ON THE ROBERTELLO INVARIANTS OF PROPER LINKS

Dedicated to Professor Minoru Nakaoka on his 60th birthday

AKIO KAWAUCHI

(Received September 14, 1982)

Robertello's invariant of a classical knot in [9] was generalized by Gordon in [2] to an invariant of a knot in a Z-homology 3-sphere, and by the author in [5] to an invariant, $\delta(k \subset S)$, of a knot k in a Z₂-homology 3-sphere S. In this paper, we shall generalize this invariant to two mutually related invariants, $\delta_0(L \subset S)$ and $\delta(L \subset S)$, of a proper link L in a Z₂-homology 3-sphere S. In the case of a classical proper link, this δ_0 -invariant can be considered as an invariant suggested by Robertello in [9, Theorem 2]. A difference between $\delta_0(L \subset S)$ and $\delta(L \subset S)$ is that $\delta_0(L \subset S)$ is generally an oriented link type invariant, but $\delta(L \subset S)$ is an unoriented link type invariant. A proper link in a Z_2 -homology 3-sphere (which is not a Z-homology 3-sphere) naturally occurs when considering a branched cyclic covering of a 3-sphere, branched along a certain proper link. (If the number of the components of the link is ≥ 2 , the branched covering space can not be a Z-homology 3-sphere by the Smith theory.) So, we consider a proper link \tilde{L} in a Z_2 -homology 3-sphere \tilde{S} , obtained from a proper link L in a Z_2 -homology 3-sphere S by taking a branched cyclic covering, branched along L. When the covering degree is prime, we shall establish a relationship between $\delta(\tilde{L} \subset \tilde{S})$ and $\delta(L \subset S)$ and then a relationship between $\delta_0(\tilde{L} \subset \tilde{S})$ and $\delta_0(L \subset S)$.

In Section 1 we define and discuss the slope of a link in a 3-manifold as a generalization of the slope of a knot in a 3-manifold, introduced in [5]. In Section 2 the δ_0 -invariant and the δ -invariant are defined and studied. Section 3 deals with relationships between $\delta(\tilde{L} \subset \tilde{S})$ and $\delta(L \subset S)$ and between $\delta_0(\tilde{L} \subset \tilde{S})$ and $\delta_0(L \subset S)$.

Throughout this paper spaces and maps will be considered in the piecewise linear category, and notations and conventions will be the same as those of [5] unless otherwise stated.

1. The slope of a link in a 3-manifold

Let M be a connected oriented 3-manifold. Let L be an oriented link with r components in the interior of M. Let o(L) denote the order (≥ 1) of

the homology class $[L] \in H_1(M; Z)$. Let $\tau H_1(M)$ be the torsion part of H_1 (M; Z). Let $\phi: \tau H_1(M) \times \tau H_1(M) \rightarrow Q/Z$ be the linking pairing.

DEFINITION 1.1. The slope of the link L, denoted by $s(L)=s(L \subset M)$ is defined by the identity

$$s(L) = \begin{cases} -\phi([L], [L]) & (o(L) < +\infty), \\ \infty & (o(L) = +\infty). \end{cases}$$

If s(L)=0, then we say that the link L is flat.

When r=1, s(L) is the same as the slope defined in [5, Definition 1.4] by [5, Lemma 1.8]. Let $r \ge 2$. Let B_1, B_2, \dots, B_{r-1} be mutually disjoint oriented bands in the interior of M attaching to L as 1-handles. If we obtain a knot k from L by surgery along such B_1, B_2, \dots, B_{r-1} , then we say that the knot k is obtained from L by a fusion.

Lemma 1.2. Let k be a knot obtained from a link L by a fusion. Then s(L)=s(k).

Proof. Clearly, [L] = [k] in $H_1(M; Z)$. The result follows from Definition 1.1.

Assume that each component k_i of L is a knot of finite order, i.e., $o(k_i) < +\infty$, $i=1, 2, \dots, r$. Then the total Q-linking number $\lambda(L) = \lambda(L \subset M) \in Q$ of the link $L \subset M$ is defined by $\lambda(L) = \sum_{i>j} \text{Link}_M(k_i, k_j)$. When r=1, we understand that $\lambda(L)=0$.

Lemma 1.3. In $Q/Z \ s(L) = \sum_{i=1}^{r} s(k_i) - 2\lambda(L)$.

