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1. Introduction

Let G be a 4-fold transitive permutation group on Ω. If the stabilizer
of four points /*, j, k and / in G has an orbit of length one in Ω— {ί, /, A, /}, then
G is 5s, A6 or Mn by a theorem of H. Nagao [4]. If the stabilizer of four
points in G has an orbit of length two, then G is SG by a theorem of T. Oyama

[12].
We now consider the case in which the stabilizer of four points in G has

an orbit of length three and have the following results.

Theorem. Let G be a 4-fold transitive permutation group on Ω= {1, 2, •••,
n}. If the stabilizer of four points in G has an orbit of length three, then G is
S7, A7 or M23.

In the proof of this theorem we shall use the following lemma, which will
be proved in the section 3.

Lemma. Let G be a permutation group on, Ω={1, 2, •••, n} satisfying
the following condition:

For any four points /, /, k and I in Ω, there exist three points il9 i2 and i3 in
Ω— {/, y, &, /} such that any involution in GijΊtι fixes exactly seven points i, j, k,
/, ίΊ, i2 and i3.

Then G is M23.

The theorem implies the following corollaiy.

Corollary. Let D be a 4-(z;, k, 1) design, where k=5, 6 or 7. If an auto-
morphism group G of D is a 4-fold transitive permutation group on the set of points

of D, then D is a 4-(ll, 5, 1) design, a 4-(23, 7, 1) design or a trivial design: a
4-(5, 5, 1) design, a 4-(6, 6, 1) design or a 4-(7, 7, 1) design.

The case k=5 has been proved by H. Nagao [4] and the case k=6 by
T. Oyama [12]. Hence in this paper we shall prove the remaining case k=7
in the section 4.
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We shall use the same notations as in [6].

2. Proof of Theorem

Let G be a group satisfying the assumption of Theorem. Let P be a
Sylow 2-subgrouρ of G1234.

If P=l, then G is A7 by a theorem of M. Hall ([2] Theorem 5.8.1) and
the assumption.

Since P fixes a G1234-orbit of length three as a set, |/(P)| >5. If |/(P)|

>5 and PΦ1, then G is M23 by a theorem of T. Oyama ([6], [7] and [9]) and

the assumption.

If P is semiregular on Λ—/(P), JPΦ1 and |/(P)|=5, then G is S7 by a

theorem of H. Nagao [5] and the assumption.
Hence from now on we assume that Pφl, |/(P) | =5 and P is not semi-

regular on fl—/(P) and prove the theorem by way of contradiction.

(1) G1234 has exactly one orbit of length three.

Proof. Suppose by way of contradiction that G1234 has two orbits {il9

ι29 t3} and {ί'ί, *2, z*3} of length three. Since P fixes {il9 i2J i3} and {/{, ί'2, is}

as a set, P fixes at least six points, which is a contradiction since |/(P)| =5.

We may assume that /(P)— {1, 2, 3, 4, 5} and {5, 6, 7} is the unique G1234-
orbit of length three. Then {6, 7} is a P-orbit of length two. Hence a min-

imal P-orbit in Ω—/(P) is of length two.

(2) Let t be a point of a minimal P-orbit in Ω—/(P). Then a Sylow 2-
subgroup of the stabilizer of any four points in NG(Pt}

I(p^ is of orden two.

Proof. Let P' be a Sylow 2-subgroup of Gijkί containing Pt for any four

points i,j, k and / in /(P*). Since Pt is a normal subgroup of index two in P',

Np'(Pty<p'>=P'I(p*> is a Sylow 2-subgroup of NG(Pt)
I

i

(fk

tί and is of order two.

(3) I /(P,) I =7, 9 or 13. /» particular, if \ I(Pt] | =9 or 13, ώ*ι NG(PtyW

<Ag or NG(Pt)
I(p^=S1xM12J respectively.

Proof. A Sylow 2-subgroup of the stabilizer of any four points in

NG(Pt}
I(p^ is a nonidentity semiregular group and fixes exactly five points. Thus

this follows from Theorem 1 of [8].

(4) |/(P,)|Φ13.

Proof. If |/(P,)|=13, then 7VG(P/)
/^>=51xM12. Hence a Sylow 2-

subgroup of the stabilizer of any four points in NG(Pt}
I(p^ is of order eight.

This is contrary to (2). Thus | I(Pt) \ Φ13.
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(5)

Proof. Suppose by way of contradiction that |/(P,)|=9. Then by (2)

for any four points i, /, k and / in /(Pf), any involution in NG(Pt)^pf fixes exactly

five points.

