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Introduction

BP is the Brown-Peterson spectrum at a fixed prime p. This spectrum
is an associative and commutative ring spectrum whose homotopy is BPy=Z2,
[v1, ***5 Oy +++]. For each =0 there are associative BP-module spectra P(n),
BP<{n), k(n), L,BP, M,BP and N,BP. If E is an associative BP-module spec-
trum, then we can form a weak associative BP-module spectrum v;'E. When
E=P(n), BP{n)> or k(n), v;'E is written B(n), E(n) or K(n) respectively.

For a CW-spectrum E we denote by {E the Bousfield class of E [3]. Thus
it is the equivalence class under the equivalence relation: E~F when E.X
=0 if and only if F4X=0. In [13] and [14] Ravenel has studied the Bousfield
classes of the above BP-related spectra.

Theorem 0.1 ([13, Theorem 2.1] and [14, Lemma 3.1]).
i) <B(n)>=<K(n)>=<{M,BP),
i) <vi'BP>=<E(n)>="V o5i.{K(5)>=<L,BP>,
iif) <{P(n)>=<K(n)>V<{P(n+1)>=<N,BP>,
iv) <k(m)>=<K(n))'<HZ|p), and
V) <BPny>=<E(n)>"<HZ|p).

For a CW-spectrum E we denote by <E>* the cohomological Bousfield
class of E. Thus <ED*=(F>* when E*X=0 if and only if F*X=0. Given
a p-local CW-spectrum E there exists a p-local CW-spectrum VE related by a
universal coefficient sequence

0 — Ext(Ex, X, Z(») = VE*X — Hom(E4 X, Z) — 0

(see [5] or [16]). By using this sequence we can show that {VED*=<E), and
moreover {ED*=(VE) if E is of finite type. The BP-module spectrum P(n),
BP<{n), k(n) or K(n) is of finite type, but v;'BP, B(n), E(n), L,BP, M,BP
or N,BP is not of finite type. Nevertheless we obtain

Theorem 0.2. i) <B(m)>*=<vB(n)>={K(n)>*=(VK(n)>=<K(n)>,
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i) <o BPY*=(vos BPY=(E(n)y* =(V E(n)>=<0;'BP},
iii) (M, BPY*={y M,BPY—{L,BPY*—{y L,BP>—<uv;'BP,
V) <N, BPY*—(YN,BPY—{os BPYCP(1)>,

V. ,: —
v) <P(n)>*=<vP(n)>={§§§8§§ S g,’fgf,
vi) <{BP{mpY*=VBP{n)>=<{HZ> for n=0, and
vii) k() =<VRm>=CHZ[p> forn=1.

However it is not valid that (ED*=<VE)> in general. As examples we
have

Theorem 0.3. i) <I1,.,B(n)>*=<{11,,K®)>*=\V ,2.{K(n)), but
V(ILznB(1)>=<V(,2nK(1)>=V 12nlK(n))*<HZ[p).
ll) <HngmMnBP>*:<Hn2anBP>*:<HanNnBP>*:VﬂZO<K(n)>) but
i) <TanP(r)>=<P(m)> and {[L,anP(n)>*—={VP(m)>, but <V yamVPH)>*=
FTLanP@)>= G0 H27

Let {E,},>m and {F,},>, be families of CW-spectra. If {E,>=<F,> for
all n=m, then it is obvious that <V ,5,E,>=<V ,2nF,>. So it might be expected
that <Il,:,E,>=<{I,s,F,>. But this equality doesn’t hold in general. If a
p-local CW-spectrum E is of finite type, then we have that <II\ED>=<E) for
any indexed set A. But this is also false in general unless E is of finite type or
A is finite. As examples we get

Theorem 0.4. i) <II,,P(n)>=<{P(m)> but <I1,,N,BP>=<{BP),
i) CILK(m)> =<K (), <TLP(#)>=(P(n)> but <T1,M,BP>=<o;'BPY,
{II1,N,BP>=<{BP) if the indexed set A is infinite.

In [14] Ravenel proved that the cofiber sequence N,S—M,S—N,.,S
realizes the short exact sequence 0— N,BPy—> M,BPy—> N, ,BP4—0 of BP,-
modules defined inductively by N,BPy=BP, and M,BPy=v,;'N,BPy. His
proof is established on the existence of certain finite CW-complexes X,
recently constructed by Mitchell [12]. By virtue of Ravenel’s result we can
investigate the localizations of homologies P(n)4(—), BP<{n>4«(—) and VN,;BPx
(—)-

Theorem 0.5. i) L, X=3"F(N,S, L;pX),

11) LBP(n>X=L(HZ/p,n)X and LVN,,,.IBPXzL(VP(l),n)X where L(F,n)X denotes the
fiber of the composite map Ly X — CrX — L,CpX for F=HZ|p or VP(1).

In §1 we study the Bousfield classes <E> of well-known BP-related spec-
tra and give a proof of Theorem 0.1 in the different way from Revanel’s [13, 14].
We next discuss the Bousfield classes <VE) of the Anderson dual spectra in
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§2 and the cohomological Bousfield classes <ED* in §3. As a result we obtain
Theorem 0.2. In §4 we treat of wedge sums V,3,E, and preducts II,3,E,
of BP-related spectra and show Theorems 0.3 and 0.4. In §5 we recall Rave-
nel’s result (Corollary 5.4) of the geometric realization and then discuss the
P(n)y-, BP{n)4- and VN, BP4-localizations in order to prove Theorem 0.5.

1. Bousfield classes of BP-related spectra

1.1. Let E be a BP-module spectrum (with unit) having structure map
1, and v be an element of BP, with dimension d. We can form a CW-spectrum
v7'E defined to be the mapping telescope lim X~“E of the map u(vpl): Z°E

—E. If E is associative, then v™'E is a BP-module spectrum which is weak
associative. Even if E is weak associative, the map u(val) induces multiplica-
tion by v in homotopy groups and hence (v7'E)4X=v"'E,X. In this case
we write simply v in place of u(val).

