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1. Introduction

A partial geometric space S of dimension m^2 defined in [2, 6] consists
of the sets {A^™ i and the set T such that the following eight axioms are satis-
fied:

(1) A{ Π Aj=φ whenever ίΦ/ and — 1 ̂ i, j^m.

(2) 1^1 = 14.1=1.
(3) Γc Π Λ.

ί=-l

The elements of Aiy —l^i^m, are called / elements of S. The elements of
T are called flags of S. There is a property called incidence which is a rela-
tion between the elements of S based on the flags.

(4) For each i element x{ there is a flag (t.ly ••-, tm)^T such that #,-=£,-,
where —l^i^m.

(5) Whenever (y_l9 •••, ym)^T and (z_l9 •••, zm)^T and yk=Zk f°r some
k, — 1 <^k^m, then there exists a flag (f_ l f ••-, ̂ )e Γ, where *,•=# for — 1 ̂ i
and tj=Zj for k^j^m.

(6) If Xi^Ai and Xj^Aj, then Λ,- and Λ?y have an / intersection
and an s join Λ:se-4s. Here #f and Λ?; are said to have an / intersection #/ (ί
join Λ?5), where —l^/^min{z, j} (max{/, j}ίίs^nί) if and only if xt (xs) is
incident with xf and Xj such that whenever xn is an w element of S for — l^n^
min{ι", j'} (max{/, j}^n^m) which is incident with Λ?; and xj9 then Λ?n is inci-
dent with Xι (xs) and — l^n^l (s^n^m). By the definition, xi and Λ?y have
unique intersection and unique join.

(7) If Xi-^Af-i and xi+1^Ai+1 are incident, then there are k(i) i ele-
ments which are incident with x{_Ί and xί+1, where 2^Λ(ί)<C°°, for O^i^m—1.
The number k(i) is independent of the choice of #,-_] and xi+l, and depends only
on /. Λ(0), k(l)y •••, k(m— 1) are called the configuration parameters of S.

(8) Let m^2. If Xf^A{ and #, +1e^lt +1 have an (i—1) intersection #,-_!
and an s join #s, where O^i^m—2 and ί+2^j^w, then there are t(iy s, k) i
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elements yit which are incident with #,-_! and xi+l such that yt and xt have an

(i+k) join for l^k^s—i—1. Also*Σ V> •*> )̂ = ! for O^i^at— 2 and i+2^

ί^m. The numbers £(/, s, &) are called the geometric parameters of S.

The concept of a partial geometric space of dimension m is an extension
of the concept of a partial geometry introduced by R.C. Bose [1]. A partial
geometry of dimension three introduced by R. Lasker and J. Dunbar [5] is
called an L.D. partial geometric space of dimension three in [6].

We have two examples of partial geometric spaces of dimension m.

EXAMPLE 1 [6]. Let A be a set consisting (m-\-l) distinct symbols, where
m^2. Let ̂ .^{φ}. For Q^j^m, Aj={BdA\ \B\=j+l}. Note that

Am={A}. Let Γ= {(*-!, •», tm)€Ξ Π 4 l*, cifί+1 for -l^i^m-1}. Then
ί= — 1

^=({^4,.}^ __ !, T) is a partial geometric space of dimension m. The configura-
tion parameters are k(i)=2 for O^i^m—1. The geometric parameters are

t(i, ι+2, ί)=2 for O^i^m—2 and the rest geometric parameters need not be
defined.

EXAMPLE 2. Let PG(m, q) be the finite projective geometry of dimension
m and of order q, where m^2 and q is a prime power. Let A_^={φ}. For
Q^j^m, Aj={B\B is a; dimensional subspace of PG(τw, q)}. Let Γ={(ί_lJ

-., ίje Π Λ |ί, dίί+1 for O^i^m-1}. Then 52=({^}Γ— i, Γ) is a partial
ί=-l

geometric space of dimension m. The configuration parameters are k(ι)=q+l
for O^i^m— 1. The geometric parameters are ί(z, ί+ 2, !)=}+! for O^t^
m—2 and the rest geometric parameters need not be defined.

