4-FOLD TRANSITIVE PERMUTATION GROUPS IN WHICH THE STABILIZER OF FOUR POINTS IN G HAS AN ORBIT OF LENGTH THREE

Kenzi AKIYAMA

(Received March 15, 1982)

1. Introduction

Let G be a 4-fold transitive permutation group on Ω. If the stabilizer of four points i, j, k and l in G has an orbit of length one in $\Omega-\{i, j, k, l\}$, then G is S_{5}, A_{6} or M_{11} by a theorem of H . Nagao [4]. If the stabilizer of four points in G has an orbit of length two, then G is S_{6} by a theorem of T. Oyama [12].

We now consider the case in which the stabilizer of four points in G has an orbit of length three and have the following results.

Theorem. Let G be a 4-fold transitive permutation group on $\Omega=\{1,2, \cdots$, $n\}$. If the stabilizer of four points in G has an orbit of length three, then G is S_{7}, A_{7} or M_{23}.

In the proof of this theorem we shall use the following lemma, which will be proved in the section 3.

Lemma. Let G be a permutation group on $\Omega=\{1,2, \cdots, n\}$ satisfying the following condition:

For any four points i, j, k and l in Ω, there exist three points i_{1}, i_{2} and i_{3} in $\Omega-\{i, j, k, l\}$ such that any involution in $G_{i j k l}$ fixes exactly seven points i, j, k, l, i_{1}, i_{2} and i_{3}.

Then G is M_{23}.
The theorem implies the following corollaty.
Corollary. Let D be a $4-(v, k, 1)$ design, where $k=5,6$ or 7 . If an automorphism group G of D is a 4-fold transitive permutation group on the set of points of D, then D is a 4-(11, 5, 1) design, a 4-(23, 7, 1) design or a trivial design: a $4-(5,5,1)$ design, a 4-(6, 6, 1) design or a 4-(7, 7, 1) design.

The case $k=5$ has been proved by H. Nagao [4] and the case $k=6$ by T. Oyama [12]. Hence in this paper we shall prove the remaining case $k=7$ in the section 4.

We shall use the same notations as in [6].

2. Proof of Theorem

Let G be a group satisfying the assumption of Theorem. Let P be a Sylow 2-subgroup of G_{1234}.

If $P=1$, then G is A_{7} by a theorem of M. Hall ([2] Theorem 5.8.1) and the assumption.

Since P fixes a G_{1234}-orbit of length three as a set, $|I(P)| \geq 5$. If $|I(P)|$ >5 and $P \neq 1$, then G is M_{23} by a theorem of T. Oyama ([6], [7] and [9]) and the assumption.

If P is semiregular on $\Omega-I(P), P \neq 1$ and $|I(P)|=5$, then G is S_{7} by a theorem of H . Nagao [5] and the assumption.

Hence from now on we assume that $P \neq 1,|I(P)|=5$ and P is not semiregular on $\Omega-I(P)$ and prove the theorem by way of contradiction.
(1) G_{1234} has exactly one orbit of length three.

Proof. Suppose by way of contradiction that G_{1234} has two orbits $\left\{i_{1}\right.$, $\left.i_{2}, i_{3}\right\}$ and $\left\{i_{1}^{\prime}, i_{2}^{\prime}, i_{3}^{\prime}\right\}$ of length three. Since P fixes $\left\{i_{1}, i_{2}, i_{3}\right\}$ and $\left\{i_{1}^{\prime}, i_{2}^{\prime}, i_{3}^{\prime}\right\}$ as a set, P fixes at least six points, which is a contradiction since $|I(P)|=5$.

We may assume that $I(P)=\{1,2,3,4,5\}$ and $\{5,6,7\}$ is the unique $G_{1234^{-}}$ orbit of length three. Then $\{6,7\}$ is a P-orbit of length two. Hence a minimal P-orbit in $\Omega-I(P)$ is of length two.
(2) Let t be a point of a minimal P-orbit in $\Omega-I(P)$. Then a Sylow 2subgroup of the stabilizer of any four points in $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}$ is of order two.

Proof. Let P^{\prime} be a Sylow 2-subgroup of $G_{i j k l}$ containing P_{t} for any four points i, j, k and l in $I\left(P_{t}\right)$. Since P_{t} is a normal subgroup of index two in P^{\prime}, $N_{P^{\prime}}\left(P_{t}\right)^{I\left(P_{t}\right)}=P^{\prime I\left(P_{t}\right)}$ is a Sylow 2-subgroup of $N_{G}\left(P_{t}\right)_{i j k l}^{I\left(P_{i}\right)}$ and is of order two.
(3) $\left|I\left(P_{t}\right)\right|=7,9$ or 13. In particular, if $\left|I\left(P_{t}\right)\right|=9$ or 13 , then $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}$ $\leq A_{9}$ or $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}=S_{1} \times M_{12}$, respectively.

Proof. A Sylow 2-subgroup of the stabilizer of any four points in $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}$ is a nonidentity semiregular group and fixes exactly five points. Thus this follows from Theorem 1 of [8].
(4) $\left|I\left(P_{t}\right)\right| \neq 13$.

