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Let M be an R-module and ./ a subfamily of the family .L(M) of all sub-
modules of M. M is said to have the extending property of modules for ./
provided that, for any 4 in 4, there exists a direct summand 4* of M which
contains 4 as an essential submodule. For several natural subfamilies (e.g.,
the family of all simple submodules and that of all uniform submodules), Hara-
da [4], [6] and Harada and Oshiro [8] have recently studied this property. In
the module theory, one type of this property has also appeared Utumi’s
series [17]~[18]. He has showed that a von Neumann regular ring R is upper
continuous if and only if R has the extending property of modules for the
family of all right ideals of R. The reader is referred to [2] for the work of
Utumi and other related results.

The notion of continuous was carried over to modules by Jeremy [10],
[11]. She says that an R-module M is continuous (resp. quasi-continuous) if
the conditions (1) and (2) (resp. (1) and (3)) below are satisfied:

(1) M has the extending property of modules for _L(M).

(2) For any direct summand N of M and any monomorphism f from N
to M, f(N) is a direct summand of M.

(3) If N, and N, are direct summands of M with N,NN,=0, then N,
DN, is also a direct summand of M.

In section 1 of this paper, we introduce (A4-continuous modules and -
quasi-continuous modules as concepts dual to f-semiperfect modules and
A-quasi-semiperfect modules mentioned in [16], respectively. In Theorems
1.7 and 1.8 we give some characterizations of those modules. In section 2,
we study continuous and quasi-continuous modules with indecomposable de-
compositions. In section 3, we study continuous and quasi-continuous mod-
ules and modules with the extending property of direct sums. It is shown
that continuous modules over a Dedekind domain are just quasi-injective.

0. Preliminaries

Throughout this paper R is a ring with identity and all R-modules are
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unitary right R-modules. For a given R-module M, we denote its injective
hull by E(M) and the family of all submodules of M by A(M). We use the
symbol NC,M to mean that N is essential in M. An R-module is said to
have the condition (M—I) if every monomorphism of the module into itself
is an isomorphism ([18]). Let N be a submodule of an R-module M. N is
said to be a closed submodule of M if N has no proper essential extension in
M.

Let 7 be a cardinal number. An R-module M is said to be T-dimensional
if it satisfies the following conditions: i) There exists an independent family
of 7 non-zero submodules of M. ii) For any independent family of ¢ non-
zero submodules of M, we have y<7. Of course, such 7 is uniquely determ-
ined just as the finite dimension.

For an R-module M and a cardinal number 7, A(7-dim(L(M))) denotes
the family {4 L(M)| dimension of A<t} and A(r-gen(-L(M))) denotes
the family of all 4= _[(M) which contains a submodule generated by = ele-
ments as an essential submodule.

Let M be an R-module and A a subfamily of L(M). M is said to have
the extending property of modules for .1 if, for any 4 in A, there exists a di-
rect summand A4* of M with A<, 4*. In particular, M is said to have the
extending property of simple (resp. uniform) modules if it has the extending
property of modules for the family of all simple (resp. uniform) submodules
of M. Further M is said to have the extending property of direct sums for
A provided that it satisfies the following condition:

(*) For any independent submodules {M,}, with M, 4, there exists a
decomposition Mzg PM¥PM* such that M, M¥* for all a1,

If (*) holds whenever the index set [ is finite, M is said to have the extending
property of finite direct sums for (4. If M has the extending property of di-
rect sums for the family of all uniform submodules of M, we simply say that
M has the extending property cf direct sums of uniform modules.

Let {M,},; be a set of R-modules. {M,},; is said to be locally semi-7-
nilpotent ([6]) if it satisfies the following condition: Let {My} -1 be a counta-
ble subset of {M,}, with a,*+a, if n==n’. Then, for any non-isomorphisms
{fa,: Ma,—>Ma,,, [n>1} and x in M, there exists an integer m depending on
x such that fo fa, - fa (¥)=0.

Let {A4.}; be an independent family of submodules of an R-module M.
; A, is said to be a locally direct summand of M if ; Apg is a direct summand

of M for any finite subset F of I ([3], [9]).

1. A-continuous modules and _4-quasi-continuous modules

Let M be an R-module, and A a subfamily of _L(M). We assume that
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A satisfies the following conditions:

(¢) For A=A and Ne L(M), A=N implies N .

(B) For A= and Ne_L(M), A< N implies N .
For examples, L(M) itself, the family of all uniform submodules of M, more
generally A(r-gen(L(M))) and A(7-dim(L(M))) are such families.

For i, we consider the following conditions:

(C)) M has the extending property of modules for 1.

(C,) For any A= A such that A{PM, any sequence 0 -A—M splits.

(Cy) For A=A and N e _L(M), if they are direct summands of M with
ANN=0 then A@PN is also a direct summand of M.

DreriNiTION. We say that M is A-continuous (resp. A-quasi-continuous)
if the conditions (C,) and (C,) (resp. (C,) and (C5)) are satisfied.

