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1. Introduction

A partial geometric space S of dimension m=2 defined in [2, 6] consists
of the sets {4;}7-_1 and the set T such that the following eight axioms are satis-
fied:

(1) A4;NA;=¢ whenever iZ=j and —1=4, j<m.

@) [4]l=]4u]=1.

3 Tl ;.

The elements of A;, —1=<i=<m, are called 7 elements of S. The elements of
T are called flags of S. There is a property called incidence which is a rela-
tion between the elements of S based on the flags.

(4) For each 7 element x; there is a flag (¢_,, -, #,)E T such that x;=t¢,,
where —1=<i=<m.

(5) Whenever (y-y, =+, Ym)ET and (2-y, *+, 2,) €T and y,=z2, for some
k, —1=<k=m, then there exists a flag (¢_,, -+, t,,) €T, where t;,=y, for —1=i<k,
and t;=z; for k=< j<m.

(6) If x;€4; and x;€A4;, then x; and x; have an [ intersection x,E4,
and an s join x,€4,. Here x; and x; are said to have an / intersection x; (s
join x,), where —1=<I/<min{s, j} (max{i, j} <s=<m) if and only if %, (x,) is
incident with x; and x; such that whenever x, is an # element of S for —1=n=<
min{Z, j} (max{i, j} =n=m) which is incident with x; and x;, then x, is inci-
dent with x; (x,) and —1=#=[ (s=<n=<m). By the definition, x; and x; have
unique intersection and unique join.

(7) If x;,€4;_, and x;,€4,,, are incident, then there are k(7) 7 ele-
ments which are incident with x;_, and x;,,, where 2=<k(7)<<oo, for 0=i<m—1.
The number k(%) is independent of the choice of x;_, and x;,,, and depends only
oni. k(0), k(1), -+, k(m—1) are called the configuration parameters of S.

(8) Let m=2. If x,€4,; and «x;,,€4;,, have an (/—1) intersection x;_,
and an s join x,, where 0=i/<m—2 and i+2=<s=<m, then there are (i, s, k) ¢
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elements y;, which are incident with x;_, and x;,, such that y; and x; have an

(+k) join for 1<k=<s—i—1. Also ‘i}_lt(i, s, B)=1 for 0=i=m—2 and {+2=
k=1

s=m. The numbers (7, s, k) are called the geometric parameters of S.

The concept of a partial geometric space of dimension 7 is an extension
of the concept of a partial geometry introduced by R.C. Bose [1]. A partial
geometry of dimension three introduced by R. Lasker and J. Dunbar [5] is
called an L.D. partial geometric space of dimension three in [6].

We have two examples of partial geometric spaces of dimension m.

ExampLE 1 [6]. Let 4 be a set consisting (m+1) distinct symbols, where
m=2. Let A_,={¢}. For 0=j=<m, A;={BCA| |B|=j+1}. Note that
A,={4}. Let T={(t_, -, t,,,)eiﬁlA,-lt,-Ct,-ﬂ for —1<i<m—1}. Then
S;=({4;}7-_1, T) is a partial geometric space of dimension m. The configura-
tion parameters are k(7)=2 for 0=i<m—1. The geometric parameters are
t(i, i+2, 1)=2 for 0=<:/<m—2 and the rest geometric parameters need not be
defined.

ExampLE 2. Let PG(m, q) be the finite projective geometry of dimension
m and of order ¢, where m=2 and ¢ is a prime power. Let A_,={¢}. For
0=<j=<m, A;={B|Bis a j dimensional subspace of PG(m, q)}. Let T={(¢_,,
o, 2)E€ I1 A;|t:Ctiyy for 0<i<m—1}. Then S,=({4;}"-_,, T) is a partial

i=-1

geometric space of dimension m. The configuration parameters are k(7)=q+1
for 0=<i<m—1. The geometric parameters are (7, 42, 1)=¢-+1 for 0=:=
m—2 and the rest geometric parameters need not be defined.

