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1. Introduction

Let G be a 4-fold transitive permutation group on Q. If the stabilizer
of four points 7, j, k and / in G has an orbit of length one in Q— {3, j, &, I}, then
G is S;, Ag or M, by a theorem of H. Nagao [4]. If the stabilizer of four
points in G has an orbit of length two, then G is S; by a theorem of T. Oyama
[12].

We now consider the case in which the stabilizer of four points in G has
an orbit of length three and have the following results.

Theorem. Let G be a 4-fold transitive permutation group on Q={1, 2, ---,
n}. If the stabilizer of four points in G has an orbit of length three, then G is
Sy, A or My,

In the proof of this theorem we shall use the following lemma, which will
be proved in the section 3.

Lemma. Let G be a permutation group on Q=1{1, 2, ---, n} satisfying
the following condition:

For any four points i, j, k and 1 in Q, there exist three points i, i, and i3 in
Q—{i, j, k, I} such that any involution in G, fixes exactly seven points i, j, k,
L, 1, 1, and ;.

Then G is My,

The theorem implies the following corollary.

Corollary. Let D be a 4-(v, k, 1) design, where k=5, 6 or 7. If an auto-
morphism group G of D is a 4-fold transitive permutation group on the set of points
of D, then D is a 4-(11, 5, 1) design, a 4-(23, 7, 1) design or a trivial design: a
4-(5, 5, 1) design, a 4-(6, 6, 1) design or a 4-(7, 7, 1) design.

The case k=5 has been proved by H. Nagao [4] and the case k=6 by
T. Oyama [12]. Hence in this paper we shall prove the remaining case k=7
in the section 4.
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We shall use the same notations as in [6].

2. Proof of Theorem

Let G be a group satisfying the assumption of Theorem. Let P be a
Sylow 2-subgroup of G,;,.

If P=1, then G is A; by a theorem of M. Hall ([2] Theorem 5.8.1) and
the assumption.

Since P fixes a Gy,;,-orbit of length three as a set, |I(P)|>5. If |I(P)|
>5 and P=1, then G is M,; by a theorem of T. Oyama ([6], [7] and [9]) and
the assumption.

If P is semiregular on Q—I(P), P=*1 and [I(P)|=5, then G is S; by a
theorem of H. Nagao [5] and the assumption.

Hence from now on we assume that P=1, |I(P)|=5 and P is not semi-
regular on Q—I(P) and prove the theorem by way of contradiction.

(1) G234 has exactly one orbit of length three.

Proof. Suppose by way of contradiction that G,,;, has two orbits {i,
iy, 5} and {#{, 73, #5} of length three. Since P fixes {i,, 7, 73} and {if, 73, i3}
as a set, P fixes at least six points, which is a contradiction since |I(P)|==5.

We may assume that I(P)={1, 2, 3, 4, 5} and {5, 6, 7} is the unique G,,;,
orbit of length three. Then {6, 7} is a P-orbit of length two. Hence a min-
imal P-orbit in Q—I(P) is of length two.

(2) Let t be a point of a minimal P-orbit in Q—I(P). Then a Sylow 2-
subgroup of the stabilizer of any four points in Ng(P,)' 0 is of order two.

Proof. Let P’ be a Sylow 2-subgroup of G,j;, containing P, for any four
points ¢, j, k and [/ in I(P;). Since P, is a normal subgroup of index two in P’,
Np(P)IPO=P''") is a Sylow 2-subgroup of Ny (P,)!$4¥ and is of order two.

() [ I(P)|=7,9 or 13. In particular, if |I(P,)|=9 or 13, then Ng(P,)"*2
<A, or Ng(P,)'*)=8, X M,,, respectively.

Proof. A Sylow 2-subgroup of the stabilizer of any four points in
N¢(P,)'®? is a nonidentity semiregular group and fixes exactly five points. Thus
this follows from Theorem 1 of [8].

@) 1P| *13.

Proof. If |I(P,)|=13, then Ng(P,)'*’)=S,x M, Hence a Sylow 2-
subgroup of the stabilizer of any four points in Ng(P,)'*:) is of order eight.
This is contrary to (2). Thus [I(P,)|=#13.
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() (P =*9.

