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1. Introduction

Let & be an algebraically closed field of characteristic zero, which we fix
as the ground field throughout this article. Let f: X—X be an étale endomor-
phism of an algebraic variety X. Then f is, in particular, a quasi-finite mor-
phism. We shall be concerned with the following:

ProBLEM. Is an étale endomorphism f: X—X finite?

If f is set-theoretically injective then f is bijective by Ax’s theorem [1, 3];
hence f is an automorphism. If X is complete, f is clearly finite. In the case
where X is the affine n-space A}, the Jacobian conjecture (cf. [2]) is equivalent
to showing that f: X—X is finite. In the following we assume that X is a non-
singular, non-complete algebraic wvariety. Our results show that f is an auto-
morphism (hence finite) for a fairly wide class of varieties X, while there are
abundant examples of varieties X with non-finite étale endomorphisms.

2. Preliminary result

We recall the logarithmic ramification formula (cf. Iitaka [6]). Let f: X—Y
be a dominant morphism of nonsingular algebraic varieties. Then there exist
nonsingular complete varieties V' and W and a dominant morphism ¢: V=W
satisfying the following conditions:

(1) X and Y are open subsets of V7 and W, respectively; hence V' and W
are nonsingular completions of X and Y, respectively;

(2) the boundaries D:= V—X and A:= W—Y are the divisors with
simple normal crossings; namely, all irreducible components of D (or A) are
nonsingular subvarieties of codimension 1 intersecting each other normally at
every point of intersection of D (or A); we denote by the symbol D (or A) the
reduced divisor whose support is D (or A);

(3) the restriction of ¢ onto X coincides with f; hence ¢ "'(A)SD.

Denote by K (or Ky) the canonical divisor of V' (or W). The logarithmic
ramification formula then asserts that there exists an effective divisor Ry such
that
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D+Ky~¢*(A+Ky)+Ry,

where the linear equivalence of divisors is denoted customarily by ~. If the
morphism f: X—Y is, moreover, étale, then Supp R, is contained in D.
The logarithmic ramification formula has the following two consequences.

Lemma 1. Let X be a nonsingular curve and let f: X—X be a dominant
morphism. Let C be the nonsingular completion of X, let g be the genus of C and
let n be the number of places of C with center outside X. Let d:= deg f. Then
the following assertions hold :

(1) If 2g+n=3 then f is an automorphism.

(2) If g=0 and n=2 then X==Aj:=the affine line A; with one point (0)
deleted off; if we identify X with the multiplicative group scheme G,, then f=T,* j,,
where T, is the translation of G,, by a andu, is the “multiplication by d” morphism;
hence f is finite.

(3) If g=0 and n=1 then X=A} and f is finite; if f is étale then f is an
automorphism.

Proof. The morphism f: X—X extends to an endomorphism ¢: C—C.
Let D:= C—X. Then, by the logarithmic ramification formula, we have

D+Kc~¢*(D+Ko)+R,  with R,=0.

Thence we obtain (1—d)(n+2g—2)=deg Ry=0. The assertion (1) then fol-
lows immediately. If g=0 and n=2 then X = A}, and the assertion (2) is readily
verified. The first part of the assertion (3) is clear and easy to verify. 1f fis
étale and d =2 then Ry=(d —1)P., where P.=C—X. Namely, ¢:C—C
ramifies only (and totally) over P.. This contradicts the Hurwitz-Riemann
formula. Q.E.D.

Theorem 2 (Iitaka [6]). Let X be a nonsingular algebraic variety with the
logarithmic Kodaira dimension ©(X) equal to dim X. Let f: X—X be a quasi-
finite endomorphism. Then f is an automorphism.

Proof. We employ the same notations as in the statement of the logari-
thmic ramification formula, where we set Y=X. Since the logarithmic pluri-
genus P,(X) is independent of the choice of nonsingular completions XV and
X C W, we have

P,(X) = dim HY(V, m(D+K,)) = dim H(W, m(A+Ky))

for m>0. Then the logarithmic ramification formula implies mRy is contained
in the fixed part of the linear system |[(mD+Ky)|, i.e.,

|m(D+Ky)| = |mp*(A+Ky)| +mRy .
Let ®;: V—P" (or ®,: W—P", resp.) be the rational mapping defined by
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|m(D+Ky)| (or |m(A+Ky)|, resp.), where N=P,(X)—1. If m is sufficiently
large, we have then the following commutative diagram:

®
XCoV —50 (V) = (W) PV

s

where ®,=®,+¢, and ®;: V—-®,(V) and ®,: W—D,(W) are, indeed, birational.
Hence, so are ¢ and f. Since f is quasi-finite, f is an open immersion by the
Zariski main theorem. Then f is an automorphism by virtue of Ax’s Theorem.

RemMARK. We have the following result by virtue of Iitaka [6; Th. 2]:

Let X be a nonsingular algebraic variety with #(X)=0. Then any dominant
morphism f: X—X is an étale morphism.

3. Case where X is an affine surface

Hereafter, we shall assume, unless otherwise specified, that X is a non-
singular affine surface. In view of Lemma 2, we only consider the case where
#(X)=<1. We shall start with the following:

Lemma 3. Suppose that ©#(X)=—cc and that one of the following con-
ditions is satisfied:

(1) X is irrational but not elliptic ruled,

(i) T(X, Ox)*==k* and rank (T(X, Ox)*/k*)= 2 if X is rational. Then an
étale endomorphism f: X—X is an automorphism.

Proof. Note that X is affine-ruled because #(X)=—co.

Case (i). Let V be a nonsingular completion of X and let a: -4 be the
Albanese morphism, where A=Alb (V/k). Let C=a(X) and let ¢: X—C be
the restriction of & onto X. Then C is a nonsingular curve and ¢ defines an A’-
fibration on X (cf. [8]). The étale endomorphism f: X—X then induces an étale
endomorphism #: C—C such that #-$p=¢-f. By the hypothesis and Lemma 1,
h is an automorphism. Let K be the function field of C over & and let X, be
the generic fiber of ¢ which is isomorphic to Ak. By restricting f onto the
generic fiber of ¢, we obtain an étale K-endomorphism fx: Ax—>Ak. Lemma
1 implies that fy®K: Ax—> A% is an isomorphism for an algebraic closure K of
K. Hence, sois fx. Therefore f is birational, and f becomes an automorphism
by virtue of Zariski’s main theorem and Ax’s theorem.