Proof. If $\left|I\left(P_{t}\right)\right|=13$, then $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}=S_{1} \times M_{12}$. Hence a Sylow 2subgroup of the stabilizer of any four points in $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}$ is of order eight. This is contrary to (2). Thus $\left|I\left(P_{t}\right)\right| \neq 13$.

$$
\begin{equation*}
\left|I\left(P_{t}\right)\right| \neq 9 \tag{5}
\end{equation*}
$$

Proof. Suppose by way of contradiction that $\left|I\left(P_{t}\right)\right|=9$. Then by (2) for any four points i, j, k and l in $I\left(P_{t}\right)$, any involution in $N_{G}\left(P_{t}\right)_{i j k l}^{I\left(P_{t}\right)}$ fixes exactly five points.

First assume that $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}$ is primitive. Then since $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}$ is a subgroup of A_{9} and has an involution fixing five points, $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}=A_{9}$ (see [13]). This is contrary to (2).

Next assume that $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}$ is imprimitive. Then $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}$ has three blocks $\left\{i_{1}, i_{2}, i_{3}\right\},\left\{j_{1}, j_{2}, j_{3}\right\}$ and $\left\{k_{1}, k_{2}, k_{3}\right\}$ of length three. Let x be an involution fixing i_{1}, i_{2}, j_{1} and j_{2}. Then x fixes i_{3}, j_{3} and one more point in $\left\{k_{1}, k_{2}, k_{3}\right\}$. Thus x is a transposition. This is a contradiction.

Finally assume that $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}$ is intransitive. Then one of $\left.N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}\right)_{-}$ orbits is of length less than five.

Suppose that $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}$ has an orbit $\left\{i_{1}\right\}$ of length one. Then for any four points i, j, k and l in $I\left(P_{t}\right)-\left\{i_{1}\right\}$, there exists an involution in $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}$ fixing exactly five points i_{1}, i, j, k and l. Thus by a lemma of D . Livingstone and A. Wagner ([3], Lemma 6), $N_{G}\left(P_{t}\right)_{i_{1}}^{I\left(P_{t}\right)-\left(i_{1}\right)}$ is 4-fold transitive on $I\left(P_{t}\right)$ $\left\{i_{1}\right\}$. Hence by (3) $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}=S_{1} \times A_{8}$. This is contrary tc (2).

Suppose that $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}$ has an orbit $\left\{i_{1}, i_{2}\right\}$ of length two. Then for any three points i, j and k in $I\left(P_{t}\right)-\left\{i_{1}, i_{2}\right\}$, there exists an involution in $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}$ fixing exactly five points i_{1}, i_{2}, i, j and k. Thus by a lemma of D. Livingstone and A. Wagner, $N_{G}\left(P_{t} t_{i_{1} i_{2}}^{I\left(P_{t}\right)-\left\{i_{1}, i_{2}\right\}}\right.$ is 3-fold transitive on $I\left(P_{t}\right)$ $\left\{i_{1}, i_{2}\right\}$. Hence by (3) $N_{G}\left(P_{t}\right)_{i_{1} i_{2}}^{I\left(P_{t}\right)-\left(i_{1}, i_{2}\right\}}=A_{7}$. This is contrary to (2).

Suppose that $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}$ has an orbit $\left\{i_{1}, i_{2}, i_{3}\right\}$ of length three. Set $\Delta=$ $I\left(P_{t}\right)-\left\{i_{1}, i_{2}, i_{3}\right\}=\left\{i_{4}, i_{5}, \cdots, i_{9}\right\}$. Then for any four points in Δ, there exists an involution in $N_{G}\left(P_{t}\right)^{\Delta}$ fixing exactly these four points. Hence by a lemma of D. Livingstone and A. Wagner, $N_{G}\left(P_{t}\right)^{\Delta}$ is 4-fold transitive on Δ, and so $N_{G}\left(P_{t}\right)^{\Delta}=S_{6}$.

Thus $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}$ has two elements

$$
\begin{aligned}
& x=\left(i_{4}\right)\left(i_{5}\right)\left(i_{6} i_{7}\right)\left(i_{8} i_{9}\right) \cdots \quad \text { and } \\
& y=\left(i_{4}\right)\left(i_{5}\right)\left(i_{6} i_{8}\right)\left(i_{7} i_{9}\right) \cdots .
\end{aligned}
$$

Since by (3) $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)} \leq A_{9}, x$ and y have three fixed points or one 3-cycle on $\left\{i_{1}, i_{2}, i_{3}\right\}$. Thus x^{3} and y^{3} fix five points $i_{1}, i_{2}, i_{3}, i_{4}$ and i_{5} and $\left\langle x^{3}, y^{3}\right\rangle$ is an elementary abelian group of order four. This is contrary to (2).

Suppose that $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}$ has an orbit $\left\{i_{1}, i_{2}, i_{3}, i_{4}\right\}$ of length four. Set $\Delta=I\left(P_{t}\right)-\left\{i_{1}, i_{2}, i_{3}, i_{4}\right\}=\left\{i_{5}, i_{6}, \cdots, i_{9}\right\}$. Then for any three points i, j and k in $\Delta, N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}$ has an involution fixing i_{4}, i, j, k and one more point in $\left\{i_{1}, i_{2}, i_{3}\right\}$. Thus by a lemma of D. Livingstone and A. Wagner, $N_{G}\left(P_{t}\right) i_{i_{4}}$ is 3-fold transitive on Δ, and so $N_{G}\left(P_{t}\right)_{i_{4}}=S_{5}$.