We simply say that M is continuous (resp. quasi-continuous) if it is L(M)-
continuous (resp. -L(M)-quasi-continuous) ([11]).

A-continuous modules and J-quasi-continuous modules are investigated
in connection with the following conditions:

(C,) For any Ae 4, Ne_L(M) and any monomorphism f: A—>M|N,
there exists a homomorphism 4: M/N— M such that the diagram

0>Ad> M

L

is commutative, where 7 is the inclusion map.

(Cs) For any A=A and Ne (M) such that N(@M and ANN=0,
every homomorphism of 4 to N is extended to a homomorphism of M to N.

(C¢) For any A=A, there exists a direct summand N of M such that
ABPNC M.

DeriniTION.  We say that M is (A4-quasi-injective provided that M satis-
fies the condition (C,).

Note. By virtue of Miyashita [15], we know that _L(M)-quasi-injectivity
is nothing but usual quasi-injectivity.

Proposition 1.1. The condition (C,) is equivalent to the following condition:

(C)) Let A=c A, Ne L(M) and j a monomorphism from A to M. Then,
Jor any monomorphism f: A—M|N, there exists a homomorphism h: M|N—>M
such that the diagram

04> M

%N*
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s commutative.

Proof. (C{)=(C,) is clear. Since ./ satisfies (a) it is also easy to see
that (C,)=(CJ).

Theorem 1.2. If M is A-quasi-injective, then it is A-continuous.

Proof. Let A= and assume that 4 is a direct summand of M; write
M=A@A’'. By = and i we denote the projection: M=APA'—A and the
injection: A4—M, respectively. Now, let f: A—M be a monomorphism and
put N=f(4). Consider the diagram

0>Ad->M
Vf -7
ot

By the assumption there exists h: M—M such that Af=i. Then =zhf=1,;
whence N(@®M. Thus the condition (C,) holds.

To show that (C,) holds, let A= . We can assume that 4 is a closed
submodule in M, because i satisfies the condition (B). We take E(A) in
E(M): E(M)=E(A)®DT. Let = be the projection: E(M)=E(A)®T— E(A).
We claim z(M)cM. Put N={xeM|r(x)eM} (cf. [12, Theorem 1.1]).
Since 4 is a closed submodule of M, we see that

N =Ap(TNM)
= (E(A)NA)D(TNM).
Put K=T N M and consider the diagram

0—-4 —z—> M
Vf
(AE?K)/K

M|K

where 7 is the identity map and f the canonical isomorphism. By the (A-quasi-
injectivity of M we get h: M/K — M such that Af=i. Let 5, be the canonical
map: M—M|/K and put ¢ =hn,. Then $p=Endz(M). Consider the set
U= {¢p(m)—n(m)|meM}. If U0, then there exists meM such that 0
p(m)—n(m)yeM. Then =n(m)eM; whence meN=APK. Set m=a-tk,
where a4, kK. Then ¢(m)=¢(a+k)=hyc(a+k)=h(a)=a, while z(m)
=7(a+k)=a. As a result, ¢(m)—n(m)=0, a contradiction. Thus we have
¢=n|M and hence (M)S M. This shows that M=APK.

Theorem 1.3. The condition (C,) implies the condition (C;). Therefore,
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if M is A-continuous, then it is J-quasi-continuous.

Proof. Let A and N be direct summands of M with A=/ and ANN
=0. Put M=N@X and denote the projection: M=NPX—X by ». Since
NNA=0, we see A=n(A4). So, z(A)XPX by the assumption. If we put
X=n(A)BY, we have NOA=NDr(A)DM.

Proposition 1.4. If M satisfies the condition (C,) for A, then every direct
summand M, satisfies the condition (C,) for {A€ A|ASM,}.

Proof. Let M=M,®M, and let A, be a submodule of M,. To show the
assertion, we can assume by the condition (B) that A4, is a closed submodule
of M,. So, we want to see that 4, is a direct summand of M,. At any rate,
there exists a direct summand A¥ of M with A,C A¥. Let n;: M=M,®
M,—M; be the projection for i=1, 2. Then A,Cn(A4%). Moreover, we
can see from 4,C,4¥ and A¥ N M,=0 that 4,C ,7,(A4¥); whence A,=mn,(4¥).
This implies that A¥=A4,Pr,(4¥) and hence z,(4¥)=0 and A¥==(4¥)=4.
Thus 4 is a direct summand of M,.

Proposition 1.5. Under the condition (C,), the condition (C;) is equivalent
to (Cs).

Proof. Assume that (C,) holds. Let A, and N,X@®M such that
A,NN,=0, and let f: 4,— N, a homomorphism. Put B,= {x+f(x)|xA4,}.
Then B, since A;=B,. Hence there exists a direct summand B¥ @M
such that B, ,B¥. Since N,NB*=0, we see from (C;) that M=N,PB*PY
for some submodule Y. Letz: M=N,®B*®Y— N, be the projection. Then
Then —= is a required extension of f.