For a CW-spectrum E we denote by <E the Bousfield class of E [3]. They
are partially ordered by writing <E>=<F) when E,X=0 implies F,X=0.
If E—»F—G is a cofiber sequence of BP-module spectra (and BP-module maps),
then {FO<<{EDY{G> and more generally

(1.1) < 'FO={vEDVvTIG)

for any element v of BPy (cf., [13, Proposition 1.23]). This is easily shown
by making use of Five lemma (or Verdier’s lemma [1]).

Lemma 1.1. Let v and w be elements of BPy, E be an associative BP-
module spectrum and F be the cofiber of the map w: 3°E— E where d=dim w.
Then v 'E>=Lw W 'EDV{v™'F) and in particular {E)=Lw 'ED)V{F) (cf.,
[13, Lemma 1.34]).

Proof. From (1.1) it follows immediately that {v'E>=<{v7'F), and so
TE>Zw T EDV v IF). If (v7'F)4X=0, then the map = induces an
isomorphism (v7'E)4 X — (v7'E),X, and hence there is an isomorphism (v7'E)4X
— (w07 'E)X. This gives that v 'ED><<{w o 'EDV{v~'F), and the result
follows.

For 0<k=m+41=<oco, there are associative BP-module spectra BP[k,
m—+-1) whose homotopy are BP[k, m—+1)u=BPy/(P, V1, ***, Vt-1s Umtir Vmiz ***)-
In convention we write BP[n, co)=P(n), BP[0, n41)=BP<{n) and BP[n, n+1)
=k(n) (see [6]). In particular, P(0)=BP{oco>=BP, BP{0>=k(0)=HZ, and
P(c0)=BP{—1>=k(—1)=HZ|[p. Multiplication by v,, gives cofiber sequences

) 320"V BP[k, m+1) Zn BP[k, m+1) — BP[k, m)
L.
(2 520"~ BP[m, n-1) -2 BP[m, n+1) — BP{m-+1, n-t-1)
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of associative BP-module spectra.
When E is P(n), BP{n> or k(n), v;'E is denoted by B(n), E(n) or K(n)
respectively. Lemma 1.1 implies

(L3) i) <P(n)>=<Bm)><P(n+1)>,
i) <BP{np) = V< KE(R)DVKHZ[p), and
i) <k(n)> = <K(n)>'<HZ|p) .

1.2. Let us denote by L,E the localization of E with respect to the homol-
ogy theory (v;'BP)y(—), and by =7 "N, ,E the cofiber of the localization map
e E—>L,E. Recall that ’

(14) L,E\X = L(E\X) and Ny ExX = N, (ExX)

when E is an (associative) BP-module spectrum [18, Corollary 2.4]. The
former gives

(1.5) L,ExX =0 if and only if v;*BPy(ExX)=0.

Lemma 1.2. Let E and F be BP-module spectra.
1) <L.E>=V 4<:{viE> when E is weak associative, and
ii) <LE>=LL,F> if CE>=LF).

Proof. i) Suppose that L,EyX =0, thus v;'BP4(ErX)=0. Then
0;21BP4(EAX)=0 by means of [7, Theorem 0.1], and moreover (v;'E)y X =<
0, E4X=0 since uy: BPyw(E \X)—>E4«X is epic. This shows that {L,E>=
Ly EXv'ED, and hence {L,E>=V (<, 0% 'E>. For showing the opposite
inequality we suppose that v;'E.X=0 for all 2, 0<k=<n. Then it follows from
[18, (2.3)] that v;'BPy(E X)=v;'BPy(v;'ErX)=0. So the equality holds.

if) is immediate by use of (1.5).

Given an invariant regular ideal J=(qq, ¢1, ***y qm-1) in BPy of length m
there is an associative BP-module spectrum BPJ] whose homotopy is BPJ
=BPy/(90 ¢1» ***» Gm-1)- When J is I,=(p, v;, ***, Up-1), BP] is just P(m). [7,
Proposition 2.5] says that <vi'BPJ>=<{vi2,BPJ>. So Lemma 1.2 i) implies

Corollary 1.3. <L,BP]>=<{v;'BP])> for any invariant regular ideal |
in BPy. In particular, {L,BP>=<v;*BP) and {L,P(n)>=<{B(n)>.

Proposition 1.4. Let | be an invariant regular ideal in BPy of length m
and m=n. Then {BPJ>={N,BP> and {L,BP]>=V n<;<.<{B(R)>. In parti-
cular, {P(n)>=<{N,BP> and {L,BP>=\ i<;<,<{B(k)).

Proof. For J=(q0 ¢1r ***» qm-1) We set J,=(q0» @1> ***; @s-1), k=m. Con-

sider the cofiber sequence E‘N,,,BP],,_lqi;leBP]k_1—>N,,,Bij where d=dim
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Qi1 NuBPJi_» is v-torsion for any 7, 0<:<m—1, and ¢,_, is contained in
the ideal I,,=(p, vy, ***, Vp-1) Which is just the radical of the ideal J [11, Theo-
rem 1]. Therefore N,BP], ;+ is g;_,-torsion. Hence Lemma 1.1 implies that
(N BP]J,..>=<{N,BP],> for each k, 1=<k=<m, and so <N,BP>={N,BP]>
=<(BP)>. .

Next, consider the cofiber sequence Z2¢"-VL, P(m)—L,P(m)— L,P(m+-1).
Applying Lemma 1.2 i) to E=L,P(m) we obtain that <v,'L,P(m)>=<L,L,P
(m)>=<LL,P(m)>=<{B(m)>. So Lemma 1.1 gives that <L,P(m)>=<{B(m)>
VCL,P(m+1)), and hence <L,P(m)>=V n<;1<.<B(k)>. This result means that
CLBPJY=V ngaiCBR)> since (BPJ>={P(m)>.

Setting M,E=L,N,E we have cofiber sequences

N,E—- M,E — N,,.E

(1.6)
>-"M,E — L,E — L, ,E

(see [13]). Combining Proposition 1.4 with Lemma 1.2 ii) and Corollary 1.3
we get

Corollary 1.5. <M,BP>=<{B(n)>.