Thus $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}$ has two elements

$$
\begin{aligned}
& x=\left(i_{4}\right)\left(i_{5}\right)\left(i_{6} i_{7}\right)\left(i_{8} i_{9}\right) \cdots \quad \text { and } \\
& y=\left(i_{4}\right)\left(i_{5}\right)\left(i_{6} i_{8}\right)\left(i_{7} i_{9}\right) \cdots .
\end{aligned}
$$

By the same argument as is shown above, we have a contradiction.
Thus $\left|I\left(P_{t}\right)\right| \neq 9$.
(6) $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}$ is one of the following groups.
(a) $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}=S_{7}$
(b) $\quad N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}=S_{1} \times S_{6}$
(c) $\quad N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}=S_{2} \times S_{5}$
(d) $\quad N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}=S_{3} \times S_{4}$

Proof. First assume that $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}$ is transitive on $I\left(P_{t}\right)$. Since by (2) $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}$ has a transposition, $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}=S_{7}$.

Next assume that $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}$ is intransitive. Then one of $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}$ orbits is of length less than four.

Suppose that $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}$ has an orbit $\left\{i_{1}\right\}$ of length one. Then for any four points i, j, k and l in $I\left(P_{t}\right)-\left\{i_{1}\right\}$, there exists an involution in $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}$ fixing exactly five points i_{1}, i, j, k and l. Thus by a lemma of D . Livingstone and A. Wagner, $N_{G}\left(P_{t}\right)_{i_{1}}^{I\left(P_{t}\right)-\left\{i_{1}\right\}}$ is 4-fold transitive on $I\left(P_{t}\right)-\left\{i_{1}\right\}$, and so $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}=S_{1} \times S_{6}$.

Suppose that $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}$ has an orbit $\left\{i_{1}, i_{2}\right\}$ of length two. Then for any three points i, j and k in $I\left(P_{t}\right)-\left\{i_{1}, i_{2}\right\}$, there exisis an involution in $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}$ fixing exactly five points i_{1}, i_{2}, i, j and k. Thus by a lemma of D. Livingstone and A. Wagner, $N_{G}\left(P_{t}\right)_{i_{1} i_{2}}^{I\left(P_{t}\right)-\left(i_{1}, i_{2}\right)}$ is 3-fold transitive on $I\left(P_{t}\right)-$ $\left\{i_{1}, i_{2}\right\}$, and so $N_{G}\left(P_{t}\right)_{i_{1} i_{2}}^{I\left(P_{t}\right)-\left\{i_{1}, i_{2}\right\}}=S_{5}$.

On the other hand $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}$ has an involution

$$
x=\left(i_{1} i_{2}\right)\left(i_{3}\right)\left(i_{4}\right)\left(i_{5}\right)\left(i_{6}\right)\left(i_{7}\right)
$$

Hence $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}=S_{2} \times S_{5}$.
Suppose that $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}$ has an orbit $\left\{i_{1}, i_{2}, i_{3}\right\}$ of length three. Set $\Delta=$ $I\left(P_{t}\right)-\left\{i_{1}, i_{2}, i_{3}\right\}=\left\{i_{4}, i_{5}, i_{6}, i_{7}\right\}$. Then for any two points i and j in Δ, there exists an involution in $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}$ fixing exactly five points i_{1}, i_{2}, i_{3}, i and j. Thus by a lemma of D. Livingstone and A. Wagner, $N_{G}\left(P_{t}\right)_{i_{1} i_{2} i_{3}}^{{ }_{i}}$ is doubly transitive on Δ, and so $N_{G}\left(P_{t}\right)_{i_{1} i_{2} i_{3}}=S_{4}$.

On the othet hand $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}$ has two involutions

$$
\begin{aligned}
& x_{1}=\left(i_{1} i_{2}\right)\left(i_{3}\right)\left(i_{4}\right)\left(i_{5}\right)\left(i_{6}\right)\left(i_{7}\right) \quad \text { and } \\
& x_{2}=\left(i_{1}\right)\left(i_{2} i_{3}\right)\left(i_{4}\right)\left(i_{5}\right)\left(i_{6}\right)\left(i_{7}\right) .
\end{aligned}
$$

Hence $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}=S_{3} \times S_{4}$.
(7) $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}=S_{7}$ and $t=6$ or 7. For four points i, j, k and l in Ω, let $\left\{i_{1}, i_{2}, i_{3}\right\}$ be the $G_{i j k l}$-orbit of length three. Set $\Delta(i, j, k, l)=\left\{i, j, k, l, i_{1}, i_{2}, i_{3}\right\}$. Then $\{\Delta(i, j, k, l) \mid i, j, k, l \in \Omega\}$ forms a $4-(n, 7,1)$ design on Ω.

Proof. Suppose by way of contradiction that $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}$ is not S_{7}. Set $I\left(P_{t}\right)=\left\{i_{1}, i_{2}, \cdots, i_{7}\right\}$.