Proof. Since $o(L) < +\infty$ and $[L] = \sum_{i=1}^{r} [k_i], s(L) = -\phi([L], [L]) = \sum_{i=1}^{r} -\phi([k_i], [k_i]) - 2\sum_{i>j} \phi([k_i], [k_j])$. Using that $\phi([k_i], [k_j]) \equiv \text{Link}_M(k_i, k_j) \pmod{1}$ for $i \neq j$ and $s(k_i) = -\phi([k_i], [k_i])$, we have a desired congruence.

For each element $s \in Q/Z$ we can have coprime positive integers a, b such that $s \equiv a/b \pmod{1}$. This fraction a/b and the denominator b are called a *normal presentation* and the *denominator* of the element $s \in Q/Z$, respectively. Now we assume that the denominator of the slope $s(k_i)$ is odd, $i=1, 2, \dots, r$. Then $s(k_i)$ has a normal presentation of type $2a_i/b_i$, $i=1, 2, \dots, r$.

DEFINITION 1.4. We define

$$s^*(L) = \sum_{i=1}^r a_i / b_i - \lambda(L)$$

in Q/Z and call it the *half-slope* of the link $L \subset S$.

The following is easily proved.

Lemma 1.5. In Q/Z $2s^*(L)=s(L)$, and if s(L)=0, then $s^*(L)$ is 0 or 1/2 according as the denominator of $\lambda(L) \in Q/Z$ is odd or even.

2. The ∂_0 -invariant and the ∂ -invariant

We consider an oriented link L with components k_i , $i=1, 2, \dots, r$, in an oriented Z_2 -homology 3-sphere S.

DEFINITION 2.1. The link L is proper if the mod 2 linking number, Link_s $(k_i, L-k_i)_2=0$ for all $i, 1 \le i \le r$. (We understand a knot to be a proper link.)

Let W be a compact oriented 4-manifold. Let F be a locally flat, oriented (possibly disconnected) surface of (total) genus 0 in W. We say that such a pair $F \subset W$ is *admissible* for a link $L \subset S$, if S is a component of ∂W , ∂F =L, $H_1(\partial W; Z_2)=0$ and $[F_2^+] \in H_2(W; Z_2)$ is characteristic, i.e., $[F_2^+] \cdot x = x^2$ for all $x \in H_2(W; Z_2)$, where F_2^+ is a (mod 2) cycle obtained from F by attaching (mod 2) 2-chains c_i in S with $\partial c_i = -k_i$, $i=1, 2, \dots, r$.

Lemma 2.2. For any proper link $L \subset S$ there exists an admissible pair $F \subset W$.

Proof. Let $T(L) = \bigcup_{i=1}^{r} T(k_i)$ be a tubular neighborhood of $L = \bigcup_{i=1}^{r} k_i$ in S. Construct a 4-manifold $W = (-S) \times [-1, 1] \cup D^2 \times D_1^2 \cup \cdots \cup D^2 \times D_r^2$ identifying $T(k_i) \times 1$ with $(\partial D^2) \times D_i^2$, $i=1, \dots, r$, so that $H_1(\partial W; Z_2) = 0$. Let $D_i = (-k_i) \times [-1, 1] \cup D^2 \times 0_i$ be a disk. Let $F = \bigcup_{i=1}^{r} D_i$. To show that $F \subset W$ is admissible for $L \subset S$, it suffices to check that $[F_2^+] \in H_2(W; Z_2)$ is characteristic. Note that $[D_{i2}^+], i=1, \dots, r$, form a basis for $H_2(W; Z_2)$. Since $[F_2^+] = \sum_{i=1}^{r} [D_{i2}^+]$, we have

$$egin{aligned} & [F_2^+]\!\cdot\![D_{i2}^+] = [D_{i2}^+]^2 \!+\! \sum\limits_{j \in \neq i} [D_{j2}^+]\!\cdot\![D_{i2}^+] \ &= [D_{i2}^+]^2 \!+\! \mathrm{Link}_{\mathcal{S}}(L\!-\!k_i,\,k_i)_2 \ &= [D_{i2}^+]^2,\, i=1,\,\cdots,\,r \,. \end{aligned}$$

This implies that $[F_2^+]$ is characteristic. This completes the proof.

The pair $F \subset W$, constructed in the proof of Lemma 2.2 is called a *stand-ard admissible pair* for the proper link $L \subset S$.

