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Since Thrall [25] proposed the concept of QF-3 algebra as a generalization
of QF algebras, several extensions of this concept have been proposed for general
rings. Perhaps the most spread notion of QF-3 ring is the following: A ring
R is called a left QF-3 ring if it has a minimal faithful left R-module (see [23]).
However, other authors proposed alternative notions, mainly for noetherian rings.
We will look at two of them that seem very intersting. The first one is due
to Morita [16] and it has been investigated recently by Hoshino [9], [10]. A
ring R is said to be left Morita-QF-3 ring (shortly, MQF-3) if E(zR) is a flat left
R-module. The second one was proposed by Sumioka [20], [21], [22]. The
ring R is called a left Sumioka-QF-3 ring (shortly, left SQF-3) if every finitely
generated submodule of E(rR) is torsionless. Every commutative domain is
MQF-3 and SQF-3. Itis well-known that in the case of left Artinian rings, these
three concepts are equivalent and, moreover, they are right-left symmetric.

The aim of Section 2 is to find relations between the different extensions
of QF-3 rings mentioned above. - As a consequence of the main result of Section
2 (Theorem 2.7) we will show that if R has D.C.C. on rationally closed left
ideals then R is left or right MQF-3 if and only if R is left or right SQF-3 (Corol-
lary 2.8). Moreover, these rings are precisely those that Masaike characterized
[14, Theorem 2] as the rings with a semi-primary QF-3 two sided maximal quo-
tient ring.

The unifying idea to prove these results comes from the problem of exist-
ence of flat covers [4], [5]. In connection with this problem we proposed in [7]
to investigate the rings R for which the class &, of the submodules of flat left
R-modules is a torsionfree class. To be exact, we say that R is a left FTF ring
if there is a hereditary torsion theory 7, on R-Mod such that &, is the class of
all r,-torsionfree left R-modules. The key result is that the left MQF-3 (or
left SQF-3) rings with D.C.C. on rationally closed left ideals are precisely the
To-artinian left FTF rings. ;

A ring R is said to be a left IF ring if every injective left R-module is flat.
In other words, Fy=R-Mod. Thus, IF rings are the “trivial” FTF rings.
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The concept of left IF ring was proposed by Colby [1] and Jain [11] as a generali-
zation of regular and QF rings. The class of left FTF rings includes these rings,
and we enlarge by means of our concept the class including semiprime left
and right Goldie rings (see Proposition 3.6), semiprimary QF-3 rings (Corollary
2.11) and a large collection of SQF-3 and MQF-3 rings (Theorem 2.7 and Co-
rollary 2.8).

Section 3 is essentially devoted to prove two results about localization.
The first one is that for a left FTF ring R, the localized @, (R) with respect to
7o is a left FTF ring (Theorem 3.2). The second main theorem of this sec-
tion (Theorem 3.7) characterizes the left SQF-3 rings that have a QF left classi-
cal ring of fractions.

1. PRELIMINARIES AND GENERAL NOTATION

We denote by R an associative ring with identity, by E(zR) the injective
hull of R as left R-module and by A the Lambek torsion theory on the category
R-Mod of all unital left R-modlues. The A-torsionfree left R-modules are
precisely the E(zR)-torsionless left R-modules. We call R left MQF-3 if E(,R)
is a flat left R-module and left SQF-3 if every finitely generated submodule of
E(xR) is torsionless.