Proof. Suppose by way of contradiction that |I(P,)|=9. Then by (2)
for any four points 7, j, k and / in I(P,), any involution in Ng(P,);;# fixes exactly
five points.

First assume that Ng(P,)'®*:) is primitive. Then since Ng(P,)'*:) is a
subgroup of 4, and has an involution fixing five points, Ny(P,)F)=4, (see
[13]). This is contrary to (2).

Next assume that Ny(P,)’®+) is imprimitive. Then Ng(P;)!®s) has three
blocks {7, 7, 73}, {j1, jo» Js} and {ky, k,, k} of length three. Let x be an
involution fixing 7, 7,, j; and j,. Then x fixes 7; j; and one more point in
{ky, ky, k3}. Thus x is a transposition. This is a contradiction.

Finally assume that Ng(P,)®") is intransitive. Then one of Ng(P,)'"+)-
orbits is of length less than five.

Suppose that Ng(P,)’®) has an orbit {7} of length one. Then for any
four points 7, j, k& and [/ in I(P,)— {i,}, there exists an involution in Ng(P,)""
fixing exactly five points z,, 7, /, k and . Thus by a lemma of D. Livingstone
and A. Wagner ([3], Lemma 6), N(P,)}*?~t"1) is 4-fold transitive on I(P,)—
{i.}. Hence by (3) Ny(P,)'*=8,x A,. This is contrary tc (2).

Suppose that N (P,)'?2) has an orbit {7, 7,} of length two. Then for
any three points 7, j and k in I(P,)— {7}, i,}, there exists an involution in
Ng(P,)'®) fixing exactly five points 7y, 7,, 7, j and k. Thus by a lemma of
D. Livingstone and A. Wagner, Ny(P,)}{P~t#2 is 3-fold transitive on I(P;)—
{1, i}, Hence by (3) Ng(P,)ifP~t"ri) =4, This is contrary to (2).

Suppose that Ny(P,)'®) has an orbit {7, 7,, 73} of length three. Set A=
I(P,)— {1y, 15, 1} ={i,, 25 -**,%}. Then for any four points in A, theie exists
an involution in Ng(P,)* fixing exactly these four points. Hence by a lemma
of D. Livingstone and A. Wagner, Ng(P,)* is 4-fold transitive on A, and so
Ng(P,)*=S,.

Thus Ng(P;)!®t) has two elements

x = (2,)(35)(762;)(7aty) **+ and
¥ = (1,)(85)(tets) (o) ** -

Since by (3) Ng(P,)'*< Ay, x and y have three fixed points or one 3-cycle on
{i, 75 i}. Thus ¥ and y° fix five points 7y, 7, 7, 7, and iz; and <{a°, y*> is an
elementary abelian group of order four. This is contrary to (2).

Suppose that Ng(P,)/?s) has an orbit {i), 7,, 75, 7,} of length four. Set
A=I(P,)— {i}, ty, t5 1} =1{i5, i, ***, 5}. Then for any three points 7, j and &
in A, Ng(P,)"") has an involution fixing i, 7, j, & and one more point in
{1, 4, i}, Thus by a lemma of D. Livingstone and A. Wagner, Ng(P))3, is
3-fold transitive on A, and so Ng(P,)3,=S;.
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Thus Ny(P,;)'®» has two elements

% = (6,)(is)(ieds) (i) -+ and
¥ = (2)(8s) (t6ts) (ist) -+

By the same argument as is shown above, we have a contradiction.

Thus |I(P,)] =9.

(6) Ng(P,)' 1) is ome of the following groups.
(a) Ng(P)'PI=S,
(8) Ng(P)'P=8,x.S;
() Ng(P)®)=8,xS;
(d) Ng(P)F0=8;x8,

Proof. First assume that Ng(P,)/*+) is transitive on I(P,). Since by (2)
N¢(P,)!®1) has a transposition, Ny(P,)'#)=S,.

Next assume that Ng(P,)’®t) is intransitive. Then one of Ng(P,) -
orbits is of length less than four.

Suppose that Ng(P,)!") has an orbit {7} of length one. Then for any
four points 7, j, & and / in I(P,)— {7,}, there exists an involution in Ng(P,)!*+)
fixing exactly five points 7,, 7, j, k and /. 'Thus by a lemma of D. Livingstone
and A. Wagner, Ng(P,)!{*?~01) is 4-fold transitive on I(P)—{i;}, and so
Ng(P,)I®)=8,x S;.

