REMARKS ON THE LIFTING PROPERTY OF SIMPLE MODULES

Morihiro OKADO and Kiyoichi OSHIRO

(Received February 8, 1983)

Throughout this paper, we assume that R is an associative ring with identity and $\left\{M_{a}\right\}_{I}$ is an infinite set of completely indecomposable right R-modules. We put $M=\sum_{I} \oplus M_{\infty}$ and $\bar{M}=M / J(M)$, where $J(M)\left(=\sum_{I} \oplus J\left(M_{a}\right)\right)$ denotes the Jacobson radical of M.

If each M_{a} is a cyclic hollow module, then \bar{M} is completely reducible. In this case, M is said to have the lifting property of simple modules modulo the radical if every simple submodule of \bar{M} is induced from a direct summand of M ([3]). On the other hand, for the family \mathscr{M} of all maximal submodules of M, M is said to have the lifting property of modules for \mathscr{M} if every member A in \mathscr{M} is co-essentially lifted to a direct summand of M, that is, there exists a decomposition $M=A^{*} \oplus A^{* *}$ such that $A^{*} \subseteq A$ and $A \cap A^{* *}$ is small in M ([5]). These two concepts are both dual to 'extending property of simple modules' mentioned in [4]. Therefore, we must observe whether these two lifting properties coincide or not. In this paper, we study this problem and show the following result: M has the lifting property of modules for \mathscr{M} if and only if it has the lifting property of simple modules modulo the radical and satisfies the following condition: For any $\left\{M_{\alpha_{i}}\right\}_{i=1}^{\infty} \subseteq\left\{M_{a}\right\}_{I}$ and epimorphisms $\left\{f_{i}: M_{\omega_{i}} \rightarrow M_{\omega_{i+1}}\right\}^{\}_{i=1}^{\infty}}$, there exist n (depending on the sets) and epimorphism $g: M_{\omega_{n+1}} \rightarrow M_{\omega_{n}}$ such that $g=\bar{f}_{n}^{-1}$, where \bar{g} and \bar{f}_{n} are the induced isomorphisms: $\bar{M}_{a_{n+1}} \rightarrow \bar{M}_{a_{n}}$ and $\bar{M}_{a_{n}} \rightarrow$ $\bar{M}_{\omega_{n+1}}$, respectively (Theorem 10).

Notation. By $P(M)$ we denote the set of all submodules X of M such that $X \cap M_{a} \neq M_{a}$ for all $\alpha \in I$ and $X=\sum_{I} \oplus\left(X \cap M_{a}\right)$.

We first show
Theorem 1. The following conditions are equivalent:

1) For any pair $\alpha, \beta \in I$, every epimorphism from M_{α} to M_{β} is an isomorphism.
2) Let $\left\{A_{\beta}\right\}_{J}$ be a family of indecomposable direct summands of M. If $A_{\beta_{1}}+\cdots+A_{\beta_{n}}+X \nexists A_{\beta_{n+1}}$ for any $X \in P(M)$ and any finite subset $\left\{\beta_{1}, \cdots, \beta_{n+1}\right\}$
$\subseteq J$, then $\sum_{J} A_{\beta}$ is a direct sum (and a locally direct summand of M).
Proof. 1) $\Rightarrow 2$). Let $\beta_{1}, \cdots, \beta_{n+1} \in J$ and assume that $A=A_{\beta_{1}}+\cdots+A_{\beta_{n}}$ is a direct sum and a direct summand of M. We may show $A \oplus A_{\beta n+1}<\oplus M$. We see from [1] and [6] that every indecomposable direct summand of M satisfies the exchange property and hence we have a subset $I^{\prime}=\left\{\alpha_{1}, \cdots, \alpha_{n}\right\} \subseteq I$ satisfying $M=A \oplus \sum_{I-I^{\prime}} \oplus M_{\gamma}$. We get either $M=A \oplus A_{\beta_{n+1}} \oplus_{\left\{I-I^{\prime}\right\}-\{\nu\}} \oplus M_{\gamma}$ for some $\nu \in$ $I-I^{\prime}$ or $M=A_{\beta_{1}} \oplus \cdots \oplus A_{\beta_{i-1}} \oplus A_{\beta_{i+1}} \oplus \cdots \oplus A_{\beta_{n}} \oplus A_{\beta_{n+1}} \oplus \sum_{i-1^{\prime}} \oplus M_{y}$ for some i.

In the former case, $A \oplus A_{\beta n+1}<\oplus M$ as desired. In the latter case, $M_{a} \simeq$ $A_{\beta_{n+1}}$ for some $\alpha \in\left\{\alpha_{1}, \cdots, \alpha_{n}\right\}$. For each $\gamma \in I-I^{\prime}, \pi_{\gamma}$ denotes the projection: $M=A \oplus \sum_{I-I^{\prime}} \oplus M_{\gamma} \rightarrow M_{\gamma}$. If $\pi_{\gamma}\left(A_{\beta n+1}\right) \neq M_{\gamma}$ for all $\gamma \in I-I^{\prime}$ then $X=\sum_{I-I^{\prime}} \oplus$ $\pi_{\gamma}\left(A_{\beta_{n+1}}\right) \in \mathrm{P}(M)$ and $A_{\beta_{n+1}} \subseteq A_{\beta_{1}}+\cdots+A_{\beta_{n}}+X$, a contradiction. Therefore, $\pi_{\gamma_{0}}\left(A_{\beta_{n+1}}\right)=M_{\gamma_{0}}$ for some $\gamma_{0} \in I-I^{\prime}$. Since $M_{a} \simeq A_{\beta_{n+1}}$ and $\alpha \neq \gamma_{0}, \pi_{\gamma_{0}} \mid A_{\beta_{n+1}}$ is an isomorphism by the assumption. Hence it follows that $M=A_{\beta_{1}} \oplus \cdots \oplus A_{\beta_{n}}$ $\oplus A_{\beta_{n+1}} \oplus \sum_{K} \oplus M_{\gamma}$, where $K=\left\{I-I^{\prime}\right\}-\left\{\gamma_{0}\right\}$.
$2) \Rightarrow 1$). Let $\alpha, \beta \in I$ and consider an epimorphism $f: M_{\omega} \rightarrow M_{\beta}$. Putting $M_{\alpha}^{\prime}=\left\{x+f(x) \mid x \in M_{\alpha}\right\}$, we see that $M_{\infty} \simeq M_{\alpha}^{\prime}\left\langle\oplus M\right.$ and $M_{\alpha}^{\prime}+X \nsupseteq M_{\alpha}$ for any X in $\mathrm{P}(M)$; whence, by 2), $\operatorname{ker} f=M_{a}^{\prime} \cap M_{\infty}=0$ and hence f is an isomorphism.