By putting Corollary 1.3 and Proposition 1.4 together we obtain the equality
{v'BP>=V o<i<{B(@)>. This shows especially that v;'BP,X=0 implies
B(n)4,X=0. In [13, Theorem 2.11] Ravenel proved that the converse is true
under the finiteness restriction on X. We here give a simple proof of this
result.

Proposition 1.6 (Ravenel). Assume that X is a finite CW-spectrum. If
B(n)4X=0, then v;*BPX=0.

Proof. It is sufficient to show that B(n—1),X=0 if B(n)4X=0. By Land-
weber’s invariant prime filtration theorem [9] (or [18]) there is a finite filtration
Pn—1)X=M,DOM, ,D -+ DM, DM,={0} consisting of P(n—1)P(n—1)-
comodules so that for 1<k=s each subquotient M,/M,_, is stably isomorphic
to P(my)y for some m,=n—1. By induction on k<s we will show that v;'M,
=v;'P(n—1)4X under the hypothesis that B(n)4X=0. The k=s is trivial,
so we assume that v7'M,,,==v;'P(n—1),X. Our hypothesis implies that
05 'P(n—1)4X is uniquely v,_,-divisible, and hence v;*(M,,/M,) is v,-,-divi-
sible. Then we find that m,,,=n-1, and so v;'M,=v;'M,,,. Consequently
we see that 93,'P(n—1)4X=0, which implies that B(n—1),X=0 by use of [7,
Proposition 2.5]. Thus B(n)4X=0 implies B(n—1)4X=0 as desired.

1.3. Let J be an invariant regular ideal in BP4. A BPJ-module
spectrum E is said to be (weak) quasi-associative if it admits a pairing u: BPJ\E—E
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with unit making the diagram below (weak) homotopy commutative

BP\BPJE 2 BP, B BPT B BP E N BPT, BB
| Tl
oAl l B BPA\BPJA\E
Vol

BPJ\E —> E — BPJ\E

u 7
where ¢ denotes the BP-module structure map of BPJ and j=j,_;**jo: BP

=BPJ,—~BP]J,— -+ -»BP],=BP] (cf., [7, Remark 5.3]).
A BPJ4-module M is said to be 2A/-flat if the functor M SIQ BPJ.(—) is

exact (see [10] or [18]). Recall that a P(m)y-module M is A(#)-flat if and
only if

(1.7)  multiplication by v, is monic on M Q P(k)x for every k=m .
BP,

The following result is a useful tool in determining Bousfield classes of
BP-related spectra.

Lemma 1.7. Let J be an invariant regular ideal in BPy of length m, E
be a (weak) quasi-associative BP J-module spectrum and n=m.
1) If v;'Ey is BPJ-flat such that vy 1E*B@ P(n)4=0, then {v;'E)=<v;'P(m)).

ii) If By is 20)-flat such that By ® P(o0)5=0, then {Ey=<P(m)>.

Proof. i) The BPJ-module structure map of E gives an isomorphism
7' Ex @ BPJ 4 X— (v;'E)xX. By making use of [18, Proposition 2.6] we
BP

observe "that (vi'E)4«X =0 if and only if 9;'BPJ.X=0, thus <{v;E)>=
{v;*BPJ>. On the other hand, <v;'BPJ>=<v;'P(m)> by putting Corollary
1.3 and Proposition 1.4 together. So the result follows.

il) Obviously <BPJ>=<E> since E is a BPJ-module spectrum. Sup-
pose that BPJ4X =0 and choose a non-zero primitive element x in BPJ,X.
The annihilator ideal Ann(x)={A&EBPy4; A-x=0} is at least contained in the
ideal I..=(p, vy, ***, Uy, +-+) because the radical \/Ann(x)={NEBPy; \-x=0
for some &} is the ideal I,=(p, vy, **+, v,-;) for a certain 7, m=n=<oco (see [11]
or [18]). So our hypothesis implies that Ey g BP4/Ann(x)#=0. On the other

hand, there is a monomorphism E §BP* [Ann(x)—E §BP ’J«X=E.X. Hence

it is obvious that E4X=0. Consequently <BPJ><<E>. The result is now
immediate from Proposition 1.4.

According to [15] BP[k, m+1) is a quasi-associative P(k)-module
spectrum, and so v;'BP[k, m-+1) becomes a weak quasi-associative one. Note
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that v;'BP[k, m-+1)y is A(£¢)-flat. So Lemma 1.7 i) implies

Corollary 1.8. <v;'BP[k, m+1)>=<v;'P(k)> for 0Sk=n<m=co, and
in particular {v;'BP>=<{E(n)> and {B(n)>=<{K(n)).

Theorem 0.1 is obtained as a summary of (1.3), Proposition 1.4 and
Corollaries 1.3, 1.5 and 1.8.

2. Bousfield classes of Anderson dual spectra

2.1.. Given a p-local CW-spectrum E we can construct a universal
coefficient sequence

(2.1) 0— Ext(Ex_,X, Z(») = VE*X — Hom(E4X, Z(,) = 0

(see [5] or [16]). The p-local CW-spectrum VE has the same homotopy type
as the function spectrum F(E, VSZ). Therefore this Anderson duality
functor Vv is categorical and exact. Note that HZ,,, HZ[p and K(n) are self-
dual, ie., VHZ ,y=HZ, VHZ|[p=Z"'"HZ[p and VK(n)=Z"'K(n) for every
n=0. Moreover we notice that

(2.2) E = VVE if E is of finite type.

Let E be a BP-module spectrum which is connective. The BP-module
spectrum VE is then coconnective. By dimension reason VE, is v-torsion
for all v in BPy with dim 2>0. 'This means

(2.3) <v7'WE> = 0 if E is connective and dim v>0.

Apply the duality functor V to the cofiber sequences (1.2) and use Lemma
1.1 and (2.3). Then we have

Proposition 2.1. i) {VBP)>={VP(1)>V{SO> and {vVP(n)>=<vP(1)> for
each n=1,
i) VBPn)>=LHZy>=HZ[p>V{SO> for each n=0, and
i) <VBP[k, m+1)>=HZ|p)> for 1=k=m<oco, and in particular {Vk(n))
={HZ|p) for each n=1.

