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1. Introduction

Let G be a connected reductive linear algebraic group defined over a finite
field F,. We put

GZG(Fq)’ 929'2‘

Then the ¢’-th power Frobenius map ¢: G—G induces on G an involutory
automorphism r: g—"g with the fixed point set

G, = G(Fy).

We are concerned with the irreducible representations of the Hecke algebra
H(G, G,), or, almost equivalently, with the zonal spherical functions on the
subfield symmetric space G|/G,. (A similar object, in the category of real Lie
groups, is also being studied; see, e.g., [9], [24].) In the present paper, we
take up the following problem:

(A) Classify the irreducible representations of H(G, G,), and determine
their dimensions.
Since the classification of the irreducible representations of G is well-understood
by works of G. Lusztig (see [21]), we can reduce problem (A) to the following
one:

(A") For each irreducible character X of G determine the multiplicity
m.(X)=<1¢,, X> with which X appears in the induced character 1§ .

For an irreducible character X of G, let ¢ (X) be the twisted Frobenius-
Schur indicator [13]:

a(X) = 1GI™" ZX(e8) -

*This work was supported by Grant-in-Aid for Scientific Research, The Ministry of Education,
Science and Culture.
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We extend m,(+) and ¢,(+) to linear functions on the space CI/(G) of class func-
tions on G. The fundamental relation between ¢.(+) and m,(-) is:

(1.1) m(X) = c:(t%(X)) ,

where t*: Cl(G)—CI(G) is the twisting operator, introduced in [11] and studied
intensively by T. Asai [2], [3] and F. Digne and J. Michel [8]. We also have
[13]
+1 if X=X,

1.2 (X)) = ]

(12) (%) { 0 otherwise
for an irreducible character X of G.

If X is a uniform function, i.e. a linear combination of Deligne-Lusztig virtual
characters [6], then, by Asai [3], we know:

(1.3) *X)=X.
By (1.1)—(1.3), we have
1 if X=X,

A(X) = )
m(X) 0 otherwise

for a uniform irreducible character X of G. Since almost all irreducible char-
acters are uniform, we might say that the induced character 1§, is “almost” mul-
tiplicity-free. For a not necessarily uniform irreducible character X, the cal-
culation of m,(X) is reduced to solving the following problems (A’a), (A’b):

(A'a) Determine {t*(X), > for any irreducible character 5 of G.

(A'b) Determine c,(3) for any irreducible character » of G such that

<4(X), 0.

Thanks to the works of Asai [2] [3] and Digne and Michel [8], we already know
quite a lot concerning problem (A’a). So we concentrate on problem (A’b).
First we take up the case when X is unipotent. Assume that G is simple mod-
ulo its center. If G is of exceptional type, we further assume that the charac-
teristic is good. Then we can determine ¢, (X) for unipotent irreducible charac-
ters X of G. Once we know these values, Asai’s results [2] combined with
(1.1) allow us to compute m,(X) for unipotent X’s. See the formula (5.1.2).
The values ¢,(X) and m,(X) for unipotent X’s are given in 5.3 for exceptional
groups, and in 5.4 and 6.2-6.3 for classical groups. A part of our result can
be stated as follows. (Recall [21] that unipotent characters are partitioned into
“families”” and that each family contains a unique “special’”’ unipotent character.)

Theorem 1.4. (i) Let G be a connected reductive group wihch is simple
modulo its center and is split over a finite field, and o: G—G the corresponding
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Frobenius map. When G is of exceptional type, we assume that the characteristic
is good. Let X be a unipotent irreducible character of G=G,2, and \, the root of
1 associated with X by Lusztig [21; Ch. 11] in connection with the eigenvalues of
o on l-adic cohomology spaces of * Deligne-Lusztig varieties X(w)”. Then we have

[7\'7( lf 7\'x=i1:

(X) = .
(%) 0 otherwise.

(ii) Under the same notation as in (7), let X, be a special unipotent character
of G, and Ty, the finite group associated [21] with X,. Then m.(X,) is equal to the
number of conjugate classes of Ty contained in {a €Ty |a*=1}, if X, is “‘not excep-
tional”, i.e. if X, is not in the families corresponding to 512 dimensional representa-
tions of the Weyl group of type E, or to 4096 dimensional representations of the Weyl
group of type Eg.  If X, is exceptional, then m(Xy)=1.

Moreover, when G is of classical type, we have

m,(X) =0
for any non-special unipotent character X.

In determining ¢,(X) and m,.(X) for non-unipotent characters X, we must restrict
ourselves to the case when G is a classical group with connected center (see
(6.4.1)). (In order to be able to treat a more general case, Asai’s result [3] must
be generalized.) Then, using results of Lusztig [21] and Asai [3], we show in
Theorem 6.4.3 that the problem can be reduced to the case of unipotent charac-
ters already mentioned. Thus problem (A) is solved completely when G is a
classical gruop with connected center.

The author wishes to express his thanks to S. Kato for interesting comments
and stimulating discussions.

NortaTioN. For a set X, | X| denotes its cardinality. If 7 is a transfor-
mation of X, we put

X, = {x&X|"x = x}.
If the inverse element x '€ X is defined for any x& X, we put
X, = {xeX]|"(x) = a}.

Let Y be a subset of X, and f a map from X to another set. Then f|Y denotes

the restriction of fto Y. Let G be a group, g an element of G, and S a subset
of G. Then

£S = {gsg~!|s=S}.

If G is a finite group, G denotes the set of irreducible complex characters of
G. Let H be a subgroup of G, and ¢ a class function on H. Then ¢€ is the
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class function on G induced from ¢, and, for g€G, #¢ is the class function on
£H defined by

‘p(ghg™) = p(h), heH.

2. Preliminaries

2.1. Let G be a finite group containing a normal subgroup G of index 2.
Let

reG—-G.
For XEG, we define the twisted Frobenius-Schur indicator ¢(X) by
(2.1.1) o0 = 1617 X(a) = 1617 3 X(),
or, equivalently, by
(2.1.2) Eﬁc,(x)x(g)= [ {hEG | (th) = g}|, gE€G.

We have the following generalization of a theorem of Frobenius and Schur.

Theorem 2.1.3 ([13]). (i) We have

+1 if X=X,
0 otherwise.

0=

where the bar means the complex conjugation.

(ii) Assume that t°=1. Let M, 'be a G-module affording XEG. Then
c(X)=1 (resp. —1) if and only if there exists a non-zero symmetric (resp. skew
symmetric) bilinear form B(-, +) on M, such that

B(g-m,,"g-my)) = B(m;, m;), g<G, my,meM,.
We also have the following generalization of a result of G. W. Mackey.

Theorem 2.1.4 ([13]). Let H be a sjubgroup of G such that v*H, and
D_, a set of representatives of the double cosets "HxH, x& G, such that "("HxH) =
"HxH. Let o be a (possibly reducible) character of H. For x€D_,, let "a-a
be the character h—a(x™ v~ krx) a(h) of "HNH. Choose an element =z, of
xHN"H:"x™'. Then:

(1) H(rx, t2,)=<r2,, "HNH) contains "HNH as a normal subgroup of
index 2.

(ii) There exist characters ("“a-at)* of H(tx, T2,) such that

("e-a)*|"HNH ="a-«a
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and that
(Para)(y) = £a(y), yErz("HNH).
(iil) We have
(@) = 3 |Hirw, 72)| 751 (") —("a-a)} (9)

IEH(‘T:,TZ‘)

— 3 cu(@|"HNH).

2.2. Let G be a connected linear algebraic group over an algebraically
closed field K. Let o be a surjective endomorphism of G such that

|Go2| <oo .

We put
G=Ggz.

Then the cyclic group {7) of order 2 acts on G by

*x=""x, x&CG.

Hence

We also put
G = <> G (semi-direct product).
By a theorem of Lang and Steinberg, any g &G can be written as
(2.2.1) g="(a") &
with some a, EG.