Suppose that Ng(P,)/®:) has an orbit {i;, 7,} of length two. Then for
any three points 7, j and k in I(P,)— {7, 7,}, there exisis an involution in
N(P,)'®:) fixing exactly five points 7y, 7,, 4, j and k. Thus by a lemma of
D. Livingstone and A. Wagner Ng(P,)ifp~Uv?) s 3-fold transitive on I(P,)—
{i1, 12}, and so Ny(P,)}fP~rid=g;,

On the other hand N (P,)!**) has an involution

x = (i) )2 5) o) i) -

Hence Ng(P,)'*)=.5,x S;.

Suppose that Ny(P,)’®) has an orbit {i, 7,, 7} of length three. Set A=
I(P)— {1y, 1, i} ={i,, 75, 76, 1;}. Then for any two points 7 and j in A, there
exists an involution in Ng(P,)!*+) fixing exactly five points 7, 7,, 73, 7 and j. Thus
by a lemma of D. Livingstone and A. Wagner, Ng(P,)} i,i, is doubly transitive
on A, and so Ng(P,)} i,i,=S.,.

On the other hand Ng(P,)"®0) has two involutions

%, = (81d) (8a) (1) (55) (#6) (47)  and
%, = (1) (28) (24) (3) (%) (i) -
Hence Ng(Py)'*)=S,x S,.
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(7) Ng(P)'*=S, and t=6 or 7. For four points i, j, k and | in Q, let
{iy, 1y, 15} be the G,j-orbit of length three. Set A(i, j, k, )=1{1, ], k, I, 1}, 1, 13}.
Then {A(i, j, k, 1)1, j, k, 1€Q} forms a 4-(n, 7, 1) design on Q.

Proof. Suppose by way of contradiction that Ny(P,)!¢*:) is not S;. Set
I(Pt): {il) iz» H) 1'7}

First assume that Ny(P,)/®)=S8,x S; and {i;} is an orbit of length one.
For four points i), 7, i; and 7, in I(P)), No(Pt)fifz',?;““"'z"s"'4’233- Thus
{is, 7, 3;} is the unique Gi,iyigi,-0rbit of length three, and so Ng(Giiyig,) <
Ns(Gyp,)). Since P, is a Sylow 2-subgroup of Gy(p,), by Frattini argument
Ng(P)'*0=Ng(G p,))'®. Thus NG(Pt)I(P‘)ENG(Gilizisi)I(P‘)~

On the other hand Ny(G, ;i) vi20 =S, by a theorem of H. Nagao [4]
and Ng(P,)"*#) has an orbit containing four points 7,, 7,, 7; and #,. This isa
contradiction.

Next assume that Ng(P,)!*)=S,xS; and {7, #,} is an orbit of length
two. For four points 7, i, 5 and 7, in I(P;), Ng(P,){{{)"t" iz =8, Thus
by the same argument as is shown above, we have a contradiction.

Finally assume that N (P,)"#)=S;x S, and {i,, i,, 7} is an orbit of length
three. For four points 7, 7, #3 and 7, in I(P)), NG(P,)ﬁ’t,’zrzs—i(‘il-iz~ia'in:S3.
Thus by the same argument as is shown above, we have a contradiction. Thus
Ng(P) PO=S,.

Let {¢, t'} be a P-orbit of length two. Thus I(P,)={l, 2, 3,4, 5, ¢, ¢'}.
Since Ng(P)!*")=S,;, Ng(P)i¥# %Y =S8; Therefore {5, ¢, t'} is the
unique G ,;,-orbit of length three, and so =6 or 7.

(8) Let Q be a subgroup of P fixing exactly seven points. Then I(Q)=
{1, 2, ---, 7}.