First assume that NG(PtY
(p'> is primitive. Then since NG(Pt)

I(p^ is a
subgroup of A9 and has an involution fixing five points, NG(Pί)

I(pf)=A9 (see

[13]). This is contrary to (2).

Next assume that NG(Pt)
I(pt> is imprimitive. Then NG(Pt)

I(r*> has three
blocks {il9 i2, ί"3}, {yb j29 j3} and {kl9 k2y k3} of length three. Let x be an

involution fixing il9 i29 j1 and j2. Then x fixes /3, j3 and one more point in

{&!, k2y k3} . Thus x is a transposition. This is a contradiction.

Finally assume that NG(Pt)
I(p^ is intransitive. Then one of NG(Pt)

I(p^-

orbits is of length less than five.

Suppose that NG(Pt}
I(p'} has an orbit ft} of length one. Then for any

four points i, j, k and / in I(Pt)—{i1}9 there exists an involution in NG(Ptγ
(p<}

fixing exactly five points tl9 /,/, k and /. Thus by a lemma of D. Livingstone

and A. Wagner ([3], Lemma 6), NG(Pt)^'{i^] is 4-fold transitive on I(Pt)—

&}. Hence by (3) N^P^t^S^A*. This is contrary to (2).

Suppose that NG(Ptγ
(p^ has an orbit {il9 i2} of length two. Then for

any three points i, j and k in I(Pt)—{il9 i2}, there exists an involution in

NG(Ptγ
(pt) fixing exactly five points il9 ιz, i, j and k. Thus by a lemma of

D. Livingstone and A. Wagner, Λ^P^f/^'1''21 is 3-fold transitive on I(Pt) —
ft, ι2}. Hence by (3) ^(P^ί^^- '̂i-^) ,1̂  This is contrary to (2).

Suppose that NG(Ptγ
(p* ^ has an orbit {ily ι2, i3} of length three. Set Δ —

/(Pi)— {/i, i2, /3} = {/4, ί*5, •• ,^9}. Then for any four points in Δ, theie exists
an involution in NG(Pt)* fixing exactly these four points. Hence by a lemma

of D. Livingstone and A. Wagner, ΛΓ

G(Pf)
Δ is 4-fold transitive on Δ, and so

Thus ΛΓG(Λ)/(Λ) has two elements

x = (h}(h)(hiτ)(hh} — and

v - (0(4)(v8)(M9)

Since by (3) Λ^G(Pί)
/(p')<yl9, Λ: and j have three fixed points or one 3-cycle on

{*ι> ^2> 3̂} Thus x3 and jy3 fix five points il9 ι2, i3, i4 and i5 and <V, y> is an
elementary abelian group of order four. This is contrary to (2).

Suppose that NG(Ptγ
(pt} has an orbit {il9 i2y i3f i4} of length four. Set

Δ— /(Pf) — {il9 i29 i3, ί4} = {/5, ίg, •••, ί"9}. Then for any three points i9 j and k

in Δ, NG(Ptγ(p*) has an involution fixing /4, ί, j9 k and one more point in

{*ι> ί*2> 4} Thus by a lemma of D. Livingstone and A. Wagner, NG(Pt)^ is
3-fold transitive on Δ, and so NG(Pt)^==S5.
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Thus NG(PtyW has two elements

γ // vy y; / \// j \ ... Qnrι•̂  — vί-JUs/lMyMMs) ana

y = '

By the same argument as is shown above, we have a contradiction.

Thus |/(P,)|Φ9.

(6) NG(Pt)
I(Pt } w 0/*£ of the following groups.

(a)

(b)

Proof. First assume that NG(Pt)
I(p^ is transitive on I(Pt)> Since by (2)

NG(Pt}
I(p*ϊ has a transposition, NG(Pty<p*>=S7.

Next assume that NG(Pt)
I(p^ is intransitive. Then one of NG(Pt)

I(p^-

orbits is of length less than four.