Let E be a coconnective CW-spectrum. It is represented as the direct
limit of the Postnikov systems E(—n, o). This fact gives

(24) <E><{HZy>, and moreover {EY<<HZ|p> if E+Q@Q = 0.

Remark that P(1)*HZ[p=0, because HZ|p is dissonant and P(1) is harmo-
nic [13]. This is equivalent to say that

(2.5) VP(L)sHZ[p =0
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(use (3.2)). By use of (2.5) we notice

26) §) <HZ|p>2LIP)>, and
ii) <Pm)>ZVilKEY<HZ[p> .
2.2. The cofiber sequence Ezwk'l)P(k)ﬁ P(k)—>P(k+1) induces short

exact sequences

0 — VM.P(R)x & VM,P(E) — VM,P(+1)5 — 0

0 — VN, P(R)x = YNpuiP(B)s = VN, PR+ 1) = 0
for each k, 0<k<n. Hence we observe
(2.7) VM,BPy and v;'vN,,,BPy are both B0-flat.

Proposition 2.2. i) <VM,BP>={VL,BP>={v;'BP>, and
) VN, BP>=Cop' BPYVP(1)).

Proof. i) Use Lemma 1.7 i) and (2.7) to show that {<VM,BP)>=<v;"
VN, BP>=<{v;’BP)». We here consider the cofiber sequence ="VN,,,BP
—-VL,BP—>VvBP. Then {v;'vL,BP>={v;'yN,,;BP)> because by (2.3) <v;*!
VBPY»=0 for all n=1 and VN,BP=(VBP)Z,. So we get that {VL,BP>=
{v;'VL,BP>=<v;'BP>. 'The opposite inequality is shown by induction on =,
the n=0 case being trivial. Assume that <VL,_,BP>=<v;1,BP)> and consider
the cofiber sequence VL, ,BP—VL,BP—3"VM,BP. Then it is immediate
that {VL,BP><<VL,_,BP>\VM,BP>=<{v;'BP>, and so{VL,BP>=<v;'BP).

ii) Obviously <VN,BP>={v;'VN,,BP>=<{v;'BP>. On the other
hand, an iterated use of (1.1) gives that {VN,,;BP>=<{VN,,,P(n+1)>=
{VP(n+1)>. Hence we obtain that {VN,,,BP>=><{v;'BP>{VP(1)> by means
of Proposition 2.1 i). Conversely it is immediately seen that <VN,,,BP>=<
{VL,BP>{VBP>=<{v;'BP>XVP(1)>. So the equality holds.

We don’t know whether the sequence (1.2) after localized at v, remains
still a cofiber sequence. But we have

Lemma 2.3. The sequence Vv;'BP[k+1, m+1) — Vou;'BP[k, m+-1) %
3 -20"Dyy'BP[k, m+1) is a cofiber sequence for each k, 0<Sk<n=m= oo,

Proof. The k=0 case is trivial because BP[l, m+1)=BP{m)Z[p and
so v;'BP[1, m+1)=(v;'BP<{m)>)Z[p. We may assume that 2 =1. Then
0, 'BP[k, m+1)4X is always a torsion group, and hence Vv;'BP[k, m-+1)*X
=Ext(v;'BP[k, m+1)3X, Z,). As is easily checked, the triangle

Voi'BP[k, m-1)*X 2 Vo;'BP[k, m4-1)*X
N /8

VoyBP[k+1, m+1)*X
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is exact. Moreover the right diagonal map 8 is trivial when X is the sphere
spectrum S. By using these facts the k=1 cases follow immediately from [17,
Lemma A].

Proposition 2.4. <{Vv;'BP[k, m+1)>=V ,<;<,XK()D for 0Sk=n=m=oco.
In particular, {Vv3'BP>={VE(n)>=<v;'BP) and {VB(n)>={VK(n)>=<K(n)).

Proof. Lemma 1.1 combined with Lemma 2.3 shows that {Vv;'BPJk,
m—+1)> =<vi'Vv;'BP[k, m+1)>V{Vv;'BP[k+1, m+1)>. Notice that Vuvz'
BP[k, m+1) is a quasi-associative P(k)-module spectrum and v;'Vo;'BP[k,
m+1)y is A(#)-flat. Use Lemma 1.7 i) to see that <{v;'Vv;'BP[k, m+1))
=<K(k)>. The result is now shown by induction on k<.

Obviously <BP>=<L,BP>{N,.;BP>. We use Corollary 1.3 and
Proposition 1.4 to replace this equality by

(28) <BP) = (oy'BPY<P(n+1)>.

From [19, (2.3)] it follows that v;'BP4«P(n+1)=0 (see [13, Lemma 2.3]).
But v;'BPyP(n)==BP4B(n)#=0. So we remark

(29) <oa'BP)>%<v;21BP) and {P(n)>=<{P(n+1)>.

Lemma 2.5. HZ|[p4VN, ,P(n)=0 and K(m)4VN, ,P(n)=0 for all m<n,
but K(n)xV Ny, P(n)=0.

Proof. Consider the cofiber sequence 2"“VP(n—}—1)—>VN,,+1P(n)ﬁE"2°’""1’
VN, P(n). There is an isomorphism HZ/pyVN, ., P(n)— HZ|pyv3'VN,,P(n)
because HZ[p4VP(n+1)=0 by (2.5). Note that VN, ,P(n)4 is v,-torsion for
each k<m. Then [19, (2.3)] gives that HZ/pyv;'VN,.,P(n)==v;*HZ[pyv7*
VN,,P(n)=0 and also ;21 BP4 VN, ,P(n)=v;2,BP4yv;2,VN,,,P(n)=0. Hence
HZ[p4VN,,P(n)=0 and K(m)4VN,,P(n)=0 for all m<n. However v;'BPy
VN, /P(n)£0 because v;'VN, . P(n)y=v;'Ext(N,.P(n)x, Z)=+0. There-
fore we observe that K(n)xV.N,;,P(n)=0.

By use of (1.3), (2.6), Proposition 2.2 and Lemma 2.6 we here verify
(2.10) <BP<ny>=z{BP{n—1>> and {<VN, . ,BP>=%<VN,BP) .