Let 7 be a hereditary torsion theory on R-Mod and M a left R-module. By
7(M) we denote the largest 7-torsion submodule of M. A submodule N of M
is 7-closed in M if M|N is r-torsionfree, and it is 7-dense in M if M|N is -
torsion. When M=R and N is a left ideal of R, we say simply that N is a -
closed or 7-dense left ideal. We say that M is 7-finitely generated if M con-
tains a T-dense finitely generated submodule. If M is finitely generated then M
is said to be 7-finitely presented whenever M has a finite free presentation with
r-finitely generated kernel. The ring R is 7-coherent [12] if every finitely gen-
erated left ideal is T-finitely presented, and R is 7-noetherian if every finitely
generated left R-module is r-finitely presented. Equivalently, R is T-noetherian
if and only if R satisfies A.C.C. on 7-closed left ideals. R is said to be T-artinian
if it satisfies D.C.C. on T-closed left ideals. Every r-artinian ring is 7-noetherian
[15, Theorem 1.4] and every r-noetherian ring is clearly r-coherent. For a sub-
module N of M we will use the notation CI¥(N) for the 7-closure of N in M,
defined by the condition CI¥(N)/N=+(M|N). If any direct limit of r-torsion-
free modules is 7-torsionfree, then 7 is said to be of finite type. If, in addition,
the localization functor @,: R-Mod—@Q.(R)-Mod is exact, then 7 is said to be
perfect. It is known [19, exercise XI.6] that 7 is perfect if and only if every left
Q.(R)-module is r-torsionfree as left R-module.

Consider the class F§ of left R-modules defined by the following condition:
M7 if and only if there is a monomorphim of left R-modules from M to
some flat left R-module. If there is not risk of confusion, we use the notation
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&F, We will say that R is a left FTF ring (“flat is torsionfree”) if &, is the
class of all T -torsionfree left R-modules for some hereditary torsion theory 7,
on R-Mod. Analogously we can define right FTF rings with notations ¢ and
7¢. For left and right FTF ring R we say simply that R is FTF, and this con-
vention is valid for any other one-sided concept (e.g., a QF-3 ring is a left and
right QF-3 ring).

We refer to [19] for all torsion-theoretic notions used in this paper.

2. FTF anp QF-3 RiNGs

We start with an easy characterization of left F'I'F rings in terms of the
behavior of the flat modules under injective hulls and direct products.

Proposition 2.1. A ring R is left FTF if and only if the following condi-
tions are satisfied:
(1) If M s a flat left R-module then E(M) is a flat left R-module.
(2) If {M;: i€} is a family of injective flat left R-modules then the direct prod-
uct II{M;: i1} is a flat left R-module.

It is evident that a left FTF ring is left MQF-3. An objective of this section
is to find conditions on R to have the converse of this fact. The following are
partial results that will be basic tools to prove our main result. Recall from [2]
that a (left or right) module M is said to be =-flat if every direct product of
copies of M is a flat module. On the other hand, M is FP-injective whenever
Exti(P, M)=0 for every finitely presented module P. Finally, we use the
notation M+*=Hom,(M, Q/Z).

Proposition 2.2. Let R be a \-coherent left MQF-3 ring.
(?) R isright FTF.
(#) R is left FTF if and only if E(zR) is w-flat if and only if R is T¢-coherent.

Proof. Since E=E(xR) is flat, we can consider the hereditary torsion theo-
ry on Mod-R «=Ker(—QzE) whose «-torsion right R-modules are the R-
modules annihilated by —®zE. We will prove that the «-torsionfree right R-
modules are precisely the submodules of flat right R-modules and, so, R is right
FTF with 7§{=«. Let M be a flat right R-module and construct the commuta-
tive diagram of morphisms of abelian groups

M®gR ——> MQ4E

T T

k(M)QgrR — «(M)RQRE

It is evident that the morphism at the bottom row is monic. But «(M)®zE
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=0, so x(M)=0. Therefore, FGCF(x). By definition, a right R-module
M is x-torsion if and only if (M ®zE)*=0. But (M®,E)* is canonically iso-
morphic to Homg(M, E*). 'This means that M is «-torsion if and only if Hom,
(M, E*)=0. Hence, E* is an 1njective cogenerator of x. We claim that E* is
a m-flat right R-module. If this happens, then every k-torsionfree right R-
module embeds in a flat right R-module and the equality F{= («x) holds.
To prove the claim observe that every direct product P of copies of E* can be
obtained as P=S*, where S is a direct sum of copies of E. Since S is an FP-
injective left R-module and R is A-coherent, [12, Theorem 3.3] assures that
P=S" is a flat right R-module. Therefore, R is right FTF with r{=«.