DEFINITION 2.3. Let $L \subset S$ be a proper link. Then we define

$$\delta_0(L) = \delta_0(L \subset S) = ([F_Q^+]^2 - \operatorname{sign} W)/16 - \mu(\partial W)$$

in Q/Z for any admissible pair $F \subset W$ for $L \subset S$, where F_Q^+ is a rational 2-cycle obtained from F by attaching rational 2-chains c_i^Q in S with $\partial c_i^Q = -k_i$, $i=1, \dots, r$.

REMARK 2.4. We can define the invariant $\delta_0(L \subset S)$ by using a more gen-

eral pair $F \subset W$, where the (total) genus of F may be positive or F mac be nonorientable (cf. Freedman-Kirby [1], Guillou-Marin [3], Matsumoto [7]).

To see the well-definwsness of $\delta_0(L)$, consider a standard admissible pair $F^* \subset W^*$ for $L \subset S$. Construct an oriented 4-manifold $\overline{W} = W \cup -W^*$ identifying two copies of S. Then $\sum = F \cup -F^*$ is the disjoint union of 2-spheres. Since $[F_2^+]$ and $[F_2^{*+}]$ are characteristic, we see that the mod 2 homology class $[\sum]_2 \in H_2(\overline{W}; Z_2)$ is characteristic. By the Rochlin theorem ([6], [10]), $\mu(\partial \overline{W}) = ([\sum]^2 - \operatorname{sign} \overline{W})/16$ in Q/Z. But, $\mu(\partial \overline{W}) = \mu(\partial W) - \mu(\partial W^*)$, $[\sum]^2 = [F_Q^+]^2 - [-F_Q^*]^2 = [F_Q^+]^2 - [F_Q^*]^2 = [F_Q^+]^2$ and sign $\overline{W} = \operatorname{sign} W$ -sign W^* , where we count $[-F_Q^*]^2$, $[F_Q^*]^2$ in W^* . It follows that

$$([F_Q^+]^2 - \text{sign } W)/16 - \mu(\partial W) = ([F_Q^{*+}]^2 - \text{sign } W^*)/16 - \mu(\partial W^*)$$

in Q/Z, showing the well-definedness of $\delta_0(L)$.

DEFINITION 2.5. Two links $L_i \subset S_i$, i=0, 1, are said to be cobordant in the weak sense if:

(1) There exists a compact oriented 4-manifold W such that $\partial W = -S_0 \cup S_1$ and $H_*(W, S_i; Z_2) = 0$, i=0, 1.,

(2) There exists a locally flat, compact oriented (possibly disconnected) surface F of (total) genus 0 in W such that $\partial F = -L_0 \cup L_1$ (See Figure 1).

Figure 1.

Theorem 2.6. If proper links $L_i \subset S_i$, i=0, 1, are cobordant in the weak sense, then $\delta_0(L_0) = \delta_0(L_1)$.

Proof. Let $F \subset W$ be a cobordism pair for $L_i \subset S_i$, i=0, 1, stated in Definition 2.5. Construct an oriented 4-manifold $W'=W \cup D^3 \times [0, 1]$ identifying a 3-cell in $S_i - L_i$ with $D^3 \times i$ for each i, i=0, 1. Then $\partial W'$ is a connected sum $(-S_0) \# S_1$, which is a Z_2 -homology 3-sphere containing a proper link L', regarded as the union $-L_0 \cup L_1$. Clearly, $\delta_0(L' \subset (-S_0) \# S_1) = -\delta_0(L_0 \subset S_0) +$

 $\delta_0(L_1 \subset S_1)$. Note that $H_2(W'; Z_2) = 0$. Then $F \subset W'$ is admissible for $L' \subset (-S_0) \notin S_1$, and hence

$$\delta_0(L' \subset (-S_0) \# S_1) = ([F_Q^+]^2 - \operatorname{sign} W')/16 - \mu((-S_0) \# S_1) = 0,$$

because W' is spin and $H_2(W'; Q)=0$. Thus, $\delta_0(L_0 \subset S_0) = \delta_0(L_1 \subset S_1)$. This completes the proof.

In [5, Definition 2.1] the δ -invariant $\delta(k)$ of a knot k in S was defined so as to be $\delta(k) = \delta_0(k)$.

Corollary 2.7. Let $k \subset S$ be a knot obtained from a proper link $L \subset S$ by a fusion. Then $\delta_0(L) = \delta_0(k) = \delta(k)$.