First assume that $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}=S_{1} \times S_{6}$ and $\left\{i_{1}\right\}$ is an orbit of length one. For four points i_{1}, i_{2}, i_{3} and i_{4} in $I\left(P_{t}\right), N_{G}\left(P_{t}\right)_{i_{1} i_{2} i_{3} i_{i}}^{I\left(P_{t}-\left(i_{1}, i_{2}, i_{3}, i_{4}\right)\right.}=S_{3}$. Thus $\left\{i_{5}, i_{6}, i_{7}\right\}$ is the unique $G_{i_{1} i_{2} i_{3} i_{4}}$-orbit of length three, and so $N_{G}\left(G_{i_{1} i_{2} i_{3} i_{4}}\right) \leq$ $N_{G}\left(G_{I\left(P_{t}\right)}\right)$. Since P_{t} is a Sylow 2-subgroup of $G_{I\left(P_{t}\right)}$, by Frattini argument $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}=N_{G}\left(G_{I\left(P_{t}\right)}\right)^{I\left(P_{t}\right)}$. Thus $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)} \geq N_{G}\left(G_{i_{1} i_{2} i_{3} i_{4}} I^{I\left(P_{t}\right)}\right.$.

On the other hand $N_{G}\left(G_{i_{1} i_{2} i_{3} i_{4}}\right)^{\left\{i_{1}, i_{2}, i_{3}, i_{4}\right\}}=S_{4}$ by a theorem of H. Nagao [4] and $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}$ has an orbit containing four points i_{1}, i_{2}, i_{3} and i_{4}. This is a contradiction.

Next assume that $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}=S_{2} \times S_{5}$ and $\left\{i_{1}, i_{2}\right\}$ is an orbit of length two. For four points i_{1}, i_{2}, i_{3} and i_{4} in $I\left(P_{t}\right), N_{G}\left(P_{t} i_{i_{1} i_{2} i_{3} i_{4}}^{I\left(P_{t}, i_{2}, i_{3}, i_{4}\right\}}=S_{3}\right.$. Thus by the same argument as is shown above, we have a contradiction.

Finally assume that $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}=S_{3} \times S_{4}$ and $\left\{i_{1}, i_{2}, i_{3}\right\}$ is an orbit of length three. For four points i_{1}, i_{2}, i_{3} and i_{4} in $I\left(P_{t}\right), N_{G}\left(P_{t}\right)_{i_{1} i_{2} i_{3} i^{2}}^{I\left(P_{t}\right)-\left(i_{1}, i_{2}, i_{3} \cdot i_{4}\right\}}=S_{3}$. Thus by the same argument as is shown above, we have a contradiction. Thus $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}=S_{7}$.

Let $\left\{t, t^{\prime}\right\}$ be a P-orbit of length two. Thus $I\left(P_{t}\right)=\left\{1,2,3,4,5, t, t^{\prime}\right\}$. Since $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}=S_{7}, N_{G}\left(P_{t}\right)_{1234}^{I\left(P_{t}\right)-(1,2,3,4\}}=S_{3}$. Therefore $\left\{5, t, t^{\prime}\right\}$ is the unique G_{1234}-orbit of length three, and so $t=6$ or 7 .
(8) Let Q be a subgroup of P fixing exactly seven points. Then $I(Q)=$ $\{1,2, \cdots, 7\}$.

Proof. Let Q be a subgroup of P such that the order of Q is maximal among all subgroups of P fixing the same seven points. Since $|I(Q)|=7$, a Sylow 2-subgroup of the stabilizer of any four points in $N_{G}(Q)^{I(Q)}$ is of order two. By the same argument as is shown in (6), $N_{G}(Q)^{I(Q)}=S_{7}, S_{1} \times S_{6}$, $S_{2} \times S_{5}$ or $S_{3} \times S_{4}$. Thus for some four points i_{1}, i_{2}, i_{3} and i_{4} in $I(Q)$, $N_{G}(Q) i_{i_{1} i_{2} i_{3} i_{4}}^{I(Q)}\left(i_{1} i_{2}, i_{3}, i_{4}\right\}=S_{3}$. Therefore $I(Q)-\left\{i_{1}, i_{2}, i_{3}, i_{4}\right\}$ is the unique $G_{i_{1} i_{2} i_{3} i_{4}}-$ orbit of length three. Thus $N_{G}(Q)^{I(Q)}=S_{7}$ and $I(Q)=\Delta\left(j_{1}, j_{2}, j_{3}, j_{4}\right)$ for any four points j_{1}, j_{2}, j_{3} and j_{4} in $I(Q)$. Since $I(Q) \supseteq\{1,2,3,4,5\}$, by (7) $I(Q)=\{1$, $2, \cdots, 7\}$.

Let \bar{Q} be a subgroup of P such that $|I(\bar{Q})|$ is minimal among all subgroups of P fixing more than seven points. Moreover choose \bar{Q} so that the order of \bar{Q} is maximal among all such subgroups.

Set $M=N_{G}(\bar{Q})^{I(\bar{Q})}$.
(9) A Sylow 2-subgroup of the stabilizer of any four points in M is noniden-
tity and any nonidentity 2-subgroup of M fixing at least four points fixes exactly five or seven points.