Theorem 2. Assume that each X in $\mathrm{P}(M)$ is small in M or each M_{∞} is cyclic hollow. Then the following condition is equivalent to each of conditions 1) and 2) in Theorem 1.
(K) If $M=\sum_{J} A_{\beta}$ is an irredundant sum and each A_{β} is an indecomposable direct summand, then this sum is a direct sum.

Proof. $(\mathrm{K}) \Rightarrow 1)$ is shown by the same proof as in 2$) \Rightarrow 1$) in Theorem 1. Now, assume that 2) holds and let $M=\sum_{J} A_{\beta}$ be an irredundant sum and each A_{β} an indecomposable direct summand. First, if each X in $\mathrm{P}(M)$ is small in M, then we see that $A_{\beta_{1}}+\cdots+A_{\beta_{n}}+X \nsupseteq A_{\beta_{n+1}}$ for any X in $\mathrm{P}(M)$ and any finite subset $\left\{\beta_{1}, \cdots, \beta_{n+1}\right\} \subseteq J$. Hence the sum $M=\sum_{J} A_{\beta}$ is a direct sum by 2). Next, consider the case when each M_{β} is cyclic hollow. Assume that there exist a subset $\left\{\beta_{1}, \cdots, \beta_{n}\right\} \subseteq J$ and X in $\mathrm{P}(M)$ such that $A_{\beta_{1}}+\cdots+A_{\beta_{n}}+X$ $\supseteq A_{\beta_{n+1}}$. Then we can take a finite subset $F \subseteq I$ and $Y \subseteq \sum_{F} \oplus M_{a}$ such that $A_{\beta_{1}}+\cdots+A_{\beta_{n}}+Y \supseteq A_{\beta_{n+1}}$ and $Y \in \mathrm{P}(M)$. Since Y is small in M, this implies that $M=\sum_{J-\left(\beta_{n+1}\right)} A_{\beta}$, a contradiction. Therefore, such $\left\{\beta_{1}, \cdots, \beta_{n}\right\}$ and X do not exist; whence the sum $M=\sum_{J} A_{\beta}$ is a direct sum by 2).

Theorem 3. The following conditions are equivalent:

1) For any irredundant sum $\sum_{J} A_{\beta}$ of direct summands of M with the pro-
perty that $A_{\beta_{1}}+\cdots+A_{\beta_{n}}+X \not A_{\beta_{n+1}}$ for any X in $\mathrm{P}(M)$ and any finite subset $\left\{\beta_{1}, \cdots, \beta_{n}\right\} \subseteq J$, the sum $\sum_{J} A_{\beta}$ is a direct sum and moreover a direct summand of M.
2) $\left\{M_{a}\right\}_{I}$ is a locally semi-T-nilpotent set and 2) in Theorem 1 holds.

Proof. 1) $\Rightarrow 2$). We may only show the first condition. Let $\left\{M_{a_{i}}\right\}_{i=1}^{\infty} \subseteq$ $\left\{M_{a}\right\}_{I}$ and $\left\{f_{i}: M_{a_{i}} \rightarrow M_{a_{i+1}}\right\}_{i=1}^{\infty}$ be a set of non-isomorphisms. Then each f_{i} is not an epimorphism by Theorem 1. Consider $M_{\alpha_{i}}^{\prime}=\left\{x+f_{i}(x) \mid x \in M_{a_{i}}\right\}$, $i=1,2, \cdots$. Then, as is easily seen, $\left\{M_{\alpha_{i}}^{\prime}\right\}^{\infty}=1=1$ is a set of indecomposable direct summands of M and satisfies the condition: $M_{\beta_{1}}^{\prime}+\cdots+M_{\beta_{n}}^{\prime}+X \not M_{\beta_{n+1}}^{\prime}$ for any X in $\mathrm{P}(M)$ and $\left\{\beta_{1}, \cdots, \beta_{n+1}\right\} \subseteq\left\{\alpha_{i}\right\}_{i=1}^{\infty}$. Hence we get $M^{\prime}=\sum_{i=1}^{\infty} \oplus M_{\alpha_{i}}^{\prime}$ $\left\langle\oplus \sum_{i=1}^{\infty} \oplus M_{a_{i}}\right.$. We put $N=\sum_{i=1}^{\infty} \oplus M_{\alpha_{i}}=M^{\prime} \oplus T$. Assume that T is not indecomposable and non-zero. Then, by the Krull-Remak-Schmidt Azumaya's theorem, we see $M^{\prime} \cap\left(M_{a_{n}} \oplus M_{a_{m}}\right)=0$ for some $n \neq m$. But we can verify that this is impossible. As a result, T is indecomposable or zero, from which we get $N=M^{\prime}$ or $N=M^{\prime} \oplus M_{a_{n}}$ for some α_{n}. In either case, we see that for every x in $M_{a_{1}}$ there exists m such that $\left.f_{m} f_{m-1} \cdots f_{1}(x)=0.2\right) \Rightarrow 1$) is clear from Theorem 1 and [2, Theorem 3.2.5].