Now, if R is left FTF then E is z-flat obviously. Moreover, if E is z-flat
then R is x-coherent by [12, Corollary 3.5]. Finally, if R is 7¢-coherent, a
right-handed version of the foregoing proof runs to prove that R is left FTF. W

Proposition 2.3. If R is a ring then R is left FTF and Ty-coherent if and
only if R is right FTF and t§-coherent.

Proof. This is an immediate consequence of Proposition 2.2 since a 74
coherent left FTF ring must be An-coherent. W

Proposition 2.4. Assume that R is a left MQF-3 ring.
(1) If M is a n-finitely presented left R-module then M|\(M) is torsionless.
(2) If R satisfies A.C.C. on left annihilators, then R is A-noetherian, left SQF-
3 and right FTF.

Proof. (1) Let M be a A-finitely presented left R-module. Our objec-
tive is to show that A(M)= N {Ker f: f€Homy(M,R)}. From this equality, it
will be clear that M/\(M) is torsionless. To check the equality \(M)=
N {Ker f: f €Homg(M, R)}, assume in a first step that M is finitely presented.
Observe that, since R is A-torsionfree, the inclusion A(M)S N {Kerf: fe
Homg(M, R)} holds immediately. For the other inclusion, assume that x&M
but xéEA(M). There is f € Homg(M, E(zR)) such that f(x)=0. Since E(zR)
is flat there is a finitely generated free left module F [13, Théoréme 1.2],
veHomg(M, F), w& Homg(F, E(zR)) such that f=wwv. Itis clear that v(x)==0.
Hence, x&Kerv. This proves that x¢E N {Ker f: f € Homg(M, R)}. In other
words, we have the inclusion A (M)2 N {Ker f: f € Homg(M, R)} and this gives
the desired equality.

If M is A-finitely presented, then there is an exact sequence

0->K—-F—->M-—0

where F is a finitely generated free left R-module and K is A-finitely generated.
This means that K contains a A-dense finitely generated submodule K,. Since
F|K, is finitely presented we have that A (F/Ky)= N {Ker f: f €Homg(F/K,, R)}.
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Now consider the epimorphism p: F/K;—F/K=M. Since Kerp=K|K, is
A-torsion, g|g.,=0 for every g&Homg(F/Ky, R). Therefore, given g&
Homg(F/K,, R)there is f € Homg(M, R) such that g=fop. Letxc N{Kerf: f&
Homg (M, R)} and consider y€ K|K, such that p(y)=x. Letg&Homg(F/K,, R)
and let f&Homg(M, R) such that g=fop. Then g(y)=(fop)(y)=f(x)=0.
Therefore ye N {Ker g: g €Homg(F/K,, R)} =\(F|K,). But p(AMF/Ky))SN(M).
Hence, x=p(y)EA(M) and we deduce that N {Ker f: f €Homgy(M, R)} S\ (M).
Since R is A-torsionfree we have also that A (M)< N {Ker f: f&Homg(M, R)}
and (1) holds.

(2) We will prove that if R is not A-noetherian then there is a strictly ascend-
ing chain of left annihilators. Assume that R is not A-noetherian. Then there
exists a strictly ascending chain of A-closed left ideals

Lcl,c...cl,cC.--

Choose x;,,E1;,,\I; for each natural number 7 and consider C,=CIF(Rx,+--+
+Rx,), where x, is any element of I;. It is clear that

c,cC,c...cC,C---

is a strictly ascending chain of left ideals of R. Consider the finitely presented
left R-module M,=R/(Rx,+---+Rx,). It is clear that A(M,)=CIZ(Rx,+---+
Rx,)/(Rx,+++-+Rx,). By part (1), M,/A(M,)=R/CI¥(Rx,++--+Rx,) is tor-
sionless and, thus, C,=CI¥(Rx,+---+Rx,) is a left annihilator ideal. There-
fore, R has not A.C.C. on left annihilators.

To see that R is left SQF-3 observe that, since R is A-noetherian, every
finitely generated left R-module is A-finitely presented. But this is the case
for any finitely generated submodule of E(zR). The part (1) assures now that
R is left SQF-3. .

The assertion that R is right FTF is a consequence of Propostion 2.2
since every A-noetherian ring is A-coherent. WM

RemaRrk 2.5. Propositions 2.2 and 2.4 improve [16, Theorem 1].