Case (i1). Let A=T(X, Oy). Since #X)=—rco, X contains a cylinderlike
open set U,X A;= Spec B[x], where U,=Spec B is an affine curve. Hence
ACB[x] and A*< B*. Let R, be the k-subalgebra of 4 generated by all
elements of 4* and let R be the normalization of Ryin 4. Then we have RCB.
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Hence R is finitely generated. Let C=Spec R and let ¢: X—>C<C be the
morphism induced by the canonical injection RC A, where C=¢(X). Since
R* 2 A*2k*, we know that #(C)=0. Let F be a general fiber of ¢. By virtue
of Kawamata’s addition formula [7], we have #(F)=—oco. Namely, ¢ defines
an A'-fibration on X. Moreover, the étale endomorphism f: X—X induces an
étale endomorphism /.: C—C, which is an automorphism possibly except the case
where C=Aj. But the last case is eliminated by the hypothesis. Now we can

verify the assertion by repeating the same arguments as in the preceding case.
Q.E.D.

We next consider the case where X has an Aj-fibration ¢: X—C; see [8]
for the definition and the relevant results. Given such an Aj-fibration, we have
to classify all possible types of singular fibers. This is given in the following:

Lemma 4. Let ¢: X—C be an Aj-fibration on an affine nonsingular surface
X over a nonsingular curve C, and let S be a singular fiber of ¢. Then S is written
(as a divisor) in the form S=T-+A, where

(1) T=0, T'=aTl, with a=1 and T';= Ay, or T'=a,I',+ a, T, where a; =1,
a,=1, T'\=T,= A} and T, and T, meet each other transversally in a single point:

(2) AZ=0, and Supp A is a disjoint union of connected components isomorphic
to Aj provided A>0.

Proof. There exist a nonsingular projective surface V' and a surjective
morphism p: V—B onto a complete nonsingular curve B such that:

(i) X and C are open subsets of V' and B, respectively, and ¢ is the
restriction of p onto X;

(ii) p defines a P'-fibration on V.
Since ¢ defines an Aj-fibration on X, the boundary divisor D:=V—X contains
two cross-sections of p, and since X is affine, D is connected. Let = be a
singular fiber of p such that SN X=S. Then, noting that each irreducible
component of % is a nonsingular rational curve and that the dual graph of =
is a tree, we can readily verify the assertion (cf. [8; Chap. I, §6]). Q.E.D.

Lemma 5. Let ¢: X—C be the same as in Lemma 4. Let f: X—X be an
étale endomorphism such that ¢-f=¢ and that codimy (X—f(X))=2. Let X be
the normalization of the lower (the right) X in the function field of the upper (the
left) X over k cnd let &: X— X be the normalization morphism. Then the following
assertions hold:

(1)  There exists an open immersion ¢: XX such that f=g-¢;

(2) & makes X an étale Galois covering of X with the cyclic group G of order
n as the Galois group, where n—deg f;

(3) With the notations of Lemma 4, f is finite over the part T" of a singular fiber
S of ¢, i.e., f*T is invariani under the action of G, and f is totally decomposable
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over the part A, i.e., the stabilizer subgroup of each comnected component of A is
trivial.

Proof. Let K be the function field of C over %k and let X be the generic
fiber of ¢. Then Xy=Spec K[x, x™"], and f induces an étale K-endomorphism
fx: Xg—>Xyg. Clearly, fr is given by a K-endomorphism 0y of K[x,x7'];
x—ax*", where acK* and n=degf. Let G be the group of all n-th roots of
the unity in &, which is a cyclic group of order n. It is then clear that 0 is in-
variant under the G-action (x, {)—xf, where {EG; hence fy is invariant under
the induced G-action, and the lower X is thought of as the quotient variety
Xg/G. Now, let P be a closed point of C and let F be the fiber ¢*(P) of ¢
over P. Suppose F is not a singular fiber. Let O=O , and let X;=X X

Spec 0. Then we can choose x above so that X,=Spec O[x, x™*] and the in-
duced endomorphism fy: X;—X, is given by an O-endomorphism x—ax** of
O[x, x™'], where a=O*. Thus the G-action extends over X, and the quotient
variety X,/G is the lower X,. Suppose F=¢*(P) is a singular fiber S=T-+A.
Then, noting that there are no nontrivial morphisms from A} to A% and that
codimy (X—f(X))=2, we can readily show that f,I'=T" and fyA=A as cycles.
In particular, f: X—X is surjective.

Take the normalization ¢: X—X as in the above-mentioned fashion. Then
G acts on X, and the upper X is embedded into X as an open set. If F=¢*(P)
is a nonsingular fiber of ¢ then X,=X, as shown above. Let F be a singular
fiber S=T'4+A. If I'+0 then I is invariant under the G-action. Indeed, we
cah take a nonsingular completion p: V' — B as in the proof of Lemma 4 as
follows. Let X be a G-equivariant resolution of singularities of X such that X
is still an open set of X and that X— X consists of nonsingular irreducible com-
ponents which meet each other at worst normally. We then take a nonsingular
completion p: V—B so that it extends the fibration X—C induced by the Ak-
fibration ¢+$: X—C and that V—2X is a divisor with simple normal crossings.
This is possible by virtue of Sumihiro’s equivariant completion theorem [11].
Let S=p*(P). Then ZNX=S and X is G-invariant. If T' were not G-
invariant, then the translation g*T" of T" by some element g of G would be a
divisor disjoint from T and 3 would therefore contain a loop. 'This is a con-
tradiction. Thus T' is G-invariant. Now, suppose A =0, and let A, be an
irreducible component of A. Since A, and f(A)) are isomorphic to A; and since
the restriction f, : A;—f(A,) is an étale morphism, it is an isomorphism by
Lemma 1. This implies that g(A,)== A, for any non-unit element g of G. Note
that §: X—X is étale at the component g(A,). Since ¢: X —X is surjective, the
above observations imply that ¢: X—X is étale everywhere and X is, therefore,
nonsingular. We thus verified all the assertions. Q.E.D.
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We need the following:

Lemma 6. Let §: X—X be an étale Galois covering of an algebraic variety
X with the cyclic gorup G of order n as the Galois group. Then there exists an in-
vertible Ox-module L such that L®"=Oy and X gSpec(”_EIBlL@‘). Moreover, we
have ¢*L=0x. =

Proof. Since the assertion to be verified is of local nature on X, we may
and shall assume that X is affine. So, let X=Spec A and X=Spec 4; we
regard A as a subalgebra of 4. As is well-known, the group G is written as
a k-group scheme in the form:

G = Speck[t] with =1, u(t)=1tQt¢,
&t)=1 and n(t)=1t",

where u, € and % are respectively the comultiplication, the augmentation and
the coinverse. The action of G on X is translated in terms of the following

coaction.

