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By a 3-manifold M, we mean a compact connected oriented 3-manifold throu-
ghout this paper. Let 9,M be the union of torus components of 0M and
0, M=0M—0,M. In the case that 8,M=@, if Int M has a complete Rie-
mannian structure with constant curvature -1 and with finite volume, then we
say that M is hyperbolic and we denote its volume by Vol M. Next we consider
the case that 9,M==@. Then the double, D,M, of M pasting two copies of M
along 8,M has 8,D,M=@. If DM is hyperbolic in the sense stated above, then
we say that M is hyperbolic and we define the volume, Vol M, of this M by
Vol M=Vol D;M/2. In this latter case, M is usually said to be hyperbolic with
0,M tatally geodesic (cf. [T-1]), but we use this simple terminology throughout
this paper. When M is hyperbolic, M has no 2-sphere components and by
Mostow 'rigidity theorem (cf. [T-2], [T-3]), Vol M is a topological invariant of
M. By a l-manifold in M, we mean a compact smooth 1-submanifold L of M
with 9L=LN0M and the pair (M, L) is simply called a (3,1)-manifold pair.
A 1-manifold L in M is called a link if 0L=@), a tangle if L has no loop com-
ponents, and a good 1-manifold if |L N S?| >3 for any 2-sphere component S?
of 9M. A (3,1)-manifold pair (M, L) is also said to be good if L is a good 1-
manifold in M. In [Kw-1], we defined the notions of imitation, pure imitation
and normal imitation for any general manifold pair. In Section 1 we shall
define a notion which we call an almost identical imitation (M, L*) of (M, L),
for any good (3,1)-manifold pair (M, L). Roughly speaking, this imitation is a
normal imitation with a special property that if ¢: (M, L*)—(M, L) is the imi-
taiton map, then q|(M, L*—a*): (M, L*—a*)—(M, L—a) is 8-relatively homo-
topic! to a diffeomorphism for any connected components a*, a of L*, L with
ga*=a. Let P be a polyhedron in a 3-manifold M. For a regular neighbor-
hood N, of P in M (meeting 0M regularly), the diffeomorphism type of
E(P, M)=cly, (M—Np) is uniquely determined by the topological type of the

1 This homotopy can be taken as a one-parameter family of normal imitation maps.
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pair (M,P) and we call E(P, M) the exterior of P in M. Then our main result
of this paper, stated in Theorem 1.1 precisely, asserts the existence of an infinite
family of almost identical imitations (M, L*) of every good (3,1)-manifold pair
(M, L) such that the exterior E(L*, M) of L* in M is hyperbolic.

The proof of Theorem 1.1 will be given in Section 5. Several applications
to spatial graphs, links and 3-manifolds are given throughout Sections 2—4.
In Section 2, we prove the existence of an almost trivial spatial I'-graph, for
every planar graph I' without vertices of degrees <1, affirming a conjecture of
Simon and Wolcott. In Section 3, we show a construction of a non-trivial fu-
sion band family from a trivial link to a trivial knot, and a construction of a
tangle with hyperbolic exterior in any link. In Section 4, we show that if a closed
3-manifold M is obtained from a link L with two or more components by
Dehn’s surgery, then M is also obtained from a hyperbolic link L*, which is a
normal link-imitation of L, by Dehn’s surgery with the same surgery coefficient
data, and that every 3-manifold without 2-sphere boundary component has a
hyperbolic 3-manifold as a normal imitation.

This paper is a revised version of a main part of [Kw-0] and a prelude to
the principal theorem of [Kw-2] where furhter consequences are announced.