Lemma 2.2.2. (i) Let g be an element of G, and a, as in (2.2.1). Then

2 -
1(g) = a,’ (ag")
is again an element of G, and its G-conjugacy class does not depend on the choice
of a,. Moreover, the transformation

t*: X — Xot

on the space of class functions on G is unitary with respect to the standard hermitian
inner product  , .

(i) Let g be an element of G. Then t("gg) is an element of G,, and its G,-
conjugacy class Clg (#("gg)) depends only on the G-conjugacy class Clg(rg) of g.
The correspondence

Clz(rg) — Cl;,(1("g2))
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gives a bijection between the conjugacy classes of G contained in the coset vG and
the conjugacy classes of G,. Moreover, we have

|G|~ Cla(rg)| =G, | 7| Cle (t("g8)) |
for any gEG.

Both parts (i) and (ii) are special cases of [11; Lem. 2.2]. In fact, by putting
m=1 and replacing o with o* (resp. by putting m=2) in [loc. cit.], we get (i)

(resp. (it)).
For a class function X on G, we put

m.,-(X) = <1g'r’ X> == l G‘rl -IBEEG X(g) *

We also define the number ¢,(X) by the formula (2.1.1). The main result of
this section is:

Theorem 2.2.3. (i) Let X be a class function on G. Then
mX) = c,(#%(X)) .
(ii) Let XEG be such that X=t*(X). Then
1 i X=%,
m(X) = (X) = { 0 Z;herwz'se.
(i) Let X€G. Put
n(X) = | {nEGI<*(X), >0} .
Then
m(X)</ n(T) .

(iv) Let X€G. If m(X)=%0, then there exists an &G such that {t*(X), >

+0, c(3)*+0 and 7"=7.

(v) Let XE€G. If c(X)=£0, then there exists an 3G such that
L(#*)HX), n>+0 and m.(n) 0.

Proof. Part (i) follows from Lemma 2.2.2 and the definitions of m,(+) and
¢:(+). Part (ii) follows from part (i) and Theorem 2.1.3. To prove part (iii),
we write

1H(X) = 3} aun

=

with a,&€C. Since t* is unitary, we have

(2.2.4) S la,lP=1.
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By part (i), we have
(2.2.5) m(X) = 3 ayerln)
Hence, by Theorem 2.1.3, (2.2.4), and the Cauchy inequality,
m(X)< 3 |ay] S/() -
Thus we get part (iii). Part (iv) follows from (2.2.5). Part (v) is similar.

RemMARk 2.2.6. By Theorem 2.2.3, for the calculation of m,(X) for a given
X &G, it is enough to solve the following two problems:

(a) Determine <{t*(X), ) for any 2€6.

(b) Determine ¢,(n) (=1, —1 or 0) for any nE€G such that <t¥(X), n>*0.

3. Deligne-Lusztig virtual characters

In this section, we apply Theorem 2.2.3 to the case when G is a finite re-
ductive group, and X is a Deligne-Lusztig virtual character of G.

Henceforth, G denotes a connected reductive linear algebraic group over
an algebraically closed field K of positive characteristic p. Let ¢ be a positive
integral power of p. Let o be an endomorphism of G whose square ¢* is a
¢-th power Frobenius map of G with respect to an F,-rational structure of G.
As in Section 2.2, we put G=G,2, and consider the involutive automorphism
T: x—>"x="x of G.

3.1. Let T be a o*-stable maximal tours of @, and  a character of T=1T .
Let 7,[0]=7§[60] be the character of the Deligne-Lusztig virtual representation
R§[6] of G [6].

Lemma 3.1.1. (i) 7,[0]=r,[0].
(i) "(r[0])=r+,["0].
Proof. Part (i) follows from [6; 4.2] and the fact [6; p. 123] that 7,[6] is

integer valued on the unipotent elements. Part (ii) follows from the definition
of R§[@] and standard properties of /-adic cohomology.

The following result is of fundmaental importance for us.

Theorem 3.1.2 (Asai [3; 2.4.1]). For any o’-stable maximal torus T and
any character  of T 2, we have

t*(r,[0]) = 74[0] -
By Theorem 3.1.2 and Theorem 2.2.3, we get:

Theorem 3.1.3. Let X be a uniform function on G, i.e. a linear combina-
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tion of Deligne-Lusztig virtual characters.
(i) We have

m(X) = c(X) .
(i) If XEG, then
1 if X=2X%,

0 otherwise.

m(X) = ¢o(X) = {

(iti) If m,(X) =0 (resp. c,(X)=0), then there exists an nEG such that {ny, Xp
%0 and c,(n)=+0 (resp. m.(n)=0). ’

3.2. Let S=Sg¢ be the set of g’-stable semisimple conjugacy classes of the
dual group [6] G* of G. Then S can be identified with the set of geometric
conjugacy classes of pairs (T, 8) of o?-stable maximal tori T and characters
of T=T,. For (s)ES, let Gy, be the set of irreducible characters of G con-
tained in some virtual character r,[f] such that (T, g)=(s). Then [6; 10.1]
we have a partition

G=UG,.

HeSs

We denote by (G/G,)" the set of irreducible characters of G contained in 1,.

Theorem 3.2.1. Let (s)&€S=Sg. Then G, contains an element of (G|G,)"
if and only if

eSS ={ES|IE) =" .
In other words, we have a partition
(GIG:) =(s)gq‘0(G/G,)(s)
of (G|G,)" into non-empty parts:
(GIG)y = (GIG)* NGy .

Proof. Let a be an element of (G/G,)", and (s) an element of S such that
a EG(,). Put

aw= 3 pl)p.
P‘EG(S)

Then a,) is a linear combination of {r;[0]|(T, 8)E(s)} by [6; 7.5]. Since

m,(a(,)) = :“( 1) m.,.(,u) >0,
we have
C'r(ll') +0
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for some p &Gy, by Theorem 3.1.3 (iif). By Theorem 2.1.2 (i), such p satisfies

T

b=Tr.
Hence, by Lemma 3.1.1, we have
HES-..

This proves the only-if-part. To prove the converse, we embed G in a group
G, with connected center and the same derived group. Let (s)E(S¢)-,. Then
there exists an element (s,) €(Sg,)-» Which corresponds to (s) under the canonical
map G¥—G*. Since the if-part of (i) holds for G replaced by G, (this follows
from Theorem 3.2.2 below), there exists an irreducible character X, of G;=(G)),2
contained in (G,/(G,).)" N él(,1>. The irreducible components of X, |G are con-
tained in G, and at least one of them is contained in (G/G,)". - Hence
(G|G)"N Gy, is non-empty. 'This proves the if-part.

Theorem 3.2.2. Assume that the center of G is connected. Let (s)ES._,.
Let p,y and plsy be the elements of G defined by Deligne and Lusztig [6; 10.7].
Then

m.,(p(,)) = c‘l’(P(')) =1
and

m.(p(s) = &(pts)) = 1.

Proof. By the definition of p,), p{s) and Lemma 3.1.1, we see that p(, and
ptsy are linear combinations of 77[0], (T, 0)<(s), and satisfy "py=p(y and
"pl=P(s». Hence the theorem follows from Theorem 3.1.3 (ii).

Let T be a g-stable maximal torus, and T'=T,2. Then the subgroup T,
of G will be called a r-anisotropic maximal torus of G, or a maximal torus of
the symmetric space G/G,. The “small” Weyl group

WO(T) = (Ne(T)/T)s
(as compared to the “big” Weyl group
W®(T) = (No(T)/T)s?)

acts on T_,, hence on (T_,)". An element @ of (T_,)" is said to be in general
position if the stabilizer of @ in W®(T') is trivial.

Lemma 3.2.3. Let T and @ be as above. We define b T by
0,(t) = ("t t), teT.