3. Cohomological Bousfield classes

3.1. Let us denote by <ED>* the cohomological Bousfield class of E, thus
CEY*=2{F>* when E*X=0 implies F*X=0. Recall that the Anderson dual
spectrum VE is related by the universal coefficient sequence (2.1). Then [2,
Proposition 2.3] implies that for a p-local E, VE*X=0 if and only if E.X=0.
This means
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(3.1) KVEX*=<E).
Moreover we remark
(3.2) <EY* =<VE> if E is of finite type,

because of (2.2). As the above E we can take BP, P(n), BP{n), k(n), K(n)
and so on.

Let E be a connective CW-spectrum. It is represented as the inverse
limit of the Postnikov systems E(—oo. #). 'This fact yields
(3.3) <EY*=<HZy, and moreover <EY* < {HZ|[p> if Hom(Q, E4) = 0=
Ext(Q, Ey) .

Let E be a BP-module spectrum and v be an element of BP, with dimen-
sion d. We can form a CW-spectrum lim,E defined to be the mapping
cotelescope of the map u(vpl): ZE—E. If E is associative, then lim,E is a

BP-module spectrum. By dimension reason we see
(3.4) <lim,E>*=0 if E is connective and dim v>0.

Let M be a BPg-module and v be an element of BPy. Denote by K
and C the kernel and the cokernel of multiplication by v on M respectively.
As is easily seen, lim, K=0=1im,K and lim,C=0=lim,C. An easy diagram

chasing shows
(3.5) lim,M and lim;M are both uniquely v-divisible.
This gives

Lemma 3.1. Let E be an associative BP-module spectrum and v be an
element of BPy. Then the BPy-module (lim,E)y is uniquely v-divisible.

Similarly to (1.1) we have
(3.6) <o FY* = o EDFVoTIGH*

for any element v of BPy, if E—»F—G is a cofiber sequence of BP-module
spectra. By a parallel argument to Lemma 1.1 we can show

Lemma 3.2. Let v and w be elements of BPy, E be an associative BP-
module spectrum and F be the cofiber of the map w: 3°E— E where d—=dim w.
Then <o 'ED*={lim, v EX*V o™ 'F)*.  In particular, <ED*=<lim, E>*V<F)*.

A BPJy-module M is said to be 8P J-injective if the functor Homgp (BP ]
(=), M) is exact (see [8] or [18]). Recall that a P(m)y-module M is A(m)-

injective if
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(3.7) multiplication by v, is epic on Hompp,(P(R)s, M) for every k=m, and in
addition w. dimp(,,)M is finite.

Note that w. dimp(,)v;'"M<n—m. As a dual of Lemma 1.7 we have
a useful tool in determining some cohomological Bousfield classes.

Lemma 3.3. Let J be an invariant regular ideal in BPy of length m, E
be a (weak) quasi-associative BP J-module spectrum and n=m.
1) If v;'Ey is BPJ-injective such that Hompp (P(n)x, vy 'E4)=0, then {v;'E)*

={v; P(m)>.
i) If Ey is BPJ-injective such that Hompp,(P(o0)x, Ex) =0, then {ED*={P(m)).

Proof. i) The BPJ-module structure map of E gives an isomorphism
(vs'E)*X—Homyp,(BPJ+X, vi'Ey). So we use [18, Proposition 3.4] to show
that <{v;'ED* =< 9v;'BPJ>. Now the result follows from the fact that

<v'BP]>=<vy'P(m)).
ii) is also proved by a parallel argument to the proof of Lemma 1.7 ii),
so we omit it.

ReEMARK. In proving Lemma 3.3 i) the (weak) quasi-associativity of E
is only needed to show that there is an isomorphism (v; 'E)* X —Homgp,(BPJ+X,
0, E4). We may assume instead the existence of such a natural isomorphism,
if it is not easy to check whether E becomes a (weak) quasi-associative BPJ-
module spectrum.

3.2. Consider the short exact sequences
0 MP(k+1)x — MP(R)x = MP(R) —0
0 = N, P(k+1)4—> N, ., P(k)« ke N, P(R)y— 0
for each &, 0<k=<mn. Since l(i_x_n,l,nN,,JrlP(k—[—l)*:O, we see easily
(3.8) M,BPy and lim, N, BPy are both 5/-injective.
As an analogous result to Proposition 2.2 we have

Proposition 3.4. i) <{M,BP>*={L,BP>*={v;'BP>, and
i) (N, BPY*=<u BPYVP(1)).

Proof. i) First apply Lemma 3.3 i) to E=M,BP to obtain that (M, BP>*
=<v;'BP). Note that (lim, N,.,BP)y=lim, N, ,BPyx. The BP-module
structure map of N, BP gives a natural homomorphism (lim, N,,,BP)*X
—Homgp,(BP#X, lim, N,+;BPy), which becomes an isomorphism. So <lim,,
N, BPY* =<{v;'BP> by using Remark following Lemma 3.3. We then
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observe that <L,BP>*=(lim, L,BP>* =<lim, N,,BP)* =<v;'BP> by use of
(3.4). The opposite inequality is easily shown by induction on .

ii) Obviously <N, BPY* =N, P(n+1))*=<{P(n+1)>*. Then it
follows from (3.2) and Proposition 2.1 i) that <{N,.,BP>*=lim, N,.,BP>*Y
{P(n+1)>*={v;'BP){VP(1)>. The converse is easily seen because {V,.,BP)>*
<<{L,BPY>*{BP)*.

As an analogous result to Proposition 2.4 we have

Proposition 3.5. <v;'BP[k,m+1)>*=V ,;<,LK@)> for 0Sk=n=m=oo.
In particular, <v3*BPY*={E(n))*=<{v;'BP) and {B(n)>*=<{K(n))*=<{K(n)).