Suppose that NG(Pt)
I(pt^ has an orbit {z'j} of length one. Then for any

four points /, /, k and / in I(Pt)—{i1}9 there exists an involution in NG(Pt)
I(p^

fixing exactly five points il9 iy j, k and /. Thus by a lemma of D. Livingstone

and A. Wagner, N^Pt)1^^-^ is 4-fold transitive on I(Pt)— {ij, and so

Suppose that NG(Pt)
I(p^ has an orbit {il9 i2} of length two. Then for

any three points i, j and k in I(Pt)—{il9 i2}, there exists an involution in

NG(Pt)
I(p*^ fixing exactly five points il9 i2> i, j and k. Thus by a lemma of

D. Livingstone and A. Wagner, N^Prfffi-^i'^ is 3-fold transitive on I(Pt)—

{;', /2}, and so N^P^y^^^S,.
On the other hand NG(Pt)

I(p^ has an involution

X = (^>2)(4)

Hence NG(P,y<p'>=S2 X 55.

Suppose that NG(Pt)
r(p^ has an orbit {ιΊ, z'2, ί3} of length three. Set Δ=^

I(Pt)~{ilί /2, ί'3} — {z*4, ί5, z*6, /7}. Then for any two points i and y in Δ, there

exists an involution in NG(Pt}
I(p* } fixing exactly five points il9 i29 i39 ί andy. Thus

by a lemma of D. Livingstone and A. Wagner, ΛΓ^P,)^,-^ is doubly transitive

on Δ, and so NG(Pt)^li2i9=S4.

On the other hand NG(Pt)
I(p^ has two involutions

and

Hence ΛΓG(Pf)
/^>=S3xS4.
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(7) NG(Pty
(p')=S7 and t=6 or 7. For four points i, j, k and I in Ω, let

{*Ί> h, h} be the Gijkrorbit of length three. Set Δ(i,j, k, /)== {i,j, k, /, il9 i2, i3}.
Then {Δ(ί, j, k, l ) \ i , j, k, /eΩ} forms a 4-(w, 7, 1) design on Ω.

Proof. Suppose by way of contradiction that NG(Pt)
I(p^ is not S7. Set

/(Λ)=fc,i2> ,i7}.
First assume that N'G(Pty^p^=SίxSB and {ι\} is an orbit of length one.

For four points il9 i2, i3 and i4 in 7(P,), ^(PO^f^v1/1'12''3''4^^- Thus

{%> *β> *'?} i§ tne unique Gz-i?2/3/4-orbit of length three, and so ΛΓG(Gf lf 2l a/4) <
Since P, is a Sylow 2-subgroup of G/(P/), by Frattini argument
JVC(G/0,, >)'<"< >. Thus ΛΓG(Pf)'<* >> NG(GilWV^ >.

On the other hand NG(Gili^iy
iι i* i* i*] = S4 by a theorem of H. Nagao [4]

and NG(Pt)
I(pt) has an orbit containing four points &Ί, ί'2, /3 and i4. This is a

contradiction.

Next assume that ΛΓG(Pί)
/(p')=52χ55 and {/Ί, i2} is an orbit of length

two. For four points il9 i2y i3 and ί4 in 7(P,), ^(P/)^^^'1'2'1'3'1'4^^. Thus
by the same argument as is shown above, we have a contradiction.

Finally assume that NG(Pt)
I(Pί}=S3xS4 and {ilt i2, i3} is an orbit of length

three. For four points ily /2, *"3 and ι4 in /(P,), ^(P^^H1'!-1^^-^ ===53.
Thus by the same argument as is shown above, we have a contradiction. Thus

Let {f, ί'} be a P-orbit of length two. Thus /(P,)={1, 2, 3, 4, 5, ί, ί'}.
Since NG(Pty<p*> = S7, NG(Pt)lW4-

[l 2 3 4i = S3. Therefore {5, ί, ί'} is the
unique G1234-orbit of length three, and so t = 6 or 7.

(8) L ί̂ Q be a subgroup of P fixing exactly seven points. Then I(Q) =

{1,2,- -,7}.

Proof. Let Q be a subgroup of P such that the order of Q is maximal
among all subgroups of P fixing the same seven points. Since \I(Q)\= 7,
a Sylow 2-subgroup of the stabilizer of any four points in NG(Q)r(Q) is of
order two. By the same argument as is shown in (6), NG(Qy(Q> = S7, *SΊx56,
S2xS5 or S3xS4. Thus for some four points il9 i2, i3 and i4 in /(Q),
No(Q) y^'i2'iz'i^S3. Therefore I(Q)~{ίly i2> ίs, ij is the unique GίlWΓ

orbit of length three. Thus NG(Qy™=S7 and I(Q) = A(jlίj2ί j3ί j4) for any four

points Λ, ;2, 7*3 and ̂  in I(Q). Since /(G)2{1, 2, 3, 4, 5}, by (7) /((?)= {1,
2,-, 7}.