A A— 4[], a— Aa) = gAi(a)ti;

see [4] for the relevant results. The property that A is a coaction is equivalent
to the following properties:
(i) The mapping A; defined by a—A,(a) is a k-endomorphism of 4;

(i) A;A;=38;;A;, where §;; is the Kronecker’s delta, and ”5_,‘1 A;=1 (=the
identity);

(i) Aia):A;b)e A, ;(A) for a, be A, where we take an integer [ for i+j
with 0=/<# and /=i+j (mod n) if i+j=n.

Let A;:= A;(4), 0=i<n; hence 4y=A, which is the G-invariant subalgebra

of 4. In view of the above properties, we have: A= E A, A;+A;<A4,,; and
i=0

A; is an A-module. Now the property that ¢ is étale implies that 4, is a pro-
jective A-module of rank 1, 4;=A% (1<i<n) and A$*=A4. Conversely, if 4,

is a projective A-module of rank 1 such that AP*=~4, then 4:= ”2: A% is
endowed with an A-algebra structure if an isomorphism 8: A$*~3 A4 is ‘z—lssigned .
The group G acts on 4 as follows: (’2: a;)s= ”é_“; a;tt if a;€ AP and ¢ is an n-th
root of the unity. Clearly, we have (jé;‘L% Oy 'l;ecause AA=A4. Q.E.D.

As a consequence of Lemmas 4, 5 and 6, we can now prove:

Theorem 7. Let ¢: X—C be an Ay-fibration on an affine nonsingular sur-
face X over a nonsingular curve C and let f: X —X be an étale endomorphism such
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that ¢-f=¢ and codimy(X—f(X))=2. Then f is an automorphism in each of the
following cases:

(1) There exists a singular fiber S=T+A of ¢ such that T=a,I'+a,T,,
where o, =1, a,=1, T'\=T,=A} and T, and T, meet each other transversally in
one point; see Lemma 4 for the notations.

(@) T(X, 0)*=T(C, 0c).*

(B) T(C, Oc)=k, ie., C is complete, and there exists a singular fiber S=:
T+A of ¢ such that T'=aT, with « =1 and T = Aj.

Proof. We employ the previous notations.

(1) As observed in the proof of Lemma 5, we have ¢*I'==f*I". This
implies that the fiber S contains # pairs I'®), ..., T'®) which have the same form
as M'=aq,I"+a,I';. This implies =1. Hence f: X—X is an automorphism.

(2) Let X=SpecA and X=Spec . Then there exists a projective
A-module 4, of rank 1 associated with the étale Galois covering §: X—>X. Let
L be the invertible O4-module associated with A,. Then there exists a Weil
divisor D= 3} n,D; (D;: irreducible; z;%0) such that L= Ox(D). Since the

generic fiber X of ¢ has the trivial Picard group, we may assume that every
irreducible component of D lies in a fiber of ¢. Let D, be an irreducible com-
ponent of D and let P:= ¢(D,). If D;=~A} we have f*D,=D, as divisors on
the upper X (cf. Lemma 5). Suppose that the fiber S:= ¢™*(P) is a singular
fiber and D;=A;. If the part T of S is of the form I'=a,I';+a,T"; as in the
case (1) above, f is an automorphism. So, we may assume that the part T" of S
(and any singular fiber as well) is not of this form. Suppose that D, is a com-
ponent of A. Then f*D, is also a component of A. Hence f* induces a
permutation among the components of A. Therefore there exists a positive
integer N such that (f¥)*D,=D, for any component D, of A for all possible
singular fibers S of ¢. Then (f¥)*D=D. On the other hand, note that zD~0
and f*D~0 (cf. Lemma 6). Hence D=(f")*D~0. This implies that 4,=AE
with Ee 4. Since ACthe upper 4, & is considered as an element of the upper
A. We have £"=acA,=the lower A. If n=1 then f is birational. Hence f
is an automorphism. So, suppose n>1. Since X = Spec 4A[£]/(§"—a) is an
integral scheme, we have agck*. Suppose now T'(X, Ox)*=T(C, O;)*. Then
acT(C, Oy)*. Since < the upper 4 and k(C) is algebraically closed in &(X),
we have £€k(C). Since £"=a&T(C,0;) and C is normal, £ €T(C, O).
Hence £ the lower 4. This is apparently a contradiction.

(3) Suppose next that C is complete and 7n:= degf>1. With the
notations of Lemma 5, the generic fiber X of ¢: X—C is isomorphic to
Spec K[x, 7], where we may assume x&A4. With the notations and the argu-
ments in the case (2) above, we have 4,=A¢ with £& the upper 4. Write
E=sx" with s& K and an integer m. Replacing & by £7! if necessary, we may
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assume m>0. Then s, as a rational function on X, has only poles. Hence s7,

as a rational function on C, has only zeroes, i.e., sT'€I(C, Oy)=k. Write s=a"
with aek*. Then E=(ax)”. Namely, we may assume s=1 and x€4*. Since
m is clearly prime to n:= deg f, we have 4,=A4 =24y, where A,=the lower 4.
So, we can identify x with . Let R=k[&, 7], let T=SpecR and let ¢: X —T
be the morphism induced by the inclusion R—A4. Sinc A(X)=K(§), X is
birational to a product CX 7. Indeed, yr:= ¢pxq: X—>CX T is a birational
morphism such that all irreducible components of the part A in a singular fiber
S=T"+A are contracted to points by +, for there are no nontrivial morphisms
from A; to A%. On the other hand, the given étale endomorphism f: X =X
factors as a composite of an open immersion 7»: X< X ;<(T, g) and the base

change gy: XX(T,g)— X (by ¢: X—T) of a morphism g: T—T defined by
T

E—at”, ack*; replacing £ by Bf with B€k and 8" '=a, we may assume
a=1. Let F=¢*(P) be a fiber of ¢: X—C. If F is nonsingular, i.e., Fe= A},
then f¥*F=¢*F by Lemma 5. This implies that ¢|z: F—T is an isomorphism.
Hence an arbitrary fiber of ¢ meets F transversally in one point, i.e., a section of
¢ over the point P. Suppose that F is a singular fiber S=T'+A, where I'=T¢,
with Ty=Aj}. Since f*I'=§*T, we know that @=1 and ¢|n:T,—T is an
isomorphism, i.e., an arbitrary fiber of ¢ is a section over the point P. Suppose
that such a singular fiber S=T"4 A as above exists. Then A==0. Let A, be an
irreducible component of A and let Q:=¢(4,). Then X and A, are obtained from
Cx T by blowing up the point (P, Q) and its infinitely near points and by delet-
ing several exceptional curves. Hence the point I'N ¢ Q) should have been
deleted off. 'This is a contradiction. Thus, if one assumes the existence of a
singular fiber .S as above, f must be an automorphism.