Two partial geometric spaces S1 and S2 of dimension m have common
property:

(i) k(i) is constant for O^i^m— 1
(ii) ί(ί, j, k)=k(i) for Q^i^m—2, where j=ί+2 and Λ=l,

and the rest geometric parameters need not be defined.

From (ii) of the property, we note that for any i element and /+ 1 element which
have an (/—I) intersection and are not incident, they have an (ί+2) join.

In section 2, we shall prove the following theorem.

Theorem. Let S=({Ai}?=,_1, T) be a partial geometric space of dimension

m^2 satisfying property (#). Then S=Sl if k(i)=2, and S=S2 if k(i)=a+l>
2

In section 3, we shall give an another example of partial geometric space
of dimension m>3.
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2. Proof of Theorem

Let S=({Ag}f __ i, T) be a partial geometric space of dimension m^2.
Let Xf^Ag and x^Aj9 where — lίg/, j^m. x{ is said to be incident with
Xj if and only if there exists a flag (f_1? •••, tm)^T such that Λ?f =ίf and X j = t j f

Let Xj^Aj and #ΛG.4Λ such that #y and Λ?Λ are incident, where —l^j<k^m.
φ(iy Xj, xk) is the number of i elements of S which are incident with Xj and
xk9 where — l^i^m. The number φ(i9 xj9 xk) is a finite positive integer
which is independent of the choice of the j element Xj and the k element xk

[2]. Therefore put φ(ί,j9 k)=φ(i, xj9 xk).
From now on in this section, we assume that S satisfies the property (#).

Lemma 1. Let Xg and y{ be two distinct i elements such that they have

an (/—I) intersection x^ for Q<ίi^m—l. Then Xg and yg have an (i+1) join.

Proof. Let xi+J be a join of xi and yi9 where />!. Then there exists an
(i+1) element yi+1 which is incident with xt^ and xi+l and is not incident with
Xg. From the property ($), we have /— 2 and there are k(i) i elements #, ,
which are incident with Xg^ and yi+l9 such that #,. and Λ?, have an (i+1) join.
Those yfe(/) i elements are distinct from y{. Consequently, there are (Λ(/)+l) /

elements which are incident with Xg^ and j, +1. This is a contradiction. There-

fore /=!, i.e. Λ?, and jy,- have an (ί+1) join.

Lemma 2. φft *,_,, *.)=φ(i, *-l, fe) =
and Xg^^Ag^ and

Proof. It shall be proved by induction on k—i+l, say t. When t= 2,
from the definition, φ(i, ^-.j, χi+})=φ(iy i—l, i+l)=k(i). Therefore the

lemma holds when t=2. Suppose that t>2 and assume that the lemma holds

whenever k— ΐ+l<Λ where Q^i<k^m, and 2<ί^m+l. Let #,-_! be an
(i—l) element and xk be a ^ element such that #t _ j and xk are incident in *S,

where O^i^m— 2, i-\-2^k^m and Λ— /+l=ί Count triples (Λ?,-, Λ?£+I, Λ?f +2)>

where Λ?/ (z^/^/+2) is an / element such that #// and Λ?//+I (/— l^/'^ί+l),

and xi+2 and Λ;^ are incident in S.
Given a fixed / element xt which is incident with Xg^ and xk, there are (k(i)

(kφ-iy-'-t+Wi)-!)*-'-^ ----- \-(k(i)-l)+l) (i+1) elements xi+l, which are
incident with xs and xk, by the induction hypothesis.
Similarly, given a fixed pair (xi9 Λrί+1), where Λ?,-.! and xi9 x{ and Λ?, +I, and xi+ί

and Λ?Λ are incident in 5, there are (Λ(ί)(*(0— 1)*~l'"3+(*(ί)— 1)*"f'"4+ — +(*
(ί)— 1)+1) (i+2) elements, which are incident with both xi+1 and Λ?A.
Therefore the number of triples is