Definition ([5]). Let $\left\{A_{1}, \cdots, A_{n}\right\}$ be a family of submodules of M. We say that the family is co-independent if the canonical map: $M \rightarrow \sum_{i=1}^{n} \oplus\left(M / A_{i}\right)$ is an epimorphism.

Theorem 4. The following conditions are equivalent:

1) For any $\alpha \in I$, every epimorphism from $\sum_{I-\{\alpha\}} \oplus M_{\beta}$ to M_{ω} splits.
2) If $\left\{A_{1}, \cdots, A_{n}\right\}$ is a co-independent family of direct summands of M such that $M \mid A_{i}$ is indecomposable, then $\bigcap_{i=1}^{n} A_{i}$ is a direct summand of M.

Proof. By [1] and [6], we see that every indecomposable direct summand of M is isomorphic to some member in $\left\{M_{a}\right\}_{I}$ and hence satisfies the finite exchange property.
2) $\Rightarrow 1$). Let $\alpha \in I$ and $f: T=\sum_{I-\{\alpha\}} \oplus M_{\beta} \rightarrow M_{a}$ be an epimorphism. Putting $N=\{x+f(x) \mid x \in T\}$, we see that $M=N+T$, whence $\{N, T\}$ is co-independent. Thus ker $f=T \cap N<\oplus M$.
$1) \Rightarrow 2$). We show this by induction. So, let $\left\{A_{1}, \cdots, A_{n}, A\right\}$ be a coindependent family of direct summands of M such that each M / A_{i} and M / A are indecomposable, and assume $B=\bigcap_{i=1}^{n} A_{i}<\oplus M$. Setting

$$
M=A \oplus A^{*}
$$

$$
=B \oplus B^{*}
$$

we see, by the above remark, that either

$$
M=B \oplus X \oplus A^{*}
$$

for some $X \subseteq B^{*}$ or

$$
M=B^{\prime} \oplus A^{*} \oplus B^{*}
$$

for some $B^{\prime} \subseteq B$.
We first assume the former case, and let $\pi_{A}: M=A \oplus A^{*} \rightarrow A$ and $\pi_{A^{*}}$: $M=A \oplus A^{*} \rightarrow A^{*}$ be the projections. Since $M=A+B$ and $B \oplus A^{*}\langle\oplus M$ we see $\pi_{A^{*}}(B)=A^{*}$ and $B \subseteq \pi_{A}(B) \oplus \pi_{A^{*}}(B)=B \oplus A^{*}\left\langle\oplus M\right.$; so $\pi_{A}(B)<\oplus M$. Since $B \cap A^{*}=0$, the mapping $f: \pi_{A}(B) \rightarrow A^{*}$ given by $\pi_{A}(b) \rightarrow \pi_{A^{*}}(b)$ is well defined and an epimorphism. As a result, $B \cap A=\operatorname{ker} f\langle\oplus M$ by the condition 1).

Next consider the latter case:

$$
M=B^{\prime} \oplus A^{*} \oplus B^{*}
$$

where $B^{\prime} \subseteq B$. Since $B^{*} \simeq M / B \simeq M / A_{1} \oplus \cdots \oplus M / A_{n}, B^{*}$ has the exchange property (cf. [1], [6]) and so does $A^{*} \oplus B^{*}$. Therefore

$$
\begin{aligned}
M & =B^{\prime} \oplus A^{*} \oplus B^{*} \\
& =A^{\prime} \oplus A^{*} \oplus B^{*}
\end{aligned}
$$

for some $A^{\prime} \subseteq A$. Consider the projections:

$$
\pi_{A^{*}}: M \rightarrow A^{*}, \pi_{B^{*}}: M \rightarrow B^{*}
$$

with respect to $M=A^{\prime} \oplus A^{*} \oplus B^{*}$, and

$$
\tau_{A^{*}}: M \rightarrow A^{*}, \tau_{B^{*}}: M \rightarrow B^{*}
$$

with respect to $M=B^{\prime} \oplus A^{*} \oplus B^{*}$.
Here the mapping $f: B^{*} \rightarrow A^{*}$ given by $\pi_{B^{*}}(a) \rightarrow \pi_{A^{*}}(a)$ for $a \in A$ and $g: A^{*} \rightarrow B^{*}$ given by $\tau_{A^{*}}(b) \rightarrow \tau_{B^{*}}(b)$ for $b \in B$ are well defined. Put

$$
\begin{aligned}
X & =\left\{\pi_{B^{*}}(a)+\pi_{A^{*}}(a) \mid a \in A\right\} \\
Y & =\left\{\tau_{A^{*}}(b)+\tau_{B^{*}}(b) \mid b \in B\right\}
\end{aligned}
$$

Then $A=A^{\prime} \oplus X, B=B^{\prime} \oplus Y, X \oplus A^{*}=Y \oplus B^{*}=A^{*} \oplus B^{*}$ and

$$
\begin{aligned}
M & =A^{\prime} \oplus X \oplus A^{*} \\
& =B^{\prime} \oplus Y \oplus B^{*}
\end{aligned}
$$

If $X \oplus A^{*}=X \oplus T$ for some $T \subseteq B^{*}$, then $B=\left\{\delta(b)+\delta^{\prime}(b) \mid b \in B\right\}$ where δ and
δ^{\prime} are the projections: $M \rightarrow A^{\prime} \oplus X$ and $M \rightarrow T$, respectively with respect to $M=A^{\prime} \oplus X \oplus T$. Noting $M=A+B$ and $B \cap T=0$, we see $\delta(B)=A$ and $\delta^{\prime}(B)$ $=T$, and further the mapping $\phi: A \rightarrow T$ given by $\delta(b) \rightarrow \delta^{\prime}(b)$ is well defined and an epimorphism. Consequently $A \cap B=\operatorname{ker} \phi\langle\oplus M$.