Proposition 2.6. The following conditions are equivalent for a ring R.
(1) R is left FTF and Ty-noetherian.
(if) Ewvery finitely generated E(gR)-torsionless left R-module embeds in a free left
R-module and R satisfies A.C.C. on left annihilators.
(i) E(xR) is m-flat and R satisfies A.C.C. on left annihilators.
In such a case, Ty=Xx.

Proof. (i)=>(ii) It is clear that R satisfies A.C.C. on left annihilators. If
M is a finitely generated E(zR)-torsionless left R-module, then M is 7,-torsion-
free and, since R is To-noetherian, M is 7,-finitely presented. A slight modifi-
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cation of the proof of [7, Proposition 4.5.(3)] gives that 7((M)=Kerfin---
NXKer f, for some f,, -+, f,EHomg(M, R). Since 1o(M)=0, we have that M em-
beds in the free left R-module R” via the f;’s.

(ii)=>(iii)) By [17, Lemma 2], E(xR) is =-flat.

(iii)=>(i) By Proposition 2.4, R is A-noetherian’ and Proposition 2.2 im-
plies that R is left (and right) FTF. Now, 7,=\ by [7, Theorem 4.6]. W

Now we are ready to show the main result of this section.

Theorem 2.7. The following conditions are equivalent for a ring R.
(i) R s left FTF and vy-artinian.
(i) R is left SQF-3 and satisfies D.C.C. on left annihilators.
(iii) R s left MQF-3 and satisfies A.C.C. and D.C.C. on left annihilators.
(iv) R is left MQF-3, R satisfies D.C.C. on left annihilators and every cyclic
E(gR)-torsionless left R-module has finite left Goldie dimension.
(i) R is right FTF and T¢-artinian.
(ii") R is right SQF-3 and satisfies D.C.C. on right annihilators.
(ii") R s right MQF-3 and satisfies A.C.C. and D.C.C. on right annihilators.
(iv") R is right MQF-3, R satisfies D.C.C. on right annihilators and every cyclic
E(Ry)-torsionless right R-module has finite right Goldie dimension.

Proof. (iii) & (iii") Assume that R is left MQF-3 and satisfies A.C.C. and
D.C.C. on left annihilators. It is immediate that R satisfies A.C.C. and D.C.C.
on right annihilators. By Proposition 2.4, R is right FTF. In particular,
E(Rg) is flat. 'Thus, R is right MQF-3. We have proved that (iii)=>(iii’). The
converse is clear by symmetry.

(i)=>(ii) If Ris left FTF and 7y-artinian, then R is 7y-noetherian by [15,
Theorem 1.4]. By Proposition 2.6, R is left SQF-3. Since R is 7y-atrinian,
R satisfies D.C.C. on left annihilators.

(if)=>(iii) First, observe that every rationally closed left ideal is a left an-
nihilator. For, given I a rationally closed left ideal of R, there is an index set S
such that R/I<-E(xR)5. For each s&S let f, denote the composition of the
embedding R/I<E(zR)® with the s-th canonical projection from E(,R)® onto
E(zR), and let I,/I=Ker f,. It is clear that R/I, embeds in E(zR). Since R is
left SQF-3, R/I, is torsionless and, thus, I, is a left annihilator. But I=
N {l,: s€S}. Hence, ] is a left annihilator. Since R has D.C.C. on left anni-
hilators, we have that R is A-artinian. Therefore, every finitely generated
submodule M of E(zR) is A-artinian and A-torsionfree. By the assumption, M
is torsionless. Since M is A-artinian this implies that M embeds in a free left
R-module. By [17, Lemma 2], E(zR) is flat, that is, R is left MQF-3.
Moreover, R is A-noetherian and this implies that R satisfies A.C.C. on left an-
nihilators.
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(iif)=>(i) By Proposition 2.4, R is right FTF. Since (iii) is equivalent to
(iii"), we have by symmetry that R is left FTF. By Proposition 2.6, R is 7,-
noetherian. It remains to prove that R is Ty-artinian. Again, the key point is
to prove that every 7,-closed left ideal is a left annihilator. Let I be a 7y -closed
left ideal. Since R is Ty-noetherian, / must be 7,-finitely generzsted, i.e., there
is a finitely generated left ideal D contained in I such that I/D is r,-torsion. It
is clear that 7o(R/D)=1/D. But R/D is finitely presented and this implies, by
[7, Proposition 4.5.(3)], that I/D=KerfiN--NKerf, for some f,, -, f,E
Homg(R/D, R). Hence, I is the left annihilator of a finite subset of R. Finally,
since R has D.C.C. on left annihilators and every 7 -closed left ideal is an an
nihilator, it follows that R is 7y-artinian.