Proof. Let @ be a subgroup of P such that the order of @ is maximal
among all subgroups of P fixing the same seven points. Since [[(Q)|=7,
a Sylow 2-subgroup of the stabilizer of any four points in Ng(Q)"@ is of
order two. By the same argument as is shown in (6), Ny(Q)'@=S,, S, X Ss,
S,x 85 or S;xS,. Thus for some four points 7, 7, 73 and 7, in I(Q),
NG(Q)fi‘fZ);‘i';l"'z"S'i«’=S3. Therefore [(Q)— {i,, iy, 13, .} is the unique G iyiy,-
orbit of length three. Thus Ny(Q)'@=.S; and I(Q)=A(Jy, J2» Js» Ju) for any four
points jy, j, j; and j, in I(Q). Since I(Q)2{1, 2, 3, 4, 5}, by (7) [(@)={1,
2, -, 7).

Let @ be a subgroup of P such that | /(@)| is minimal among all subgroups
of P fixing more than seven points. Moreover choose @ so that the order of
@ is maximal among all such subgroups.

Set M=N4(Q)'®@,
(9) A Sylow 2-subgroup of the stabilizer of any four points in M is noniden-
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tity and any nonidentity 2-subgroup of M fixing at least four points fixes exactly
five or seven points.

Proof. Let P, be a Sylow 2-subgroup of Ng(Q);;,; for any four points
i, j, k and [ in I(@) and P’ be a Sylow 2-subgroup of G, containing P,. Then
P,=N(Q). Since P'>Q, N (Q)>@Q, and so PIO=N,(Q)@=*1.

Let Q, be a 2-subgroup of Ng(@);;, such that @,>@Q, P, be a Sylow 2-
subgroup of Ng(@);;,; containing @, and P’ be a Sylow 2-subgioup of G;j,
containing P,. Then since P’> Np(Q)=P,>Q,>@Q, by the maximality of |Q|
I(P)SI(Q)CI(@), and so |I(Q}®)|=|I(Q,)|=5 or 7.

(10) Let {i), iy, is} be the unique Gj,-orbit of length three for amy four
points i, j, k and 1 in 1(Q).

There exists an involution in M, fixing seven points if and only if I(Q)
contains three points t,, i, and i,

Then an involution in M., fixing seven points fixes seven points i, j, k, I,
1y, 1, and 1,.

Proof. If there exists an involution in M;;, fixing seven points, then
there exists a 2-subgroup @ of G,j,, such that @ >Q and |[(Q)|=7. By (8)
IQ)={i, j, k, I, i\, i, i}, and so I(Q) contains three points 7;, 7, and i;.

Conversely /(@) contains three points ¢, 7, and 7. Let P’ be a Sylow
2-subgroup of G,j;, containing @ and I(P")={i, j, k, I, 7,}. Then P">P},>Q
and I(P})={i, j, k, I, i), i, i}. Thus P}{,>@, and so N,/(Q)>Q. By the
maximality of |@| there exists an involution in M, fixing seven points.

(11)  Let {i), i, is} be the unique G, ~orbit of length three for any four
points i, j, k and I in I(Q). Then I(Q) contains three points i, i, and i; and any
involution in M., fixes exactly seven points i, j, k, I, i), i, and is.

Proof. Suppose by way of contradiction that for some four points 7, j,
k and / in I(Q), there exists an involution x in M;;,, fixing exactly five points.
Since [I(x)N {é}, 75, 45} | >1 and |I(Q)|>9, we may assume that

x = ONERD@)Grs2) =+

where {jy, o} F {&, is}. Set C=C(x);,j, and we consider C').

For any two points %, and &, in I(x), x normalizes Mj j 4. Since M ju 4,
is of even order, Mj ju;, has an involution y commuting with x. Then y&
Cu(%)j,ipeer  Since |I(x)|=5, y fixes one more point k in I(x). If /=1,
then y fixes 4, j, k, /, ,, j, and j,, which is contrary to (10). Hence y'® is a
transpesition.

Thus for any two points &, and &, in I(x), there exists an involution fixing
exactly three points k,, k, and exactly one more point k in I(x)— {k,, k,}.
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First assume that C’™ is transitive on I(x). Since C’> has a transposi-
tion, C®=S§,.

Next assume that C’® is intransitive on I(x). Then one of the C'*-
orbits is of length less than three.