Proof. The knot $k \subset S$ and the link $L \subset S$ are cobordant in the weak sense. The result follows from Theorem 2.6.

By a Dehn surgery we obtain from a knot $k \subset S$ a unique (up to homeomorphism), closed, connected, oriented 3-manifold M such that $H_1(M; Z)/\text{odd}$ torsion $\cong Z$, called a Z_2 -homology handle (cf. [5, Remark 1.6 and Corollary 1.7]). In [4] we defined an invariant $\in (M)$, being 0 or 1, of M, calculable from the Z_2 -Alexander polynomial of M.

Corollary 2.8. Let $L \subset S$ be a proper link. Let M be the Z_2 -homology handle of a knot $k \subset S$, obtained from L by a fusion. Let a|b be a normal presentation of the slope $s(L \subset S)$ with a odd. Then we have

$$\delta_0(L) = \in (M)/2 + (a/b - ab)/16$$

in Q/Z.

Proof. By Lemma 1.2 s(L)=s(k). By Corollary 2.7 $\delta_0(L)=\delta(k)$. Then the desired congruence follows from [5, Theorem 2.7 and Corollary 3.6].

DEFINITION 2.9. For a proper link L in S we define

$$\delta(L) = \delta(L \subset S) = \delta_0(L \subset S) + \lambda(L \subset S)/8$$

in Q/Z.

REMARK 2.10. Definition 2.9 is analogous to Murasugi's definition of the unoriented link type signature in [7] (cf. [5, Remark 4.8]).

Theorem 2.11. The invariant $\delta(L \subset S)$ is an unoriented link type invariant of a proper link $L \subset S$. That is, $\delta(L \subset S) = \delta(L' \subset S')$ for any link $L' \subset S'$ with an orientation-preserving homeomorphism $S \rightarrow S'$ sending L to L' setwise.

Proof. It suffices to show that $\delta(L)$ does not depend on any particular orientations of the components, k_i , of L. Let $F = \bigcup_{i=1}^{r} D_i \subset W$ be a standard admissible pair for $L = \bigcup_{i=1}^{r} k_i \subset S$. Note that $[F_Q^+]^2 = \sum_{i=1}^{r} [D_{iQ}^+]^2 + 2\sum_{i>i} [D_{iQ}^+]^2$.

A. KAWAUCHI

$$\begin{split} [D_{jQ}^{+}] = \sum_{i=1}^{r} [D_{iQ}^{+}]^{2} - 2\lambda(L). \quad \text{Then} \\ \delta(L) = \delta_{0}(L) + \lambda(L)/8 = (\sum_{i=1}^{r} [D_{iQ}^{+}]^{2} - \text{sign } W)/16 - \mu(\partial W). \end{split}$$

Since $[D_{iq}^{\dagger}]^2$ is not altered by changing the orientation of D_i (that is, k_i), we have a desired result.

A link $L \subset S$ is *amphicheiral* if there is an orientation-preserving homeomorphism $S \rightarrow -S$ sending L to itself setwise. The following is direct from Theorem 2.11.

Corollary 2.12. If a proper link $L \subset S$ is amphicheiral, then $2\delta(L)=0$ in Q/Z.

Here is an example of a classical proper link.

EXAMPLE 2.13. Let L_r be an *r*-component link in a 3-sphere S³, illustrated in Figure 2, where $r \ge 2$. The link

Figure 2.

 L_r is clearly proper. Choosing a suitable orientation of S^3 , $\lambda(L_r)=r$. Since we can have a trivial knot from L_r by a fusion, we see that $\delta_0(L_r)=0$. Therefore, $\delta(L_r)=r/8$ in Q/Z.

3. Branched cyclic coverings and the ∂ - and ∂_0 -invariants

We consider a link $\tilde{L} \subset \tilde{S}$ obtained from a link $L \subset S$ by taking an *n*-fold cyclic branched covering of S, branched along L. Namely, \tilde{S} is the branched covering space over S, associated with an epimorphism $H_1(S-L; Z) \rightarrow Z_n$ sending each meridian of L to a unit of Z_n , and \tilde{L} is the lift of L. We assume that \tilde{S} is a Z_2 -homology 3-sphere.

First we consider the case n=2. Then L and \tilde{L} are knots by the Smith theory. Let L=k and $\tilde{L}=\tilde{k}$.