Proof. Let P_{0} be a Sylow 2-subgroup of $N_{G}(\bar{Q})_{i j k l}$ for any four points i, j, k and l in $I(\bar{Q})$ and P^{\prime} be a Sylow 2-subgroup of $G_{i j k l}$ containing P_{0}. Then $P_{0}=N_{P^{\prime}}(\bar{Q})$. Since $P^{\prime}>Q, N_{P^{\prime}}(\bar{Q})>\bar{Q}$, and so $P_{0}^{I(\bar{Q})}=N_{P^{\prime}}(\bar{Q})^{I(\bar{Q})} \neq 1$.

Let Q_{0} be a 2 -subgroup of $N_{G}(\bar{Q})_{i j k l}$ such that $Q_{0}>\bar{Q}, P_{0}$ be a Sylow 2subgroup of $N_{G}(\bar{Q})_{i j k l}$ containing Q_{0} and P^{\prime} be a Sylow 2-subgroup of $G_{i j k l}$ containing P_{0}. Then since $P^{\prime} \geq N_{P^{\prime}}(\bar{Q})=P_{0} \geq Q_{0}>\bar{Q}$, by the maximality of $|\bar{Q}|$ $I\left(P^{\prime}\right) \subseteq I\left(Q_{0}\right) \subset I(\bar{Q})$, and so $\left|I\left(Q_{0}^{I(\bar{Q})}\right)\right|=\left|I\left(Q_{0}\right)\right|=5$ or 7 .
(10) Let $\left\{i_{1}, i_{2}, i_{3}\right\}$ be the unique $G_{i j k l}$-orbit of length three for any four points i, j, k and l in $I(\bar{Q})$.

There exists an involution in $M_{i j k l}$ fixing seven points if and only if $I(\bar{Q})$ contains three points i_{1}, i_{2} and i_{3}.

Then an involution in $M_{i j k l}$ fixing seven points fixes seven points i, j, k, l, i_{1}, i_{2} and i_{3}.

Proof. If thete exists an involution in $M_{i j k l}$ fixing seven points, then there exists a 2 -subgroup Q of $G_{i j k l}$ such that $Q>\bar{Q}$ and $|I(Q)|=7$. By (8) $I(Q)=\left\{i, j, k, l, i_{1}, i_{2}, i_{3}\right\}$, and so $I(\bar{Q})$ contains three points i_{1}, i_{2} and i_{3}.

Conversely $I(\bar{Q})$ contains three points i_{1}, i_{2} and i_{3}. Let P^{\prime} be a Sylow 2 -subgroup of $G_{i j k l}$ containing \bar{Q} and $I\left(P^{\prime}\right)=\left\{i, j, k, l, i_{1}\right\}$. Then $P^{\prime}>P_{i_{2}}^{\prime} \geq \bar{Q}$ and $I\left(P_{i_{2}}^{\prime}\right)=\left\{i, j, k, l, i_{1}, i_{2}, i_{3}\right\}$. Thus $P_{i_{2}}^{\prime}>\bar{Q}$, and so $N_{P_{i_{2}}}(\bar{Q})>\bar{Q}$. By the maximality of $|\bar{Q}|$ there exists an involution in $M_{i j k l}$ fixing seven points.
(11) Let $\left\{i_{1}, i_{2}, i_{3}\right\}$ be the unique $G_{i j k l}$-orbit of length three for any four points i, j, k and l in $I(\bar{Q})$. Then $I(\bar{Q})$ contains three points i_{1}, i_{2} and i_{3} and any involution in $M_{i j k l}$ fixes exactly seven points i, j, k, l, i_{1}, i_{2} and i_{3}.

Pıoof. Suppose by way of contradiction that for some four points i, j, k and l in $I(\bar{Q})$, there exists an involution x in $M_{i j k l}$ fixing exactly five points. Since $\left|I(x) \cap\left\{i_{1}, i_{2}, i_{3}\right\}\right| \geq 1$ and $|I(\bar{Q})| \geq 9$, we may assume that

$$
x=(i)(j)(k)(l)\left(i_{1}\right)\left(j_{1} j_{2}\right) \cdots,
$$

where $\left\{j_{1}, j_{2}\right\} \neq\left\{i_{2}, i_{3}\right\}$. Set $C=C_{M}(x)_{j_{1} j_{2}}$ and we consider $C^{I(x)}$.
For any two points k_{1} and k_{2} in $I(x), x$ normalizes $M_{j_{1} j_{2 k_{1} k_{2}}}$. Since $M_{j_{1} j_{2} k_{1} k_{2}}$ is of even order, $M_{j_{1} j_{2} k_{1} k_{2}}$ has an involution y commuting with x. Then $y \in$ $C_{M}(x)_{j_{1} j_{2} k_{1} k_{2}}$. Since $|I(x)|=5, y$ fixes one more point k in $I(x)$. If $y^{I(x)}=1$, then y fixes i, j, k, l, i_{1}, j_{1} and j_{2}, which is contrary to (10). Hence $y^{I(x)}$ is a transpcsition.

Thus for any two points k_{1} and k_{2} in $I(x)$, there exists an involution fixing exactly three points k_{1}, k_{2} and exactly one more point k in $I(x)-\left\{k_{1}, k_{2}\right\}$.

First assume that $C^{I(x)}$ is transitive on $I(x)$. Since $C^{I(x)}$ has a transposition, $C^{I(x)}=S_{5}$.

Next assume that $C^{I(x)}$ is intransitive on $I(x)$. Then one of the $C^{I(x)}$ orbits is of length less than three.