If the case: $X \oplus A^{*}=X \oplus T$ for some $T \subseteq B^{*}$ does not occur, we must have $A^{*} \oplus B^{*}=X \oplus Y$, so

$$
\begin{aligned}
M & =A^{\prime} \oplus X \oplus Y \\
& =B^{\prime} \oplus Y \oplus X
\end{aligned}
$$

Then let $\eta_{A^{\prime}}: M \rightarrow A^{\prime}$ and $\eta_{X}: M \rightarrow X$ be the projections with respect to $M=$ $A^{\prime} \oplus X \oplus Y$. Putting $Z=\left\{\eta_{A^{\prime}}\left(b^{\prime}\right)+\eta_{X}\left(b^{\prime}\right) \mid b^{\prime} \in B^{\prime}\right\}$, we get $Z<\oplus A=A^{\prime} \oplus X$ and $A \cap B=Z\langle\oplus M$. The proof is now completed.

Remark. a) Under the assumptions 'each M_{a} is cyclic hollow' and ' $\mathrm{J}(M)$ is small in M ' the equivalence of 1) in Theorem 1 and (K) in Theorem 2 was shown in [3]. Theorem 2 says that this second assumption is supperfluous. b) In the case when each M_{a} is cyclic hollow, the condition 1) in Theorem 1 and 1) in Theorem 4 are clearly equivalent and hence all conditions in Theorems 1, 2 and 4 are equivalent. We also know from [3] that the following condition is also an equivalent condition: If $\left\{A_{\omega}\right\}_{J}$ is a family of direct summands of M such that $\left\{\bar{A}_{\beta}\right\}_{J}$ is independent in $\bar{M}=M / \mathrm{J}(M)$, then the sum $\sum_{J} A_{\boldsymbol{\beta}}$ is a direct sum and a locally direct summand.

Theorem 5. The following conditions are equivalent:

1) For any independent family $\left\{A_{\beta}\right\}_{J}$ of indecomposable direct summands of $M, \sum_{J} \oplus A_{\beta}$ is a locally direct summand.
2) For any $\alpha \in I$ and any monomorphism $f: M_{\infty} \rightarrow \sum_{I-(\alpha)} \oplus M_{\beta}, f\left(M_{\infty}\right)$ is a direct summand of $\sum_{I-\{\alpha\}} \oplus M_{\beta}$.

Proof. The proof is done as in the proof of [4, Theorem 13].
$1) \Rightarrow 2$). Let $\alpha \in I$ and consider a monomorphism $f: M_{\alpha} \rightarrow T=\sum_{I-\{\alpha\}} \oplus M_{\beta}$. Put $M_{\alpha}^{\prime}=\left\{x+f(x) \mid x \in M_{\alpha}\right\}$. Then $M_{\alpha}^{\prime} \cap T=0$ and $M_{\alpha}^{\prime} \oplus T=M_{a} \oplus T$; whence $M_{\alpha}^{\prime} \simeq M_{a}$ and M_{α}^{\prime} is a direct summand of $M_{a} \oplus M_{\beta}$. Further $M_{\alpha}^{\prime} \cap M_{a}=0$ and hence it follows from 1) that $M_{\alpha}^{\prime} \oplus M_{\infty}=M_{\infty} \oplus \operatorname{Im} f\langle\oplus M$; so $\operatorname{Im} f\langle\oplus M$.
$2) \Rightarrow 1$). We may show the following: If $\left\{A_{1}, \cdots, A_{n}\right\}$ is an independent set of indecomposable direct summands of $M, A_{1} \oplus \cdots \oplus A_{n}$ is also a direct summand of M.

If $n=1$, this is clear. Assume $n>1$ and $A=A_{1} \oplus \cdots \oplus A_{n-1}<\oplus M$. Since each member of $\left\{A_{1}, \cdots, A_{n-1}\right\}$ is isomorphic to some member in $\left\{M_{\alpha}\right\}_{I}$ (cf. [1]), A has the exchange property (cf. [6]), so

$$
M=A \oplus \sum_{J} \oplus M_{\gamma}
$$

for some subset $J \subseteq I$. Since A_{n} has the exchange property,

$$
M=A_{1} \oplus \cdots \oplus A_{k-1} \oplus A_{k+1} \oplus \cdots \oplus A_{n-1} \oplus A_{n} \oplus \sum_{J} \oplus M_{\gamma} \cdots(*)
$$

for some k or

$$
M=A \oplus A_{n} \oplus \sum_{J-\{\sigma\}} \oplus M_{\gamma}
$$

for some $\sigma \in J$. In the latter case the proof is completed. In the former case, $A_{k} \simeq M_{\lambda}$ for some $\lambda \in I-J$ and $f=\pi \mid A_{k}: A_{k} \rightarrow \sum_{J} \oplus M_{\gamma}$ is a monomorphism, where π denotes the projection: $M \rightarrow \sum_{J} \oplus M_{\gamma}$ with respect to (*). By 1), $f\left(A_{k}\right)<\oplus M$ and hence we see that $A \oplus A_{n}<\oplus M$.

Theorem 6. Assume that each M_{∞} is uniform. Then the following conditions are equivalent:

1) For any pair $\alpha, \beta \in I$, every monomorphism from M_{∞} to M_{β} is an isomorphism.
2) For any $\alpha \in I$ and any monomorphism from M_{∞} to $\sum_{I-\{\alpha\}} \oplus M_{\beta}$, the image $f\left(M_{\infty}\right)$ is a direct summand.