Proof. Assume that k<n. Note that (lim, v;'BP[k, m--1)) ..':lg_nﬁh
v;'BP[k, m+1)x and it is A(#)-flat and A(£)-injective because of (3.5). Since
the P(k)-module spectrum v;'BP[k, m-+1) is weak quasi-associative, its struc-
ture map gives a natural homomorphism (lir_ni hv;‘BP[k, m-+1)4) 1§ P(R)+ X
— (lim,,v;'BP[k, m+-1))4X which is an isomorphism. Therefore we ce:n define
a natural homomorphism (lim,,v;'BP[k, m+-1))*X — Homg,,(P(k)5X, lim;,v;*
BP[k, m+1)4) in the canonical way. This is an isomorphism, too. Hence
<lim,,v;*BP[k, m+1)>*=<B(k)> by means of Remark following Lemma 3.3.
Now induction on 2=n shows the desired equality, the 2=n case being trivial
by use of Lemma 3.3 i).

Theorem 0.2 follows from Propositions 2.1, 2.2, 2.4, 3.4 and 3.5, and (3.2).

4. Bousfield classes of sums and products

4.1. Fix m=0 and take a family {E,},>, of CW-spectra. Trivially we
have

(41) <vnszn> = vnzm<En> and <Hnngn>* = vngm<En>* .

Denote by C, D and F the cofibers of the maps V ,znE,—>I,2nE,, Vism
VE, - I1,5,VE,=V(V,2nE,) and V,>,VE, - V(I,>,E,) respectively. By
Verdier’s lemma we have a cofiber sequence VC—F—D. As is easily seen,

(4-2) 1) <anmEn>:<v(anmEn)>*= Vngm<En>V<C>:
11) <vnngn>*= vngm<En>*V<C>*)
lll) <anmVEn>= V n2m<vEn>V<D>)
iV) <vn2mVEn>*= Vngm<En>V<D>*7 and
V) <V(anmEn)>= Vngm<VEn>v<F>

Consider the families {P(%)},>m {#(7)},2m and {K(n)},sm of BP-module
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spectra. Then C=IL,>nP(1)|V yomP(1), I,2mk(1)]V y2uk(n) of ,>nK(®)|V 4om
K(n) is the Eilenberg-MacLane spectrum HA of type A where A=II, Z/p/
D« Z[p, and hence VC=Z"'HVA where VA=Ext(4, Z)). Moreover D=
S 'Ha and so F=3"H(AGVA).

Proposition 4.1. i) <II,5,P(n)>=<P(m)>,
i) <V uznPm)>* =<ILewVP(1)> =<V iznVP(1))* =V (Luzn P(1)> =<V szm

k(n))* =<Mzw VA1) )=V s2nVk(n)* =<V (ILznk(n))>= {gﬁ;ﬁ; g ,': :1) and
V<HZ[p>.

Proof. i) is easy.

ii) and iii): From [2, Theorem 4.5] it follows that (HAY>=<{H(APVA))>=
CHAY*={H(ADVA)Y*={HZ[p) because A is a Z[p-module. So the results
are shown easily by (2.6) and (4.2).

Next, consider the family {BP<{#n)},>, of BP-module spectra. C=II,,,
B{n)|V 42mB<n)> is connective, and hence VC is coconnective. Also, D and F
are coconnective.

Proposition 4.2. i) <I1,5,BP<{n)>=<{T,5nBP{1)|V yomBP<n>>=L\ 1om
VBP{n>>*={BP>, and
i) <V azmBPLIOY* =<2 VBPn)>=LV (U2 BP<n)) >=<HZ ;.

Proof. i) Since BP=lim,>,BP<#) and VBP=lim,>,VBP<{n), it is

immediate that <{II,5,BP<n>>=LV ,2x.VBP{n>>*={BP>. On the other hand,
we remark that IL,,BP<n /@ ,>nBP<{n)y is AP-flat. Use Lemma 1.7 ii)
to show the remaining equality.

ii) Since C is connective and both D and F are coconnective, {C>*V
DYWF>=<{HZ) by use of (2.4) and (3.3). So the desired equalities follow
from Proposition 2.1 ii) and (4.2).

4.2. Let E be a p-local CW-spectrum of finite type and {A4,},cs be a
family of Z(,-modules. Then [16, Lemma 4] gives that E(Il,cp4s)=I4en
EA,. By use of [2, Proposition 2.3] we observe

<EZ/p> z:f(HuEAAw)®Q =0

(4.3) IlaerEda> = {< E> if not so .

In particular,
(4.4) <UOLE) = <E) for any indexed set A.

Lemma 4.3. Let E be a p-local CW-spectrum of finite type and A be a



888 Z. YOSIMURA

Zy-module. Then

<(VE)Z/p> ZfHOl'Il(A, Z(p)) =0= EXt(A, Z(,))@Q
{VE> if not so .

In particular, V(L LE)>=LVE for any indexed set A.

w(ED)> = |

Proof. Take a free resolution 0—F,—Fj—A—0 of Z-modules and
put P;=Hom(F;, Z) for i=0, 1. From [16, Lemma 4] it follows that
V(EF;,)=(VE)P; for i=0,1. Let T denote the cofiber of the map SP,—SP,
of Moore spectra. Applying Five lemma we obtain immediately that V(E4)
=3"'WEAT. As is easily seen, BQP,=BQP, if and only if BA,=0 and
B®A=0=Tor(B, 4A;) for a Zj-module B where Ay,=Hom(4, Z) and
Ay=Ext(4, Z). This shows that V(EA)+X=0 if and only if (VE)A4;+X=0
=(VE)ApX, thus <V(EA)>=(VE)Az>'{(VE)Ar>. Now the result follows
from [2, Proposition 2.3].

To E=P(n), VP(n), BP{n), VBP<{n), k(n), Vk(n) and K(n) we may apply
(4.4) and Lemma 4.3.

By Corollary 1.8 and Proposition 2.4 <{B(n)>=<VB(n)>=<K(n)).
Corresponding to this result we have

Proposition 4.4. i) <II,.,B[#)> = ,2,VB(#)) = <V (II 2B (")) =
V sznl K(m)YV<HZ[p), and
i) <IAB(n)>=<I,VB(n)>=<V(II,B(n))>=<K(n)>.