Suppose that $C^{I(x)}$ has an orbit $\left\{l_{1}\right\}$ of length one. Then for any iwo points k_{1} and k_{2} in $I(x)-\left\{l_{1}\right\}$, there exists an involution in $C^{I(x)}$ fixing exactly three points l_{1}, k_{1} and k_{2}. Then by a lemma of D. Livingstone and A. Wag-
 $C^{I(x)}=S_{1} \times S_{4}$.

Suppose that $C^{I(x)}$ has an orbit $\left\{l_{1}, l_{2}\right\}$ of length two. Then for any point k_{1} in $I(x)-\left\{l_{1}, l_{2}\right\}$, there exists an involution in $C^{I(x)}$ fixing exactly three points l_{1}, l_{2} and k_{1}. Then by a lemma of D . Livingstone and A. Wagner, $C_{l_{1} l_{2}}^{I(x)-\left(l_{1}, l_{2}\right)}$ is transitive on $I(x)-\left\{l_{1}, l_{2}\right\}$, and so $C_{l_{1} l_{2}}^{I(x)-\left(l_{1}, l_{2}\right)}=S_{3}$.

On the other hand $C^{I(x)}$ has an involution

$$
x^{\prime}=\left(l_{1} l_{2}\right)\left(l_{3}\right)\left(l_{4}\right)\left(l_{5}\right) .
$$

Thus $C^{I(x)}=S_{2} \times S_{3}$.
Hence $C^{I(x)}=S_{5}, S_{1} \times S_{4}$ or $S_{2} \times S_{3}$. In any cases for some two points l_{1} and l_{2} in $I(x), C_{l_{1} l_{2}}^{I(x)-\left\{l_{1}, l_{2}\right)=S_{3} \text {. Then } I(x)-\left\{l_{1}, l_{2}\right\}=\left\{l_{3}, l_{4}, l_{5}\right\} \text { is the unique }{ }^{2} \text {. }{ }^{2} \text {. }}$ $G_{j_{1} j_{2} l_{1} l_{2}}$-orbit of length three. Since $I(\bar{Q}) \supseteq\left\{j_{1}, j_{2}, l_{1}, l_{2}, l_{3}, l_{4}, l_{5}\right\} \supseteq I(x)=$ $\left\{i, j, k, l, i_{1}\right\}$, by (7) $\left\{i, j, k, l, i_{1}, i_{2}, i_{3}\right\}=\left\{i, j, k, l, i_{1}, j_{1}, j_{2}\right\}$, which is a contradiction.

Thus for any four points i, j, k and l in $I(\bar{Q}), I(\bar{Q})$ contains all the points of $G_{i j k l}$-orbit $\left\{i_{1}, i_{2}, i_{3}\right\}$ of length three and any involution in $M_{i j k l}$ fixes exactly seven points i, j, k, l, i_{1}, i_{2} and i_{3}.
(12) $\quad M=M_{23}$ and $\{\Delta(i, j, k, l) \mid i, j, k, l \in I(\bar{Q})\}$ forms a $4-(23,7,1)$ design on $I(\bar{Q})$.

Proof. By (9) and (11) M satisfies the condition of Lemma. By Lemma $M=M_{23}$, and so $\{\Delta(i, j, k, l) \mid i, j, k, l \in I(\bar{Q})\}$ forms a $4-(23,7,1)$ design on $I(\bar{Q})$.

Let s be a point of a minimal \bar{Q}-orbit in $\Omega-I(\bar{Q})$. Set $R=\bar{Q}_{s}$ and $N=$ $N_{G}(R)^{I(R)}$.
(13) Let u be an involution in N such that $I(u)=I(\bar{Q})$, and let $\left(i_{1} i_{2}\right)$ be a 2-cycle of u. For any two points i and j in $I(u)$, set $\Delta(i, j)=I(u) \cap \Delta\left(i_{1}, i_{2}, i, j\right)$. Then $|\Delta(i, j)|=3$.

Proof. Let \bar{u} be a 2-element of $N_{G}(R)$ such that $\bar{u}^{I(R)}=u$. For any two points i and j in $I(u),\langle\bar{u}, R\rangle$ fixes $\Delta\left(i_{1}, i_{2}, i, j\right)$ as a set. Since u fixes two points i and j, u fixes one more point k in $\Delta\left(i_{1}, i_{2}, i, j\right)-\left\{i_{1}, i_{2}, i, j\right\}$. Thus $|\Delta(i, j)|$ ≥ 3.

Suppose that $|\Delta(i, j)|=5$ and set $\Delta(i, j)=\{i, j, k, l, m\}$. Then $\Delta\left(i_{1}, i_{2}, i, j\right)$ $=\left\{i_{1}, i_{2}, i, j, k, l, m\right\} . \quad$ By (12) $I(u) \supseteq \Delta\left(i_{1}, i_{2}, i, j\right) \ni i_{1}, i_{2}$, which is a contradiction. Hence $|\Delta(i, j)|=3$.
(14) $\{\Delta(i, j) \mid i, j \in I(u)\}$ forms a 2-(23, 3, 1) design on $I(u)$. Thus we have a contradiction and complete the proof of Theorem.