(i)=(iv) It is clear that R is left MQF-3 and that R has D.C.C. on left
annihilators. By [15, Theorem 1.4], R is 7,-noetherian. By Proposition 2.6,
A=7, and R is A-artinian. Thus every cyclic A-torsionfree left R-module is
M-artinian and, therefore, every cyclic A-torsionfree left R-module has finite left
Goldie dimension.

(iv)=>(ili) We will prove that R is \-artinian. In view of the Proposition
of [8] we only need to prove that for every descending chain of principal left
ideals of R

Ra,DRa,D--DRa, D+

there is a natural number 7, such that for every n>n,, Ra,/Ra,,, is A-torsion.
By Proposition 2.4.(1), (R/Ra;)/x(R/R;) is torsionless for every i&N. But
(R/Ra;)/MR/Ra;)=R/CI¥(Ra;). Hence, CI¥(Ra;) is a left annihilator for every
iEN. In this way we obtain a descending chain of left annihilators

CIX(Ra)) 2CIX(Ra) -+ 2CIF(Ra,) 2 -+

that must stop. Therefore Ra,/Ra,., is A-torsion for n>n, for some natural
number 7, and [8, Proposition] assures that R is A-artinian. By [15, Theorem
1.4], R is A-noetherian and, thus, R has A.C.C. on left annihilators. W

Corollary 2.8. Let R be a ring with D.C.C. on rationally closed left ideals.
The following conditions are equivalent :
(1) R s left MQF-3.
(i) R s right MQF-3.
(iil) R s left SQF-3.
(iv) R s right SQF-3.
(v) Ris left FTF.
(vi) Risright FTF.

Corollary 2.9. Let R be a ring with left Krull dimension. R is left FTF
and rq-artinian if and only if R is left MQF-3 and satisfies D.C.C. on left annihi-
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lators.

Remarks 2.10. (1) H. Sato showed [18, Theorem 1.1] that a left and right

noetherian ring is left or right MQF-3 if and only if it is left or right SQF-3.
On the other hand, T. Sumioka proved [20, Lemma 7] that a right SQF-3 ring
with D.C.C. on right annihilators is right MQF-3. Theorem 2.7 extends both
results.
(2) Masaike showed [14, Theorem 2] that a ring satisfies condition (ii) of Theo-
rem 2.7 if and only if it has a semiprimary QF-3 two sided maximal quotient
ring. On the other hand, it is not hard to deduce by combining results of [24],
[3], and Theorem 2.7 that a semiprimary (or perfect) ring is QF-3 if and only
if it is FTF.

Corollary 2.11. A perfect ring R is QF-3 if and only if R is FTF. More-

over, in such a case, R is semiprimary.

Proof. Assume that R is FTF. If P is any projective left R-module then
E(P) is flat and, since R is perfect, projective. By [3, Theorem 1.3 and Theorem
1,2] R is semiprimary and contains a faithful injective left ideal and a faithful
injective right ideal. By [24, Proposition 3.1], R is QF-3.