For a later use, we continue an analysis of the morphism ¢: X—T. If ¢
has no singular fibers, the morphism r: X —CXx T is an isomorphism. Then
X isnot affine. So, this is not the case, and at least one singular fiber of ¢ exists.
Let S;=¢*(P;) (1=i=r) be all singular fibers of ¢. If n:=deg f>1, any S; is
of the form S;=A,; ie., I';=0, by virtue of the case (3) above. Let

Cy:=C—{P,, -, P,}. Then X— U Supp S;=CyXT. Any singular fiber L
i=1

of ¢ is of the form L=M+N, where C,CMCC if one identifies M with an
open set of C by ¢, and where N is a disjoint union of irreducible components
isomorphic to Aj. Q.E.D.

REMARK. With the same situations as in the proof of the case (3) of Theorem
8, every irreducible component N, of N meets M transversally in one point provided
n:= deg f>1.

Proof. Let L,, -+, L, be all singular fibers of ¢ and let Q;:=¢(L;). Suppose
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E=c;Ek at the point Q;. As seen above, g: T—T is defined by g¥*(&)=¢".
Since f: X —X is surjective, it is easily ascertained that f,(L;)=L,, (as cycles)
for 1<j=e, where o is a permutation on the set {Q,, -, Q,}. Replacing f by a
suitable power f¥ (N>0) if necessary, we may assume that g(Q;)=0; for
1=j=<e. Then c}=c;, i.e., ¢;is an (n—1)-st root of the unity. Let L be one of
Ls, and write L =M+ v N+ - +v,N;, where N;= A} (1<7=<b). Since
f«L=L and f M= M, f, induces a permutation on the set {IV, -+, N;}.
Replacing f again by a suitable power of f, we may assume f,N;=N; for
1=:=6.

Suppose that a singular fiber L of ¢ has an irreducible component N, such
that M NN;=¢. We shall show that this assumption together with the hypo-
thesis #:= deg f >>1 leads to a contradiction. Let P:= ¢(IV,) and let Q:= g(V,),
where E=c&k. The component N, is produced by blowing up the point (P, Q)
of C'x T and its infinitely near points and by throwing off several exceptional
curves. Let x be a local parameter of C at the point P. Then (§—c, x)is a
system of local parameters of Cx T at the point (P, Q). Since X is affine and
MNN,=¢, we find, in the course of blowing-ups to obtain XV,, an exceptional
curve E=~P' with an inhcmogeneous coordinate ¢:= (§—c)®/x® (o, B: positive
integers) and a point =7 &k* to be blown up further.

Figure 1

On the surface X (=the lower X), we have the same situation. Namely,
there exist an exceptional curve E, with an inhomogeneous coordinate Z,:=
(E,—¢)*/«® and a point t,=7 on E,. Let 0: A(X,)—k(X) be the homomorphism
induced by f, i.e., O(x)=x and (&,))=E". Then we have

O(t)) = (8" —)%)#* = (& "+ E et Ee -0 T)"
The rational mapping f induces a rational mapping o: E,—~E which is defined
by the assignment

7= a*(t,) = 0(t,) (mod x) = #(nc"1)*=n"t, where " =c,

and which is regular at the point z=7. Hence the point #=7 is sent to the
point f,=n" under o. Since f sends the upper N, to the lower N,, the
point f,=n"y must coincide with the point #,=%, which implies z=1. This
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is a contradiction. Q.E.D.

Let ¢: X—C be anew as urjective morphism from a nonsingular affine surface
X onto a nonsingular curve C. We say that ¢ defines a twisted Aj-fibration
on X if the generic fiber X of ¢ is a nontrivial K-form of A, where K=k(C).
Then there exists a quadratic extension K of K scuh that X K(%)K =~AL % Let

p: C—>C be the normalization of C in K and let v: XX x C be the normaliza-
o
tion of X x C in the function field K(X). Let $: X—>C be the composite of »
4
and the projection X X C onto C. Let F be a closed fiber of ¢. If F is reduced
7]

and isomorphic to Ay, F is said to be nonsingular. Otherwise, F is called
singular. We shall then show the following:

Lemma 8. With the above notations, the following assertions hold true:

(1) Xis a nonsingular affine surface and §: X—C defines an A-fibration on X.

(2) Let f be an étale endomorphism such that ¢p=¢+f and codimy (X—f(X))
=2. Then f extends uniquely to an étale endomorphism f: X—X such that =3¢« f
and codimy (X—f(X))=2. Conversely, if f: X—X is an étale endomorphism such
that =&+ f, codimz (X—f(X))=2 and ¢ f=f+1, where c: X—X is the canonical
involution associated with the double covering 0: X—X, then there exists an étale
endomorphism f: X — X such that ¢p=¢-f, codimy (X—f(X))=2 and f extends
uniquely to f.

Proof. As in the case of an Aj-fibration, a twisted Aj-fibration is induced
by a P'-fibration on a suitable nonsingular completion of X. In view of this
fact, we can show that a singular fiber S of a twisted Aj-fibration is written in
the same form S=T+A as in Lemma 4. Let P:= ¢(S). If p: C—C is not
ramified over P, then p™(P)={P, P,} and §*(P,) (=1, 2) has the same form

as S as cycles. If Pis a branch point of p then S=A= iz a;A;, where A;== A}

and ¢,>0. Indeed, there exist a nonsingular projective surface V and a sur-
jective morphism p: V' —B onto a nonsingular complete curve B such that X and
C are open subsets of V" and B, respectively, that ¢=p|x and that p defines a
P'fibration on V. Furthermore, we may assume that the boundary divisor
D:=V—X is a divisor with simple normal crossings. Since ¢: X—C is a
twisted Aj-fibration, there exists an irreducible component D, of D such that
C=p"Y(C)ND, and ¢ induces the double covering p: C—C. Since P is a
branch point of p, the fiber p~!(P) touches D, at the point P:= D,Np~(P). If
I'=+0, then there would be two connected chains of irreducible components 3,
and =, in the fiber p~'(P) which connect the point P with two (missing) end
points at infinity of I',eq. Thus p~}(P) would contain a loop, which is a con-
tradiction.
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We can readily show that X is a nonsingular affine surface and that, for a