1. An almost identical imitation of a good (3,1)-manifold pair. Let
I=[—1,1]. For a (3, 1)-manofold pair (M, L) we call an element a  Diff
(M, LYyxI) a reflection in (M, L)x1I if &*=1, a(M x 1)=M x(—1) and
Fix (e, M xI) is a 3-manifold. In this case, Fix(a, (M, L)x ) is a (3, 1)-mani-
fold pair in our sense (See [Kw-1]). We say that a reflection & in (M, L) X1 is
standard if a(x,t)=(x,—t) for all (x,t)eMx I, and normal if a(x,t)=(x, —t)
for all a(x, t)ed(M xI)U U, x I, with U, a neighborhood of L in M. A reflec-
tion o in (M, L)X I is said to be isotopically standard if hah™ is the standard
reflection in (M, L)X I for an he Diffy (M, L)x I, rel 3(M, L)xI))?. For a
good (3, 1)-manifold pair (M, L) a reflection « in (M, L)X I is isotopically almost
standard if ¢ is isotopically standard in (M, L—a)Xx I for each connected com-
ponent g of L. A smooth embedding ¢ from a (3,1)-manifold pair (M*, L¥*)
to (M, L)xI with ¢(M*, L*)=Fix (a, (M, L)xI) is called a reflector of a
reflection in (M, L)X I. Let p,: (M, L)xI—(M,L) be the projection to the
first factor. In [Kw-1], we defined that (A*, L*) is an imitation (or a normal
imitation, respectively) of (M, L), if there is a reflector ¢: (M*, L¥)—(M, L)
X I of a reflection (or normal reflection, respectively) & in (M, L)X I, and the
composite g=p,¢: (M*, L*)—(M, L) is the imitation map.

DEFINITION. A (3,1)-manifold pair (M*, L¥*) is an almost identical imitation

2 Diff, denotes the path connected component of the topological diffeomorphism group Diff
containing 1(cf. [Kw-1]).
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of a good (3, 1)-manifold pair (M, L) if there is a reflector ¢: (M*, L*)— (M, L)
X1 of an isotopically almost standard normal reflection & in (M, L)X I, and the
composite g=p,¢ : (M*, L*)—(M, L) is the imitation map.

In this definition, (M*, L*) is also a good (3, 1)-manifold pair and q|L*:
L*—L is a diffeomorphism and q|(M*, L*—a*): (M*, L*—a*)— (M, L—a)
is 0-relatively homotopic to a diffeomorphism. We identify M* with M so
that q|0M is the identity on ). We may write any almost identical imitation
of (M, L) as (M, L*). We state here our main theorem.

Theorem 1.1. For any number K >0 and any good (3,1)-manifold pair (M, L)
there are a number K+*>K and an infinite family of almost identical imitations
(M, L*) of (M, L) such that the exterior E(L*, M) of L* in M is hyperbolic with
Vol E(L*, M)<K* and Sup;. Vol E(L*, M)=K*.

2. An almost identical spatial graph imitation. Let (3£° L) be a
good (3,1)-manifold pair such that 9M° has at least one 2-sphere component.
For some 2-sphere components S;, S,, -++, S, of 9M°, let (M3, L,) be a pair
obtained from (M?°, L) by taking a cone over (S;, S; N L) for each . Then note
that MY is a 3-manifold and L, is a finite graph which we may consider to be
smoothly embedded in MY except the vertices of degrees>3. We call this pair
(M, L) the spherical completion of (M°, L) associated with the 2-spheres S, S,,
=+, S,. A graph T" embedded in a 3-manifold M is said to be good if (M,T)
is diffeomorphic to the spherical completion (M%, L, ) of a good (3,1)-manifold
pair (M°, L) associated with some 2-sphere components of 91/°.

DerFINITION.  For good graphs T'*, T in a 3-manifold M the pair (M, T'*)
is an almost identical imitation of the pair (M, T") if there are a good (3,1)-mani-
fold pair (M° L) and some 2-sphere components Sy, S, «++, S, of 8M° and an
almost identical imitation (A4°, L*) of (M°, L) such that the spherical completions
(MS, L¥) and (MS, L) of (M° L*) and (M°, L) associated with the 2-spheres
Sy, Sy +++, S, are diffeomorphic to (M, I'*) and (M, T"), respectively.