Let Q be a subgroup of P such that | /(Q) | is minimal among all subgroups
of P fixing more than seven points. Moreover choose 0 so that the order of
Q is maximal among all such subgroups.

Set M=NG(Qy&.

(9) A Sylow 2-subgroup of the stabilizer of any four points in M is noniden-
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tity and any nonidentίty 2-subgroup of M fixing at least four points fixes exactly

five or seven points.

Proof. Let P0 be a Sylow 2-subgroup of Nc(Q)tjki f°r anY f°ur points
/, jy k and / in I(Q) and P' be a Sylow 2-subgroup of G, yΛ / containing P0. Then

P0=Λ/>(£). Since Pf>Q, NP,(Q)>Q, and so Pί^>=ΛΓp/(δ)/(5)Φl.
Let Q0 be a 2-subgrouρ of NG(Q)ijkl such that Q0>Q> P0 be a Sylow 2-

subgroup of NG(Q)ijkl containing Q0 and P' be a Sylow 2-subgιoup of GijM

containing P0. Then since P'>Λ7>(Q)==P0>(?0>Q, by the maximality of |Q|

/(P')c/(Q0)c/($), and so |/(Q^) |= |/(00)| -5 or 7.

(10) Leί ft, z2, i3} be the unique Gijkrorbit of length three for any four
points i, j, k and I in /(Q).

There exists an involution in Miίkt fixing seven points if and only if /(Q)
contains three points ilt i2 and i3.

Then an involution in Mijkl fixing seven points fixes seven points i, j, k, /,
il9 i2 and ι3.

Proof. If there exists an involution in Mijkl fixing seven points, then

there exists a 2-subgroup Q of Gίjkl such that Q>Q and \I(Q)\=7. By (8)
/(Q)={/, j9 k, I, il9 i2y i3}, and so /(O) contains three points il9 i2 and i3.

Conversely I(Q) contains three points il9 i2 and i3. Let P' be a Sylow

2-subgroup of Gijkl containing Q and I(P')={i,j, k, /, t\}. Then P'>P'i2>Q

and /(P{2)={i, 7, k, /, lΊ, z'2, ίj. Thus P^2>Q, and so NP^(Q)>Q. By the
maximality of | Q | there exists an involution in Mijkl fixing seven points.

(11) Let {/!, '̂2J /3} be the unique GijkΓorbit of length three for any four
points i, j, k and I in 1(0). Then I(Q) contains three points il9 i2 and i3 and any
involution in Mijkl fixes exactly seven points i, j, k9 /, il9 ί2 and i3.

Pi oof. Suppose by way of contradiction that for some four points z, j,

k and / in /(Q), there exists an involution x in Mijkl fixing exactly five points.

Since | I(x) Π ft, i?, ι3} \ > 1 and | /(Q) | > 9, we may assume that

where {j\9j2} Φ fe ?3} Set C=CM(x)jιJ2 and we consider CI(X\
For any two points kλ and k2 in /(#), x normalizes Mj^^r Since

is of even order, Mj^2k^2 has an involution y commuting with x. Then

^M(χ)j1j2k1k2' Since j/(Λr) |=5, jy fixes one more point k in I(x). If yI(x)=l,
then 3; fixes i, j, k, /, il9 j\ and y2, which is contrary to (10). Hence yI(x) is a
transposition.

Thus for any two points kλ and k2 in /(Λ?), there exists an involution fixing

exactly three points kl9 k2 and exactly one more point k in I(x)—{kί9 k2} .
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First assume that C/(x) is transitive on I(x). Since C/(x) has a transposi-

tion,
Next assume that CI(X) is intransitive on I(x). Then one of the C/(x)-

orbits is of length less than three.

Suppose that C/(*} has an orbit {/j} of length one. Then for any iwo

points fti and k2 in /(#)— {/i}, there exists an involution in C/(x) fixing exactly
three points lly k± and k2. Then by a lemma of D. Livingstone and A. Wag-

ner, Cί^-ί'i* is doubly transitive on /(*)-{/!>, and so Cτι[x>-[lι]=S4. Thus

C/(')=S1xS4.
Suppose that C /(Λ) has an orbit {lly 12} of length two. Then for any point

ftj in I(x)— {/i, /2}, there exists an involution in C/(x) fixing exactly three points
/!, /2 and kι. Then by a lemma of D. Livingstone and A. Wagner, O / < / > " " { /i f /2 }

is transitive on I(x)— {4, /2}, and so C/ (

1/2

)" ί /ι /2i = ιS3.
On the other hand C /(A° has an involution

x' - (44)(4)(4)(4)