Two partial geometric spaces S, and S, of dimension m have common
property:
(1) k(?) is constant for 0=i=m—1
#) (i) #(z, s, k)=k(7) for 0<i<m—2, where s=i+2 and k=1,
and the rest geometric parameters need not be defined.
From (ii) of the property, we note that for any 7 element and ¢+1 element which

have an (i—1) intersection and are not incident, they have an (74-2) join.
In section 2, we shall prove the following theorem.

Theorem. Let S=({A4;}7-._1, T) be a partial geometric space of dimension
m=2 satisfying property (§). Then S=S, if k(i)=2, and S=S, if k(@)=a+1>
2 and m=3.

In section 3, we shall give an another example of partial geometric space
of dimension m=3.
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2. Proof of Theorem

Let S=({4;}7--1, T) be a partial geometric space of dimension m=2.
Let x,€4; and x;,€A4;, where —1=17, j<m. «x; is said to be incident with
x; if and only if there exists a flag (¢_,, -+, #,)E T such that x;=¢#; and x;=¢;.
Let x;=A4; and x,€ 4, such that x; and x, are incident, where —1= j<k=m.
(2, x;, x,) is the number of ¢ elements of S which are incident with x; and
%, where —1=<i=<m. The number ¢(7, x;, x,) is a finite positive integer
which is independent of the choice of the j element x; and the % element x,
[2]. Therefore put ¢(s, j, k)=a(7, x;, x).

From now on in this section, we assume that .S satisfies the property (#).

Lemma 1. Let x; and y; be two distinct i elements such that they have
an (i—1) intersection x;_, for 0=i<m—1. Then x; and y; have an (i+1) join.

Proof. Let x;,; be a join of x; and y;, where />>1. Then there exists an
(7+1) element y;,, which is incident with x;_, and x;,, and is not incident with
x;. From the property (#), we have /=2 and there are k(i) ¢ elements z;,
which are incident with x;_, and y,,,, such that 2; and x; have an (41) join.
Those k(7) 7 elements are distinct from y;. Consequently, there are (k(z)4-1) 7
elements which are incident with x;_; and y;,,. This is a contradiction. There-
fore I=1, i.e. x; and y; have an (741) join.

Lemma 2. ¢, x;_y, %) =¢(, i—1, k)= k(1)(k()—1)* "+ (k(Z)—1)k2
+ oo - (R(E)—1)+1, where 0=i<k=m, and x;_,€A;_, and x,E4,.

Proof. It shall be proved by induction on k—i-+1, say &. When t=2,
from the definition, ¢(i, x;_;, %;4)=e¢(@, i—1, i+1)=Fk(z). Therefore the
lemma holds when ¢t=2. Suppose that £>2 and assume that the lemma holds
whenever k—i-+1<t, where 0<i<k<m, and 2<<t<m-+1. Let x;_, be an
(#—1) element and x; be a k& element such that x;_, and x, are incident in S,
where 0=<i<m—2, i+2<k=<m and k—i+1=¢. Count triples (x;, X;1;, ¥;+2),
where x; (<I<i+2) is an / element such that x,, and x,,, (—1=I'<i4-1),
and «x;,, and x, are incident in S.

Given a fixed 7 element x; which is incident with x;_;, and x,, there are (k(7)
(R(2)—1)* 24 (k(Z)— 1)k i3+ --- +-(k(5)—1)+1) (i+1) elements x;,,, which are
incident with x; and x,, by the induction hypothesis.

Similarly, given a fixed pair (;, x;.,), where x;_; and x;, x; and x;.,, and x;,
and «x, are incident in S, there are (R(Z)(k(Z)—1)" =3+ (k(@Z)—1)" "4+ -+ +(k
(#)—1)+1) (¢+2) elements, which are incident with both x;,; and x,.
Therefore the number of triples is