(1) The following conditions for 6 € T are equivalent. (a) "0=0, (b) 6| T,=1,
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(c) 0=0,, for some p=(T-,)".

(it) Assume that the center of G is connected Then p&(T-,)" is in general
position if and only if 6, is in general position in the sense of [6] (i.e. the stabilizer
of 0, in W®(T) is trivial).

Proof (i) Wehave T,={"#t|¢ =T} (resp. T_,={"t"t[t=T}) Hence (a)
and (b) (resp. (b) and (c)) are equivalent.

(if) If §=46, is not in general position, then, by [6; 5.13], the stabilizer
(in the sense of [loc. cit.]) Z, of § in Ng(T')/T is a non-trivial subgroup generat-
ed by reflections. Since "0=60"', Z, is o-stable. Hence, by [6; 5.17], (Z,), is
non-trivial.  Since (Z,),(C W®(T)) stabilizes ¢, we see that @ is not in general
position. This proves the only-if-part. The converse, which is true even if
the center of G is not connected, is easy.

Theorem 3.2.4. Assume that the center of G is connected. Let T be a o-
stable maximal torus, and @ a character of T_,. If @ is in general position, then
7710,)] is an irreducible character of G, and

m(r0]) = 1.

Proof. By Lemma 3.2.3, &T') r7[8,]=p,) for some (s)ES_, and some sign
&T). But by [6; Prop. 7.4] and the fact that T is o-stable, we have &T')=1.
Hence the theorem follows from Theorem 3.2.2.

ReMARK 3.2.5. The above result confirms the conjecture in [4; 6.7] in
this particular case.

Theorem 3.2.6. Assume that q is large (see Remark 3.2.7 (i) below). Let
T be a o*-stable maximal torus of G, and @ a character of T=T,2. Let o(G, T)
be the set of o-stable maximal tori of G which are G-conjugate to T. Then we

have the following.
@) me(rl0)=crz[0)=1G.1" 5 [H{weW(A)|™0,="0}|]4.],

where for A€o (G, T'), A=A,2 and 0 4 is the character of A defined by
0.(a) = 0(gi' ags), ac4
using a fixed element g, of G such that g, T g1*=A.
(i)
ueze.,. rr[0] (w) =|W(T)| |a(@G, T)|.

unipotent

Remark 3.2.7. (i) In [22], Lusztig proved formulas for
| K| ™ 23 7F[0] (%),
€K,
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and for

> r7[6] (%),

xEKa

unipoten
where 8 is a Frobenius map of a connected reductive group H over a field of
odd charaateristic, T is a &-stable maximal torus of H, §=(T;), and K is the
fixed points of an involutory automorphism « of G commuting with 8. For
example, we can take

H=G6GXG,

8: (%) = (9, "%),
and
a: (%y)—> (3%, (*%yEH,
where G is a connected reductive group and ¢ is a Frobenius map of G. In this
case, we have

Hy=G:CG,=K;.

Applying Lusztig’s result to this particular case, we get (i) (i) of Theorem 3.2.6
without using the assumption ¢3>0. (The odd characteristic assumption is not
needed in this case.)

(i) If we apply Theorem 3.2.6 (ii) to the case when G=GL,(F,) and ¢ is
the ¢g-th power Frobenius map, we obtain a set of formulas for Green polynomi-
als. Using [23; III, 7], it can be translated to the one for symmetric functions
as follows. For a partition A=Ay, Ay, *+), let pa(x) be the symmetric function
in (x)=(%,, %y, X3, ++-) defined by

Pa(x) = TI (e +-adi i),

and P,(x; t) the Hall-Littlewood symmetric function. (We are following the
notations in [23].) Then, for any positive integer z,

¥ bA(#) ba(t) ™! Py(x, %)
= ST (—F)®) (I (1—2)0) pn(s)

where A\ and p run over the set of partitions of 7, m,(u) denotes the number of
times j occurs as a part of u, p(u) is the partition of # defined by

2my (1) if jiseven,

mi(p(p)) = { m )+ 2my () if jis odd,

and b,(#) and 2y are defined by
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b\(t) = H (1—2) (1—8)---(1—tmi™)
and
= T T (= )

We now sketch our proof of Theorem 3.2.6. The proof is quite similar to
that of [6; 6.8, 6.9] and is done by induction on dim G. We need:

Lemma 3.2.8. Assume that Theorem 3.2.6 (ii) holds, for G replaced by
Zg(s)’, where s is any semisimple element of G, not contained in the center Z of G.
Then

IG-rlm'r(rT[o]) = a~|~,8 ’

where
a =3€12n20(s)( “EZ(}; rp[0] (w)— |WO(T)| |a(G, T)|)
and

B=,3 | wSWOA)™0,= 0|14,

AE(G,
In particular, part (ii) of Theorem 3.2.6 implies part (i).

This lemma, which is a counterpart of [6; 6.10], can be proved using [6; 4.2].
We omit the details. To prove part (ii) of Theorem 3.2.6, we may assume by
induction, that this is true for G replaced by Z(s)?, where s is an arbitrary semi-
simple element in G,—Z, and for a og®-stable maximal torus of Z(s)°. Let T*
be the maximal torus of the dual group G* corresponding to 7', and T*=T"%:
Then, for large ¢, there exists a g*-stable conjugacy class (s) of G* such that

(3.2.9) (s)NT* is non-empty and “(s)7=E(s) .

Let 9= T be such that (T, 0)=(s). Then, by Theorem 3.2.1, m,(r[6])=0.
Moreover, by (3.2.9) and Lemma 3.2.3, we have ™0 ,%"8, for any A€o (G, T)
and any wE W®(A). Hence, by Lemma 3.2.8, we get a=0. This proves part
(ii) of Theorem 3.2.6. (We did not try to weaken the assumption of Theorem
3.2.6 because of the reason mentioned in Remark 3.2.7 (i).)

4. Induced characters

Let G, o, G, 7, -++ be as in Section 2. Let P be a o*-stable parabolic sub-
group of G, and L a g*-stable Levi subgroup of P. We put P=P,2 and L=
L,2. Let ¢, be a cuspidal irreducible character of L lifted to P. In this sec-
tion, we are concerned with the calculation of c.(X) for irreducible components
X of ¢§. For simplicity, we assume that ¢? is an F,-split Frobenius map of
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G. The main result in this section is Theorem 4.5.9.

4.1. Let B be a o-stable Borel subgroup of G, T, a o-stable maximal torus
contained in B, T\=(T,),2, and W=Ng(T,)/T=Ny(T,)/T;. Then 7 acts on
W in such a way that the 7-action is trivial. Let P be a g°-stable parabolic
subgroup containing B, L the Levi subgroup of P containing 7', and U the
unipotent radical of P. We put B=B,, P=P,, L=L,z, and U=U,. Let¢
be a cuspidal irreducible character of L, and R: L—-GL(V) a representation of L
affording ¢. The lifts of ¢ and R to P are denoted by ¢, and R, respectively.
The representation R$ of G induced from R} is realized on the space F(G, P, R)
=F(P, R) of functions f: G—V satisfying

f(rg) = Rx(p)f(8), PEP,gEG.
The group G acts on F(P, R) by right translation. We put
W(L) = {weW|*(LNB) = LN B}=Ny(L)/L

and

W(¢) = lweW(L)|"$ = ¢}.

4.2. We briefly recall results of R.B. Howlett and G.I. Lehrer [10]. Let

3 be the set of roots of G with respect to T',, 3* (resp. ) the set of positive
(resp. simple) roots corresponding to B, and z(L) the subset of z corresponding
to BNL. For a€X—nr(L) such that
(4.2.1) n(L)U {a} Cwr  for some weW,
we put

w; = wo(z (L) U {a}) wy(z (L))
where wy(z(L)U {a}) and wy(w(L)) are the longest elements of the finite re-

flection groups with simple root systems = (L)U {a} and (L) respectively.
Assume that

(4.2.2) wi=1 and w,EW($).