singular fiber S= Xr} a;A; over a branch point P of p,
i=1

0*(A { 24, if a=1 (mod2)
(A) = APHAP  if 4,=0 (mod 2)

and A:= $*(P)= > —a—"(A(,-”-{—A(f’)-‘,—a:Z‘.l(z)a,-Z,-, where A;=A} and A=A}

=0 2
(j=1, 2). Let f be an étale endomorphism of X such that ¢ =¢-f and
codimy (X—f(X))=2. Then A=f*A for A as above, and since codimy
(X—f(X))=2, f*A;=A,;) with a permutation o on {1,2, ---,7} and a;=a,.
Since ¢p=e¢-f, f extends to an endomorphism f of X such that §=q-f and
@-f=f-6. Then we have

f*(al) = Aa'(x') if a,'El (mod 2)
FHAPFAP) = AR ARy if ;=0 (mod2).

Let :: XX be the involution of the double covering §: X—X which is induced
by the involution ¢ of p: C—C. Then ¢+ f=f-¢, and FAP=AP if a;=0 (mod 2).
Hence, by exchanging Al and A%, if necessary, we may assume that f*(A{?)=
AYy (j=1,2) if ;=0 (mod 2). This implies that f is étale and that
codimy (X—f(X))=2.

Conversely, suppose that an étale endomorphism f: X—>X is given as stated
above. Since X is the quotient variety of X with respect to the involution ¢, f
descends down to an endomorphism f: X-—X such that ¢=¢+f and

codimy (X—f(X))=2. Itis easy to verify that f is étale. Q.E.D.

Corollary 9. Let ¢: X —C be the same as in Lemma 8 and let f: X —>X be
an étale endomorphism such that ¢=¢ - f and codimy (X —f(X))=2. Suppose that
C is complete and that ¢ has a singular fiber S=T+A with T'+=0. Then f is an
automorphism.

Proof. Take ¢: X—C and f: X—>X as in Lemma 8. Then C is complete.
As shown in the above proof, the point P:== ¢(S) is not a branch point of p.
Thus & has two singular fibers of the same form as S. By Theorem 7, f is an
automorphism. Hence, so is f. Q.E.D.

ReMArk. Let X be a nonsingular affine surface. Suppose that either
#(X)=1 or #(X)=0 and X is irrational. Then, as shown in [8; Chap. II, §5],
X has a surjective morphism ¢: X —C onto a nonsingular curve which defines
either an Aj-fibration or a twisted Aj-fibration on X. Let f: X —X be an étale
endomorphism such that codimy (X —f(X))=2. Then, as in the proof of
Lemma 2, we can show that ¢+ f=¢. We are interested in determining in which
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cases f becomes an automorphism. However, as Theorem 7 and Lemma 8
show, this is not an easy task. One obstacle is the existence of singular fibers
S=TI+A of ¢ with I'=0.

4. Counterexamples

ExampLE 1. Let C be a complete nonsingular curve of genus g(C), and
let T==Spec k[E, £7'], which is isomorphic to Aj. Let Q; and Q, be respectively
the points of T defined by £=1 and £&=—1. Choose two distinct points P; and
P, of C. Let C;:=Cx{Q;} and T;:= {P;} X T (=1, 2) which are the curves
on the product Y:=CXT. Leto: Z—Y be the blowing-up with centers (P, O,)
and (P, Q,), and let E;=o Y (P;, Q) =1,2). Let X:=Z—o'T\—'T,,
where ¢’T; (i=1, 2) is the proper transform of T'; by o.

T
]
———¢——>}l/ QZ
x E ! —_—
i | g
pia=m— 0
? |
5 :
|s
¢ P, P,
Figure 2

As shown in the above figure, let ¢: X —C and ¢: X —T be the morphisms in-
duced naturally by the projections from C X T onto C and T, respectively. Then
¢ defines an Aj-fibration for which ¢*(P,)=A, and ¢*(P,)=A, exhaust the
singular fibers, where A;:= E;,—E;No'T;=Aj}.

On the other hand, let g: 7— T be the endomorphism defined by
g¥(&)=E8 and let X::X>1§(T,g), the base change of ¢: X—T by g: T—T.

Let §: X—T be the canonical projection. Then g has 6 singular fibers L;;—
g*(0y;) and L,;=g*(Q,;) (j=1, 2, 3), where Q,; (j=1, 2, 3) is defined by £=a’*
and Q,; (j=1, 2, 3) is defined by £&=—w’™*; » is a primitive cubic root of the
unity. The fibers L,; and L,; have the same forms as the fibers L,:= ¢*(Q,)
and L,:= ¢*(Q,), respectively. Write L,;=M,;+A,; and Ly;=M,;+A,;, where
Aj==A,;= A} and M,; and M,; are considered as open sets of C.

It is then easy to verify that X is affine, that X,: =X— ZZ‘, (A+A;) is iso-

morphic to X, and that the composite of an open immersion X;~X and the
canonical projection X—X is an étale endomorphism of X with degree 3 which
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is surjective but not finite. Moreover, #(X)=1 if g(C)>0 and #X)=0 if
£(C)=0. In fact, if g(C)=0 then X=F,—D,UD,, where Fy=P;Xx P; and
D,~D,~M+I, M and [ being fibers of two distinct P'-fibrations on F,.

ExampLE 2. In the example 1, assume that C is rational. Choose an in-
homogeneous coordinate » on C so that =0 at P, and p=oc0 at P,. Let
¢: Y=Y be the involution defined by #(&) =& ! and ()= —=%. Since
((P;, Q)= (P;, Qi) ¢=1, 2), ¢ lifts up to an involution ¢: X—X such that
¢*f=f+1. Let X be the quotient variety of X with respect to .. Then X is
a nonsingular affine surface endowed with the twisted AL-fibration ¢: X—>P},
which is induced by the A)-fibration ¢: X—C. By Lemma 8, the étale endo-
morphism f: X —X induces an étale endomorphism f: X—X of degree 3 such
that §- f:f-ﬂ, where 6: X —X is the quotient morphism; f' is surjective but not
finite. The surface X is, indeed, constructed in the following way. Let D be
an irreducible curve on Fy=Pj} X P} such that D~2M--1. Let p=&,;: F,—>P}
be the projection along the fibers /. Then D is a nonsingular rational curve,
and p|,: D—P; is a double covering. Then X is isomorphic to F;—D, and
é: X—P} coincides with the restriction of p onto X see the following figure:

D,
M, P M,
D
M, M,
D,
A 1A N I,
P s
P; P,
Figure 3

In the above figure, 8 is the double covering ramified along /,-+1,; 0%(1,)=21,,
0*(M;)=M, (i=1, 2) and 6*(D)=D,+D,, where D;~D,~M,+1,. The logari-
thmic Kodaira dimension #(X) is — oo, Pic(X)==Z and T\(X, Og)*=k*.