Note that there is a map g¢: (M, I'*)—(M, T') uniquely determined by the
imitation map ¢°: (M°, L*)—(M°, L). We also call this map ¢ the imitation map
of the almost identical imitation (M,T*) of (M, T). Since, in this definition,
the exterior E(T'*, M) of T* in M is diffeomorphic to E(L*, M°), the following
theorem follows directly from Theorem 1.1:

Theorem 2.1. For each good graph T in a 3-manifold M and a positive
number K, there are a number K*> K and an infinite family of almost identical
imitations (M, T*) of (M, T) such that E(T'*, M) is hyperbolic with Vol E(T'*, M)
<K* and Sup. Vol E(T'*, M)=K™.
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Let I" be a finite graph without vertices of degrees <1. If a good graph
T in the 3-sphere S* is obtained by an embedding of IV, then we call this T" a
spatial T'-graph. Two spatial T'-graphs T, T are equivalent if there is an
orientation-preserving diffeomorphism %: S*—S® with A(T")=T". The occurr-
ing equivalence classes of spatial I'-graphs are called the knot types of spatial
I'-graphs. These knot types were studied by Kinoshita, Suzuki (cf. [Su-1]) as a
generalization of the usual knot theory and are now studied in a connection with
the synthetic study in molecular chemistry by, for example, Walba [Wa], Simon
[Si], Sumners [Sum]. We say that a finite graph in S® is trivial if it is on a
2-sphere smoothly embedded in S3. A spatial T-graph T is said to belong to
an almost trivial knot type, if T' is not trivial but the graph in S® resulting from T’
by removing any open arc is necessarily trivial. Simon and Wolcott (cf. [Si])
conjectured that for every planar graph T without vertices of degrees <1, there
exists a spatial '-graph belonging to an almost trivial knot type. Several examples
supporting this conjecture were given by Kinoshita [Ki], Suzuki [Su-2], M.
Hara(unpublished) and Wolcott [Wo]. Theorem 2.1 solves this conjecture
affirmatively. In fact, we have the following stronger result:

Corollary 2.2. For every planar graph T* without vertices of degrees <1 and
any number K0, there are a number K+*>K and an infinite family of spatial T'-
graphs T* belonging to infinitely many almost trivial knot types such that E(T'*, S%)
is hyperbolic withVol E(T*, S®)<K* and Sup. Vol E(T*, S*)=K™ and the quotient
group =,(E(T*, 8% of = (E(T*, S®%) by the intersection of the derived series of
m(E(T*, S%)) is a free group of rank B,(T'*) with a basis represented by meridians of
T* in S3, where B,(T'*) denotes the first Betti number of T'*.

Proof. Let T' be a trivial spatial I*-graph. By Theorem 2.1, there are a
number K*>K and an infinite family of almost identical imitations (S3, T'*) of
(83 T') such that E(I'*, S®) is hyperbolic with Vol E(T'*, S®)<<K™* and Supp Vol
E(T'*, 8%=K™*. C(learly, this I'* belongs to an almost trivial knot type. If g:
(8%, T*)—(S%I') is the imitation map, then ¢ induces a meridian-preserving
isomorphism 7,(S3—I'*) = 7,(S3—T") (See [Kw-1]). Since =,(S3—T") is a free
group of rank B3,(T") with a basis represented by meridians of T" in S3, we see
from [L-S, p. 14] that 7(S*—TI")=z,(S*—T), so that z,(E(T'*, S§%))=z(S?*—T'*)
is a free group with a desired property. This completes the proof.

3. Applications to links. We discuss here two applications to links.
One concerns a construction of a non-trivial fusion band family from a trivial
link to a trivial knot and the other, a construction of a tangle with the exterior
hyperbolic in any link. We say that a mutually disjoint band family {B}, B3, -,
BY} in S? spanning a trivial link L, (as 1-handles) is #rivial if the union L,U B} U

9U -+ UBY? is on a 2-sphere smoothly embedded in S® Let a trivial link L,
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have 41 components. We consider mutually disjoint » bands By, B,, -*+, B, in
S? which give a fusion from L, to a trivial knot (that is to say, which lspan L,
and along which the surgery of L, produces a trivial knot). We say that this
family {B,, B,, -*+, B,} is a fusion band family from L, to a trivial knot. For r=1,
Scharlemann [Sc] proved that any fusion band family {B,} is necessarily trivial.
For r=2, Howie and Short [H-S] gave an example of a non-trivial fusion band
family {B,, B;} (cf. [Kw-2, Figure 4]). In their example, the exteroir E=E
(LoUB,UB,, 8% is easily seen to have a solid torus as a disk summand and
hence it is not hyperbolic. As a corollary to Theorem 2.1, we have an infinite
family of non-trivial fusion band families with such exteriors hyperbolic.