, *ι-ι,
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On the other hand, count pairs (xίy xi+1)y where xt (i^l^i+l) is an / element

such that #// and #//+1 (i—l^Γ^ί) are incident in S. Let#, andy, be distinct

two i elements which are incident with #,-_! and xk9 then xi and y{ have an

(ί+1) join, say yi+l. For yi+1, there are; ί x ' j pairs (x'{, yf) such that an

/elements x'{ and y\ have an (/+!) joinjί+1 and an intersection x^l9 by the defini-

tion of k(i). Consequently there are (̂ ' **£* **Λ ft(0/(^) Pairs (*ι. *ι+ι)

such that #,-_! and #f , #f and xi+l9 and #i+1 and xk are incident in *S. The

contribution to triples of such a pair (xi9 xi+1) is (k(i)(k(t)—l)k~i~3+)k(i)—l)k~i~4ί

+ ••• +(£(*)— •!)+!) by the induction hypothesis. Therefore we get

Consequently we have the lemma.

REMARK. This lemma can be obtained from Theorem 7.1 in [6].

Lemma 3. If k(i) = 2, φ(i9 i— 1, k) = k-i + l, and if k(i) =

Proof. It is obvious from Lemma 2.

Lemma 4. If k(i)=2, φ(i,j, k)=(^.}for -l^j<i<k^m.
V J I

Proof. Let Xj be a j element and xk be a & element such that Xj and Λ:Λ

be incident in S. Count (k— /+l)-tuples (xj9 •••, Λ?, , ••-, xk)9 where xt (j^l^

k—\) is an / element such that xt and xl+l are incident. By Lemma 2, there

are (k—j) 0"+1) elements Λ?y+1 which are incident with Λ?y and xk. For such
Λ?y+1, there are (k—j—1) (j+2) elements which are incident with xj+1 and xk9

and so on. Consequently there are (k—j)l (k— j + l)-tuples. On the other
hand, given a fixed i element xi which is incident with Xj and xk9 there are
(i—j)l (i— 7+l)-tuples (xj9 •••, Λ?, ) where an / element xt and an (/+!) element
xl+1 are incident (j^l^i—ΐ)9 and there are (k—i)\ (k— /-(-l)-tuples (#,-, " 9xk)
where an /' element #// and an (/'+!) element Λ?//+I are incident in 5, for

i^Γ^k—l. Therefore we get φ(i,xj9xk)(k—i)l(i—j)l=(k—j)l. Thus the
proof is complete.

Lemma 5. // k(i) = ct + 1 > 2, φ(ί, , Λ) - Π (α*"y+/ - 1)/(«7- 1) for
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Proof. It is similar to the proof of Lemma 4. So, we shall omit a proof.

We note that φ(/,j, k)=φ(i, — 1, j) when i<j, and φ(i,j, k)=φ(iy k, m)

when k<i. So, φ(z, j, k) is defined for i,j and & such that —l^j<k^m, — 1

^i^m and /=!=/, &.

By the incidence structure in Sy an ί element Λ?, can be corresponded to

a subset δ(#f) of A0 consisting of 0 elements which are incident with xi9 where

Lemma 6. The above correspondence of A; to a family consisting of sub-

sets of A0 is injective.

Proof. Assume that b(xi)=b(yi) for an ί element y{ (Φ#, ) Let xt be an

/ intersection of xi and y{. Then l<i and b(xί)'^b(xi). On the other hand,

|δ(#y)|=φ(0, — 1, j) for every j element Zj. This contradicts φ(0, —1, /)<

φ(0, -I,*1).

REMARK. Similarly we can prove that δ(#f )φ&(Λ?y) for x^Af and Xj

where i

Lemma 7. Ifk(i)=2y then S=Sλ.

Proof. \AQ I = φ(0, — 1 , m) = m-\- 1 . Since φ(0, — 1 , ί) = /+ 1 , every element

of ^ίf is a subset of A0 consisting of i+1 elements. By Lemma 4 and Lemma

6, AI is a family of all subsets of AQ containing i+1 elements. By the defini-

tion, for /</, ΛfS^ and Xj^Aj are incident if and only if b(xi}<Σ.b(xj}. Thus

the proof is complete.

Next we assume that k(i)=a+l^3 for Q^i^m—1. By Lemma 6, an

i element xf is identified with a subset of AQ.

Lemma 8. A incidence structure D=(A0, Am-^) is a symmetric 2—(v, k, λ)
design, where v=(am+1-l)/(a-l), k=(am '- !)/(«-!) and λ=(α»-1-l)/(α-l).