ExampLE 3. Let C be a nonsingular cubic curve on Pj and let X:= P;—C.
Then #X)=0 and Pic(X)=Z/3Z. Furthermore, X has no Aj-fibrations nor
twisted Aj-fibrations. We shall show that X has a surjective, non-finite, étale
endomorphism f: X —X of degree 3.

Let z: W—P} be a triple cyclic covering of P} which ramifies totally over
C. This is constructed as follows: Let L be the line bundle Op(1). Choose
an open covering {U,} of Pi such that L|,,=SpecOy,[¢,] with a fiber-
coordinate §, and that C<|Op(3)| is defined by a,=0, where a,&T(U,, Op).
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Then {p=C8qfup and ag=a,LJs with transition functions {f,s}. Define a sub-
variety W in L locally over U, by the equation {3=a,; local data then patch
together. Let W, be the zero section of L, and complete L to a P'-bundle V
over P} by adding the infinity section W... Then we have:

Ky~ p*(Kp)—Wy—Weo, p*H~W,—W.
W~3W, and Ky~(K,+W)y,

where p: V' —Pj is the canonical projection and H is a hyperplane on P;. Since
WoNW.=¢, we have Ky~—W,|y; we denote W,|y, by the same letter W,
Thus Kyy~—W,. Apparently, z:= p|y: W—P;} is a cyclic covering of order 3
which ramifies totally over C. Hence z*(C)=3W,. Since X:= P?—C is affine,
w: W—W,—X is a finite étale covering and W—W, is affine. Hence W, is
ample on W. This implies that W is a del Pezzo surface of degree (Kiy)=
(W¢)=3. Therefore W is a cubic hypersurface in P} and W, is a hyperplane
section.

As is well-known, W is obtained from P} by blowing up 6 points P, ---, Pg
in general position. Let o: W—Pj be the blowing-up of these six points, and
let E;=¢"(P;). Then (E;-W,)=1, ie., E; is a line of P}. Let C':= o(W,).
Then the points P,, -+, Ps lie on C’, and C’ is isomorphic to W, hence to C.
Let X':= P;—C’'. Then X' is isomorphic to W—(Wy+E,+---+E) under o.
Let f: X'—X be the composite

-1
£ X 2 W (Wy LBy +-E) — X

Then f is a non-finite étale morphism. Since C=C", it is well-known that C is
isomorphic to C’ by a linear transformation of P;. Hence X’ is isomorphic to
X.

So, it remains to show that f is surjective. Note that C has 9 flexes
0y, -+, Qo Let I;(1=j=9) be the tangent line to C at Q;, and let R; be the
unique point of W, lying over Q;. Then, for each 1=<:<9, »*(;)=E;,+
E,,+E;, where E;; (1=¢=3) is an exceptional curve of the first kind such that
E, NE;NE;;={R;} and (E;;+E;;)=(E;;+E;3)=(E;3+E;;)=1. Thus, W contains
27 exceptional curves. The exceptional curves E), -+, E; are disjoint from each
other. Hence at most one of E,, -+, Ey is contained in {E;, E;,, E;3} for each
1=<j<9. This implies that f is surjective.

5. Finite étale endomorphisms

We shall prove the following:

Theorem 10. Let X be a nonsingular affine surface with an étale endomor-
phism f: X —>X. Suppose n:=deg f>1 and codimy (X—f(X))=2. Let X be
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the normalization of the lower X in the function field of the upper X over the field
k. Suppose X is nonsingular. When we regard the upper X as an open subset of
X, then X—X is a disjoint union of irreducible curves which are isomorphic to Aj.

Proof. By virtue of Theorem 2, X has the logarithmic Kodaira dimension
<1. We consider each of the following cases separately: #(X)=—co, 0 and 1.

(I) Case ®(X)=1. As in the proof of Theorem 2, we consider nonsingular
completions, the upper X CV and the lower X CW, such that D:=V—-X
and A:= W—X are divisors with simple normal crossings and that f: X —X
extends to a morphism yr: V—W. By the logarithmic ramification formula, we
have, for every m>0

|m(D+-Ky)| = | mi*(A+Ky) | +mRy

with an effective divisor Ry. Let @;:= @, pix, and Dpi= Pj,a1x,n- Lhen
®,=®d,+, and both ®, and ®, are morphisms because C:= &,(V)=@,(W) is a
nonsingular complete curve for a sufficiently large m>0. Moreover, @, (the
upper X)=a, (the lower X), which we denote by C, because codimy (X—f(X))
=2 and ®,=®,+r. By litaka [6], we have ®,| y=®,| 4, i.e., it is independent
of the choice of nonsingular completions. So, denoting ®,| x: X —C by ¢,
we have ¢=¢+f. By virtue of [8; Chap. II, §5], ¢: X —C defines either an
Aj-fibration or a twisted Aj-fibration. Suppose ¢: X —C is an Aj-fibration.
We have then the same situation as considered in Lemmas 4 and 5. We already
observed that X—X is a disjoint union of irreducible curves which are isomor-
phic to A;. Suppose ¢: X —C is a twisted Ai-fibration. Then there exists a
double covering p: C;—C such that ¢,: X,—C), is an Aj-fibration, where X is
the normalization of X >fyc1 and ¢, is the composite of the normalization

morphism X,—»XXC,; and the projection X X C,—C; see Lemma 8, where the
[4 c

notations differ slightly from the present notations. The endomorphism f: X—X
induces an étale endomorphism f,: X;—X, such that deg f,=deg f and codimy,
(X,—f(X))=2. Let X, be the normalization of the lower X, in the function
field of the upper X, over k. Then it is readily verified that X, is the nor-
malization of X X C, in its function field over &, where X is the normalization of

the lower X in the function field of the upper X over k. More precisely, X,
has an involution ¢: X;—X, induced by the involution of the double covering
p: 0,—C, and X is the quotient variety of X, with respect to ¢«. As shown
above, the complement X, — X, is a disjoint union of irreducible curves which are
isomorphic to A}. Therefore, the complement X— X is a disjoint union of the
affine lines as well; see the proof of Lemma 8.