Suppose that C'® has an orbit {/;} of length one. Then for any iwo
points k, and &, in I(x)— {},}, there exists an involution in C’® fixing exactly
three points /;, k, and k.. Then by a lemma of D. Livingstone and A. Wag-
ner, C{"~" is doubly transitive on I(x)— {4}, and so Ci{*~"W=S,. Thus
CI®=8 xS,

Suppose that C/™ has an orbit {/;, I,} of length two. Then for any point
ky in I(x)— {/;, I}, there exists an involution in C’* fixing exactly three points
l;, I, and k. Then by a lemma of D. Livingstone and A. Wagner, C{)~ /2
is transitive on I(x)— {l;, L}, and so C{{j)"tr2=S,.

On the other hand C'® has an involution

& = (L)L) (L)L) -

Thus C/®=S,xS,.

Hence C'®=S; S,x S8, or S;x8; In any cases for some two points
Iy and 1, in I(x), C1%) V"2 =8, Then I(x)— {l, L} ={ls, /,, I} is the unique
G jyi,-0rbit of length three. Since [/ @ 24{jw Jo by by by L, L} 2I(x)=
{&, 7, k, 1, i1}, by (7) {5, J, k, 1, i, iy, i} =13, j, k, I, 4, Jy, jo}, which is a contra-
diction.

Thus for any four points 4, j, k and / in I(Q), I(Q) contains all the points
of G,j~orbit {, 7,, 75} of length three and any involution in M, fixes exactly
seven points ¢, j, &, [, 7,, 7, and 7,.

(12) M=DM,y and {A(, j, k, 1) |4, j, k, LEL(Q)} forms a 4-(23, 7, 1) design
on 1(Q).

Proof. By (9) and (11) M satisfies the condition of Lemma. By Lemma
M=M,y, and so {A(i, j, k, 1)|1, j, k, IEI(Q)} forms a 4-(23, 7, 1) design on
I(Q).

Let s be a point of a minimal @-orbit in Q—1(Q). Set R=Q, and N=
Ng(R)'™®,

(13) Let u be an involution in N such that I(u)=I(Q), and let (i,i,) be a
2-cycle of u. For any two points i and j in I(u), set A(i, j)=1(u) N A%y, i, 7, j).
Then |A(Z, §)|=3.

Proof. Let # be a 2-element of Ng(R) such that #/®=y. For any two
points 7 and j in (), <&, R> fixes A(7), 15, 7, j) as a set. Since u fixes two points
i and j, u fixes one more point k in A(iy, 7y, 7, J)— {i}, 75, 7, j}. Thus |A(, j)|
>3.
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Suppose that |A(z, j)| =5 and set A(Z, j)={z, j, k, I, m}. Then A(i,, 2, 1, j)
—{iy 1y i, j, b, I, m}. By (12) I#)DA(y, iy, 4, /) Diy, i, which is a contradic-
tion. Hence |A(, j)|=3.

(14) {AG, )i, jel(w)} forms a 2-(23, 3, 1) design on I(u). Thus we
have a contradiction and complete the proof of Theorem.

Proof. For any two points 7 and j in I(u), A(z, j) is a subset of I(u).

Suppose that A(z, j)27', j'. Set A(, j)={i, j, k} and A(4, 2, 1, j)=
{i, j, k, iy, iy j1 jo}. Since &, j'€ 4, j, k}, A(iy iy 3, j)Dis, by, &', ', and so
Aliy, 1y 4, ))=A(iy, iy 7, j°).  Thus AG, j)=A(@", ).

Hence {A(, j)|7, j =I(u)} forms a 2-(23, 3, 1) design on J(x). Then the
number of blocks is

which is a contradiction.
Thus we complete the proof of Theorem.

3. Proof of Lemma

Let G be a group satisfying the assumption of Lemma.

(1) For any four points i, j, k and lin Q, let {i, j, k, I, 1), 1,, 1} be the set
of the fixed points of an involution in G,j,. Set A4, f, k, )= {1, j, k, 1, i}, i,, i3}.
Then {A(i, j, k, 1)|4, j, k, 1€Q} forms a 4-(n, 7, 1) design on Q.

Proof. Suppose that A(7, j, k&, [)=1', j/, k', I’ Then there exists an
involution x in G, fixing ¢', j', " and /. Thus x is an involution in Gy,
and so A(Z, j, k, ))=A(", j', k', I'). Hence {A(s, j, k, D14, j, k, |€Q} forms a
4-(n, 7, 1) design on Q.