Conversely, assume that R is QF-3. By [3, Theorem 1.3], R contains a
S-injective and z-projective left ideal I. Therefore E(xR) embeds in a direct
product of copies of I. Hence E(zR) is m-projective and Z-injective. Hence
R is A-noetherian. Therefore R has A.C.C. on left annihilators. Since the
conditions on R are symmetric, R has A.C.C. on right annihilators and, thus,
D.D.C. on left annihilators. By Theorem 2.7, R is FTF. W

ExampLE 2.12. The following example shows that the A.C.C. on annihi-
lators in conditions (iii) and (iii") of Theorem 2.7 cannot be deleted. Also, the
condition on the A-torsionfree cyclic left R-modules in (iv) is not negligible.
Let A be a principal left and right ideal domain with a simple injective left 4-
module S=4/Aa. Consider

(o)
R =
0 C

where C=End 4(S). It is possible to show [23, p. 78] that

R =, o)

where D is the division ring of fractions of 4. It is easy to prove that E(zR) is
flat and, hence, R is an example of a left noetherian left MQF-3 ring. By Pro-
position 2.4, R is also right MQF-3, since it is right FTF, We will prove that
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R is not right SQF-3. On the contrary, R must be r¢-artinian by Theorem 2.7.
Therefore, R is r¢-noetherian by [15, Theorem 1.4]. In particular, R has
A.C.C. on right annihilators. But this is not the case of R: Consider for each

ne N the left ideal of R
A ”
I = ( a S)
0 C

If A4 is not a division ring, then the chain
IDL,D«-DI, D¢

is strictly descending. By using the injectivity of S=A4/Aa it is possible to
prove that lr(I,)=1, for every natural number n. Therefore, the chain of right
annihilators

r(L)cr(l)c--cr(l,)C---

is strictly ascending.
In conclusion, R is a (two sided) MQF-3 ring with D.C.C. on right annihi-
lators that it is not right SQF-3.

3. LocavrizaTioN IN FTF rINGS

To show the first theorem of this section, we need some technical facts
collected in Lemma 3.1. The proof of this lemma runs over standard torsion-
theoretic arguments. A left module is said to be Xj,-injective if it satisfies
the Baer’s criterion for finitely generated left ideals.

Lemma 3.1. Let v be a faithful hereditary torsion theory on R-Mod, Q a
ring extension of R such that Q|R is T-torsion and M a left Q-module such that
&M is T-torsionfree. The following assertions are true.

(1) &M is injective if and only if oM is injective.

(2) If oM is X,~injective then M is X -injective.

(3) The structure of left R-module induced over E(qM) provides an injective enve-
lope of M in R-Mod, that is E(zM)=¢E(qM).

Theorem 3.2. If Ris a left FTF ring then Q,(R) is a left FTF ring. In
such a case, a left Q-module embeds in a flat left Q-module if and only if it embeds
in a flat left R-module.

Proof. Put Q=@Q. (R). It suffices to prove for @ the conditions (1) and
(2) of Proposition 2.1.
(1) Let M be a flat left @-module. We claim that M is 7,-torsionfree. By
[13, Théoréme 1.2] oM is isomorphic to a direct limit of finitely generated
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free left @-modules. Since the functor restriction of scalars commutes with
direct limits, we obtain that M is a direct limit of left R-modules isomorphic to
a direct sum of finitely many copies of z@Q. In particular, zM is a direct limit
of 7y-torsionfree left R-modules. Since 7, is of finite type by [7, Proposition 4.5],
we conclude that M is 7y -torsionfree. By Lemma 3.1, E(,M)=E(oM). This
implies that RE(oM) is flat. Then QRRE(¢M) is a flat left Q-module. Consider
the R-monomorphism @: E(qM)—>QQzE(oM) given by 6(x)=1Qx for all xE
E(oM). Since QQrE(oM) is 7,-torsionfree, @ is @-linear and, thus, E(oM) is
isomorphic as left @-module to a direct summand of the flat left @-module
QRrE(eM). Hence, E(¢M) is flat.
(2) Let {M;:i<I} be a family of injective flat left @-modules and put M=
II{M;:icI}. It is possible to argue as in part (1) to obtain that M; is an in-
jective flat left R-module for every i€l. Therefore, M is an injective flat left
R-module. Now, the R-monomorphism 8: M —->Q® M is @-linear and we have
again that M is isomorphic as left @-module to a direct summand of the flat left
@-module QR .M. Hence, M is a flat left Q-module.