Proof. By the definition, z;^φ(0, —1, m) and k=φ(Q, —1, m— 1). Let

^o and yQ be two elements of A0. Then there exists a 1 element ^ by Lemma 1

which is a join of XQ and J0. But every element of Am_l containing xϋ and yQ

has to contain xlu Thus we have λ— φ(m— 1, 1, /w). By Lemma 5, we have

the lemma.

Elements of A0 and elements of ^4^-! are called points and blocks in Z),

respectively. For x^Af andj; e^4y, where O^i^j^m— 1, we define <#t , jy>
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be an intersection of all blocks of D containing xt and yJΛ Especially <#0, y^>
is called a line spanned by XQ and yQ, where xQ^A0 and y0^A0.

Lemma 9. Let xλ and y^ be two elements of A^ Then there is an element

of Am_l which is incident with xl and not incident with y^

Proof. Let xt be an / join of x1 and yλ. Then />!. By the property

of #/, the number of elements of Am.λ which are incident with x1 and yl equals
to the number of elements of Am^ which are incident with #/. This number is
φ(m—l, /, m) which is smaller than φ(m—l, 1, m) by Lemma 5. This proves

the lemma.

Lemma 10. D is a design such that its points and blocks are points and
hyperplanes of a finite projective geometry P of dimension m, respectively.

Proof. Let xϊ be a 1 join of x0 and j0, where XQ, yQ^A0. By Lemma 1,
x1 is contained in every block of D which is incident with x0 and yQ. There-

fore <#0, j>o>3#ι If <#o> 3O>=t=*i> then there is an element #0 of <>0, J0> which
is not incident with xlf Let xt be an /join of #0 and xl9 where />!. Let ̂
be an element of Al which is incident with xt and zQ. Then Z1^x1 and ̂
is contained in all blocks which contain XQ and y0. But by Lemma 9, there
exists a block of D which is incident with xl and not incident with s ,̂ and hence
#! is not contained in <,r0, j0>. Hence O0, y^=x1. Therefore (v—λ)/(Λ—λ)
=a-\-l= \Xι\. By using a result in [4], we have the lemma.

Lemma 11. An i element x{ is a subspace of P of dimension i for l^i^m.

Proof. We shall prove the lemma by the induction on i. By Lemma 10,

the case of /=! is true. Let i^2. Then there exist elements x^ and j, _,

of ^4, _ι, and an element x{_2 of A^2 such that they are incident with xi9 and
that Xi-z is incident with #,-_! and j^ .j. By Lemma 6, there exists an element
jo of y^ which is not contained in x^. By the induction hypothesis, j, _2

=<\χi-2> yo/> which is a subspace of P spanned by y0 and all elements of ^._2.

Therefore we have <#i-i» Jo)*—<X--i> JVί-i^ Since ^4W is a projective space and
#,-_! is an i—l dimensional subspace, ζxi-ly yoy is an i dimensional subspace,

and hence |<X _ι, J0M == (<^ί+1— l)/(a— 1). On the other hand, we have
<Λ-ι> IVί-i^^^ίJ because Λ?, is contained in every elements of Am^ containing
#,-_! and yi-λ. By Lemma 3, | x{ | = |<X _ι, J0M Therefore we have #,- =

^ί-ι> yo^ Thus the proof is complete.

By Lemma 7 and Lemma 11, a proof of Theorem completes.

3. Another example

EXAMPLE 3. Let V be an m dimensional vector space over GF(2) (m^3),
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and H the set consisting of all m— 1 dimensional subspaces of V. Put A^

= {φ},Am={V-{0}} and^={M/n nMlw./|M1SM1nM2S -S n"X,

MU^H} for O^i^m— 1, where MU

C=V— Mu. We say that x^At is incident

with Λ?ye^4; if and only if x^Xj (i^j). We shall show that S3=({Ai}T^-i> T)
is a partial geometric space of dimension m, where

m

T = {(#_!, •••, xh •••, #,-, •••, xm)& Π -^il#i is incident with Xj (—l^i<j^m)}.
-

Lemma 12. For ̂  e^, , | xi | =2'' (/^O).

m - »ι -

Proof. Let xi= Γ) M/, then Π MM is a subspace of dimension /'. There-
"=1 "=1 m m-{

fore we have that by the principle of inclusion and exclusion |#, |— 2m+ Σ

REMARK A. Let x0^A0 and Me£f (#0<$M). Since F— {0} is a pro-
jective space, Mc is an affine space. Thus Mc— {x0} is a projective space over

GF(2).