Proof. 2) $\Rightarrow 1$) is clear. Assume 1). Let $\alpha \in I$ and consider a monomorphism $f: M_{\omega} \rightarrow \sum_{I-(\alpha)} \oplus M_{\beta}$. Put $T=f\left(M_{\omega}\right)$. Since each M_{γ} is uniform, we can take $\beta \in I-\{\alpha\}$ such that $T \cap \sum_{I-\{\beta\}} \oplus M_{\gamma}=0$. Let π be the projection: $M=\sum_{I} \oplus M_{\infty} \rightarrow M_{\beta}$. Then $g=\pi \mid T: T \rightarrow M_{\beta}$ is a monomorphism and hence $g f: M_{\alpha} \rightarrow M_{\beta}$ is a monomorphism. Therefore g is an isomorphism by 1) and it follows that $M=T \oplus \sum_{I-\{\beta\}} \oplus M_{\gamma}$.

Remark. Under the assumption that each M_{a} is uniform, all conditions in Theorems 5 and 6 are equivalent (cf. [4, Theorem 13]).

Definition. Let \mathcal{A} be a family of submodules of $M . \quad M$ is said to have the lifting property of modules for \mathcal{A} if, for any A in \mathcal{A}, there exists a decomposition $M=A^{*} \oplus A^{* *}$ such that $A^{*} \subseteq A$ and $A \cap A^{* *}$ is small in M (see [5]).

Notation. By $\mathscr{H}(M)$, we denote the set of all submodules A of M such that M / A is a cyclic hollow module and define $\mathscr{H}^{*}(M)=\{A \in \mathscr{H}(M) \mid A$ contains almost all M_{∞} but finit\}.

Theorem 7. Assume that each M_{∞} is cyclic hollow. Then the following conditions are equivalent:

1) M has the lifting property of modules for $\mathscr{H}^{*}(M)$.
2) For any pair $\alpha, \beta \in I$, any $X \subset M_{\beta}$ and any epimorphism $f: M_{\infty} \rightarrow M_{\beta} / X$, there exists either $g: M_{\infty} \rightarrow M_{\beta}$ or $h: M_{\beta} \rightarrow M_{\omega}$ such that

is commutative, where ϕ is the canonical map.
Proof. 1) $\Rightarrow 2$). Let $\alpha, \beta \in I$ and consider submodules $X_{\alpha} \subsetneq M_{\alpha}$ and $X_{\beta} \subsetneq M_{\beta}$. Put $\overline{\bar{M}}=M /\left(X_{\infty} \oplus X_{\beta} \oplus_{I-\{\alpha, \beta\}} \oplus M_{\gamma}\right)$ and let $f: \overline{\bar{M}}_{\infty} \rightarrow \overline{\bar{M}}_{\infty}$ be an isomorphism. If we put $A=\left\{x \in M_{\infty} \oplus M_{\beta} \mid \overline{\bar{x}} \in\left\{\overline{\bar{y}}+f(\overline{\bar{y}}) \mid y \in M_{a}\right\}\right\}$, then $M / A \simeq \overline{\bar{M}} / \overline{\bar{A}}$ $\simeq \overline{\bar{M}}_{\infty}$ and hence $A \oplus_{I-\{\alpha, \beta\}} \oplus M_{\gamma} \in \mathcal{H}^{*}(M)$. So, by 1$)$, there exists a decomposition $M=A^{*} \oplus A^{* *}$ such that $A^{*} \subseteq A$ and $A \cap A^{* *}$ is small in M. Since M / A $\simeq A^{* *} /\left(A \cap A^{* *}\right)$ is cyclic hollow, $A^{* *}$ is also cyclic hollow. Hence $A^{* *}$ can be exchanged by some member in $\left\{M_{\infty}\right\}_{I}$. Since $\overline{\bar{M}}=\overline{\bar{A}}{ }^{*}, A^{* *}$ must be in fact exchanged by M_{a} or M_{β}; whence we get either $M=A^{*} \oplus M_{a}$ or $M=A^{*}$ $\oplus M_{\beta}$. In the former case, let $\pi: M=A^{*} \oplus M_{\beta} \rightarrow M_{\beta}$ be the projection. Then the diagram
is commutative, where $f^{\prime}=-\pi \mid M_{\alpha}$ and φ_{α} and φ_{β} are the canonical maps. In the latter case, we can obtain the desired epimorphism: $M_{\beta} \rightarrow M_{a}$ by considering the projection: $M=A^{*} \oplus M_{a} \rightarrow M_{a}$.
$2) \Rightarrow 1$). Let $A \in \mathscr{H}^{*}(M)$. Then we can take $F=\left\{\alpha_{1}, \cdots, \alpha_{n}\right\} \subseteq I$ and submodule $T \subseteq M_{a_{1}} \oplus \cdots \oplus M_{a_{n}}$ such that $A=\sum_{I-F} \oplus M_{\beta} \oplus T$ and $M=A+M_{a_{i}}$, $i=1, \cdots, n$. We put $X=\left(A \cap M_{\omega_{1}}\right) \oplus \cdots \oplus\left(A \cap M_{\omega_{n}}\right) \oplus \sum_{T-B} \oplus M_{\beta}$ and $\tilde{M}=M / X$. Then

$$
\begin{aligned}
& \tilde{M}=\tilde{A} \oplus \tilde{M}_{w_{1}}=\cdots=\tilde{A} \oplus \tilde{M}_{w_{n}} \\
& \tilde{M}_{a_{i}} \simeq M_{w_{i} i}\left(A \cap M_{a_{i}}\right) \text { (canonically), } i=1, \cdots, n
\end{aligned}
$$