(k@) (RE)— 1) (RE)— 1) - (k@) —1)+1) X
(R(E)(R(E)— 1) (RE)— 1) - +(REO—1)+1)G, %1y %3) -



404 H. KiMura anD H. OHMORI

On the other hand, count pairs (¥;, x;4,), where x; ((<I<i+1) is an [/ element
such that x; and xpy, ({—1=0'<7) are incident in S. Let x; and y; be distinct
two ¢ elements which are incident with x;_, and x,, then x; and y; have an
(-+1) join, say y;y,. For y;,, there are (k(zi)> pairs (xf, y}) such that an
7 elements x/ and y{ have an (74-1) join y;,, and an intersection x;_,, by the defini-
tion of k(7). Consequently there are <¢(l’ x&“’ x,,)) k(3)/ (kg)) pairs (x;, ¥;4,)
such that x;_, and «;, x; and x;,,, and x;,; and x, are incident in S. The
contribution to triples of such a pair (x;, x;4,) is (R(2)(k(2)—1)F~~3 +-)k(5)— 1)~
+ -+ 4-(k(Z)—1)+-1) by the induction hypothesis. Therefore we get

(RO~ B~ 15 e (k) — D+ 1) X
(RO =D 5RO~ 1P o (RO~ D), 2imsy 22
— (k(E) (k@) — D () — D - (RO — D+ 1) X

-, i-1 > k )
(‘ﬁ(’ x2 1 xk))k(,)/< 5’))
Consequently we have the lemma.
ReMARK. This lemma can be obtained from Theorem 7.1 in [6].

Lemma 3. If k(i)=2, ¢, i—1, B)=k—i+1, and if k(i)=a+1>2,
&G, i—1, B)y=(a*" 1 —1)/(a—1), for 0<i<k<m.

Proof. It is obvious from Lemma 2.
Lemma 4. If k(i)=2, 4(i, j, k):(f_“]f) for —1<j<i<k<m.

Proof. Let x; be a j element and x, be a k& element such that x; and x,
be incident in S. Count (k—j+1)-tuples (x;, :*+, x;, **+, &3), Where x; (j<I<
k—1) is an [ element such that x;, and x,,, are incident. By Lemma 2, there
are (k—j) (j+1) elements x;,; which are incident with x; and x,. For such
X4, there are (k—j—1) (j+2) elements which are incident with x;,, and x,,
and so on. Consequently there are (k—j)! (k—j+1)-tuples. On the other
hand, given a fixed 7 element x; which is incident with x; and x,, there are
(7—j)! (#—j+1)-tuples (x;, -+, x;) where an / element x; and an (/4-1) element
%14, are incident (j=<I=<i—1), and there are (k—17)! (k—i+1)-tuples (x;, +:*, &)
where an /' element x, and an (/41) element x,,, are incident in S, for
iSI'<k—1. Therefore we get ¢(s, xj, x)(k—17)! (:—j)!=(k—j)!. Thus the
proof is complete.

Lemma 5. If k@)=a+1>2, ¢(, 7, k) = ﬁ (=i —1)/(a’'—1) for
—1=Z j<i<k=m. 151
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Proof. It is similar to the proof of Lemma 4. So, we shall omit a proof.

We note that ¢(s, j, k)=¢(, —1, j) when i<<j, and ¢(s, j, k)=¢(, &, m)
when k<. So, ¢(, j, k) is defined for 7, j and & such that —1=<j<k=m, —1
<i<mand i=j, k.

By the incidence structure in S, an 7 element x; can be corresponded to

a subset b(x;) of A, consisting of 0 elements which are incident with x;, where
0Zi=m.

Lemma 6. The above correspondence of A; to a family consisting of sub-
sets of A, is injective.

Proof. Assume that b(x;)=>5(y;) for an 7 element y; (x;). Let x;, be an
[ intersection of x; and y;. Then I<¢ and b(x;)2b(x;). On the other hand,
|8(2;)| =¢(0, —1, j) for every j element 2;. This contradicts ¢(0, —1, /)<
¢(0, —1, 2).

REMARK. Similarly we can prove that b(x;)==b(x;) for x;=A4; and x,€ 4,
where 7.

Lemma 7. If k()=2, then S=S,.

Proof. |A4,|=¢(0, —1, m)=m-1. Since ¢(0, —1,2)=i+1, every element
of A; is a subset of 4, consisting of 41 elements. By Lemma 4 and Lemma
6, A; is a family of all subsets of 4, containing 41 elements. By the defini-
tion, for 7<<j, ;€ A4; and x;= 4, are incident if and only if b(x;) Cb(x;). Thus
the proof is complete.