By Proposition 2.1, @ is a left FTF ring. Moreover, a consequence of the
foregoing proof is that a left @-module embeds in a flat left @-module if and
only if it embeds in a flat left R-module. WM

The following Corollary shows that there is a nice relation between left
FTF and left IF rings.

Corollary 3.3. Let R be a left FTF ring. Q,(R) is left IF if and only if
Ty 15 perfect.

Proof. Assume that @, (R) is left IF. Then every left @-module embeds
in a flat left @-module. By Theorem 3.2 every left @-module embeds in a
flat left R-module, that is, every left @-module is Ty-torsionfree and, hence, 7, is
perfect.

Conversely, if we assume that 7, is perfect, then every left @-module is
To-torsionfree. Therefore, every left Q-module embeds in a flat left @-module.
That is, @ is left JF. W

We will prepare the proof of the second main result of this section. Pro-
position 3.4 can be used to construct FTF rings, like we make to obtain the
Example 3.5.

Proposition 3.4. Let p: R— S be an injective ring homomorphism such that ;S
and Sy are flat R-modules. If S is an IF ring, then R is an FTF ring. Moreover,
if S|R is 7y-torsion, then S=Q, (R) and =, is perfect.

Proof. If we denote by s the class of all left R-modules that are R-
submodules of left S-modules, it is not hard to see that F,=5F;. It is clear that
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s is closed under submodules and direct products. We claim that & is closed
under injective hulls. Given M &S, there is an R-monomorphism M—N,
where N is a left S-module. We can assume that N is injective as left S-module.
Since Sy is flat, N is injective. 'Thus, N contains an injective hull E(zM) of
#M. Hence, EGM)EZs. Therefore Fo=SF is closed under submodules,
direct products and injective hulls and this assures that &, is the torsionfree
class for some hereditary torsion theory 7, on R-Mod.

Since S is an IF ring, S is left X -injective as left S-module [1, Theorem 2].
By Lemma 3.1, S is X,-injective. Since 7, is of finite type [7, Proposition 4.5],
&S 1s Tp-injective. Moreover, S/R is 7,-torsion. In these circumstances, the
only possibility is that @, (R)=S. By Corollary 3.3, 7, is perfect. H

By QL.x(R) (rep. Qn.x(R)) we denote the left (resp. right) maximal quo-
tient ring of R. When both quotient ring coincide, we use the notation @,..(R).

ExampLE 3.5. An example of a commutative FTF ring R with 7, perfect,
Qmax(R) regular but Q. (R)+Q.<(R). Let D be a commutative domain with
infinitely many elements and K its field of fractions. Let £ be an infinite
set. We denote by D?(resp. K?) the direct product indexed by Q of copies of
D(resp. K). Let R(resp. S) be the subring of D? (resp. K®) consisting of those
maps f from Q to D (resp. K) such that the set {f(w): ©=Q} is finite. Using
[13, Théoréme 1.2] it can be shown that ,S is flat. It is clear that S is a regular
ring. By Proposition 3.4, R is FTF. By using [7, Proposition 4.5.(4)] it can be
shown that S/R is ,-torsion. By Proposition 3.4, 7, is perfect and @, (R)=S.
It is easy to show that Q_..(R)=K?®%. Of course, R=+S = K® unless D is a field.

Proposition 3.6. A ring R has a QF two sided maximal quotient ring if
and only if R is a vy-artinian left FTF ring with T, perfect.

Proof. Assume that R has a QF two sided maximal quotient ring €. By
[16, Theorem 4] @ and @; are flat R-modules. By Proposition 3.4, R is an
FTF ring. Moreover, since @ is artinian, R satisfies A.C.C. and D.C.C. on
left annihilators. Theoiem 2.7 assures that R is 7 -artinian and that 7,=2X\.
Therefore, @/R is A-torsion and Proposition 3.4 implies that 7, is perfect.

If R is a 7yartinian left FTF ring with 7, perfect, then Q=@Q,(R) is an IF
ring by Corollary 3.3. But a left artinian IF ring is necessarily a QF ring. W

Theorem 3.7. Let R be a left SQF-3 ring. R has a QF left classical ring
of fractions if and only if the following two conditions hold :
(1) R has D.C.C. on left annihilators.
(2) Every finitely generated left ideal with zero right annihilator contains a regular
element.