Hence CI(X)=S5, S1xS4 or S2xS3. In any cases for some two points

/! and /2 in /(*), Cί^-ί'i 'z^Sg. Then /(*)- {4, /2}= {/3, /4, /5} is the unique
GV2/ι/2-°rbit of lenSth three Since 7(Φ - ί/Ί> /2, 4, 4, /3, 4, 4} 3 /(*) =
ft;, &> /, ή}, by (7) {/,;, /?, /, ί\, ί'2, f3} = {ίιΛ *> A *ι>jι,J2}> which is a contra-
diction.

Thus for any four points z, j, k and / in /(Q), /(Q) contains all the points
of G, ; Λ/-orbit {il9 i2, /3} of length three and any involution in Mijkl fixes exactly
seven points /, j, k, /, il9 i2 and /3.

(12) M-M23 and {Δ(f , j, Λ, /) | i, , ft, / e/(Q)} /omw α 4-(23, 7, 1) design

on

Proof. By (9) and (11) M satisfies the condition of Lemma. By Lemma

M=M23, and so {Δ(i, 7, ft, l)\i> j, ft, /e/(Q)} forms a 4-(23, 7, 1) design on

Let ί be a point of a minimal Q-orbit in Ω— /(Q). Set R~QS and 7V=
ΛΓG(Λ)^).

(13) L^ ι/ fo αw involution in N such that I(u)=I(Q), and let (M*2) be a

2-cycle of u. For any two points i and j in I(u)y set Δ(ι', j)=I(u) Π Δ(ίΊ, ί'2, /, 7).
|Δ(ί,j)|=3.

Proof. Let u be a 2-element of NG(R) such that UI(R>=u. For any two

points i and/ in /(M), <w, /?> fixes Δ(ι\, ί'2, t, j) as a set. Since u fixes two points

i and j, u fixes one more point ft in Δ(i x, f'2$ i, 7)— {lΊ, ί'2, /, / } . Thus | Δ(z, 7) |
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Suppose that | Δ(ί, j) \ =5 and set Δ(ι", j)= {i, j, ft, /, m} . Then Δ(ιΊ, i2ί ί> j)

= {h> *2> i>j> k, I, m}. By (12) /(w)Ξ2Δ(ίΊ, i2, z,y)B/ι, /2, which is a contradic-
tion. Hence | Δ(ί , j) \ — 3 .

(14) {Δ(i, y)|ί, j*Ξl(u)} forms a 2-(23, 3, 1) <fo^w on /(M).
a contradiction and complete the proof of Theorem.

Proof. For any two points ί and j in I(u), Δ(z, j) is a subset of /(#).

Suppose that Δ(z, j)^i', j'. Set Δ(i, 7)= {i, /, k} and Δ(^, ί'2, ί, j) =

{i,j, k, ily i2,J\,J2} since *',/<={*, 7, k}, Δ(tΊ, ι"2, /, »3*ι, *'2> *W> and so

Δ(ίι, ί"2, i, y) = Δ(ί!, ί'2, ί ', /). Thus Δ(ί, y)=Δ(Γ, /).
Hence {Δ(i, j) I /, j e /(M)} forms a 2-(23, 3, 1) design on I(u). Then the

number of blocks is

/23\
V 2 / _ 23-22 _ 253

which is a contradiction.

Thus we complete the proof of Theorem.

3. Proof of Lemma

Let G be a group satisfying the assumption of Lemma.

(1) For any four points i, j, k and I in Ω, let {i, j, k, /, il9 i2, i3} be the set

of the fixed points of an involution in Gijkl. Set Δ(/,/, k, /)= {i,j\ k, /, il9 ι2, i3}.
Then {Δ(ί, j, k, l)\i, j, k, l^Ω} forms a 4-(w, 7, 1) design on Ω.

Proof. Suppose that Δ(ί, j, ky l)^i', j', kr , Γ . Then there exists an
involution x in Gijkι fixing Γ,y, ^r and /'. Thus ΛJ is an involution in G,//*///,

and so Δ(f, >, Λ, /)= Δ(ί', /, ft', /'). Hence {Δ(ί, >, ft, /) |ι, >, ft, /eΩ} forms a
4-(w, 7, 1) design on Ω.