Let M be the subgroup of G generated by T, and the root subgroups correspond-
ing to the roots in

SUR(z(L)U {a}),

and M=M_,. Then PNM is a parabolic subgroup of M, and L is a Levi
subgroup of PN M. The induced character ¢¥qy splits into exactly two irre-
ducible components 75, and 7, whose degrees are related by

7a()/ma(1) = " 21
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with a non-negative integer m(c). Now we define = (¢) to be the set of aEX
—n(L) satisfying (4.2.1), (4.2.2) and

m(a)>0.

For a3 (¢), let & be its image in Rz/Rmx(L). Then 3(¢p)={a|asZ(P)} isa
root system, and 3*(¢)={a|aEZ($)N=*} is a set of positive roots in 3 ().
Let #(¢) be the corresponding set of simple roots, and W'(¢p)=<w;|aEZ(P))
the Weyl group of 3(¢). We denote by I(+) the length function on W'(¢)
with respect to the set S(¢p)={w,|aEz(p)} of simple reflections. For each
w& W'(¢), there corresponds a canonically defined element #, of Endg(F(P, R))
with the following properties: (a) #,=identity, (b) #,, wE W'(¢$), are linearly in-
dependent, (¢) t,t, =1,y if l(ww')=I(w)+I(»"), (d) (t,—1) (¢,4+¢"*)=0 if
s=w, with aez(¢$). We put
End4(F(P,R))= & Ct,.

weEW/($)

4.3. Let W(¢, 1) be the set of elements w of W satisfying
“(LNB)=LNB (hence, “L=L)

and
T™w ¢ — 5 .
For veW(¢, 7), we consider the vector space isomorphism
f->"f

from F(P,R) onto F(”P,™R). This induces an algebra isomorphism from
End4(F(™P, ™R)) onto End4(F(P, R)). If we identify End4(F (P, R”R)) and
End%(F (P, R)) using their canonical basis elements t,, wE W’(¢)=W'("'$), then
the induced map gives the automrophsim

ty—>t,, w="w, wEW()
of the algebra End¢(F (P, R)).
4.4. Let D(L, 7) be the set of elements w of W satisfying
“(LNB)CHB

and

"(LNB)C“B.
Then

G= U "Pn,P (disjoint),

weED(L,T)



SYMMETRIC SPACES OVER FINITE FIELDS 773

where, for we W, n, is a representative of w in the normalizer Ng(T,) of T, in
G. The set W(¢, 7) defined in 4.3 is contained in D(L, ). Forve W(¢, 7)-.,
one can define the twisted Frobenius-Schur indicator

Crl($) = Cm,($) (= £1).

We note that the representative n,& Ny(T,) of v& W(¢, 7)-, can be so chosen
that (m,)’=1. In fact, (vn,)*€ T} is fixed by the map t—="¢,t€T,. Hence, by
Lang’s theorem, there exists an element s of 7} such that (7n,)>="s+s. Then
the new representative n,=n, s~! of v satisfies (Tn,)*=1.

Lemma 4.4.1. Let ¢ be a cuspidal irreducible character of L. Then
G(@F)= 3 cn(d).

2EW($,T) _ -

Proof. First, note that, for we D(L, 7),
"("Pn, P)™ ="Pn, P
if and only if we D(L, 7)-,. For veD(L, r)-,, we consider the character

"hpPp: p = p(v™ 77 1) Pp(P)

of "PNP. Then, by a standard argument in the theory of cuspidal characters
(see, e.g. [5; Prop. 9.1.5]), we see that

<1(”Pn P) T0¢P°¢P> = 2> (n¢P'¢P> (P) =0
pPE™PNP
unless vE W(¢, 7)-,. Hence, if we define the characters ("¢p+pp)* of P(rv, 70)
=<{rv, P N P) as in Theorem 2.1.4, then

> ("Pp ) (¥) = Lptr,mrs ("Ppobp)*> =0

yEP(rv,70)
unless vE W(¢p, 7)_.. Hence, by Theorem 2.1.4, we have
(44.2) a@f)=_ 3 |"PNPI™M 3 éu(mnp))}.
vewipm_, pETPNP

Since, for v W(¢, 7)-,, we have
"PNP=L(™UNVU),
PE™PNP can be written as p=Iu with /€L and u€™UNU. Then
bo((mn, p)) = B((m, 1)%) .
Hence the statement follows from (4.4.2).

4.5. Let L, L and ¢ be as in Lemma 4.4.1. We make the following
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AssuMPTION 4.5.1.

(i) W(p)=W'$)

(ii) Lety and § be two Frobenius maps of L such that L(=L,?)=Ly=Lyz.
The involutive automrophism of L induced from ¢y and § are also denoted by

and §, respectively. If ¢=¢ and p=4¢, then
cy(P) = ca(9) -

In particular, the sings ¢, (¢), vE W(¢, 7)-, in Lemma 4.4.1 are independent of
0.

Lemma 4.5.2. If W(¢, T) is non-empty, then W(¢p, 7)-. is also non-empty.
In that case, we have

W(¢) T)-—f = 'UW((ﬁ)—'rv y VE W(¢‘7 T)—'r .
Proof. By the definition of W{(¢, ), we have
W(p,7)=uW(d), ucsW(p,)

if W(¢, 7) is non-empty. So if we prove the first statement, the second one
follows. We use the notations in 4.2. Let u€W(¢, 7). Since ou(z(L))=
7(L) and ““¢p=¢, we have

ou(Z(4)) = =(¢) -
Let S*(¢)==(p) N=+. We show the existence of v W(@, 7), such that
(4.5.3) PRI ()) (=
If cu(SH(®))E S, then the set
S+, ou) = {alaeSH($) ou(@)<0} (CE¥()

is non-empty. Hence there exists an element @ of S*(¢, ou) such that @e
7#(¢). Consider the element uw;E W(¢, 7). Then

ZH(¢, ouwsg) = wy(SH(, ou)—{a}) .

Repeating this process a number of times, we eventually find an element v=
uwz Wy € W(p, ) satisying (4.5.3). Since (ou)*c W(¢) for any ue W(e, 7),
we see that

(ev)’eW(p) = W'(¢) (Assumption 4.5.1 (i)
and
(c0f(EH@)CZH9) -

Hence we must have (ov)?=1, which is equivalent to v € W(¢, 7)_,.
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By Assumption 4.5.1 (i), we see that
Endo(F(P, R)) = End4(F(P, R)

is isomorphic to the group algebra CW(¢) of the finite reflection group W(¢).
Hence there exists a 1—1 correspondence

w—> Xu

between the irreducible characters u of W(¢) and the irreducible components
Xu of ¢§ such that

4.5.4 P= 3 w(l)X,
(4.54) P m)u() 0
and that
/\
(4.5.5) Xu(="Xu) = Xwy,  pEW(P) ueW(d, 7).

By Assumption 4.5.1 (ii), Lemma 4.4.1, Lemma 4.5.2, and (4.5.4), we have

(4'5'6) I W(¢)—7u | c’ru(¢) = 3 ll’(l) C.,.(Xp.)
pewe
for any u& W($, 7)-,. On the other hand, by (2.1.2), we have
(45.7) W)l = 3 (1) ens) -
BEWE

A\
Lemma 4.5.8. Let uc W(, 7)_,. and let n € W(p). We have

1 if ™p=u,
) = 0 otherwise.

Proof. It is enough to prove this in the case when P=B, ¢,=1; and
u=1. Then W(¢)=W(¢p, 7)=W. We can assume that W is an irreducible
Weyl group. Since it is known that any p & W is afforded by a real representa-
tion, the (classical) Frobenius-Schur indicator ¢(u) is equal to 1. Hence we
may asusme that the r-action on W is non-trivial. When W is of type A4, or
E,, then such r-action is given by

T, = Wowwyl, weW,

where w, is the longest element of W with respect to the simple reflections cor-
responding to B. Hence, for any p& W, we have "p=p and

) =W S p((wow)’) = e(u) =1.