Proof. i) <II,»,B(n)>=<{Il,5,K(n)> since I1,>,K(n) is a I1,,B(n)-module
spectrum. According to [7, Theorem 4.10] the Boardmann map B(n)—
K(n)AB(n) induces a Hurewicz monomorphism B(#)4X — K(n)4(B(n)AX). This
implies that (IL,5,B(7))x Y — (I1,>,K(n)AB(n))xY is a monomorphism for any
finite Y, and for a general Y when passing to the direct limit. Hence we get
a monomorphism (IL,2,B(7))xX = (IL,> K (7)) £((IL2nB(#))AX) and so <II,zn
B(n)>=<I1,2»K(n)>. Thus the equality <II,5,B(n)>=<I1,5,K(n)) holds.

Since V(I1,3,B(n)) and II,,,VB(n) are both II,,B(n)-module spectra,
we see that {V(I1,5,,B(n))>=<<{I1,>,B(n)> and 11,5, VB(n)> =<1l ,>.B(n)). Note
that K(n)x, B(n)y and VB(n)y are all A(«)-flat. Obviously B(n)yX — K(n)sX
is epic and K(n)4X — VB(n)4X is monic. Using the preceding argument we
can show that V(I1,5,K(n))xX— V(IL,>,B(1)xX and (II,5,K(7))xX— (2
VB(n))xX are both monic for a general X. This implies that <V(II,s,B(n))>
=<V (1,2 K(n))>=<,2,K(n)> and <I1,>,VB(n)>=<11,>,K(n)>. The desired
result is now immediate from Proposition 4.1 iii).

ii) Use Lemma 1.7 i).

4.3. By Corollary 1.8 <v;'BP)>=<E(n)>. Corresponding to this result
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we have

Proposition 4.5. i) <I1,s,v;'BP>=<11,5,E(n)>={BP), and
i) <Ixvy"BPY=<II,E(n)>="V og;<i{K (@)

Proof. i) II,,v:'BP4 and II,.,E(n)s are both AP-flat. We have an
isomorphism (IL,>,,E(7)) Si) P(k)y—11,5,v5'BP[k, n+1)4 since P(R)y is finitely
P*

presented as a BPg-module for each k, m=<k<{oco. So it is clear that (I,
E(n)*)l§ P(c0)4=#0 and (IL,3,v;'BPy) @ P(0)4=+0. Apply Lemma 1.7 ii) to
X BP,

obtain the desired equalities.
ii) Apply Lemma 1.7 i).

Proposition 4.6. i) <I1,.,L,BP>={11,>,N,BP>={BP>, and
indexed set A is infinite.

Proof. i) [19, Theorem 4.8] says that BP is s-harmonic, thus BP=lim,,,
L,BP. Hence it is obvious that <Il,s,L,BP>={BP>. Next, consider the

cofiber sequence TT,snN,P(E-4-1)— ITyznN,P(K) <& [T,2nS ?* DN, P(k) for cach
k, 0=k=m—1. Since I, N,P(k)sx is not v,-torsion, <{vy'll,z,N,P(k))>=
<{B(k)> by means of Lemma 1.7 i). An iterated use of Lemma 1.1 shows that
IyomNWBP>=V 4g4zm—1<BR) D)Mo N, P(m)>. So we use (2.8) to obtain that
(M1, N, BPY=(o BPYV<P(m)>=<BP}.

ii) is obtained by a similar argument to the latter part of i).

Proposition 4.7. i) <12,V M,BP>—{V(I1,2nM,BP)>—{Il,5,VL,BP>—
<V(ananBP)>:<HnngNnBP>:<V(Hn2mNnBP)>:<BP>7
ii) <I,VM,BP>=<V(II,M,BP)>=<I1,VL,BP>— (V(I1,L,BP)>—{v;'BP>
and <HAVNn+1BP>:<V(HANn+1BP)>:<’0;IBP>V<VP(1)>-

Proof. i) I1,,,VM,BPy and V(Il,>,M,BP)y are both A/-flat. Since
(H,,;,,,VP(n)*)@P(k)*gﬂ,,g,,VP(n)* for each k=m, it is easily seen that (II,z,
B. *

VP(n)x) @ P(0)y=+0 and hence (I1,>,VM,BPy) ;@ P(o0)y=#+0. Apply Lemma
BP, Py

1.7 ii) to show that <{II,>,VM,BP>=<{BP>=<V(I1,>,M,BP)>.

Using the cofiber sequence 11,5, VM, BP—11,.,VL,_,BP—11,.,VL,BP,
it is immediate that <{II,»,VL,_,BP>={Il,s,="VM,BP>={BP>, and hence
<{,5wVL, BP>=<{BP)». The remaining equalities are similarly shown.

ii) is obtained by the same argument as in the proof of Proposition 2.2.

Theorems 0.3 and 0.4 follow from (4.1), Propositions 4.1, 4.4, 4.6 and 4.7.
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5. P{n)y- and BP{n),-localizations

5.1. In [12] Mitchell constructed a finite p-local CW-spectrum X, such
that

(5.1) ©;2,BP4X,=0 and v;'BP,X,+0.

We call such a finite CW-spectrum X, a Mitchell complex of type n. Ravenel
[14, Lemma 4] proved the following useful result.

Proposition 5.1. Let X, be a Mitchell complex of type n. Then {P(n)>
=<{PM)nX,>.

By making use of Proposition 5.1 we have

Lemma 5.2, Let X,., be a Mitchell complex of type n+1 and E be a CW-
spectrum. Then
i) N-+1BP/\E=Pt 1’f Xn+1/\E=Pt:
ll) Xu+l/\LnE=Pt=Xu+l/\F(LnS’ E)’ and
i)y N, BPA\L,E=pt=N,, BP F(L,S, E).

Proof. i) Suppose that X, nE=pt. Then P(n+1),X, nE=pt, which
implies that P(n+1)\E=pt by Proposition 5.1. Now we obtain the desired
result since {P(n+1)>=<N,,,BP>.

i) X,y is v;'BP*-acyclic because <{v;'BP)>*={v;'BP)> by Proposition
3.5. Hence the Spanier-Whitehead dual DX,,, of X,,, becomes v;'BP-
acyclic, too (or use [3, Proposition 2.10]). Therefore L,E*DX,,,=0 and
DX, AL,S=L,DX,,,=pt. These show that L,EyX,,,=0=F(L,S, E)+X, .

iii) is immediate from i) and ii).