We may assume that A(1, 2, 3, 4)={1, 2, 3, 4, 5, 6, 7}.
Let a be an involution in G,,;,. Then we may assume that
a=(1)2) - (7)89) - .
Set T=C¢(a)so.

(2) For any two points i and j in I(a), set Az, j)=A(1, 2, 3,4) N A(8, 9, 4, ).
Then {A(i, j)|i, j €1(a)} forms a 2-(7, 3, 1) design on I(a) and T'® < PGL(3, 2).

Proof. Since a normalizes Gy, ; and Gyy; ; is of even order, Gqy;; has an
involution x commuting with a. Thus x€T;. Since |I(a)| =7, x fixes one
more point in /(a), and so |A(z, j)| >3.
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If |A(, j)| =4, then by (1) A(l, 2, 3, 4)=A(8, 9, i, j), which is a con-
tradiction. Thus |A(s, j)|=3.

Suppose that A(7, j)217', j'. Then A(S, 9, 4, /)28, 9, 7/, j/, and so by
(1) A8, 9, 4, 7)=A(8, 9, 7', j). Thus A(Z, j)=A(®, j').

Hence {A(, j)|i, j€1(a)} forms a 2-(7, 3, 1) design on I(a). Since T/
is an automorphism group of this design, 7' <PGL(3, 2).

3) 1Q]1=23 and G<M,,.

Proof. Let {i, 7,} be a subset of I(a) consisting of two points. Since
a normalizes Gyy; ;, and Gy, ;, is of even order, a centralizes an involution x
in Gyy;, i,y and so xECg(a)ss. By (2) /@€ Cy(a)i’ <PGL(3, 2). Thus I(x'®)
={i}, 15 73} and x fixes two points of a 2-cycle (#(8 9)) of a. Thus a subset
{i), 7,} of I(a) determines uniquely a 2-cycle (k ) (+(8 9)) of a.

If a subset {j,, j,} of I(a) detexmines the same 2-cycle (k [) of a, then an
involution &’ in Gy, is contained in Gygj j,. Thus {ji, .} SA(S, 9, k)N
I(a)= {i), i, i;}. Hence just three subsets {iu, 7,} of I(a) determines the same
2-cycle (k ) of a.

Now suppose that a 2-cycle (k [) (+(8 9)) of a is given. Then since a
normalizes Gyq,; and Gyg,, is of even order, a centralizes an involution x in
Gsors, and so x'@e Cy(a)is’ < PGL(3, 2). Thus I(x'@)= {1}, i,, is} € I(a).
Since ¥€Gyy; 1, {iy, 1o} determines (k I) in the above sence.

Thus we have that the number of 2-cycles of a other than (8 9) is equal to
%,C,=7. Hence |Q|=2+7+2-7=23. Thus {A(@s, , &k, I)|1,j, k, | €Q} forms
a4-(23, 7, 1) design. Hence G <M,

(4) G=M,y; and we complete the proof.

Proof. Let P be a Sylow 2-subgroup of G;;,, for any four points 7, j, k
and / in Q. By the assumption P=1, |I(P)| >4 and P <M, by (3). Thus
| I(P)| =7 and Ny (P)""<A4,. Since P is nonidentity semiregular by the as-
sumption, G=2M,; by Theorem 1 in [8].

Thus we complete the proof of Lemma.

4. Proof of Corollary

Let D be a 4-(v, 7, 1) design. Let {1, 2, 3, 4, 7, j, k} be a block contain-
ing {1, 2, 3, 4}. Then G,,,, fixes {7, j, R} as a set. If G,,;, has an orbit of
length one in {7, j, k}, then G=S;, As or M,, by a theorem of H. Nagao [4].
Hence D is a 4-(11, 7, 1) design. Then the number of blocks is

(141>= 11-10-
<6 -

(4) 7

66
7 b

w| O

8 _
4
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which is a contradiction. If {i, j, k} is a G,,;,-orbit, then G=3S,, 4; or My
by Theorem. Hence D is a 4-(7, 7, 1) design or a 4-(23, 7, 1) design. Thus
we complete the proof of Corollary.
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