When W is of type D,, then the semi-direct porduct {r>W is isomrophic to the
Weyl group of type B,. Moreover, if p€ W is fixed by 7, and pe((H>W)"
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is taken so that &| W=y, then
20(7) = cu)+e(u).

Since ¢(#)=c(u)=1, we have ¢,(u)=11in this case. If "u3 u, then "p+7(=p).
Hence ¢,(z)=0 by Theorem 2.1.3. Finally, when W is of type B,, G, or F,
(i.e. G, is a group of Suzuki or Ree), we can directly verify that

53 u(l) = [Hoe W |"ww = 1}

pew
T

using the generating relations and character table (see [14]) of W. Hence, in
this case, the lemma follows from (2.1.2).

Theorem 4.5.9. Let L be a Levi subgroup of a parabolic subgroup of G,
and ¢ a cuspidal irreducible character of G.

(i) If W(, 7) (see 4.3) is empty, then, for any irreducible component X of ¢3$,
we have

o(X)=0.
(i) If W(@, 7) is non-empty, then under Assumption 4.5.1 (i) (ii), we have

(%) — { Cngﬁ) if "u=up,

otherwise,

N
where nEW(P), v is an element of W(p, 7)-, (which is non-empty), and X is
the irreducible component of ¢$ corresponding to p.

Proof. (i) Let (s) be the o*-stable semisimple class of L*(CG¥*) such that
¢l and ((s)) the class of G* containing (s). Then the emptyness of W(¢, )
implies that “((s))%((s))~". Since X & Gy, this implies that ¢,(X)=0 by Theorem
3.2.1.

(i) By (4.5.5) and Theorem 2.1.3, we have

X)) =0, if TpFp.
Hence, part (ii) follows from (4.5.6), (4.5.7) and Lemma 4.5.8.

Lusztig [17] [21] showed that Assumption 4.5.1 (i) is true if ¢ is unipotent
or if the center of G is connected. His result also implies that, when G modulo
its center is simple and ¢ is unipotent, we always have

/N
”/l' = M, ME W(¢) , VE W(¢! T)—T
unless:

G is of type D,,, o is a twisted Frobenius map, P=B (hence ¢,=15;), and
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w is a “degenerate” (see 6.3) irreducible character of W=W(¢).

5. Unipotent characters of exceptional groups

Let G, o, G, 7, +-- be as in Section 3. In this section, we restrict our at-
tention to the unipotent irreducible characters of G,i.e. the elements of G(l).
By [6; 7.10], we may assume that G modulo its center is simple. Then ¢*is a
split Frobenius map unless G, is of type *D,. Since the 3D,-case is easy (see 5.4),
we shall assume, unless otherwise stated, that ¢° is split.

5.1. Let T, be a o-stable maximal torus of G contained in a o-stable
Borel subgroup B. Then, by the assumption made above, T, is g?-split. For
w& W=Ng(T,)|T,, let T, be a g*-stable maximal torus of G whose G-conjugacy
class corresponds to the conjugacy class of @ in W in the standard manner. We
put T,=(T,),2. For p&E W, we define

= W17 5 uw) 7,11

For p, u'E W, we write pu~pu' if there exists a series pw= g, py, ***, pa=pn’ of

elements of W such that rpioy, TripE0 for 1<i<n. Equivalence classes of 114

under ~ are called [21] families, or two-sided cells, in W. For each family F in
, we put

Up = {XEG <X, rud>E0 for some pEF},

which is called a family of unipotent characters.

F. Digne and J. Michel [8], and T. Asai [2], [3] discovered that there exists
a beautiful connection between the operator ¢* and Lusztig’s nonabelian Fourier
transfomration [21]. We summarize a part of Asai’s results in the following:

Theorem 5.1.1. Assume that G modulo its cneter is simple. If G is of
exceptional type, we also assume that the characteristic is good. Let F be a family
in W, and U=U, the corresponding family in Go. When G is of type Eg (resp.
Ey), we further assume that F does not contain a character p such that p(1)=>512
(resp. 4096). Let X=X, ) be an element of U corresponding to (x, )€ My=
M(T) under Lusztig’s parametrization [21]. (T'==Ty is a finite group associated
[21] with the family U, and M(T) is the set of pairs (x, &) with xET and o E Zp(x)
taken modulo T-conjugacy, where Zn(x) is the centralizer of x in T".) Then

P (Xeew) = (@(@)a() 5 A a), (57 B} (BO)IBD)) Xoyp

,B)eM (T

where the pairing {-, -} on M(T") is defined by
{xa), (8= X 1207 Ze(y) |7 a(2yz™) Bz 27" 2) .

-1
2yz ezp(x)
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This result is proved in Asai [2; 6.2.1]. Notice that, in the terminology of [2;
p. 2763], our ¢ is equal to (¢, ,2 ;5.)* with a split Frobenius map ¢®>. Combining
Theorem 5.1.1 and Theorem 2.2.3 (i) we get:

(5:12) m(Xesw) = (@(@)/e(1) 5 A @), (v B} (B)/BA)) e(Xe)

,Bem

for any X, ,, € Uy, if F is not one of the families excluded in Theorem 5.1.1.

5.2. Following the general program described in Remark 2.2.4, we now
turn to the determination of the twisted Frobenius-Schur indicators ¢, (X),
X<Gyy. We first consider the case when X is a component of the induced
character 1§ with B=B,2. As a special case of Theorem 4.5.9, we have

Lemma 5.2.1. Let Xu be an irreducible component of 15 corresponding to

1 lf =,
() = .
(%) { 0 otherwise.

We also have the following

Lemma 5.2.2. For p& W, let 7. be as in 5.1.  Then

f 'n=up,

B o
Cr(ru) = m.(ru) = ] 0 otherwise.

Proof. The G.-conjugacy classes of o-stable maximal tori of G are in
1—1 corresponence with the o-twisted conjugacy classes of W. Let T'$” be a
o-stable maximal torus corresponing to the o-twisted class of v& W. Then, as
a o?-stable maximal torus, T'(" is G-conjugate to T, with w="9v. Using this
fact and Theorem 3.2.6 (and Remark 3.2.7 (i), we see that

c(rg [1]) = m(re [1]) = |[{vEW |00 = w} |.
Hence we have, for p& W,
Cxlru) = mo(ru) = () -
The lemma now follows from Lemma 4.5.9.

Combining Lemma 5.2.2 with the formula of Lusztig [21] for the multi-
plities <ru, XD, Xe Gy, we get the following.

Lemma 5.2.3. Let F be a family in W, and U the corresponding Sfamily
in Gyy. For X€U and pnEF, we denote by (x, ), and (y, B)u the elements of
My corresponding to X and X, (which is known to be contained in U), respectively.
Then, for any uEF, we have
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1 if "u=
256X M) (@, @) (9, B)ek ={ o

0 otherwise.

where A(+): U— {1} is a certain function which is identically 1 unless F is one
of the families excluded in Theorem 5.1.1.

5.3. Let F be a family in W, U the family in Gy, associated with F, and
T the finite group associated with U. It is known [21] that, when G is an ex-
ceptional simple group,

(5.3.1) I'=S; (the i-th symmetric group)

for some 1<:<5. In this subsection, we determine ¢,(X) and m(X), XU,
under the assumption (5.3.1). In the case when G is of exceptional type, we
also need to assume the characteristic is good. In the calculation below, we
use the explicit values {(x, @), (¥, B)} ((%, @), (¥, B)YEM(S)), 2<i<5). For
2<i<4 (resp. i=>5), these can be found (resp. partly found) in [5; 13.6].