Let $\pi_{i}: \tilde{M}=\tilde{A} \oplus \tilde{M}_{\omega_{i} \rightarrow} \rightarrow \tilde{M}_{\omega_{i}}$ be the projection, $i=1, \cdots, n$. Then $\pi_{i}\left(\tilde{M}_{a_{j}}\right)=\tilde{M}_{\alpha_{i}}$ and $\left\{\tilde{x}+\pi_{i}(\tilde{x}) \mid x \in M_{\omega_{j}}\right\} \subseteq \tilde{A}$ for $j \neq i$. Here, using 2), we can take $i_{0} \in\{1, \cdots$, $n\}$ and mappings $\left\{f_{j}: M_{\alpha_{j}} \rightarrow M_{\alpha_{i_{0}}} \mid j \neq i_{0}\right\}$ such that

$$
\widetilde{f_{j}(x)}=\pi_{i_{0}}(\widetilde{x})
$$

for all $x \in M_{\alpha_{j}}$ and $j \neq i_{0}$. Putting $A_{j}=\left\{x+f_{j}(x) \mid x \in M_{\alpha_{j}}\right\}$ and $T=A_{1} \oplus \cdots \oplus$ $A_{i_{0}-1} \oplus A_{i_{0}+1} \oplus \cdots \oplus A_{n} \oplus \sum_{J} \oplus M_{\beta}$, we see that $T \subseteq A$ and $M=T \oplus M_{\omega_{i_{0}}}$.

Notation. By $\mathscr{M}(M)$ we denote the set of all maximal submodules of M and put $\mathscr{M}^{*}(M)=\left\{A \in \mathscr{M}(M) \mid A\right.$ contains almost all M_{a} but finite $\}$.

Theorem 8. Assume that each M_{a} is a cyclic hollow module. Then the following conditions are equivalent:

1) M has the lifting property of simple modules modulo the radical.
2) M has the lifting property of modules for $\mathscr{M}^{*}(M)$.
3) For any pair α, β in I such that $\bar{M}_{\infty} \simeq \bar{M}_{\beta}$ and any isomorphism $f: \bar{M}_{\omega}$ $\rightarrow \bar{M}_{\beta}\left(\right.$ where $\bar{M}=M / J(M)$) there exists an epimorphism g of either M_{∞} onto M_{β} or M_{β} onto M_{a} such that $\bar{g}=f$ or $\bar{g}=f^{-1}$, where \bar{g} is the induced isomorphism.

Proof. 1$) \Leftrightarrow 3$) is due to Harada ([3]). 2) $\Leftrightarrow 3$) is shown by the quite same argument as in the proof of Theorem 7.

Notation. Let $\left\{M_{w_{i}}\right\}^{\infty}{ }_{i=1}^{\infty} \subseteq\left\{M_{a}\right\}_{I}$ and let $\left\{f_{i}: M_{w_{i}} \rightarrow M_{w_{i+1}}\right\}$ be a set of epimorphisms. By X_{i} we denote the set of all x in $M_{a_{i}}$ such that $f_{n} f_{n-1} \cdots f_{i}(x)$ $=0$ for some n (depending on x). Put $X=\sum_{i=1}^{\infty} \oplus X_{i}$ and $\hat{M}=M / X$. Then, as is easily seen, f_{i} induces an isomorphism $\hat{f}_{i}: \hat{M}_{a_{i}} \rightarrow \hat{M}_{a_{i+1}}$. Here we shall consider the following condition:
(*) For any such $\left\{M_{a_{i}}\right\}^{\infty}$ i=1 , epimorphisms $\left\{f_{i}: M_{a_{i} \rightarrow} \rightarrow M_{w_{i+1}}\right\}^{\infty}{ }_{i=1}$ and \hat{M}, there exist n (depending on the sets) and epimorphism $g: M_{a_{n+1}} \rightarrow M_{a_{n}}$ such that g induces \hat{f}_{n}^{-1}

Theorem 9. Assume that each M_{∞} is cyclic hollow. Then the following conditions are equivalent:

1) M has the lifting property of modules for $\mathscr{H}(M)$.
2) M has the lifting property of modules for $\mathcal{H}^{*}(M)$ and satisfies the condition (*).

Proof. 1) $\Rightarrow 2$). The first part is clear. Let $\left\{M_{a_{i}}\right\}_{i=1}^{\infty} \subseteq\left\{M_{a}\right\}_{I}$ and let $\left\{f_{i}: M_{a_{i}} \rightarrow M_{a_{i+}},\right\}_{i=1}^{\infty}$ be a set of epimorphisms. To verify (*) for these sets we can assume that $\left.\left\{M_{\infty}\right\}_{I}=\left\{M_{a_{i}}\right\}^{\infty}\right\}_{i=1}^{\infty}$, since $\sum_{i=1}^{\infty} \oplus M_{\alpha_{i}}$ also has the lifting property of modules for $\mathcal{H}\left(\sum_{i=1}^{\infty} \oplus M_{\alpha_{i}}\right)$. Now, we put $X_{i}=\left\{x \in M_{\omega_{i}} \mid \exists n: f_{n} f_{n-1} \cdots\right.$ $\left.f_{i}(x)=0\right\}, X=\sum_{i=1}^{\infty} \oplus X_{i}$ and $\hat{M}=M / X$. Since each $M_{a_{i} i}$ is cyclic hollow, we can put $M_{\omega_{i}}=m_{i} R$ with $f_{i}\left(m_{i}\right)=m_{i+1}$ for some $\left\{m_{i}\right\}_{i=1}^{\infty}$. Putting $A=\sum_{i=1}^{\infty}\left(m_{i}+m_{i+1}\right) R$, we see that $M=m_{i} R+A$ and $m_{i} R \cap A=X_{i}, i=1,2, \cdots$. Since $M / A=\left(m_{i} R\right.$ $+A) / A \simeq m_{i} R /\left(A \cap m_{i} R\right), A$ lies in $\mathcal{H}(M)$. Hence there exists a decomposition $M=A^{*} \oplus A^{* *}$ such that $A^{*} \subseteq A$ and $A \cap A^{* *}$ is small in M. Since $M / A \simeq$
$A^{* *} /\left(A \cap A^{* *}\right), A^{* *} /\left(A \cap A^{* *}\right)$ is cyclic hollow and hence so is $A^{* *}$. As a result, we can assume that $A^{* *}$ coincides with some member in $\left\{M_{w_{i}}\right\}_{i=1}^{\infty}$ by the Krull-Remak-Schmidt-Azumaya's theorem: say