Proposition 5.3. Let X,., be a Mitchell complex of type n-+1. The
Jfollowing conditions are all equivalent:
i) a CW-spectrum E is v;'BP-local,
ii) Eis BP-local and X, ,nE=pt, and
iii) E is BP-local and N, ,BP \E=pt.

Proof. The implications i) —ii) and ii)—iii) follow from Lemma 5.2 i)
and ii).

ili)—1i): Note that L,BP\N, E=pt=N,  BPAL,E because of Corollary
1.3 and Lemma 5.2 iii). Then the localization map 75,: E—>L,E is a BPy-
equivalence under our hypothesis that N,,,BPAE=pt. Hence it becomes an
equivalence since E and L,E are both BP-local. Thus E is v;'BP-local.

If E is a BP-module spectrum, then so is EAX for any CW-spectrum X.
However E,X is not necessarily BP-local even if E is so. Bousfield [4] intro-
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duced BP-nilpotent spectra E, which have the property that E,X are also BP-
nilpotent for any X. Each BP-module spectrum is BP-nilpotent, and each
BP-nilpotent spectrum is BP-local.

Corollary 5.4 (Ravenel). If E is a BP-nilpotent spectrum, then E L,X
=L, (Ep\X)=L,ErX and E\N, ,X=N, (E\X)=N,E\X for any CW-spectrum
X. (See [14, Theorem 1]).

Proof. EAL,X and L,E,X are both BP-nilpotent, and hence they are
BP-local. Moreover X, \AEAL,X=pt=X, AL, ErX by Lemma 5.2 ii). So
Proposition 5.3 shows that EAL,X and L,EAX are both v;'BP-local. Now
the result follows immediately.

The above corollary gives easily
(5.2) <LE>ZLL,F) and N, E>2{N,F>
if <E>=(F> for BP-nilpotent spectra E and F. (Cf., Lemma 1.2 ii)).

5.2. We here describe the P(n)y-localization in terms of the BPy- and
;' BP-localizations.

Lemma 5.5. Let E be a BP-nilpotent spectrum. If a CW-spectrum X
is E-local, then the function spectrum F(N,S, X) is N,E-local.

Proof. If Y is N,Ey-acyclic, then Ey(Y N,S)=N,E.Y=0 by use of
Corollary 5.4. Thus Y,\N,S is Eg-acyclic. Hence F(N,S, X)*Y =X*(Y,N,S)
=0 when X is E-local. So we obtain the desired result.

Theorem 5.6. Given a CW-spectrum X, the composite map X— LppX
—3"F(N,S, LypX) is the P(n)x-localization of X. Thus Lpuy=3"F(N,S, Lgp),
where Ly denotes the Ey-localization functor for E=BP or P(n).

Proof. From Lemma 5.5 it follows that F(N,S, LjpX) is P(n)-local
because {P(n)>=<{N,BP). Moreover F(L,_,S, LypX) is P(n)4-acyclic by means
of Lemma 5.2 iii). Hence the composite map X — LypX—="F(N,S, LX)
becomes a P(n)4-equivalence. So we observe that Ly, X=3"F(N,S, LyzX).

We next study the BP<{n),- and VN, BP,-localizations. Recall that
{BP<{n>>=<v;"BPY{HZ|p> and VN, ,BP>=<v;"BPY<VP(1).

Proposition 5.7. Let E be a BP-nilpotent spectrum with <E>=<{v;'BP).
Then a CW-spectrum X is E-local if and only if X is BP-local and F(N,,,S, X)
is N, E-local.

Proof. The “only if”’ part: Note that BP4Y=0 implies E,Y=0 when
E is BP-nilpotent. Thus X is BP-local if it is E-local. The latter part
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follows from Lemma 5.5.

The “if”” part: Suppose that E4Y=0. By making use of Corollary 5.4
we see that BPy(YAL,S)=L,BP,Y=0 since <E>={v;'BP»=<L,BP), and
N, Ey Y =E(YAN,,;S)=0. So the localities of X and F(N,.,S, X) give
that X*(YAL,S)=0 and X*(YAN,.S)=F(N,.,S, X)*Y=0, which imply
X*Y=0. Thus X is E-local.

Since {N,,BP<{n>>={HZ|p> and {N,,VN, ,,BP>={VP(1)> we have

Corollary 5.8. i) A CW-spectrum X is BP<{n)-local if and only if X is
BP-local and Lp,.yX is HZ|p-local.
it) A CW-spectrum X is VN, ,BP-local if and only if X is BP-local and Lp¢,.X
1s VP(1)-local.

When a CW-spectrum X is connective, it is HZ,-local. So Corollary 5.8
i) implies
(5.3) LppyX = Z'F(N,S, X) is HZ[p-local if X is connective. (Cf., [4, Theorem
3.1]).

Given a CW-spectrum F we denote by CrX the cofiber of the localization
map 7p: X—>LzX. When F=v;'BP, C;X is written %7 "N,,,X. Consider
the composite map LzX— CpX — L,CrX, whose cofiber is denoted by Z'Lz »X.
Then we have a commutative diagram

X = Lip X —> 27N, ,CpX

I V y
X — LpX ——> CpX
ey b T
L,CoX —— L,CoX

involving four cofiber sequences.

Proposition 5.9. Let F be a BP-nilpotent spectrum and E be a CW-
spectrum with {E>={v;'BPY><F». Then the map X— L ,X is the Ey-
localization of X for any CW-spectrum X. Thus Ly=_Lz,.

Proof. Since FyN,,,CrX=N, (FA\C+X)x=0 by Corollary 5.4, we see
that N,,,CrX is in fact Ey-acyclic. Moreover LpX and L,CrX are both E-
local, so L »X is E-local, too. Hence we verify that L;X=L »X.

The above proposition states the BP{n)>4- and VN, ,;BPy-localizations in
terms of the v;'BPy-, HZ[p4- and VP(1)y-localizations.

Corollary 5.10. Lypny=Liazsp,n and LVN,+IBP=L(VP(1).n)-

Theorem 5.6 and Corollary 5.10 give Theorem 0.5.
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