Corollary 3.1. For any number K>0 and any integer r>2, there are a num-
ber K*>K and an infinite family of non-trivial fusion band families 3*={B¥, B¥,
-+, B}} from an (r-+1)-component trivial link L, to a trivial knot such that the
exterior Ego=FE(L,UBY¥UB¥U ---UB¥, S®%) is hyperbolic with Vol Eg«<K™ and
Supg. Vol Eg«=K™ and 7,(Eg.) is a free group of rank r+1 with a basis represented
by meridians of L,.

Proof. Consider a trivial fusion band family {B,, B,, -, B,} from L,to a trivial
knot. Let L§ be an r-component trivial link obtained from L, by surgery along
B,. When we regard the band B, as a band spanning L§, we denote it by Bj.
Note that a spine I'=L§Ub,Ub,U---Ub, of L{UB,UB,U---UB, is a good
planar graph in S%. By Theorem 2.1, we have a number K*>K and an infinite
family of almost identical imitations ¢: (S3 I'*)—(S? T") such that Vol E(T*, S?)
<K* and Supp Vol E(T'*, S%) = K*. Regard the bands B,, B,, -+, B; as very
narrow bands. Then since 7>2 and ¢ is an almost identical imitation map, we
may consider that ¢ defines a map (S% LjUB¥U ---U B}, UB/)— ((S% Ly U B,
U+ UB,_,U By), where B¥ denotes a band given by B¥=¢™'B; for each i<r—1.
Then we see that the bands B¥, B¥, ---, B¥ with B¥=B, form a fusion band
family from L, to a trivial knot. Clearly, the exterior E of L,U B¥ UB¥ U --+ U B¥
in §?%is diffeomorphic to E(I'*). By the proof of Corollary 2.2, 7(E) is seen to
be a desired free group. This completes the proof of Corollary 3.1.

ReEMARK 3.2. In the above proof, we can see that the band family {B¥, -+,
B¥_i, B¥,,, -+, B¥} spanning L, is trivial for each 7 with 1</<r—1. In parti-
cular, if >3, then each band B¥(1<:<7) spans L, trivially.

As another application, we shall show the following:

Corollary 3.3. For any link L in S® we take 3-balls B, B’ in S* so that
B'=S8*—IntB and T=BNL is a trivial tangle with 2 or more strings in B and
T'=B'NL is a good 1-manifold in B'. Then for any number K>0, there are
a number K*>K and an infinite family of almost identical imitations (B', T'*)
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of (B', T") such that the exterior E(T'*, B') is hyperbolic with Vol E(T"*, B')<K*
and Supp. Vol E(T"*, B'Y=K*, and the extension q'*: (S3 L*)—(S3 L) of the
imitation map q': (B', T"*)—(B’, T') by the identity on (B, T) is homotopic to a
diffeomorphism.

Proof. Let T be a good tree graph in B obtained by joining the compo-
nents of 7 by arcs so that P collapses to T, and T the union of 7 and 7" which
is a good graph in S%. By Theorem 2.1 we have a number K*>K and an
infinite family of almost identical imitations (S% I'*) of (S?% T') such that the
exterior E(T'*, S?) is hyperbolic with Vol E(T"*, S®)<K™* and Supr. Vol E(T'*, S%)
=K*. By replacing B by a slender regular neighborhood of T in B, we can
consider that the almost identical imitation map gq: (S° I'*)— (S5 T') induces
the identity on B and the restriction ¢’=¢|B’ induces an almost identical imita-
tion map (B’, T'*)—(B’, T") with T"*=¢'~'T’. Moreover, we see that the ex-
tension ¢'*: (83, L*)—(S% L) of ¢’ by the identity on (B, T') is homotopic to a
diffeomorphism. Noting that E(T'* B’) is diffeomorphic to E(T*, S%), we
complete the proof of Corollary 3.3.

This corollary includes a hyperbolic version of Nakanishi’s result [N], telling
that every link is splittable by a 2-sphere into a prime 1-manifold and a trivial
two-string tangle.