(1) T=8,={1}. In this case, F consists of a single element pu, U= {Xu},
and X, is a uniform function. Hence, by Theorem 3.1.3 (ii) and Lemma 5.2.1,

1 if "w=u,
Xu) = €o(Xu) = ,
me(Xu) = €x(Xa) {0 otherwise.

In particular, for unipotent characters X of a group of type 4,, we always have
mX)=c,(X)=1.

(2) T'=S, In this case, M(T") consists of four elements {(1, 1), (1, &),
(g2, 1), (g5 E)}, where & and g, are non-trivial elements of S, and S respectively.
If F is not one of the families excluded in Theorem 5.1.1, then X, ), X o) and
X(g, 1) are contained in 15. Hence, by Lemma 5.2.1 and Lemma 5.2.3, we get

C'r(x(l,l)) = C-r(x(gz,e)) =1 ’ Cr(x(l,a)) = CT(X(xz.l)) =0 ’

if G is of type B,, and the r-action on W is non-trivial (i.e. if G, =G, is a Suzuki
group), and

e(Xap) = &(Xa,0) = (Xign) =1, (X)) = —1
otherwise. Hence, by (5.1.2), we get
m(Xan) = M(Xigp)) = 0, m(Xq,0) = m(Xig0) = 1,
if G, is a Suzuki group, and
m(Xap) =2, m(Xq,0) = m(Xegn) = Me(Xig0) = 0,

otherwise. Even if the family F is one of those excluded in Theorem 5.1.1, a
similar argument as above leads to:
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(5.3.2) e(Xan) = e(Xa,0) =1,  e(Xigpn)+6(Xigpn) = 0.
Moreover, according to Asai [2; 6.2.1 (iv)], we have either
t*(Xigyn) = EXegpn)
or
*(Xigy0) = EXigyn

with a primitive 4-th root & of 1, where the root means the Lusztig’s non-
abelian Fourier transformation. Hence, by Theorem 2.2.3 (i), we have either

M(Xigyn) = EC(Xigy1)

or
mf(x(xz,e)) = EC.,(X(g2,1)) .

Hence, in any case, we must have c,(aé(gz,l))=0 because m,(Qe(,ml)) and mT(QAC(gz,,))
are real mumbers. This and (5.3.2) imply

c'r(x(!z,l)) = L‘.,(X(gz,,)) =0.
Analogously, we also have
m(Xa,n) = M(Xa,0) = 1, m(Xigy1)) = meXigpr) = 0.

(3) T'=xS,. In this case M(T') consists of 8 elements, namely, (1, 1), (g,, 1),
(1,7), (g3 1), (1, €), (g2 €)y (g3, 0), and (g5, 6%) in the notation of [21; Ch. 4]. We
denote the corresponding elements in U by X;, X,, -++, Xs, respectively. We also
put ¢;=c,(X;) and m;=m,(X;) for 1<:<8. By Lemma 5.2.1, we have

=1, 1<i<4.
Hence, by Lemma 5.2.3, we get

(5.3.3) c+3¢+20,4+2c = —2, —c;—c5=0.
Moreover, by (5.1.2), we have

6m, = 8+4-c5—3¢g+26¢,+26% ¢4,
3m; = —20+20c;—26% c;+4c .

Since m, and m, are real and €@ is a primitive 3rd root of 1, we must have
(5.34) c—¢=0, —l+4c+c=0.
Solving (5.3.3) and (5.3.4), we have

(Css €os €1 €8) = (1, —1,0,0).
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Hence, by (5.1.2),

(ml, My, M3, My, Ms, Mg, M, ms) = (2, 0’ 1’ 1» 0, 0» 0’ 0) .

(4) T'=S,. M(T) consists of 21 elements, namely, (1, 1), (1, AY), (g3, 1),
(LN, (g5 €"), (g 1) (60 &), (85 €), (8,1, (1,0), (g0 D)y (8h7)r (2 &),
(&0 —1), (£ 0), (&5 6 (80 9), (8 —), (25 ), (1, A9), and (g, &), in the notation
of [21; Ch. 4]. We denote the corresponding elements of U by X;, X,, --+, Xy,
respectively. We also put ¢;=c,(X;) and m;=m(X;) for 1<i<21. By Lemma
5.2.1, we have

=1, 1<i<11.
By an argument similar to the one used in case (3), we get
(612! Ci3y **°y czl) = (_'1) —1’ —1, 0’ Or 0) 07 1’ 1’ hl) .

Hence, by (5.1.2),

(my, my, mg) = (3, 1, 1); m; =0, 4<i<3;

(mg, myg) = (1, 2); m=0, 11<i<18;

(m19) My, mm) = (1’ 0’ 0) N

(5) T'==S;. M(T) consists of 39 elements, namely, (1, 1), (g, 1), (g5, 1),

(1’ ”)r (11 7\'1)’ (gfn 1)’ (g3’ 8)’ (11 7",)’ (gé» 8")’ (1» 7"2)» (gé, 8/)’ (1’ 7"3)’ (gz) 1)» (gb 1),
(gG! 1), (gm r)’ (gz» 8)’ (gb _1)’ (gG’ _1)’ (gz» ’—r)’ (g'p —1)’ (g£> r)’ (gS: 0)’ (gG’ 0)7
(gsv 02)’ (gﬁy 02)1 (g5> é’)! (g5> ;'2), (gs; ga), (gs» §4)) (gs) _"9)! (gs, _02)’ (g3, 60))
(g3 €0%), (84, 7), (&4 —1), (£, E), (1, A*), and (g,, —&) in the notation of [21; Ch.

4]. We denote the corresponding elements of U by X,, X,, **+, X3, respectively.
We also put ¢;=c¢.(X;) and m;=m.(X;) for 1<i<39. By Lemma 5.2.1, we have

=1, 1<iL17.
By an argument similar to the one used in case (3), we get
¢; = —1,18<i<K22; ¢; =0, 23<i<36; (cg, €35 €30) = (1,1, —1).
Hence, by (5.1.2),
(my, my, -+, mg) = (3,2,1,2,2,1,0,1);
m, = 0, 9<i<36;  (my3, my, my) = (1,0, 0) .

RemaARk 5.3.5. (i) Assume that G modulo its center is simple, and the
characteristic is good if G is of exceptional type. Let o be a split Frobenius
map of G. For any unipotent character X of G=G,,, we can consider

(a) the twisted Frobenius-Schur indicator

e(X)(=1,—1or0),
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and
(b) the root A, of 1 defined in terms of the eigenvalues of ¢* on l-adic

cohomology spaces of Deligne-Lusztig vareites (see [21; Ch. 11]). Comparing
the results on ¢,(X) obtained in this section with the explicit calculation of A,
given in [21; Ch. 11], we see that

C,,.(X)Z {7\,,( if 7\,,‘.: +1,

0 otherwise,
when @G is of type A4, or of exceptional type. For groups of type B,, C, or D,,
this will be proved in the next section.

(i) Let G be the adjoint group of type B, (in any characteristic) or the
adjoint group of ‘type G, in good characteristic. Then non-unipitent irre-
ducible characters of G=G,2 are uniform. Hence the calculation given in this
subsection (case (1)-case (3)) together with Theorem 3.1.3 determines c,(X)
and m,(X) for any $&G. (R. Lawther and J. Saxl [15] determined m,(X), X G,
when @ is the adjoint group of type B, in characteristic 2 using a method differ-
ent from ours.)

5.4. In this subsection, we consider the 3D,-case. Let G be an adjoint
group of type D,, and o a surjective endomorphism of G such that |G,2| <o
and that the g-action on the root system of G is of order 3. Then G (=G,2)
and G,(=G,) are isomorphic to the groups ®D,(¢?) and 3D,(q), respectively,
for a power ¢ of a prime.