Theorem 3.1. Let 2a/b be a normal presentation of the slope $s(\tilde{k})$. Then

86

ROBERTELLO INVARIANTS OF PROPER LINKS

$$\delta(\tilde{k}) = \delta(k) - (a/b - ab)/8$$

in Q/Z. In particular, if \tilde{k} is flat, then $\delta(\tilde{k}) = \delta(k)$.

Proof. By [5, Lemma 4.5] $s(k)=2s(\tilde{k})=4a/b$. Since (2a+b)/b and (4a+b)/b are normal presentations of $s(\tilde{k})$ and s(k), respectively, we see from Corollary 2.8 that

$$\delta(ilde{k}) = \in (ilde{M})/2 + \{(2a+b)/b - (2a+b)b\}/16 = \in (ilde{M})/2 + (a/b-ab)/8 + (1-b^2)/16$$
, and

$$\delta(k) = \in (M)/2 + \{(4a+b)/b - (4a+b)b\}/16 = \in (M)/2 + (a/b-ab)/4 + (1-b^2)/16$$
 ,

where \tilde{M} and M are the Z_2 -homology handles of $\tilde{k} \subset \tilde{S}$ and $k \subset S$, respectively. Since \tilde{M} is a 2-fold covering space of M, it follows from [4, Lemma 4.2] that $\in (\tilde{M}) = \in (M)$. Now we have a desired congruence. This completes the proof.

Next, to consider the case that the covering degree n is an odd prime p, we remark the following:

Lemma 3.2. $\lambda(\tilde{L}) = \lambda(L)/n$.

Corollary 3.3. \tilde{L} is proper if and only if L is proper.

Proof of Lemma 3.2. It suffices to show that for $i \neq j$ Link_š $(\bar{k}_i, \bar{k}_j) =$ Link_s $(k_i, k_j)/n$. Let F_i be a characteristic surface (cf. [5]) of k_i in S such that $L-k_i$ intersects F_i transversally. Write $[\partial F_i] = a_i r_i [m_i] + b_i r_i [l_i]$ in $H_1(\partial T(k_i); Z)$ for a meridian-longitude pair (m_i, l_i) of $T(k_i)$ such that the lift of l_i has ncomponents, where $(a_i, b_i) = 1$ and r_i is an integer >0. Let \tilde{l}_i be a component of the lift of l_i . For the lift \tilde{m}_i of m_i , the pair $(\tilde{m}_i, \tilde{l}_i)$ forms an m.l. pair of a tubular neighborhood $T(\tilde{k}_i)$ of \tilde{k}_i which is the lift of $T(k_i)$. Note that the lift \tilde{F}_i of F_i is an oriented surface which is a branched Z_n -covering space of F_i branched over the set $F_i \cap (L-k_i)$. Clearly $[\partial \tilde{F}_i] = a_i r_i [\tilde{m}_1] + b_i r_i n[\tilde{l}_i]$ in $H_1(\partial T(\tilde{k}_i); Z)$. Since the intersection numbers, $Int(\tilde{F}_i, \tilde{k}_j)$ and $Int(F_i, k_j)$ are equal, we have

$$\operatorname{Link}_{\widetilde{s}}(\widetilde{k}_i, \widetilde{k}_j) = \operatorname{Int}(\widetilde{F}_i, \widetilde{k}_j)/b_i r_i n = \operatorname{Int}(F_i, k_j)/b_i r_i n = \operatorname{Link}_{\widetilde{s}}(k_i, k_j)/n$$

This completes the proof.

Proof of Corollary 3.3. When *n* is even, *L* and \tilde{L} are knots by the Smith theory. So, assume *n* is odd. It suffices to show that $\text{Link}_{\tilde{s}}(\tilde{k}_i, \tilde{k}_j)_2 = \text{Link}_{s}(k_i, k_j)_2$ for $i \neq j$. This is obtained by a mod 2 version of the proof of Lemma 3.2, since $b_i r_i n$ is odd. This completes the proof.

We shall show the following theorem, where note that $(p^2-1)/8$ is an in-

teger.

Theorem 3.4. Let $\tilde{L} = \bigcup_{i=1}^{r} \tilde{k}_i \subset \tilde{S}$ be a proper link and assume that the covering degree is an odd prime p. Let $2a_i/b_i$ be a normal presentation of the slope $s(\tilde{k}_i), i=1, 2, \dots, r$. Then

$$\delta(\tilde{L}) = p\delta(L) - \{(p^2 - 1)/8\} \sum_{i=1}^{r} a_i/b_i$$

in Q/Z.