(iIT) Case where #(X)=0 and X is irrational. As in the proof of Lemma 3,
let ¢: X—C be a surjective morphism onto a nonsingular curve C which is
defined by the Albanese morphism «a: V' —Alb(V/k), where V is a nonsingular
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completion of X. The morphism ¢: X —C defines either an Aj-fibration or a
twisted Aj-fibration (cf. [8; Chap. II, §5]). Then the endomorphism f: X -X
induces an étale endomorphism 4: C—C such that h-¢p=¢-f. Let X=X X

(C, k) be the fiber product of ¢: X—C and k: C—C, and let ¢,: X,—C be the
projection onto the second factor. Then f induces an étale morphism g: X—X|
such that ¢=qpo* £ and f is the composite of ¢ and the projection X,—X. Let
X, be the normalization of X, in the function field of the upper X over k.
Since % is finite by Lemma 1, X, coincides with X. Now we look at the C-
morphism g: X— X, which preserves the Aj-fibrations (or the twisted Aj-
fibrations) on X and X, over C. Let m:= degg and let H be the group of all
m-th roots of the unity in 2. As in Lemma 5 and its proof, H acts on X, and
X, is the quotient variety X,/H. Let ¢,: X;—C be the composite of the nor-
malization morphism X,—X, and ¢,. Then ¢, defines an Aj-fibration or a
twisted Ajg-fibration on X such that ¢,|y=¢. Let .S be a singular fiber of X,
over a point P of C. Write S=IT'4A as in Lemma 4. Then we can readily
show that S;:= ¢F(P) is a singular fiber on X, S;=T+A, and T is stable
under the action of H, where Supp A, is a disjoint union of irreducible curves
isomorphic to A}. 'This implies that X—X=X,—X is a disjoint union of
irreducible curves which are isomotphic to A;.

(III) Case where ©(X)=0 and X is rational. We note that #(X)=r(X).
Indeed, by the logarithmic . mification formula applied to the normalization
morphism X—X, we have #(X)<#X). Since the upper X is an open set of X,
we have #(X)<#(X). Hence #(X)=#=(X). Let V be anew a nonsingular com-
pletion of X such that D:=V —X is a divisor with simple normal crossings.
Since #X)=0 as shown above, P,(X)=<1 for every m=0. Let C,, -+, C, ex-
haust all irreducible components of V' such that C;N X=¢ and C;d Supp(D)
for 1<i<r. We may assume that C; is nonsingular at the points C;—C;N X
for 1=<{<r, and that D4 C,+---+C, has only normal crossings as singularities
at every point of V—X. Let z: V¥—V be a succession of blowing-ups with

centers at U Sing(C;) and their infinitely near points such that (z*(D+C;+ -
i=1

~4C,))rea is a divisor with simple normal crossings. Let D* = (z*(D+ C,+ -
4C,))rea- Since we have Ky+=7z*(K,)+R, with an effective divisor R,, we
have

”*(D+KV)+(”*(01+"' +C)))ea=D*+ Ky .

Since #(X)=#(D+Ky, V)=0, we have, by the x-calculus (cf. [5]):
k(¥ (D+Ky)+(z*(Cr+ -+ 4C,))eear V*) = w(D*+Ky», V)

&(@*(D+Ky)+@*(Crt-+++4-C))seas V*) = #(Cy+++-+C,+D+Ky, V)
and  &(D*+ Ky, V¥) = #(X) = 0.
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Therefore we have «(C,+:-+C,+D+Ky, V)=0. Let C now be one of
C/’s, 1=<i<r. Then |C+K,|=¢. Indeed, suppose |C+Ky,|+¢. Since X
is affine, we have mD = an ample divisor for a sufficiently large m»>0. Since
|m(C+D+Ky)| 2 |m(C+Ky) |+ |mD|, we have x(C+D-+K,, V)=2, which is
a contradiction. Hence |C+K,|=¢. This implies that C' is a nonsingular
rational curve (cf. [8; Chap. I, Lemma 2.1.3]). Consider an exact sequence

0— Oy(D+Ky) - O,(C+D+K,) - O((C-D)—2)— 0.
Thence we have an exact sequence

0 — HYV, D+K,) - H'(V, C+D+K,) — H(C, O((C -D)—2))
— HY(V, D+Ky),

where dim H{(V, D+Ky)=dim H(C, —D)=0 because V is rational and D is 1-
connected. We claim that (O-D)=1. Suppose |C+D+K,|=¢. Then, by
the above exact sequence, (C-D)=<1, while (C+D)>0 because X=V—D is
affine. Now suppose |C+D+K,|+¢. If CEBs|C+D-+K,|, there exists a
member M & |C+D+Ky| such that C is not a component of M. Then, for a
large integer m<<0 with |m(D+ K,)|+¢, |m(C+ D+ K)| contains mM and
mC + |m(D+Ky)|. Hence #(C+ D+ Ky, V)>0, which is a contradiction.
Hence C< Bs|C+D+K,|. This implies |[D+ Ky |+ ¢. The above exact
sequence then implies (C-D)<1, hence (C-D)=1. This is the case for C,. It
is then readily seen that the above argument applies even if C and D replaced
by C, and O,+D. Thus we can show that (C,-C))=0 and (C,-D)=1. We
apply the above argument for C; and C,+:--+C;_+D-+K,, 1=i=r, to con-
clude that (C;+C;)=0 for i+j and (C;-D)=1. This implies that X—X is a
disjoint union of irreducible curves isomorphic to Aj.

(IV) Case ®(X)=—co. The assertion was verified in [9]. Q.E.D.