At first, we define the intersection and the join. For zl^.Al (O^l^m— 1),

put K(zl)={M^H\Mc^zl}y and K(z-ύ=H and K(^m)=φy where ar^e^
and ^e^ί^. Let Λ?,- andj/y (—l^i,j^m) be elements of ^4, and ^4; , respective-

m-l

ly. Then a set Π Lu

c is defined to be an / intersection of x{ and x$ where ele-

ments Lu (l^u^m-l) of K(Xi)\JK(yj) satisfy L^L^L^ ••• 3 Jn'^ and

' for any element L of j^(^)U^(yy). We denote "h Lu

e by ^
-

We note that if there exists an element Lm_l+l of K(x{) U K(yj) such that (Ί i«—
W - / + 1 m-l tn-l + 1 "~1

Π i« and Π Lu

c= Π L/, then Λ?, and y. have a — 1 intersection. Because

let Γ^F/^n ^n^./ and LU=LU/L, fV Π^-/ (l^u^m-l). By Lemma
12, |I/n — n^-ιΊ = l, and hence L{ n — Π Lm_l+1

c= φ. This implies

Next, a set Π // is defined to be an i join of xi and y^ where element Ju (1^
t0 = ι

w^m-s) of ̂ (^)n^(^ ) (Φφ) are satisfy ^S/j n/2 3 — 3 J]V« and *Q '/»

C/ for any element / of K(Xi) Π ̂ (j>). We denote "h'/i/ or F— {0} by ̂  Vjy

according to K(Xi)ΓiK(yj)=£φ or =φ. It is obvious that the intersection and
the join of xi and yj is well-defined.

By the above paragraph, we have the following lemma.

Lemma 13. Let K be a subset of H. Then (Ί N° is an element of Al for
Ίsome ί.



408 H. KIMURA AND H. OHMORI

m-i m-j

Lemma 14. Let #,— Π M* and #,— Π Nu

c be elements of A* and A]9w=ι y M=I
m-i m-j

respectively. If #/c#. , then Π Λf^C fl ΛΓβ.

Proof. Suppose that there exists Nz (l^z^m—j) such that Γl Mw<t.NΛ.

ThenTl Mw^ In MWΠNZ, so Λ?,..I= "h MW

CΠNZ

C is an element of A^. Hence

TJ'M^UΛ^S TjΆf,,, by Lemma 12. On the other hand, by the hypothesis

?y, U M^Z) U Nu. Hence U MwuNg. This is a contradiction.

Lemma 15. Let W be an i dimensional subspace of V. Then \ {#,-€= ,4f |

Proof. Put V=VIW. By Lemma 12, |M/n nMm./|=l. Since GL
(m—i, 2) acts transitively on V— {0}, we have the lemma.

By Lemmas 14 and 15, we have the following:

Lemma 16. | A, \ =2m- 1 and \At \ = (lί 2*^"'^"1) (2--'- 1) /o2'"~1

0.
m-i

Lemma 17. Zέtf Λ, = Π M,,'' fe an element of Af (Q^i^m— 1), then \ K(xf) \

Proof. Without loss of generality, we may assume i=0. By Lemma 12,
m

put M/Π ••• nΛfw

c— {α}, that is every elements of H contained in U Mu does
« = 1

not contain {a}. Since the number of hyperplanes of F/<X> equals 2m~1— 1,
the number in the lemma equals (2W-1)-(2W-1-1)-2W-1.

Lemma 18. k(Q)=k(m—l)=2 and k(i)=3for 0<i<m-l.

Proof. Let xf be an element of Aif Since \A0\—2m—ί by Lemma 16
and 1^1=2 by Lemma 12, we have k(Q)=2. For k(m—l)> consider a factor
space. Then we have similarly that k(m— 1)=2. For 0<i<m— 1, the lemma
follows from Remark A and Example 2.