Proof. Assume that R has a QF classical left ring of fractions @. Since
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=@ is injective, Q=@Q/..(R). By [23, Proposition 4.6], @ is contained in Q7,.,(R).
But @ is right self-injective, which implies that Q=@Q..(R)=Q}.x(R). By Pro-
position 3.6, R is a left FTF ring with 7, perfect and R is ,-artinian. More-
over, A=, (Proposition 2.6). It is clear that R has D.C.C. on left annihilators.
Consider a finitely generated left ideal I of R such that »(I)=0. By [7, Propo-
sition 4.5] I is 7,~dense in R. Since 7, is perfect, QI=@Q [19, Proposition XI.3.4].
Thus, 1=s7! ;4 -+ +s;! x, for some regular elements s; ER and elements x; 1.
It is clear that, if we put r,==s,, then r,=x, 4¢3 x,+ -+ +¢a ,, for certain g3, ---,
g»EQ. Since Q is the left classical quotient ring for R, there is a regular ele-
ment 7, in R such that ¢;=(r,)"'t,, for some #, in R. Therefore, r,7,=7r, x,+
t, %,+q5 x3+ -+ +¢5 x,, for certain elements ¢3, -+, ¢2€Q. We can repeat this
argument until we obtain regular elements 7,, --+, 7, in R and ¢,, -+, ¢, in R such
that r=r, - r;=r, -1, 0,47, 131, x,++--+t,x,. Hence r is a regular element
contained in I.

Conversely, assume that the left SQF-3 ring R satisfies conditions (1) and
(2). By Theorem 2.7, R is a r,-artinian and 7¢-artinian FTF ring. Let Q=
Q.,(R). We will prove that 7, is perfect. Let I be a 7,-dense left ideal of R.
Since 7, is of finite type [7, Proposition 4.5], I contains a finitely generated -
dense left ideal D. By [7, Proposition 4.5], #(D)=0. Hence, D contains a regu-
lar element . Then Rr is a projective 7,-dense left ideal of R [7 Proposition
4.5]. Therefore every 7,-dense left ideal contains a projective 7o-dense left ideal.
By [19, Proposition XI.3.3] 7, is perect. Proposition 3.6 assures that @ is a QF
two sided maximal quotient ring of R.

Next, we will prove that @ is a left classical ring of fractions of R. For,
given ¢=@, there is a finitely generated 7,-dense left ideal I of R such that
Iq<R. Since (I)=0 [7, Proposition 4.5], I contains a regular element . It is
clear that rg=R. To finish the proof, we only need to show that every regular
element of R is invertible in Q. Let r be a regular element of R. Again by [7,
Proposition 4.5], Rr is 1,-dense in @ and 7R is 7¢-dense in Q. Since 7, and 74
are perfect torsion theories we deduce [19, Proposition XI.3.4] that Qr=rQ=
@. Hence, 7 is invertible in @. W

To finish, we will illustrate how to use Theorem 3.7 to obtain a charac-
terization of QF rings within the class of QF-3 rings.

Corollay 3.8. Let R be a QF-3 ring. The following conditions are equiva-
lent.
(i) Ris QF.
(ii) R has a QF left classical quotient ring.
(i) R has D.C.C. on left annihilators and every finitely generated left ideal with
zero right annihilator contains a regular element.

Proof. (i)=(ii) Evident.
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(ii)e(iii) Apply Theorem 3.7.

(ii) and (iii)=>(i) By Theorem 2.7, R is left FTF and 7j-artinian. Since
R is right QF-3, there is an injective faithful right ideal I. The left ideal RI has
zero right annihilator. Since R is 7,-noetherian [15, Theorem 1.4], RI is 7,-
finitely generated. Combining this fact with [7, Proposition 4.5.(4)], RI contains
a finitely generated ideal with zero right annihilator and, thus, R/ contains a
regular element ». Therefore, Q=RIQ. But I, is injective and this implies
that 7 is a right @-submodule of @, that is, IQ=1. We conclude that Q=RIQ
=RICR. Hence,Q=R. N
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