4. Applications to 3-manifolds. Let T}, i=1, 2, -+, 7, be mutually dis-
joint tubular neighborhoods of the components k;,i=1, 2, :-,7 of a link L in
S3. Remove Int T; from S® for each 7 and then attach 7; again by using an
h;,eDiff0T; for each ¢. By this operation, we obtain from S® a closed 3-mani-
fold M. Let m; be a meridian of T, and /; a longitude of T'; determined by
T, 83 Write hy[m,)=a;[m]+b,][l;] in H(0T;; Z) with integers a;, b;. Then
we see that the diffeomorphism type of M depends only on the pairs (k;, ¢;) with
c;=a;/b;€QU {oo}, i=1,2, -+, r, and we say that M is obtained from S°® by
Dehn’s surgery along the knots k; with coefficients c;,(i=1, 2, ---,r) or that M has
a surgery description (S3; (k,, ¢,), (Ry ), ***, (R,, ¢,)). It is well known that every
closed connected orientable 3-manifold M has a surgery description (S%; (k,, ¢,),
(Ryy €3), +>+y (R, ¢,)) (cf. [We], [L]). We obtain from Theorem 1.1 the following:

Corollary 4.1. For any number K >0 and any surgery description (S?; (ki, c,),
(Ryy €3), =5 (Ryy ¢,)) of amy closed 3-menifold M with r>2, there are a number
K*>K and an infinite family of normal imitations (S% L¥*) of (S L) such that
the exterior E(L*, S®) is hyperbolic with Vol E(L*, S®)<<K* and Sup« Vol E(L*, S%)
=K* and (S%; (¥, c1), (k¥, ¢;), -, (RF, c,)) is a surgery description of M with
k¥=q7'k;,i=1,2, -+, 7 for the imitation map q: (S3, L*)—(S?, L).

Proof. Let M’ be the manifold with surgery description (S?; (%,,c,)). Let



ALMOST IDENTICAL IMITATIONS 749

k; be a core of the solid torus in M’ resulting from the Dehn surgery. Regard
that &y, k,, -+, k,_y arein M'. Let L'=k U---Uk,_;Uk;. By Theorem 1.1, we
have a number K*> K and an infinite family of almost identical imitations
(M', L'*) of (M’, L") such that E(L"*, M) is hyperbolic with Vol E(L"*, M")<K™*
and Sup,s Vol E(L'*, M")=K*. Letk¥=q''k;,i=1,.--,r—1, and k/*=q' 'k
for the imitation map ¢": (M’, L'*)—(M’, L’). Since ¢’ is an almost identical
imitation map, we may consider that k;*=£k/, so that ¢’ induces a normal imita-
tion map ¢: (83, L*)—(S3, L) with L*=k¥ U --- Uk}, Uk¥CS® and k¥=k, such
that (S3%; (k¥ ¢)), -+, (k¥.1,¢,_)), (R,, 7,)) is a surgery description of M. Since
E(L*, §3) is diffeomorphic to E(L"*, M), we complete the proof of Corollary 4.1.

ReMARK 4.2. In the above proof, the restriction q|(S3, L*—k¥): (S3, L*—
k¥)—(S%, L—k;) is homotopic to a diffeomorphism for each 7, 1<i<r—1. In
particular, if »>3, then k¥ and k; belong to the same knot type for all
1, 1<i<r.

As a final application, we have the following:

Corollary 4.3. For any number K>0 and any 3-manifold M such that
OM has no 2-sphere components, there are a number K*>K and an infinite family
of normal imitations M* of M such that M* is hyperbolic with Vol M*<K* and
Supy« Vol M*¥*=K*.

Proof. For a trivial knot O in Int M, we obtain from Theorem 1.1 an
almost identical imitation (M, O%*) of the good pair (M, O) such that E(O*, M)
is hyperbolic with Vol E(O*, M)>K. For an integer n= 0, let M} be a 3-
manifold obtained from M by Dehn surgery along O* with coefficient 1/n.
Since the diffeomorphism type of M is unaffected by Dehn surgery along O
with coefficient 1/, the imitation map g¢: (M, O*)—(M, O) induces a normal
imitation map ¢F: Mf—M. Let K*=Vol E(O*, M). By Thurston’s theorem
on hyperbolic Dehn surgery [T-2], [T-3], there is an integer N>0 such that M¥
is hyperbolic for all » with |#]| >N, and for all such n, VolM} <K™* and
Sup, Vol M¥=K*. This completes the proof.