Proof. Let $F \subset W$ and $\tilde{F} \subset \tilde{W}$ be standard admissible pairs for $L \subset S$ and $\tilde{L} \subset \tilde{S}$, respectively, such that $\tilde{F} \subset \tilde{W}$ is obtained from $F \subset W$ by taking a Z_p -covering branched along F. [One can see directly or by a transfer argument that such pairs exist.] Let $\partial W - S = S^*$ and $\partial \tilde{W} - \tilde{S} = \tilde{S}^*$. By the proof of Theorem 2.11,

$$\begin{split} \delta(L) &= (\sum_{i=1}^{r} [D_{iq}^{+}]^{2} - \text{sign } W)/16 - \mu(S) - \mu(S^{*}) , \text{ and} \\ \delta(\tilde{L}) &= (\sum_{i=1}^{r} [\tilde{D}_{iq}^{+}]^{2} - \text{sign } \tilde{W})/16 - \mu(\tilde{S}) - \mu(\tilde{S}^{*}) , \end{split}$$

where $F = \bigcup_{i=1}^{r} D_i$, $\tilde{F} = \bigcup_{i=1}^{r} \tilde{D}_i$, and \tilde{D}_i corresponds to D_i . Then since $[D_{iq}^+]^2/p$ = $[\tilde{D}_{iq}^+]^2$ (cf. [5, the proof of Lemma 4.9]),

$$\delta(\tilde{L}) - p\delta(L) = (1 - p^2) \sum_{i=1}^{r} [\tilde{D}_{iQ}^+]^2 / 16 + (-\text{sign } \tilde{W} + p \text{ sign } W) / 16 - (\mu(\tilde{S}) - p\mu(S)) - (\mu(\tilde{S}^*) - p\mu(S^*)) .$$

By the definition of α -invariant in [5, Section 4],

$$\alpha(Z_p, \tilde{S}) + \alpha(Z_p, \tilde{S}^*) = -\operatorname{sign} \tilde{W} + p \operatorname{sign} W - (\sum_{i=1}^r [\tilde{D}_{iQ}^+]^2) (p^2 - 1)/3$$

Therefore,

$$\begin{split} \delta(\tilde{L}) - p\delta(L) &= \{1 - p^2 + (p^2 - 1)/3\} \left(\sum_{i=1}^{r} [\tilde{D}_{iQ}^+]^2 \right)/16 - (\mu(\tilde{S}) - p\mu(S) \\ - \alpha(Z_p, \tilde{S})/16) - (\mu(\tilde{S}^*) - p\mu(S^*) - \alpha(Z_p, \tilde{S}^*)/16) \,. \end{split}$$

First, let p > 3. Then by [5, Theorems 11.1 and 12.1],

$$\begin{split} &\mu(\tilde{S}^*) = p\mu(S^*) + \alpha(Z_p, \, \tilde{S}^*)/16 \,, \text{ and} \\ &\mu(\tilde{S}) = p\mu(S) + \alpha(Z_p, \, \tilde{S})/16 + \{(p^2 - 1)/24\} \sum_{i=1}^{r} a_i/b_i \,, \end{split}$$

where note that $(p^2-1)/24$ is an integer. Since $[\tilde{D}_{iQ}^+]^2 \equiv 2a_i/b_i \pmod{1}$ (cf. [5, Lemma 2.6]), it follows that

$$\begin{split} \delta(\tilde{L}) - p \delta(L) &= -\{(p^2 - 1)/24\} \sum_{i=1}^{r} [\tilde{D}_{iQ}^+]^2 - \{(p^2 - 1)/24\} \sum_{i=1}^{r} a_i/b_i \\ &= -\{(p^2 - 1)/8\} \sum_{i=1}^{r} a_i/b_i \,. \end{split}$$

Now let p=3. By [5, Theorems 11.1 and 12.1],

$$\mu(ilde{S}^*) = 3\mu(S^*) + 9lpha(Z_3, \, ilde{S}^*)/16$$
, and

88

ROBERTELLO INVARIANTS OF PROPER LINKS

$$\mu(\tilde{S}) = 3\mu(S) + 9\alpha(Z_3, \tilde{S})/16 + 3\sum_{i=1}^{r} a_i/b_i$$