$$
M=A^{*} \oplus M_{a_{n}}
$$

with $A^{*} \subseteq A$. We express m_{n+1} as

$$
m_{n+1}=-m_{n} r_{n}+\left(m_{n}+m_{n+1}\right) r_{n}+m_{n+1} r_{n+1}
$$

with $m_{n+1} r_{n+1} \in X_{n+1}$.
Now the mapping $g: M_{a_{n+1}} \rightarrow M_{\omega_{n}}$ given by the rule $m_{n+1} r \rightarrow m_{n} r_{n} r$ is well defined and an epimorphism. We claim that $\hat{g}=\hat{f}_{n}^{-1}$. In fact, it is easy to see that $m_{n} r_{n} r \in X_{n}$ if and only if $m_{n+1} r \in X_{n+1}$; whence g induces an isomorphism \hat{g} from $\hat{M}_{a_{n+1}}$ to $\hat{M}_{\alpha_{n}}$ and moreover $\hat{m}_{n+1}=\hat{m}_{n+1} r_{n}=\hat{f}_{n}\left(\hat{m}_{n} r_{n}\right)=\hat{f}_{n} \hat{g}\left(\hat{m}_{n+1}\right)$ and hence $\hat{g}=\hat{f}_{n}^{-1}$.
$2) \Rightarrow 1$). We fix $\alpha_{0} \in I$ and put $M_{a_{0}}=m_{a_{0}} R$. Let $A \in \mathscr{H}(M)$. To show that A can be co-essentially lifted to a direct summand of M, we may assume that each M_{ω} is not contained in A, namely, $M=M_{\infty}+A$ for all $\alpha \in I$. Put $Y_{\infty}=M_{\infty} \cap A$ for all $\alpha \in I, Y=\sum_{I} \oplus Y_{\infty}$ and $\tilde{M}=M / Y$. For any $\beta \in I-\left\{\alpha_{0}\right\}$, we see

$$
\begin{aligned}
\tilde{M} & =\tilde{M}_{a_{0}} \oplus \tilde{A} \\
& =\tilde{M}_{\beta} \oplus \tilde{A}
\end{aligned}
$$

So, there exist $m_{\beta} \in M_{\beta}$ and $a_{\beta} \in A$ such that

$$
\tilde{m}_{a_{0}}=\tilde{m}_{\beta}+\tilde{a}_{\beta}
$$

Clearly the rule $\widetilde{m}_{a_{0} r} r \tilde{m}_{\beta} r$ defines an isomorphism from $\tilde{M}_{a_{0}}$ to \tilde{M}_{β}. Therefore the rule $\tilde{m}_{\beta} r \leftrightarrow \tilde{m}_{\beta^{\prime}} r$ define an isomorphism $\eta_{\beta}^{\beta^{\prime}}: \tilde{M}_{\beta} \rightarrow \tilde{M}_{\beta^{\prime}}$ for any pair β, β^{\prime} in I. Here we shall show that there does not exist the following subset $\left\{\alpha_{i}\right\}^{\infty}=1$ $\subseteq I-\left\{\alpha_{0}\right\}:$
i) there exists a set $\left\{f_{i}: M_{\omega_{i}} \rightarrow M_{\omega_{i+1}}\right\}_{i=1}^{\infty}$ of epimorphisms such that each f_{i} induces the isomorphism $\eta_{\alpha_{i}}^{\alpha_{i+1}}$
ii) but for all i there does not exist any epimorphism $g: M_{\alpha_{i+1}} \rightarrow M_{\alpha_{i}}$ which induces the isomorphism $\left(\eta_{\alpha_{i}}^{\alpha_{i+1}}\right)^{-1}$.

In fact, assume, on the contrary, that such $\left\{\alpha_{i}\right\}_{i=1}^{\infty}$ exists. Put $X_{i}=\{x \in$ $M_{w_{i}} \mid f_{n} f_{n-1} \cdots f_{i}(x)=0$ for some $\left.n \geq i\right\}, X=\sum_{i=1}^{\infty} \oplus X_{i}$ and $\hat{M}=M / X$. Then clearly $X_{i} \subseteq Y_{i}$ and $f_{i}\left(X_{i}\right)=X_{i+1}$ for all i. By \hat{f}_{i} we denote the induced isomorphism: $\hat{M}_{a_{i} \rightarrow \hat{M}_{a_{i+1}}}$. Here using the condition 2) we can take k and an epimorphism $g: M_{w_{k} \rightarrow}^{w_{i} \rightarrow} M_{w_{k-1}}$ such that g induces \hat{f}_{k}^{-1}. Then $\hat{m}_{k}=\hat{g}\left(\hat{m}_{k+1}\right)$ and it follows that $\widetilde{m}_{k}=\widetilde{g\left(m_{k+1}\right)}$. As a result, g induces $\left(\eta_{a_{k}}^{\alpha_{k+1}}\right)^{-1}$, a contradiction.