Next we assume that k(2)=a-+1=3 for 0=i<m—1. By Lemma 6, an
1 element x; is identified with a subset of A4,.

Lemma 8. A incidence structure D=(A4,, A,-,) is a symmetric 2—(v, k, \)
design, where v=(a"'—1)/(a—1), k=(a”—1)/(a—1) and A=(a"'—1)/(a—1).

Proof. By the definition, v=¢(0, —1, m) and k=¢(0, —1, m—1). Let
%y and y, be two elements of 4,. 'Then there exists a 1 element x;, by Lemma 1
which is a join of x, and y,. But every element of A4,_; containing x, and y,
has to contain x;. Thus we have A=¢(m—1, 1, m). By Lemma 5, we have
the lemma.

Elements of A4, and elements of A4,_, are called points and blocks in D,
respectively. For x;E4; and y,E4;, where 0=i=< j<m—1, we define {x;, y,>
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be an intersection of all blocks of D containing x; and y;. Especially <x,, y,>
is called a line spanned by x, and y,, where x,&4, and y,EA4,.

Lemma 9. Let x, and y, be two elements of A,. Then there is an element
of A,,—, which is incident with x, and not incident with y,.

Proof. Let x; be an [ join of x, and y,. Then />1. By the property
of x;, the number of elements of A4,,_, which are incident with x, and y, equals
to the number of elements of A4,,_; which are incident with x;,. This number is
¢(m—1, I, m) which is smaller than ¢(m—1, 1, m) by Lemma 5. This proves
the lemma.

Lemma 10. D is a design such that its points and blocks are points and
hyperplanes of a finite projective geometry P of dimension m, respectively.

Proof. Let x; be a 1 join of x, and y, where %, y,&4, By Lemma 1,
x, is contained in every block of D which is incident with x, and y,. There-
fore {xp, yoo2%,. If <xy, y>Fx;, then there is an element 2, of <{x,, ,> which
is not incident with x,. Let x; be an [ join of 2, and x,, where />1. Let 2,
be an element of A4, which is incident with x; and 2,, Then 2%, and 2,
is contained in all blocks which contain x, and y,, But by Lemma 9, there
exists a block of D which is incident with », and not incident with 2;, and hence
2z, is not contained in <{wx, y,>. Hence {x, y,>=x,. Therefore (v—A\)/(k—2\)
=a-+1=|x,|. By using a result in [4], we have the lemma.

Lemma 11. An i element x; is a subspace of P of dimension i for 1<i=m.

Proof. We shall prove the lemma by the induction on . By Lemma 10,
the case of =1 is true. Let =2. Then there exist elements x;_; and y;_,
of A;_;, and an element x;_, of 4;_, such that they are incident with x;, and
that x;_, is incident with x;_, and y;_;. By Lemma 6, there exists an element
9o of y;_; which is not contained in x;_;. By the induction hypothesis, y;_,
=<x;_,, Yo» Which is a subspace of P spanned by y, and all elements of «;_,.
Therefore we have <{x;_;, yoo=<%;_y, ¥;->- Since A4,, is a projective space and
x;_, is an i—1 dimensional subspace, <x;_,, ¥,> is an ¢ dimensional subspace,
and hence |<{x;—;, yo>|=(a'*'—1)[(a@—1). On the other hand, we have
{x;_yy YVi-pDx;, because x; is contained in every elements of 4,_; containing
x;_, and y;-;. By Lemma 3, |x;|=|<%;_;,¥>|. Therefore we have x;=
{®;-1, ¥o»- 'Thus the proof is complete.

By Lemma 7 and Lemma 11, a proof of Theorem completes.

3. Another example

ExampLE 3. Let V' be an m dimensional vector space over GF(2) (m=3),
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and H the set consisting of all m—1 dimensional subspaces of V. Put 4_,
={¢}, Ap=A{V—A{0}} and 4;={M/ N NM,_ | M 2M,NM,2 -- 2 71M

M,eH} for 0<i<m—1, where M,'=V—M,. We say that x;& 4, is incident
with x;€4; if and only if x,Cx; (=<7). We shall show that S;=({4;}7-_1, T)

is a partial geometric space of dimension m, where
m
T = {(x_y, +++y X35 ==+, %5, +++, %,,) € I A;|%; is incident with x; (—1=i<j<m)}.
i=-1

Lemma 12. For x,€4,, |x;|=2' (:=0).