Directly or by a transfer argument, sign \hat{W} =sign W. Then

$$lpha(Z_3, \tilde{S})/2 + lpha(Z_3, \tilde{S}^*)/2 = - ext{sign } \tilde{W}/2 + 3 ext{ sign } W/2 - (\sum_{i=1}^{r} [\tilde{D}_{iQ}^+]^2) 4/3 \ \equiv - (\sum_{i=1}^{r} [\tilde{D}_{iQ}^+]^2) 4/3 ext{ (mod 1)}.$$

Then,

$$\delta(\tilde{L}) - 3\delta(L) = -(\sum_{i=1}^{r} [\tilde{D}_{iQ}^{+}]^2)/3 - \alpha(Z_3, \tilde{S})/2 - \alpha(Z_3, \tilde{S}^{*})/2$$

$$-3\sum_{i=1}^{r} a_i/b_i = \sum_{i=1}^{r} [\tilde{D}_{iQ}^{+}]^2 - 3\sum_{i=1}^{r} a_i/b_i = -\sum_{i=1}^{r} a_i/b_i$$

in Q/Z, because $[\tilde{D}_{iQ}^+]^2 \equiv 2a_i/b_i \pmod{1}$. This completes the proof.

Theorem 3.5. Let $\tilde{L} \subset \tilde{S}$ be proper and assume that the covering degree is an odd prime p. Then we have

$$\delta_0(\tilde{L}) = p \delta_0(L) - \{(p^2 - 1)/8\} s^*(\tilde{L})$$

in Q/Z, where $s^*(\tilde{L})$ is the half-slope of the link $\tilde{L} \subset \tilde{S}$.

Proof. By Theorem 3.4,

$$\delta_0(\tilde{L}) + \lambda(\tilde{L})/8 = p \delta_0(L) + p \lambda(L)/8 - \{(p^2 - 1)/8\} \sum_{i=1}^r a_i/b_i.$$

Since $\lambda(L)/p = \lambda(\tilde{L})$ by Lemma 3.2, we have

$$\delta_0(\tilde{L}) - p \delta_0(L) = -\{(p^2 - 1)/8\} \ (\sum_{i=1}^r a_i/b_i - \lambda(\tilde{L})) = -\{(p^2 - 1)/8\} \ s^*(\tilde{L}) \ .$$

This completes the proof.

Corollary 3.6. If \tilde{L} is flat, then $\delta_0(\tilde{L}) = \delta_0(L)$.

Proof. By Lemma 1.5 $s(\tilde{L})=0$ implies $s^*(\tilde{L})=0$. So, by Theorem 3.5 $\delta_0(\tilde{L})=p\delta_0(L)$. By Lemmas 1.3, 3.2 and [5, Lemma 4.5], $s(L)=ps(\tilde{L})$, so that s(L)=0. By Corollary 2.8 $2\delta_0(L)=0$. Using that p is odd, the proof is completed.

References

- M. Freedman and R. Kirby: A geometric proof of Rochlin's theorem, Proc. Sympos. Pure Math. 32, Part 2, Amer. Math. Soc., Providence, R.I., 1978, 85-97.
- [2] C. McA. Gordon: Knots, homology spheres, and contractible 4-manifolds, Topology 14 (1975), 151-172.
- [3] L. Guillou and A. Marin: Une extension d'un théorème de Rohlin sur la signature, C.R. Acad. Sci. Paris 285, Serie A (1977), 95-98.
- [4] A. Kawauchi: On 3-manifolds admitting orientation-reversing involutions, J. Math. Soc. Japan 33 (1981), 571-589.

A. KAWAUCHI

- [5] A. Kawauchi: On the Rochlin invariants of Z₂-homology 3-spheres with cyclic actions, Japan. J. Math. 8 (1982), 217-258.
- [6] M.A. Kervaire and J.W. Milnor: On 2-spheres in a 4-manifold, Proc. Nat. Acad. Sci. U.S.A. 49 (1961), 1651-1657.
- [7] Y. Matsumoto: An elementary proof of Rochlin's signature theorem and its extension by Guillou and Marin (preprint).
- [8] K. Murasugi: On the signature of links, Topology 9 (1970), 283-298.
- [9] R. Robertello: An invariant of knot cobordism, Comm. Pure Appl. Math. 18 (1965), 543-555.
- [10] V.A. Rochlin: New results in the theory of 4-dimensional manifolds, Dokl. Akad. Nauk. SSSR 84 (1952), 221-224 (Russian).

Department of Mathematics Osaka City University Sumiyoshi-ku, Osaka 558 Japan