Lemma 19. Let a and Λ?, be elements of V— {0} and Ai9 respectively.
Assume that there exist elements M and N of K(Xi} such that a^M and a&N,
when ί^O. Then \ {L^K(x{) \a<=L} \ = \ {L^K(xt) \a&L}\.

Proof. Without loss of generality, we may assume ΓΊ L= {0} , that is, i=0.
LGKVO

Put X={L(ΞK(xQ)\a<=ΞL} and Y=K(x0)—X. Let yj= Π Lc and zf= Π Lc.

Since Γ) L^a, j>0. Since #/Bί7, ^/φjc0, and hence />0. Since \K(xQ)\>\
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and \Kfa)\ >\K(zl)\=2t»~1-1^ \ Y|, we have that 2*"-1

= \X\ + \ Y\ ^2m-j-1+2m-l-\ Hence y=/=l. This proves the lemma.

Lemma 20. The geometric parameters are the following :
(1) ί(ί, ί+2, 1)=3 /or 2<i+2<m,
(2) ί(i, m, HI— 1)=1 flflJ ί(ί, w, l)=2/or Q<i^m—2,
(3) 2(0, 2, l)=*yX#0> #j)> w α subspace of dimension 3 α#d ί(0, ra, 1)=2 ί/

x0dζx^9 where xu (u=Q, 1) are elements of Au such that XQ is not incident with
xλ. The rest geometric parameters need not be defined.

Proof. (1) follows from Example 2 and Remark A. Let x{ and xi+ί be
elements of Aέ and Ai+lJ respectively, such that they have an (i—l) intersection
#,-_! and an m join xm. Considering a factor space, we may assume z=l. Put
xQ={a}, Xι—{a, b} and x2—ia) cι d, e} by Lemma 12, where #, ό, c, 6? and ^
are distinct elements of V — {0}. Since xm=xl\/X2> th^r^ exist elements M
and N of K(XI) and ^(ΛJ2)> respectively, such that M does not contain a and ά,
and that N contains b and does not contain #, £, d and £. Let F=J£(#0)— K(x^.
Then I F | =2m~2 by Lemma 17 and N(^H) is contained in F if and only if N
contains b and does not contain a. Put yl= Γ\ Nc, then xQCLy^CLx2 since Π N

JVGY j?&r

^b, Thusjj is an element of A1 and K(yι)ΓiK(xι) = φ, since Y=K(yι).
Therefore yiVxi is contained in Am and ί(l, ,̂ m — 1)^1. Let #ι — {α, ί:}
and »!={«, d}. Since ^(jOn^KHφ and | K(xt) \ = \ K(y,) \ = \ K(x0) \ /2,
K(%ι)Γ\K(xΊ)Φφ and K(wι)ΓiK(xι)=£φ This implies that there are elements
M and N of X"(^) such that c^M and c$ΛΓ. By Lemma 19, | ̂ (̂ ) Π ̂ (̂ i)

I = \K(xι)\/2, and hence ^V^iG^ Similarly XιVwι&A2. Therefore ί(l, m,

1)^2. By the definition, 23 (̂1, m, u)=k(l)=3. This implies (2). Next as-

sume that i=0. Put Λ?0={α}, ^={6, ί:} and let xs=x0yx1. Since |-4ι| =

(2»ί _ j\
2 J by Lemma 16, {α, έ} and {̂ , c} are contained in ^4^ Thus ί(0, ί, 1)=

2. If <Λ, i>ac, then |£Γ|-3|{Me/ir|αeM}|+2|{MeJH
Γ|M=)<ί/, i>}| =

(2m- 1) -3(2W-1 - 1) + 2(2*-2- 1) - 0. Therefore K(x^ Π ̂ i) - φ, so s = m.
If <(#, by^cy then

and cφM} I - I {M(Ξ# | α, i,

Therefore |{Meίϊ|ίZ, έ, c&M} \ = |^0V^)| = 2m~3 and hence ^0V^ι is an
element of A2. This completes a proof of the lemma.
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