Lemma 5.4.1. Let U={[p], [p.], *D,[1],3D,[—1]} be the unique four ele-
ment family (see [18]) of unipotent characters of G. Then

[o1] 11 1-1 [p]
- ] |_ 1| 1T 1-1 1 [p2]
SD,[1] 20 1 -1 1 1 D] |
SD,[—1] —1 1 1 1)(*D[-1]

i.e. the t*-action on U is the same as in case (2) in 5.3. Moreover any X&G—U
is t*-invariant.

Proof. Let 4 be the space of class functions on G. Then 4 can be writ-
ten as:

A = A,®BCy (orthogonal direct sum),

where 4, is the space of uniform functions, and »=[p,]—[p,]—3D,[1]+3D,[—1].
See [18], [7]. Since t* acts trivially on 4, by Theorem 3.1.2, and #* acts in-
volutively on 4 by [12; I, (2.2)], we must have
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t*(n) = —9.

The lemma follows from this.

The following result can now be obtained by an argument similar to the one
used in case (2) in 5.3.

Proposition 5.4.2. We have

eo([m]) = exllpa) = &:CD1]) = 1, .CD[—1]) = —1
and

m[e]) =2, m([pg]) = m,CD,[1]) = m.D[—1]) = 0.
If X is a non-unipotent irreducible character of G, then

1 if X=X,
0 otherwise.

.00 =m0 = {

6. Classical groups

In this section, we consider the case when G is of type 4,, B,, C, or D,.
Since we already treated the 2B,-and 3D,-cases in Section 5, we may assume
that ¢: G—G is the Frobenius map for a rational structure of G over a finite
field F, and that the Frobenius map ¢* is split over F,, g=q".

6.1. Recall [16] [17], [19]-[21] that a (reduced) symbol is an unordered
pair A=(S, T') of finite subsets of {0, 1,2, -} such that 0€SN 7. The rank
and defect of a symbol A=(S=(Ay, Ay, ***, Na)y T=(u1, gy **+, ws)) are defined by

rank(A) = ;} P ; pi—[(a+b—1)*/4]
and
def(A) = |a—b],
respectively, when [2] denotes the largest integer m such that m<z.

6.2. Let G be of type D,(n>2). Let S(D, n) be the set of symbols of rank
n and defect divisible by 4. A symbol A=(S, T)e S(D, n) is called non-degen-
erate (resp. degenerate) if S=T (resp. S=T). By Lusztig [16] [20], one can
associate with each non-degenerate (resp. degenerate) symbol A a unipotent
character X, (resp. two unipotent characters X, ;, X5 ;) of G. For A€ S(D, n),
we put

s = s, = def(A)/2.

Then n>s%. Let P be a parabolic subgroup of G with a Levi subgroup L of
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type Dg.  Let ¢ be the unique cuspidal unipotent character of L. Then
(6.2.1) {Xp, $E>+0
if A is non-degenerate, and

Kpi #8500, i=1,2

if A is degenerate. (In the latter case, P=B and ¢,=1;). For non-degenerate
elements A and A’ of S(D, n), X, and X,/ lie in the same family if and only if
S1 T and S'1L T’ contain the same integers with the same multiplicities. For
degenerate A= S(D, n), the sets {X,,} and {X, ,} are l-element families. Let

Z— ((2’1, R % 2’,,,))
(ziy 25, ) Z:,,)
be a non-degenerate symbol of rank # and defect 0. We arrange 2’s and 2"’s in
such a way that 2,<<2,<C+: <2, 2{<25<--<2n. We assume that X, is special
[21], ie. <2 <2<R< K2, <3y Or 2 <<% <2,<2, LetZ
(resp. Z,) be the set of integers which appear exactly once (resp. twice) in Z.

Then |Z,|=2d for some positive integer d. Let U(Z) be the family containing
Xz, and let

S(D,Z) = {A€S(D, n) | X,€U(2)} .
Then any A€ S(D, Z) can be written uniquely as

(L)

with some M(A) cZ, such that | M(A)|=d (mod 2). The finite group T" as-
sociated with U(Z) is isomorphic to (Z/2Z)%!. Let (x,, ,) be an element of
M(T") corresponding to X, € U(Z). Then (xz, a;)=(1, 1), and, for A€S(D, Z),

(6.2.2) an(xy) = (—1)aMwI=avz

which can also be interpreted in terms of Frobenius eigenvalues associated with
X (see [20; 3.18], [21; 11.2]). If A is degenerate, then the groups associated
with {X, ;} (/=1, 2) are {1}. As a special case of the formula (5.1.2), we have

Lemma 6.2.3. Let A€ S(D, n) be non-degenerate, and Z the special symbol
such that A€S(D, Z). Then
m(Xz) = 2-@-D > )aA(xA) c(Xy) -

Ae8D,Z.

Theorem 6.2.4. Let G be of type D, (n>2).
(1) Let A be a degenerate symbol of rank n and defect divisible by 4, and
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X1, Xa,s the corresponding unipotent characters of G=G,2. Then

1 if o is untwisted,
Me(Xa,i) = €(Xni) = { .
0 otherwise,
for i=1, 2.
(ii) Let A be a non-degenerate symbol of rank n and defect divisible by 4,
and X, the corresponding unipotent character of G. Then

c(Xa) = an(®a) -
(iil) Under the same notation as in (it), we have

2¢-1 if X is special,

m(X,) = .
(%) 0 otherwise,

where 2d is the number of integers appearing exactly once in A.

Proof. (i) This is a special case of case (1) in 5.3.

(ii) Let P be a parabolic subgroup of G with a Levi subgroup L of type
D,,r<n. Since the case n=2 is easy, we can assume that the statement (i)
(with G replaced by I.) and Assumption 4.5.1 (ii) (for any cuspidal unipotent
character ¢ of any L of type D,, r<<n) are both true. If X, is not cuspidal, i.e.
if n>s3, then we can apply Lemma 4.5.7 (with #=1) to the ¢ and P in (6.2.1).
Hence we have

CT(XA) = ‘r(¢) *

This and (6.2.2) imply that the statement (ii) is true for non-cuspidal X,. It
only remains to show that (ii) is true for cuspidal X,, because then Assump-
tion 4.5.1 (ii) is true for L of type D,. If X, is cuspidal, and take the symbol
Z such that X, is special and that A€S(D, Z). Then, by Lemma 6.2.3 and
the statement (ii) for non-cuspidal characters, we see that

m(Xz) = 27970 {ay(x,) €(Xy)+(22¢-D—1})

must be an integer. If d>3, this is the case only when ¢,(X))=ap(®,). If
d=1 or 2, then the group I' associated with U(Z) is isomorphic to {1} or S,.
This case has already been treated in 5.3. 'This proves part (ii).

(iii) Let Z be as in Lemma 6.2.3. Then by part (ii) and Lemma 6.2.3, we
have

my(Xz) = 2471,
On the other hand, by (2.2.4) and (2.2.5), we have
S = e~ 245,
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where the both sums are taken over S(D, Z). The statement (iii) now follows.