Proof. Let x;= ﬂ M,, , then n M is a subspace of dimension 7. Thele-

fore we have that by the prmmple of inclusion and exclusion |x;|=2"-+ 2
( )( 1) 2= =2i(2—1)m-i=2’

ReMARK A. Let x,&4, and MeH (x,&M). Since V—{0} is a pro-
jective space, M° is an affine space. Thus M°— {x,} is a projective space over
GF(2).

At first, we define the intersection and the join. For z,€4, (0=I/=m—1),
put K(z)={MeH|M’>z}, and K(2_,)=H and K(z,)=¢, where z_,€4_,
and 2,,€4,,. Letx; andy; (—1=1i, j=<m) be elements of 4; and 4;, respective-
ly. Then a set mr:l IL,“ is defined to be an [ intersection of x; and x; where ele-

u=1
ments L, (1=u=m—I) of K(x;)UK(y,) satisfy L,2L, NL,2 -+ 2 ﬂ L and
n L CL for any element L of K(x;)UK(y;). We denote ﬂ L by x; /\y,
We note that 1f there ex1sts an element L,,_;,; of K(x;)U K(y;) such that n L =
m—1l+1 m—

n L, and ﬂ L = ﬂ L,, , then x; and y; have a —1 intersection. Because
let V_V/Llﬂ ﬂL,,,_, and L,=L,/L,N+--NL,_, (1=u<m—I). By Lemma
12, |[Lfn--NnL,_ =1, and hence L{n---NL,_,.,°=¢. This implies
% N\Yi=¢.

Next, a set :@: J.* is defined to be an s join of x; and y; where element J, (1=
wSm—s) of K(x)NK(y,) (+¢) are satisfy ;= ;N ;=2 N J, and N J,
c J for any element J of K(x,)NK(y;). We denoter J.,S or V—{0} by x;Vy;
according to K(x;) N K(y;)=*¢ or =¢. It is obvious ;hat the intersection and

the join of x; and y; is well-defined.
By the above paragraph, we have the following lemma.

Lemma 13. Let K be a subset of H. Then N N° is an element of A, for

NEK
some 1.



408 H. Kimura aNpD H. OHMORI

Lemma 14. Let x,= mr:I'M ° and x;= mﬁjN,,‘ be elements of A; and A;,
u=1

respectively. If x;Cx;, then ﬂ M c ﬂ N
Proof Suppose that there exists N, (1=2=m—j) such that ﬂ M &N,
Then ﬂ M,2 ﬂ M NN, so x;_,= ﬂ M NN, is an element of A4;_;,. Hence

U M UN 2 U M by Lemma 12 On the other hand, by the hypothesis
x,Cx,, M D U N Hence U M,DN, 'This is a contradiction.

Lemma 15. Let W be an i dimensional subspace of V. Then |{x;€4;|
xi= N M5, where N My=W}|=2"""—1.

Proof. Put V=V/W. By Lemma 12, |MN---NM,_|=1. Since GL
(m—i, 2) acts transitively on V — {0}, we have the lemma.

By Lemmas 14 and 15, we have the following:

”—11) @7 1) for m>i>

Lemma 16. |A4,|—=2"—1 and | 4, ;_( -

0.
Lemma 17, Let x;= ﬂM be an element of A; (0=i=m—1), then | K(x;)|
—m=i-1
Proof. Without loss of generality, we may assume 7=0. By Lemma 12,
put M,°N+-- N M, '={a}, that is every elements of H contained in U M, does
u=1

not contain {a}. Since the number of hyperplanes of V/<{a) equals 2"~'—
the number in the lemma equals (2" —1)—(2""'—1)=2""1,

Lemma 18. k(0)=Fk(m—1)=2 and k(i)=3 for 0<i<m—1.