Hereafter, we assume that the ground field & is the complex number field
C. Let X be a nonsingular affine surface defined over C and let V' be a non-
singular completion of X such that D:= V' —X is a divisor with simple normal
crossings. Let e(X), e(V) and e(D) be the Euler numbers of X, ¥ and D,
respectively. If D=D,+4---+D, be the decomposition into irreducible com-
ponents, the Euler number e(D) is given as

«D) = 3} {2~ 2¢(D)} — 3 (DiD)),

where g(D,) is the genus of a nonsingular curve D; (cf. [10]). Suppose X has
a finite étale endomorphism f: X—X of degree n>>1. Then e(X)=ne(X) by
virtue of the well-known formula of the Euler numbers for a finite étale covering.
Hence we have ¢(X)=0. This condition provides a strong restriction on the
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structure of X. More precisely, we have the following:

Theorem 11. Let X be a nonsingular affine surface defined over C, which
is endowed with a finite étale endomorphism f: X—X of degree n>1. Then X is
one of the following:

(1) Case #(X)=—co. X iseither A; X Ay or a relatively minimal elliptic
ruled surface with ome cross-section deleted off.

(2) Case ®(X)=0 or 1. We have then either

(1) X is a rational surface with #(X)=0 such that, if (V, D) is any non-
singular completion of X with the boundary divisor D of simple normal crossings
and if D=D,+--+D, is the decomposition into irreducible components, any com-
ponent D; is rational and (K§)<12—r7, or

(i) there exists a surjective morphism ¢: X —C onto a nonsingular curve
which defines an Ay-fibration or a twisted Ay-fibration and which has no singular
fibers except those of the type S=aT", with T',=Aj}.

Proof. Note that if Y, is an open set in a nonsingular affine surface ¥ such
that Y—Y, is isomorphic to Ag, then e(Y)=e(Y)—1.

(1) Suppose #(X)=—oco. Consider, first of all, the case where X is irra-
tional or I'(X,Ox)*# C*. By Lemma 3, either X is elliptic-ruled or
rank (T'(X, Ox)*/C*)=1. As shown in the proof of Lemma 3, there exist a
surjective morphism ¢: X—C onto a nonsingular curve C and a finite étale
endomorphism %: C— C such that ¢+ f=rh-¢p, where C is a complete elliptic
curve or isomorphic to Aj. Let S; (1=i=<¢?) exhaust all singular fibers of ¢,
which defines an A'-fibration and let §; be the number of irreducible components
of S;. If we note that every component of S; is isomorphic to A, we know,

by the above remark, that e(X)= Zi (8;—1). Hence §;=1 for 1=7=t, and

S;=a;A; with a;>1 and A;=A}. Note, on the other hand, that X is isomor-
phic to the fiber product of ¢: X—C and &: C—C;; see the proof of Lemma 3.
Hence deg hi=deg f=n>1. Then, for any singular fiber S;, f*(S;) consists of
n singular fibers. Indeed, if P;=¢(S;) and 2 (P,)={Q;y, -**, Oi}, then ¢*(0;;)
(1=j=n) is a singular fiber. Thus we have nt=¢. Thisimplies that ¢ has no
singular fibers. If C=A}, then X is isomorphic to A¢ X Aj.

Consider, next, the case where X is rational and T'(X, Ox)*=C*. Since X
is an affine surface with #(X)= — oo, there exists a surjective morphism ¢: X—C
which defines an A’-fibration, where C=Ag or P¢ (cf. [8; Chap. I]). Let S;
(1=i=t) exhaust all singular fibers of ¢ and let §; be the number of irreducible
components of S;. Then we have

o(X) = 1+&+ 3 (8—1),

where €=0 or 1 according as C = A¢ or P;. Hence ¢(X)>0, which contradicts
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the hypothesis that f is a finite étale endomorphism with deg f >1.

(2) Suppose #(X)=0 or 1. Consider the case where either z(X)=1 or
#(X)=0 and X is irrational. As in the proof of Theorem 10, there exists a sur-
jective morphism ¢: X—C onto a nonsingular curve which defines either an
Aj-fibration or a twisted Aj-fibration on X. Let S;(1<7{=<t) exhaust all
singular fibers of ¢, let P;=¢(S;) and let C,=C—{P,, ---, P,}. Then ¢(X)=

e(p~Y(Cy))+ _};‘1')';, where (¢ (Cy))=e(C,)+e(Ax)=0 and v, is the contribution

of S; as described below. Let .S be one of S;’s, and write S=T'-+A (cf. Lemma
4). Let v be the contribution of S to ¢(X). If I'=0 then ¥=3§:= the number
of irreducible components of A. If I'=aT, with T';==A} then ¥=3§ as in the
preceding case. If I'=aI'+a,I, with T'\=T,==A; then vy=35+1. Since
¢(X)=0, we conclude that any singular fiber S of ¢ is of the form S=aT, with
a>1and T,==Aj. This verifies the assertion in the present case.

The remaining case is the one where X is a rational surface with #(X)=0.
Let V be a nonsingular completion of X such that the boundary divisor D:=
V—X is a divisor with simple normal crossings. With the same notations as in
[8; Chap. II, 5], let (V,,, D,,) be a relatively minimal model of (V,, D,) and let
X,=Vn-Supp(D,). Then X, is an affine open set of X, and X—X, is a
disjoint union of irreducible curves isomorphic to Ag;. Hence e(X,)=0.
Suppose now that D contains an irrational irreducible component. By virtue
of [8; Chap. II, Lemma 5.5], we know that ¢(X,,)=3 or 4, which is a contradic-
tion. Therefore every irreducible component of D is a nonsingular rational
curve. Let D=D,+---+D, be the decomposition into irreducible components.
Note that dim H(V, D+K;)=<1 because x(X)=0, that H(V, D+K,)=0 and
that HY(V, D+K;)=0 because V is rational and D is 1-connected. Hence, by
virtue of the Riemann-Roch theorem.

dim HYV, D+Ky) = %(D-D+KV)+1g1 :
where (D-D+Ky) = —2r42 3 (D;-D)).
Hence we have
e(V) = e(D) = 2r— ‘% (D;*Dj)=r .
By virtue of Noether’s formula 12X(0,)=(K7)+e(V), we obtain
12—(KP) = e(V)=r. QE.D.

Remark. The following results in the complete case show that there are
good similarities between the affine and complete cases. Let V' be a nonsingular
projective surface with an étale endomorphism f: VV—V of degree>1. Then
V is relatively minimal, i.e., there are no exceptional curves of the first kind
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on V, V has the Euler number ¢(}V)=0, and V is, indeed, one of the following:

(1) Case k(V)=—co. Then V is a ruled surfice over an elliptic curve.
(2) Case «(V)=0. Then V is either an abelian surface or a hyperelliptic

surface.

(3) Case «(V)=1. Then V is an elliptic surface ¢: V—C whose singular

fiber, if any, is a multiple of a nonsingular elliptic curve.
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