We may assume that Δ(l, 2, 3, 4)= {1, 2, 3, 4, 5, 6, 7}.
Let a be an involution in G1234. Then we may assume that

Set T=CG(a)89.

(2) For any two points ί and j in I(a), set Δ(i,y) = Δ(l, 2, 3, 4) Π Δ(8, 9, ί, ).
7%«ι {Δ(ί>t/)|f,ye/(α)} /orm^ β 2-(7, 3, 1) design on I(a) and Tf^<PGL(3y 2).

Proof. Since a normalizes G89ij and G89ij is of even order, GB9ij has an
involution x commuting with a. Thus Λ EΐT1^-. Since \I(a)\=7, x fixes one
more point in /(«), and so j Δ(/, 7 ) | > 3.
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If |Δ(i, j)\ >4, then by (1) Δ(l, 2, 3, 4) = Δ(8, 9, i, j\ which is a con-
tradiction. Thus |Δ(z,j)|=3.

Suppose that Δ(ί, ;)Bz', /. Then Δ(8, 9, i, /)Ξ>8, 9, Γ, /, and so by

(1) Δ(8, 9, ί,y) = Δ(8, 9, z',/). Thus Δ(ί, y)=Δ(f",/)
Hence {Δ(ι, ) |ί, e/(a)} forms a 2-(7, 3, 1) design on /(Λ). Since T1^

is an automorphism group of this design, T/(α)<PGL(3, 2).

(3) |Ω|=23 andG<M23.

Proof. Let {zΊ, i2} be a subset of I(a) consisting of two points. Since
a normalizes G89ίι, 2 and G89ίι ί 2 is of even order, a centralizes an involution x
in G89ίV2, and so x^CG(a)S9. * By (2) *'<<>EΞCG(<)i(

9

β)<PGL(3, 2). Thus /(*'<*>)

— {/i, ί"2> i3} and x fixes two points of a 2-cycle (Φ(8 9)) of a. Thus a subset
{zΊ, z'2} of /(#) determines uniquely a 2-cycle (ft /) (Φ(8 9)) of a.

If a subset { Ί, y2} of I(ά) determines the same 2-cycle (k ΐ) of a, then an

involution x' in G 8 9 A ; / is contained in GB9j1j2. Thus { Ί, 7*2} ^Δ(8, 9, ,̂ /)Γl
I(ά)= {ily i2, z'3}. Hence just three subsets {/V, *v} of I(ά) determines the same
2-cycle (k ΐ) of a.

Now suppose that a 2-cycle (k ΐ) (Φ(8 9)) of a is given. Then since a
normalizes G 8 9 ) f e / and G 8 9 Λ / is of even order, a centralizes an involutions in
GB9kh and so *"fl>e CG(α)7

8

(

9

β)<PGL(3, 2). Thus /(*'<•>)- {ιlf ι2, i3} c /(α).
Since seG89/ιJ2, {/Ί, /2} determines (Λ /) in the above sence.

Thus wre have that the number of 2-cycles of a other than (8 9) is equal to
%7C2=7. Hence |Ω| =2+7+2-7=23. Thus {Δ(*J, k, l)\ij, kJϊΞΩ} forms
a 4-(23, 7, 1) design. Hence G <M23.

(4) G=M23 and we complete the proof.

Proof. Let P be a Svlow 2-subgroup of Gijkι for any four points /, /, k
and / in Ω. By the assumption Pφl ; |/(P)|>4 and P<M23 by (3). Thus

|/(P)|=7 and NG(P)I(P)<A7. Since P is nonidentity semi regular by the as-
sumption, G=M23 by Theorem 1 in [8].

Thus we complete the proof of Lemma.

4. Proof of Corollary

Let D be a 4-(v, 7, 1) design. Let {1, 2, 3, 4, z', j, ft} be a block contain-
ing {1, 2, 3, 4}. Then G1234 fixes {/, j, k} as a set. If G1234 has an orbit of

length one in {/, j, k}, then G=S5y AB or Mu by a theorem of H. Nagao [4],
Hence D is a 4-(ll, 7, 1) design. Then the number of blocks is

(ϊ) 11 10 9 8 = 66
7 6-5-4 7 ;
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which is a contradiction. If {i,j, k} is a G1234-orbit, then G~S7, A7 or M&
by Theorem. Hence D is a 4-(7, 7, 1) design or a 4-(23, 7, 1) design. Thus
we complete the proof of Corollary.
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