5. Proof of Theorem 1.1. We first show that Theorem 1.1 is obtained
from the following:

Lemma 5.1. For any good (3,1)-manifold pair (M, L), there is an almost
identical imitation (M, L*) of (M, L) such that E(L*, M) is hyperbolic.

Proof of Theorem 1.1 assuming Lemma 5.1. We can see from J¢rgensen’s
theorem (cf. [T-2],[T-3]) that for any number K>0 there is an integer N'>0
such that every hyperbolic 3-manifold M’ with Vol M’'<K has the homology
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group H,(M'; Z) generated by at most N’ elements. Let L*=LU L, with L,
an N’-component trivial link in Int(/—L). By Lemma 5.1, there is an almost
identical imitation map g¢: (M, L**)— (M, L*) such that E(L**, M) is hyper-
bolic. Let K*=Vol E(L**, M). Since

H(E(L**, M); Z)=H\(E(L*, M); Z)=H,(E(L, M); Z)®xZ

(cf. [Kw-1]), we see that H,(E(L**, M); Z) can not be generated by N’ elements,
so that K*>K. Let L*=¢ 'L and L¥=q™'L,. Note that L¥ is a trivial link
in Int M. For an integer n==0, let (M, L¥) be a good (3,1)-manifold pair ob-
tained from (M, L*) by Dehn surgery of M along each component of L§ with
coefficient 1/n. Then ¢ induces an almost identical imitation map g¢,: (M, L¥)—
(M, L). By Thurston’s theorem on hyperbolic Dehn surgery [T-2], [T-3], there
is an integer N>0 such that E(L¥, M) is hyperbolic for all » with |z| >N and,
for all such n, Vol E(L¥, M)<K™* and Sup, Vol E(L¥, M)=K*. This com-
pletes the proof of Theorem 1.1 assuming Lemma 5.1.

We say that a tangle T in a 3-ball B is #rivial if T is on a disk smoothly
and properly embedded in B.

Proof of Lemma 5.1. We can see from arguments on Heegaard splitting
of M and on isotopic deformation of L that M is splitted by a compact con-
nected surface F with 0F NL=(@ into two handlebodies H;, =1, 2, of the
same genus, say g, such that

(1) Fi{=0H;—IntF is a planar surface with the same component number
as OM,

(2) Each component of L meets F transversely,

(3) Each disk component of F{ meets L,

(4) There is a 3-ball B;C H; separated by a proper disk D; such that T;=
LN H, is a trivial tangle of s; strings in B; where s;>1 and g-+s; > 3.

Our desired situation is illustrated in Figure 1. This situation is made up by
the following procedure: When M =@, we take any Heegaard splitting (H,,
H,; F) of M. When 0M =@, we split M by a connected surface F,, into two
3-submanifolds M;,i=1, 2, such that 8M; is connected and dM;-IntF,, is a
planar surface with the same component number as M. Then note that
0M;,i=1, 2 have the same genus. We obtain a Heegaard splitting (H,, H,; F)
of M with condition (1) from (M,, M,; F,;) by boring along 1-handles in M;
attaching to F,,. Next, we deform L so that L is disjoint from 0F and has
(2), (3) by an isotopic deformation of L in M. Finally, we deform L so that L
has (4) by an isotopic deformation of L in M keeping 0M fixed and increasing
the geometric intersection number with F. We proceed to the proof of Lem-
ma 5.1 by assuming the following lemma:
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B;

Lemma 5.2. For any integer r=>3 let T be a trivial tangle of r strings in
a 3-ball B. Then there is an almost identical imitation (B, T*) of (B, T) such
that E(T*, B) is hyperbolic.

Since H; is the exterior of a trivial g-tangle in a 3-ball and g+s5,>3, we
obtain from Lemma 5.2 an almost identical imitation map ¢;: (H;, T¥)—(H;, T;)
such that E(T¥, H;) is hyperbolic. Let U, be a tubular neighborhood of L in
M—08F meeting 0H; regularly. We can assume that U;=U, N H; is a tubular
neighborhood of T; in B;—D; and E(L, M)=cly,,(M—U,) and E(T;, H;)=
cly,(H;—U;) and E(T¥, H;)=q7'E(T;, H;). Clearly, ¢, and ¢, define an almost
identical imitation map ¢: (M, L*)— (M, L) with L*=T¥UT¥. Note that
E(L*, M)=q'E(L, M) is a union of E(T¥, H,) and E(T%, H,) pasting along a
surface FE=clp(F—F NU;). Then we see from the following lemma that
E(L*, M) is hyperbolic:

Lemma 5.3. Let a 3-manifold M be splitted into two 3-submanifolds M;, i=
1,2, by a proper surface F. If the following conditions are all satisfied, then M is
hyperbolic:

(1) M, and M, are hyperbolic,
(2) F has no disk, annulus, torus components,
(3) Fi=0M;—IntF has no disk components.