6.3. Let G be of type B, or C,(n>1). Let S(BC,n) denote the set of sym-
bols of rank n and odd defect. By Lusztig [16] [19], there is a 1-1 correspondence

A =X,
between the elements A of S(BC,n) and the unipotent characters X, of G.
For A=S(BC, n), we put
s = 55 = (def(A)—1)/2.
Then n>s*+s. Let P be a parabolic subgroup of G with a Levi subgroup L of

type Bg., or Cg,,(according as G is of type B, or C,). Let ¢ be the unique
cuspidal unipotent character of L. Then

For elements A=(S, T') and A'=(S’, T") of S(BC,n), X, and X, lie in the
same family if and only if S 1L 7 and S’ Il 7" contain the same integers with
the same multiplicities. Let

0 B2 % Rom
2= (G )
(zly 23 zz»:—l)
be a symbol of rank z and defect 1. We arrange 2’s in such a way that
Ryl Rp<l s <Rppy By <R3+ <Zpy-y. We assume that X, is special [21], i.e.
22 <2< <2y 1 SRy Let Z (resp. Z,) be the set of integers which ap-

pear exactly once (resp. twice) in Z. Then |Z;|=2d-+1 for some non-negative
integer d. Let U(Z) be the family containing X,, and let

S(BC, Z) = {AeS(BC,n)|X,€U(Z)} .
Then, any A€ S(BC, Z) can be written uniquely as
- (Zz oL (Z— M)A»)
Zy 1L M(A)

with some M(A)CZ, such that |M(A)|=d (mod 2). The finite group T* as-
sociated with U(Z) is isomorphic to (Z/2Z)?. Let (x,, a,) be an element of
M(T") corresponding to X, & U(Z) under Lusztig’s parametrization [21]. Then
(xz, az)=(1,1), and for A= S(BC, Z),

aAn(xy) = (—1)HDI-d7z

which can aslo be interpreted in terms of Frobenius eigenvalues associated with

X, (see [19; 6.6], [21; 11.2]). Thus, as a special case of the formula (5.1.2),
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we have
Lemma 6.3.1. Under the above notation, we have for A€ S(BC, Z),
m(Xz) =27 3 )aA(xA) Cf(xA) .

AES(BO,Z.

The proof of the following theorem is similar to that of Theorem 6.2.4.

Theorem 6.3.2. Let G be of type B, or C, (n>1). Let A be a symbol
of rank n and odd defect, and X, the corresponding unipotent character of G=G .
Then

(i) c(Xa) = an(xa) -
2% 4f X, is special,

. AN
(i1) m(Xs) 0  otherwise,

where 2d+1 is the number of integers appearing exactly once in A.

6.4. Let k be an algebraically closed field of characteristic p. In what
follows, we assume that G is one of the following groups defined over F (see

[16]):
GL, (k) (n=>1); Spa(k) (n=1,p=2);
(6.4.1) SOz(k) (n=2,p=2); SOpu(k) (n=1,p+2);
CSpu(k) (n=1,p%2); CO%RK) (n=2,p+2).

Let & be the corresponding Frobenius map. We would like to calculate c,(X)
and m,(X) for any irreducible character X of G=G,2. This will be done by
reducing the problem to the case of unipotent characters considered in 6.1-6.3.
For that purpose, we need:

Theorem 6.4.2 (Lusztig [16] [21], Asai [3]; see also Asai [1]). Let G be
one of the groups listed in (6.4.1). For a semisimple element s of the dual group
G*=G¥: of G, we put G[s|=Zg+(s)* (the dual of the centralizer of s in G*), and
G[s1=G[s),>. Then there exists a 1-1 correspondence

x - xunip

from G, onto é’[s]m with the following porperties:

(a) If X is cuspidal, then X, is cuspidal.

(b) Let L be a Levi subgroup of a parabolic subgroup of G, and s a semisim-
ple element of L*. Let R be a cuspidal irreducible representation whose character
¢ is contained in Ly, and R, i, that of L[s] whose character if ¢ ;. Let P[s]
be a parabolic subgroup of G[s] with Levi subgroup L[s). Then there exists a natu-
ral isomorphism
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Endy(F(G, P, R)) == End¢ra(F(G[s], P[s] Runsy))

(see 4.1) by which each irreducible component X, of ¢$ is mapped 10 X iy

(c) Let T be a g*-stable maximal torus of G, and 0 a character of T=T ..
Let (s) be the semisimple conjugacy class of G* corresponding to the geometric con-
jugacy class of (T, 0). Then, for any XEG,

<X, 1§01 = €(5) Knipr rF 1>

where E(s)=41, and T' is the torus of G[s] corresponding to T'.
(d) For any X6,

X(1) =G|y |G[s]l7" Xunin(1) ,
where | + |y is the part of the integer | - | prime to p.

(e) Let XEG(,) for a semisimple element s of G*. Let a,€Q, neG‘(,),
be the coefficients in :

t*(Xunip) = Z Qy* Nunip

ﬂEG(‘)

(see Theorem 5.1.1). Then we have

(X)) = ZA ey .

’IEGCS)

Now we can prove the main result of this section.

Theorem 6.4.3. Let G be as in (6.4.1). Let X be an irreducible charac-

ter of G=G,2, and (s) the semisimple conjugacy class of G* such that Xeé(,). If
T($)F=(5)7Y, then c(X)=m(X)=0. If "(s)=(s)"", then c(X)=c(Xunip) and m.(X)
= 'r(xunip)'
Combining this with Theorem 6.2.4 and Theorem 6.3.2 (and also case (1) in
5.3), we can determine ¢,(X) and m,(X) for any X€G. It is extremely likely
that the statement of Thoerem 6.4.3 is true for any connected reductive group
with connected center.

Proof of Theorem 6.4.3. The first statement is already proved in Theorem
3.2.1. If "(s)=(s)"", we can take a representative s in the conjugacy class (s)
so that "s=s7! by [6; 5.23]. Then o preserves G[s]=Zg+(s)*. Hence we can
consider c¢,(») and m,(y) for n& G/fs]. By Theorem 6.4.2 (e¢) and Theorem 2.2.3
(i), it is enough to prove

(64.4) C.,.(X) = 'r(xunip) .

We show, by induction on #, that (6.4.4) and Assumption 4.5.1 (ii) are true.
For n=1 or 2, they are easy to verify, For a larger n, we first assume that X is
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not cuspidal. Then there exists a proper parabolic subgroup P of G, and a
cuspidal irreducible character ¢ of a Levi subgroup L of P such that

<X, 9$>F0.

If we write G as G(n) to indicate its matrix size, the group L is isomorphic to
GL,, (Fg)X +++ X GL1(F) X G(n")

for some f and some m,;, n'<<n. Let (f) be the semisimple class of L*CG*
such that ¢ L,, and ((#)) the conjugacy class of G* containing it. Then
((©))=(s). Hence there exists a w& W such that ""L=L and ™(t)=(f)"'. Since
¢ is the unique cuspidal character contained in L, (Lusztig [16]), we have

h=¢.

This implies that the set W(¢, 7) defined in 4.3 is non-empty. Hence, by the
induction assumption, Theorem 4.5.9, and the property (b) in Theorem 6.4.2,
we have

C.,(Xp.) = c'rv(¢) = c‘ru(¢unip) = c‘r((xl")unip)

for veW(¢, 1)-, and p < W/(<\i>) It only remains to prove (6.4.4) when X is
cuspidal, because then Assumption 4.5.1 (ii) follows from Theorem 6.2.4 and
Theorem 6.3.2. We can do this by an argument similar to the one used in the
proof of Theorem 6.2.4. Here we shall employ another method. By [16;
p. 159],

— |Gls]y G[s
(6.4.5) pEt;E/[\s]mp(l) P a5 IP TEWE(G[S], T) r§EI[1]
and

_ IGly " 76
(6.4.6) "523(’)77(1) 7= W T§m &G, T')r[0.],

where T’ is the maximal torus of G corresponding to T, 8, is a character of T,z
such that the pair (T, §,) corresponds to (s), and &(G[s], T) (resp. (G, T'')) are
signs which are equal to 1 if T (resp. T'') is o-stable. By (6.4.6) and Theorem
6.4.2 (d),

(64.7) S ()= 1B 51 g6, 77800, .

ned IG[S] |p’ T<G[s]

On the other hand, by Theorem 3.2.6 (i), we see that
eo(r$[0,]) = e (rFI[1])
if T' corresponds to T'. Hence, by (6.4.5) and (6.4.7), we have
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(648) AE P(l) C‘r(p) = AE nunip(l) 67(77) *

PEG[:](D WEG(S)

Since we already know that, for »=+X, ¢,()=¢.(%uip), We conclude

cf(xunip) = c,(X)

from (6.4.8). This completes the proof of Theorem 6.4.3.
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