Now, by this fact and Theorem 8, we may consider the following two cases.
${ }^{*}$) For any $\alpha \in I-\left\{\alpha_{0}\right\}$ there exists an epimorphism $f_{\infty}: M_{\infty} \rightarrow M_{\omega_{0}}$ such that f_{∞} induces the isomorphism $\eta_{\alpha}^{\alpha_{0}} ; \tilde{M}_{\infty} \rightarrow \tilde{M}_{a_{0}}$.
${ }^{* *}$) There exist $J=\left\{\alpha_{1}, \cdots, \alpha_{t}\right\} \subseteq I-\left\{\alpha_{0}\right\}$ and sets $\left\{f_{i}^{i+1}: M_{\omega_{i} \rightarrow} \rightarrow M_{\alpha_{i+1}} \mid\right.$ $i=0, \cdots, t-1\}$ and $\left\{f_{\beta}^{a} t: M_{\beta} \rightarrow M_{\beta_{t}} \mid \beta \in I-\left\{J^{v}\left\{\alpha_{0}\right\}\right\}\right.$ of epimorphisms such that f_{i}^{i+1} and $f_{\beta^{t}}^{\alpha_{t}}$ induce $\eta_{\alpha_{i}}^{\alpha_{i+1}}$ and $\eta_{\beta^{t}}^{\alpha_{t}}$, respectively. Then

$$
\widetilde{m}_{a_{i+1}}=\widetilde{f_{i}^{i+1}\left(m_{a_{i}}\right)}
$$

for all $i=1,2, \cdots, t-1$, and

$$
\tilde{m}_{\beta}=\widetilde{f_{\beta^{t}}^{\phi_{t}}\left(m_{a_{t}}\right)}
$$

for all $\beta \in K=I-\left\{J^{\cup}\left\{\alpha_{0}\right\}\right\}$.
In the first case, consider the map $f=\sum_{I-\left\{\alpha_{0}\right\}} f_{\alpha_{0}}^{\alpha_{0}}: \sum_{I-\left\{\alpha_{0}\right\}} \oplus M_{\omega} \rightarrow M_{\alpha_{0}}$ and put $A^{*}=\left\{x+f(x) \mid x \in \sum_{I-\left\{\alpha_{0}\right\}} \oplus M_{a}\right\}$. Then $M=A^{*} \oplus M_{a_{0}}$ and it follows from $\tilde{A}^{*}=$ $\sum_{I} \oplus \tilde{a}_{\infty} R$ that $A^{*} \subseteq A$ as desired. In the second case we put $M_{\alpha_{i}}^{\prime}=\left\{x+f_{i}^{i+1}(x) \mid\right.$ $\left.x \in m_{a_{i}} R\right\}$ for $i=0,1, \cdots, t-1$ and $T=\left\{x+g(x) \mid x \in \sum_{K} \oplus m_{\beta} R\right\}$ where $g=\sum_{K} f_{\beta^{t} t}^{a}$. Then

$$
\begin{aligned}
& M=\sum_{i=0}^{t-1} \oplus M_{\alpha_{i}}^{\prime} \oplus T \oplus M_{a_{t}}, \\
& \tilde{M}_{\alpha_{i}}^{\prime}=\tilde{a}_{\alpha_{i}} R \text { for } i=1, \cdots, t-1, \text { and } \\
& \widetilde{T}=\left(\tilde{a}_{\beta}-\tilde{a}_{\beta_{t}}\right) R \text { for all } \beta \in K .
\end{aligned}
$$

Hence putting $A^{*}=\sum_{i=0}^{t-1} \oplus M_{a_{i}}^{\prime} \oplus T$ we see that $A^{*} \subseteq A$ and $M=A^{*} \oplus M_{\omega_{t}}$. Our proof is now completed.

By a similar proof as in the proof of the above theorem, we can obtain the following result which is mentioned in introduction of this paper.

Theorem 10. Assume that each M_{∞} is cyclic hollow. Then the following conditions are equivalent:

1) M has the lifting property of modules for $\mathscr{M}(M)$.
2) M has the lifting property of modules for $\mathscr{M}^{*}(M)$ and satisfies the following condition: For any subfamily $\left\{M_{\alpha_{i}}\right\}_{i=1}^{\infty} \subseteq\left\{M_{\alpha}\right\}_{I}$ and epimorphisms $\left\{f_{i}: M_{a_{i}}\right.$ $\left.\rightarrow M_{a_{i+1}}\right\}_{i=1}^{\infty}$, there exist n and epimorphism $g: M_{a_{n+1}} \rightarrow M_{a_{n}}$ satisfying $\bar{f}_{n}^{-1}=\bar{g}$ on $\bar{M}=M / \mathrm{J}(M)$ where \bar{f}_{n} and \bar{g} are the induced isomorphisms.

References

[1] G. Azumaya: Correction and supplementaries to my paper Krull-Remak-Schmidt's theorem, Nagoya Math. J. 1 (1950), 117-124.
[2] M. Harada: Applications of factor categories to completely indecomposable modules, Publ. Dep. Math. Lyon 11 (1974), 19-104.
[3] M. Harada: On lifting property on direct sums of hollow modules, Osaka J. Math. 17 (1980), 783-791.
[4] M. Harada and K. Oshiro: On extending property on direct sums of uniform modules, Osaka J. Math. 18 (1981), 767-785.
[5] K. Oshiro: Semiperfect modules and quasi-semiperfect modules, Osaka J. Math. 20 (1983), 337-372.
[6] R.B. Warfield Jr.: A Krull-Schmidt theorem for infinite sums of modules, Proc. Amer. Math. Soc. 22 (1969), 460-465.

Morihiro Okado
Oshima Mercantile Marine College
1091 Komatsu Oshima-cho Oshima-Gun
Yamagushi 742-21
Japan

Kiyoichi Oshiro
Department of Mathematics
Yamaguchi University
Oaza, Yoshida, Yamaguchi 753
Japan