Proof. For any two points i and j in $I(u), \Delta(i, j)$ is a subset of $I(u)$.
Suppose that $\Delta(i, j) \ni i^{\prime}, j^{\prime}$. Set $\Delta(i, j)=\{i, j, k\}$ and $\Delta\left(i_{1}, i_{2}, i, j\right)=$ $\left\{i, j, k, i_{1}, i_{2}, j_{1}, j_{2}\right\}$. Since $i^{\prime}, j^{\prime} \in\{i, j, k\}, \Delta\left(i_{1}, i_{2}, i, j\right) \ni i_{1}, i_{2}, i^{\prime}, j^{\prime}$, and so $\Delta\left(i_{1}, i_{2}, i, j\right)=\Delta\left(i_{1}, i_{2}, i^{\prime}, j^{\prime}\right)$. Thus $\Delta(i, j)=\Delta\left(i^{\prime}, j^{\prime}\right)$.

Hence $\{\Delta(i, j) \mid i, j \in I(u)\}$ forms a 2-(23, 3, 1) design on $I(u)$. Then the number of blocks is

$$
\frac{\binom{23}{2}}{\binom{3}{2}}=\frac{23 \cdot 22}{3 \cdot 2}=\frac{253}{3}
$$

which is a contradiction.
Thus we complete the proof of Theorem.

3. Proof of Lemma

Let G be a group satisfying the assumption of Lemma.
(1) For any four points i, j, k and l in Ω, let $\left\{i, j, k, l, i_{1}, i_{2}, i_{3}\right\}$ be the set of the fixed points of an involution in $G_{i j k l}$. Set $\Delta(i, j, k, l)=\left\{i, j, k, l, i_{1}, i_{2}, i_{3}\right\}$.

Then $\{\Delta(i, j, k, l) \mid i, j, k, l \in \Omega\}$ forms a $4-(n, 7,1)$ design on Ω.
Proof. Suppose that $\Delta(i, j, k, l) \ni i^{\prime}, j^{\prime}, k^{\prime}, l^{\prime}$. Then there exists an involution x in $G_{i j k l}$ fixing $i^{\prime}, j^{\prime}, k^{\prime}$ and l^{\prime}. Thus x is an involution in $G_{i^{\prime} j^{\prime} k^{\prime} l^{\prime}}$, and so $\Delta(i, j, k, l)=\Delta\left(i^{\prime}, j^{\prime}, k^{\prime}, l^{\prime}\right)$. Hence $\{\Delta(i, j, k, l) \mid i, j, k, l \in \Omega\}$ forms a 4- $(n, 7,1)$ design on Ω.

We may assume that $\Delta(1,2,3,4)=\{1,2,3,4,5,6,7\}$.
Let a be an involution in G_{1234}. Then we may assume that

$$
a=(1)(2) \cdots(7)(89) \cdots
$$

Set $T=C_{G}(a)_{89}$.
(2) For any two points i and j in $I(a)$, set $\Delta(i, j)=\Delta(1,2,3,4) \cap \Delta(8,9, i, j)$. Then $\{\Delta(i, j) \mid i, j \in I(a)\}$ forms a 2-(7, 3, 1) design on $I(a)$ and $T^{I(a)} \leq P G L(3,2)$.

Proof. Since a normalizes $G_{89 i j}$ and $G_{89 i j}$ is of even order, $G_{89 i j}$ has an involution x commuting with a. Thus $x \in T_{i j}$. Since $|I(a)|=7, x$ fixes one more point in $I(a)$, and so $|\Delta(i, j)| \geq 3$.

If $|\Delta(i, j)| \geq 4$, then by (1) $\Delta(1,2,3,4)=\Delta(8,9, i, j)$, which is a contradiction. Thus $|\Delta(i, j)|=3$.

Suppose that $\Delta(i, j) \ni i^{\prime}, j^{\prime}$. Then $\Delta(8,9, i, j) \ni 8,9, i^{\prime}, j^{\prime}$, and so by (1) $\Delta(8,9, i, j)=\Delta\left(8,9, i^{\prime}, j^{\prime}\right)$. Thus $\Delta(i, j)=\Delta\left(i^{\prime}, j^{\prime}\right)$.

Hence $\{\Delta(i, j) \mid i, j \in I(a)\}$ forms a 2-(7,3,1) design on $I(a)$. Since $T^{I(a)}$ is an automorphism group of this design, $T^{I(a)} \leq P G L(3,2)$.
(3) $|\Omega|=23$ and $G \leq M_{23}$.

Proof. Let $\left\{i_{1}, i_{2}\right\}$ be a subset of $I(a)$ consisting of two points. Since a normalizes $G_{89 i_{1} i_{2}}$ and $G_{89 i_{1} i_{2}}$ is of even order, a centralizes an involution x in $G_{89 i_{1} i_{2}}$, and so $x \in C_{G}(a)_{89} . \quad$ By (2) $x^{I(a)} \in C_{G}(a)_{89}^{I(a)} \leq P G L(3,2)$. Thus $I\left(x^{I(a)}\right)$ $=\left\{i_{1}, i_{2}, i_{3}\right\}$ and x fixes two points of a 2 -cycle $(\neq(89))$ of a. Thus a subset $\left\{i_{1}, i_{2}\right\}$ of $I(a)$ determines uniquely a 2 -cycle $(k l)(\neq(89))$ of a.