This lemma is a direct consequence of Myers’ lemmas (Lemmas 2.4, 2.5)
in [My] and Thurston’s hyperbolization theorem in [T-3], [Mo]. We com-
plete the proof of Lemma 5.1, assuming Lemma 5.2.

Proof of Lemma 5.2. We construct a pure 7-braid o with strings b,, b,, -,
b, in the 3-cube I® as follows (cf. Kanenobu [Kn]): Take &Ub,U - Ub,_, to
be a trivial (r—1)-braid. Then take b, so that b, represents the (r—2)th com-
mutator [x;, &,, +*+, %,_,] in the free group 7r=7z'1(S3—31 u 32 U--u 13,_1, *) with a
basis x;, &,, **+, ,_, represented by meridians of 51, 32, ey 13,_1, for the closure link
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8-=5, U 52 UerU 5, in §3. For r=3, 4, we illustrate ¢ in Figure 2. Note that
this 7-braid o has the following important property: That is, if we drop any one
string b; from o, then the resulting (r—1)-braid is a trivial braid. The link ¢ isa
typical example of a link with Brunnian property (cf. Rolfsen [R]), or in other
words, an almost trivial link (cf. Milnor [Mi]). From this 7-braid o C I3 and any
two-string tangle 7'C B, we construct a new r-string tangle 7® C B® as it is
illustrated in Figure 3.

Figure 3

This construction has been suggested by Kanenobu [Kn, Figure 7]. A
two-string tangle T'C B is said to be simple, if it is a prime tangle and the ex-
terior E(T, B) has no incompressible torus (cf. [So]) [Note: E(T, B) may have
an essential annulus as we observe in Remark 5.6]. The following lemma is
obtained from Kanenobu’s results in [Kn, Theorem 3 and Proposition 4] and
Thurston’s hyperbolization theorem [T-3], [Mo]:

Lemma 5.4. If a two-string tangle T C B is simple, then the exterior
E(T®, B®) of the resulting new tangle T®C B® is hyperbolic.

Let T"C B" be a one-string tangle obtained from a two-string tangle T C B
by adding a trivial one-string tangle 4,C B, as it is illustrated in Figure 4(1).
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Figure 5

Let T,CB be a trivial two-string tangle illustrated in Figure 4(2). As-
sume that there is a normal reflection a in (B, T,)X I such that Fix (a,(B, T})
xXI)=(B, T). Let a" be the normal reflector in (B*, T'¢")x I, extending o
naturally, so that Fix(a", (B", T¢") X I)=<(B", T"). If a" is isotopically
standard, then we would have an almost identical imitation map q:(B®, T'®)
—(B®, TP). Since (B®, TP) is a trivial tangle, we complete the proof of
Lemma 5.2 when we assume the following lemma:

Lemma 5.5. There are a simple two-string tangle T CB and a normal
reflection o in (B, T,) X I with T,C B a trivial two-string tangle such that (B, T')=<
Fix (a, (B, T,) X I) and the extending normal reflection a" in (B*, Tg )X I is isot-
opically standard.

Proof of Lemma 5.5. Consider a two-string tangle T=a, U a,C B illustrated
in Figure 5. Since g, is a non-trivial arc in B[In fact, E(a,, B) is diffeomorphic
to the exterior of the 11-crossing Kinoshita-Terasaka knot (cf. [K-T], [Kw-1])]
and the one-string tangle 7" C B" is trivial, it follows from a result of Nakanishi
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[N, Lemma 5.4] that (B, T) is a prime tangle. This tangle T'CB can be ob-
tained from the Kinoshita-Terasaka tangle 7'=a{ U a;C B, illustrated in Figure
6, by sliding a boundary point of a{ along 0B and aj.