Proof. Let x; be an element of A4;. Since |[4,|=2"—1 by Lemma 16
and |»,|=2 by Lemma 12, we have k(0)=2. For k(m—1), consider a factor
space. Then we have similarly that k(m—1)=2. For 0<<i<m—1, the lemma
follows from Remark A and Example 2.

Lemma 19. Let a and x; be elements of V—{0} and A, respectively.
Assume that there exist elements M and N of K(x;) such that ac€M and a<N,
where 1=0. Then |{LEK(x;)|ac€L} | =|{LeK(x;)|ac:L}].

Proof. Without loss of generality, we may assume N L= {0}, thatis, 7=0.

125 )
Put X={LeK(x;)|acL} and Y=K(x,)—X. Let y,= N L° and 2= N L.
Lex Ley

SmcezﬂxLSa, j>0. Since 2,2a, 2;#x, and hence />0. Since |K(x,)|>|
(=]
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K(y;)|=2""2|X| and |K(x)|>|K(z;)|=2""""'2| Y|, we have that 27!
=|X|+|Y |27 1'4-27!"1, Hence j=I=1. This proves the lemma.

Lemma 20. The geometric parameters are the following:

(1) (G, i+2, 1)=3 for 2<<i-+2<m,

(2) (G, my m—1)=1 and t(i, m, 1)=2 for 0<i<m—?2,

(3) #0, 2, 1)=if <xy, x> is a subspace of dimension 3 and (0, m, 1)=2 if
xoC <%, where x, (=0, 1) are elements of A, such that x,is not incident with
%,.  The rest geometric parameters need not be defined.

Proof. (1) follows from Example 2 and Remark A. Let x; and «x,., be
elements of 4; and A,,,, respectively, such that they have an (/—1) intersection
x;-, and an m join x,. Considering a factor space, we may assume 7=1. Put
xp={a}, x,={a, b} and x,={a, ¢, d, ¢} by Lemma 12, where a, b, ¢, d and e
are distinct elements of V'—{0}. Since x,=x,Vx,, there exist elements M
and N of K(x;) and K(x;), respectively, such that M does not contain @ and b,
and that N contains & and does not contain q, ¢, d and e. Let Y=K(x,)—K(x,).
Then |Y|=2""% by Lemma 17 and N (€H) is contained in Y if and only if N
contains b and does not contain a. Put ylzNQyN ‘, then x,Cy,Cx, sinceNQyN

5b. Thusy, is an element of 4, and K(y)NK(x)=¢, since Y=K(y).
Therefore y,Vx, is contained in 4, and #1, m, m—1)=1. Let 2,=1{a, ¢}
and wy={a, d}. Since K(y)NK(x)=¢ and |[K(x;)| =|K(n)|=|K(x)]/2,
K(z)NK(x)*+¢ and K(w,) N K(x;)*¢. This implies that there are elements
M and N of K(x,) such that c€ M and ¢ N. By Lemma 19, |K(x,) N K(2;)
|=|K(x:)|/2, and hence x,V2,E4,. Similarly x,Vw,&4;. Therefore #(1, m,

1)=2. By the definition, MZ_‘,I t(1, m, u)=k(1)=3. This implies (2). Next as-
“=1
sume that i=0. Put x,={a}, x,={b, ¢} and let x,=x,Vx,. Since |4;|=

(2’”; 1) by Lemma 16, {a, b} and {a, ¢} are contained in 4;,. Thus #0, s, 1)=

2. If <a, b>>¢, then |H|-3|{MeH |acM}|+2|{McH|M><a, bD} |=
2"—1)—3(2"*—1)42(2"*—1)=0. Therefore K(x)) N K(x;)= ¢, so s=m.
If <a, b>Pc, then

|H|—-3|{MeH|acM and b, c« M} | +3|{McH|a, beEM
and ce M} | — |{M<H|a, b, c&M} |
= (2" '—1)-3(2"'—1)4-3(2"2—1)— (273 —1) = 2"~3,

Therefore |{Me&H|a, b, ce M} |=|K(%V %)|=2""3 and hence x,V«, is an
element of 4,. 'This completes a proof of the lemma.
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