If a subset $\left\{j_{1}, j_{2}\right\}$ of $I(a)$ determines the same 2 -cycle $(k l)$ of a, then an involution x^{\prime} in $G_{89 k l}$ is contained in $G_{89 j_{1} j_{2}}$. Thus $\left\{j_{1}, j_{2}\right\} \subseteq \Delta(8,9, k, l) \cap$ $I(a)=\left\{i_{1}, i_{2}, i_{3}\right\}$. Hence just three subsets $\left\{i_{\mu}, i_{\nu}\right\}$ of $I(a)$ determines the same 2-cycle ($k l$) of a.

Now suppose that a 2 -cycle $(k l)(\neq(89))$ of a is given. Then since a normalizes $G_{89 k l}$ and $G_{89 k l}$ is of even order, a centralizes an involution x in $G_{89 k l}$, and so $x^{I(a)} \in C_{G}(a)_{89}^{I(a)} \leq P G L(3,2)$. Thus $I\left(x^{I(a)}\right)=\left\{i_{1}, i_{2}, i_{3}\right\} \subseteq I(a)$. Since $x \in G_{89 i_{1} i_{2}},\left\{i_{1}, i_{2}\right\}$ determines $(k l)$ in the above sence.

Thus we have that the number of 2-cycles of a other than (89) is equal to $\frac{1}{3}{ }_{7} C_{2}=7$. Hence $|\Omega|=2+7+2 \cdot 7=23$. Thus $\{\Delta(i, j, k, l) \mid i, j, k, l \in \Omega\}$ forms a 4-(23, 7, 1) design. Hence $G \leq M_{23}$.
(4) $G=M_{23}$ and we complete the proof.

Proof. Let P be a Sylow 2-subgroup of $G_{i j k l}$ for any four points i, j, k and l in Ω. By the assumption $P \neq 1,|I(P)| \geq 4$ and $P \leq M_{23}$ by (3). Thus $|I(P)|=7$ and $N_{G}(P)^{I(P)} \leq A_{7}$. Since P is nonidentity semiregular by the assumption, $G=M_{23}$ by Theorem 1 in [8].

Thus we complete the proof of Lemma.

4. Proof of Corollary

Let D be a $4-(v, 7,1)$ design. Let $\{1,2,3,4, i, j, k\}$ be a block containing $\{1,2,3,4\}$. Then G_{1234} fixes $\{i, j, k\}$ as a set. If G_{1234} has an orbit of length one in $\{i, j, k\}$, then $G=S_{5}, A_{6}$ or M_{11} by a theorem of H. Nagao [4]. Hence D is a 4- $(11,7,1)$ design. Then the number of blocks is

$$
\frac{\binom{11}{4}}{\binom{7}{4}}=\frac{11 \cdot 10 \cdot 9 \cdot 8}{7 \cdot 6 \cdot 5 \cdot 4}=\frac{66}{7},
$$

which is a contradiction. If $\{i, j, k\}$ is a G_{1234}-orbit, then $G=S_{7}, A_{7}$ or M_{23} by Theorem. Hence D is a $4-(7,7,1)$ design or a $4-(23,7,1)$ design. Thus we complete the proof of Corollary.

Acknowledgement. The author thanks Professor H. Nagao and Professor 'T. Oyama for their helpful advice and kinc encouragements.

References

[1] W. Burnside: Theory of groups of finite order, Second edition, Cambridge Univ. Press, 1911.
[2] M. Hall: The Theory of groups, Macmillan, New York, 1959.
[3] D. Livingstone and A. Wagner: Transitivity of finite permutation groups on unordered sets, Math. Z. 90 (1965), 393-403.
[4] H. Nagao: On multiply transitive groups IV, Osaka J. Math. 2 (1965), 327-341.
[5] H. Nagao: On multiply transitive groups V, J. Algebra 9 (1968), 240-248.
[6] T. Oyama: On multiply transitive groups VIII, Osaka J. Math. 6 (1969), 315319.
[7] T. Oyama: On multiply transitive groups IX, Osaka J. Math. 7 (1970), 41-56.
[8] T. Oyama: On multiply transitive groups X, Osaka J. Math. 8 (1971), 99-130.
[9] T. Oyama: On multiply transitive groups XI, Osaka J. Math. 10 (1973), 373-439.
[10] T. Oyama: On multiply transitive groups XII, Osaka J. Math. 11 (1974), 595636.
[11] T. Oyama: On multiply transitive groups XIII, Osaka J. Math. 13 (1976), 367383.
[12] T. Oyama: On multiply transitive groups XIV, Osaka J. Math. 15 (1978), 351358.
[13] C.C. Sims: Computational methods in the study of permutation groups, (in Computational Problems in Abstract Algebra), Pergamon Press, London, 1970, 169183.
[14] H. Wielandt: Finite permutation groups, Academic Press, New York, 1964.
[15] E. Witt: Die 5-fach transitiven Gruppen von Mathieu, Abh. Math. Sem. Univ. Hamburg 12 (1937), 256-264.

[^0]
[^0]: Department of Applied Mathematics Faculty of Science Fukuoka University
 Nanakuma 8-19-1, Jyonan-ku Fukuoka 814-01
 Japan

