,v) = ^ * , r 1 ^ ? ? )

/or any {t, x, y)^(0, oo)χRdχRd

y where e(t, x} ξ) is the symbol of E(t).

Proof. From Theorem 1.6, we get

φl(x, η)

= \Rd exp (iv rιί\y-x)) K(t, x, y) dy
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= Os— I I exp {—iz μ) e(ty x, μ+t~1/y η) dzdμ

for any (ί, x, o?)e(0, oo)χRdχRJ. Using the fact that Os [exρ(—iyμ) a(y)]=
a(0) for any « G j , w e obtain (2.22).

Proof of Theorem 2.1. As is shown in the proof of Theorem 1.7, the
short time behavior of sample paths of the stable-like process X coincides with
that of the process Xφ. Hence we prove the theorem replacing X by -3ΓΦ. At
first, we will show (2.1). Choose real numbers vy K satisfying a(x)<v<κ<β.
Let T be a positive number and let gκ be the continuous density of rf-dimen-
sional symmetric stable distribution of index K, ( 0 < / C < 2 ) , that is,

(2.23) expί-lfl-^J^expφ.flftϋOrfy for

Set

(2.24) A(t,x)=\Rdexp(-\y-x\')K(t,x,y)dy

for any (/, x)e(0, oo)χij<ί. From the definition of K(t, x,y), (2.23) and (2.24),

we have

A (t, x) = j ^ e(t, x, ξ) gκ(ξ) dξ for V(f, *) e(0, oo) x R" .

From (4) in the Theorem 1.3, we see that for any (t, x, £)e(0, T] XR d XR d .

(2.25) I l -exp(φ.(* , ξ))\l^ !*.(*> ξ)\ ^

and

(2.26)

Put 5>t= {̂ : α(^)<i'}. Then, from (2.23), (2.25) and (2.26), we obtain

I ΞΛ,,<oo
*-Jβ,0

for any (ί, #)^(0, ί Γ J x ^ . Using the same argument as in [3], we have, for

sufficiently small δ,

(2.27)

for any (ί, z) e [0, Γ] X S)v. Let

(2.28) P f '(ί) = sup P,( I X . ( ί ) -
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Then, by (2.27), the relation (2.28) implies that for sufficiently small t>0

By Lemma 2.1, this means that

Px{\im IXφ{t)-xI lt1/β = 0) = 1 if a(x)<β .

Therefore, the assertion (2.1) holds. Next, we establish the relation (2.2).

Choose 7 satisfying β<rγ<a(x). Let {ξn}n^ be a sequence of points in Rd

with I f . l - o o as«->oo. Put ^ H f J " * , - a n d £.=£,/1£.| ( n = l , 2 , •••). Not-

ing that \ξn\ ~y\pφ(x, ξn)\-*o° as»->oo) from (4) in Theorem 1.3 and Lemma

2.2, we see that

(2.29)

Using the same argument as in [3], we also see that (2.29) implies

Ps(lίm sup I XΦ{t, x)-x\ /t1/β == oo) = 1 if β<a(x) .

Hence, the assertion (2.2) holds.
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