A
T3

Figure 6

a;

This means that E(T, B)=<E(T", B), so that T CB is a simple tangle, be-
cause 7'C B is known to be simple (cf. Soma [So]). Let F be a union of two
proper disks in B X[ illustrated in Figure 7 by the motion picture method (cf.
[K-S-S]). We denote by «, the standard reflection in BX I and by ag the
extension to B*XI. Let G be a l-manifold with a band in B given by
(B, G)x(1/4)=(BxI, FYNBx(1/4). We take annuli 4, A’ in the figure of
GCB as we illustrate in Figure 8. In Figure 8, {C,, C,}, {C{, C3} denote the
boundary components of 4, A’ and the intersections AN G, A’NG denote disks
attaching to the circles C,, C1, respectively. Let (B" X1, F")be a (4,2)-disk pair
obtained from (BXI, F) by adding (B,, a,)XI with (B,, ;) in Figure 4(1).
Note that C,, C bound disjoint disks D, D’ in B*—G" (where G"=G U a,) so
that A=A UD, A'=A'U D’ are disjoint disks in B" with 84=C,, 84'=C{. Let
F’ be a union of two proper disks in B X I illustrated in Figure 9, and (B* X I, F'")

QO0%
by E

t=13/4 =112 1=41/4 =0

Figure 7
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Figure 8

a (4, 2)-disk pair obtained from (BXI, F’) by adding (B,, ay) XI. Let G’ be a
1-manifold with a band in B given by (B, G')x(1/4)=(B x I, F') N Bx(1/4).
Note that there is an f &Diff, (B", rel (B"—R)) with f(G")=G'" for a regular
neighborhood R of AU A4’ in Int B” by sliding the disks AN G*, 4’ N G" along
the disks 4, 4’. 'This means that there is an f € Diff (B* X I, rel (B* x I—Rx I"))
with I’=[—1/2, 1/2] such that f is a¢-invariant and f(F")=F'". Next, note
that there is a g& Diffy(B" X I, rel 9(B" x I)U F*U F’'*) such that g((AU 4") X
I'Yc Bx1I by pushing DX I’, D' x I’ into B X (1/2, 3/4).

BIEC

t=1 =134 t=11/2

Figure 9

Then we may consider that g(RXI')CBx1I. Let h=gfg'eDiff(B*x I,
rel 9(B* xI)). Then since A(BXI)=BX I, we can define an 2’ Diff (B X I, rel
8(BxI)) by h'=h|Bx1. Note that #'(F)=F’. Since the bands appearing in
Figure 7 are untied, we see that there is a d & Diff (B X I, rel 3(Bx I)) such
that d is ap-invariant and d(F)="T,X I, where T is a trivial two-string tangle in
B determined by Tyx1=FNBx1. Let a,=dh''ah'd™'. Then «, defines a
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reflection in (B, T,)x I with Fix (e, (B, To)XI)=<(B, T). Further, we can find
an e< Diff, (B, T,) X I, rel 8(B x I)) such that «=ea,e™" is a normal reflection in
(B, To)x I by the fact that Diff (D, rel 9D)=Diffy(D, rel 9D) for a 2-disk D and
the isotopy extension theorem and the uniqueness of tubular neighborhoods.
Then
Fix (a, (B, To)xI)=(B, T)
and
aA p— e/\d/\h—la(/’\ h(d/\)—l(el\)—l ,

where d* and ¢* denote the extension of d and e to B" X I by the identity, respec-
tively. Let

h* — eAdAh—lf'(dA)—l .
Then
h* = "d" gf g f(d")'eDifi(B*, T¢)x I, rel 9(B* x I)),
because g€ Diff, (B* X I, rel 9(B* XI)U F* U F'*), and
R larh* = d* flag fd*) T = af
because f and d* are ag-invariant. Hence a” is isotopically standard. This
completes the proof of Lemma 5.5.

Therefore, we complete the proof of Theorem 1.1.

ReMARK 5.6. The exterior of the tangle T'C B in Figure 5, that is, the
exterior of the Kinoshita-Terasaka tangle 7CB in Figure 6 has an essential
annulus, as it is illustrated in Figure 10. Hence it is not hyperbolic in our sense.

annulus

Figure 10
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