Conversely, assume that (Cs) holds. Let 4 and N be direct summands
of M such that A€ ] and ANN=0. Let X be a submodule of M with M
=N@®X, and let 7: M=N@®X—X be the projection. Then A=n(A4) since
ANN=0. Hence »(4) is in A and therefore there exists a direct summand
Y{@X such that (4)<,Y by Proposition 1.4. Then

M=NOYPZ X=YPZ

for some Z. Let 7, and =, be the projections: M=N@PYPZ—N and M=
NOYPZ—Y, respectively. Clearly, A= {=,(a)+=,(a)|lac A} and the map-
ping f: my(A)— N given by m,(a)— =,(a) is well defined. Applying the condi-
tion C;), we can extend f to a homomorphism f: Y—=(4). Since 7,(4)<.,Y,
we see that AC.{y+f(y)|yEY}; whence A={y+f(y)|y€Y} and hence
n(A)=Y. Consequently we see that NOA=NP Y<IDM.

Proposition 1.6. If the condition (C;) and (Cs) hold then the condition
(C,) holds.
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Proof. Let A= 4. By the condition (C;) there exists a direct summand
NLDM such that APGN,c, M. Put M=N,PN, and denote the projection
M=N,®N,—>N; by n;, Then A=n=\(A4) and z,(A4A)<,N,. The mapping f:
m)(A)— 7,(A4) given by 7 (4)— m,(a) is well defined, and therefore it is extended
to a mapping f: N;— N, by the condition (C;). Putting A*= {x+f(x)|xN},
we see A< ,A*. Moreover A¥@N,=N,DN, and hence 4*{PM.

From Propositions 1.5, 1.6 and Theorem 1.3, we have the following theo-
rems.

Theorem 1.7. The following conditions are equivalent:
1) M is JA-quasi-continuous.

2) M satisfies the conditions (C,) and (C;) for .

3) M satisfies the conditions (Cs) and (Cg) for .

Theorem 1.8. M is A-continuous if and only if it satisfies the conditions
(C,), (Cs) and (C) for A.

From Theorems 1.2 and 1.3 and Proposition 1.5 we have

Theorem 1.9 ([11]). The following conditions are equivalent:
1) M is quasi-injective.

2) MM is continuous.

3) MM is quasi-continuous.

2. Continuous modules with indecomposable decompositions

In this section, we assume that M is a direct sum of uniform modules
{Ma} I3

M= ; DM, .
For a subset ] of I, we put
M(J) = 2 ®M,

and denote its cardinal by | J|.
The following lemma is easily shown by Zorn’s lemma.

Lemma 2.1. M satisfies the condition (Cg) for L(M). More precisely,
for any submodule A of M and M(K) with AN M(K)=0, there exists a subset
J of I with ] DK such that AN M(J)=0 and ADM(J)< .M.

Let = be a cardinal number. We shall consider the following conditions
(C¥) and (C¥) instead of (C,) and (C;) for A(r-dim(_L(M))), respectively:

(CH): Let A A(r-dim(-L(M))) and J<I. If A<PM and ANM(J)=0
then APM(J)<DM, equivalently (cf. Lemma 2.1), APM(J)< .M implies that
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M=A®M()).
(C¥): For any J with | J|<7 and any A< M(J), every homomorphism
from A4 to M(I—]) is extended to one from M(I) to M(I—]).

ReMarks. 1) Let N be a direct summand of M with M=N@ g AM,
for some LcI. Then N is written as a direct sum 2_,; @BN, of uniform sub-
modules corresponding to IE_JGBM s. Clearly M satisfies the condition (C¥) for
A(r-dim(L(M))) with respect to M=; @M, if and only if M satisfies the
condition (C¥) for JA(7-dim(L(M))) with respect to M=2L EBN,,GBI_ZLEBMB.

2) By the same proof as in Proposition 1.5 we can show that under the
condition (C,) for A(r-dim(.L(M))), (C¥) is equivalent to (C¥) for A(r-dim
(-L(M))), and furthermore we can see from the remark 1) that the conditions
(C) and (C¥) for A(r-dim(-L(M))) implies the condition (C,;) for A(r-dim
(L(M))).

Now, by Lemma 2.1, the remarks above and Proposition 1.6 we get the
following theorems:

Theorem A. The following conditions are equivalent:

1) M is A(r-dim(L(M)))-quasi-continuous.

2) M satisfies the conditions (C,) and (C¥) for A(v-dim(-L(M))).
3) M satisfies the condition (C¥) for A(v-dim(-L(M))).

Theorem B. M is A(r-dim(-L(M)))-continuous if and only if M satisfies
the conditions (C,) and (C¥) for A(r-dim(L(M))).

Theorem 2.2. We assume that each M, is completely indecomposable.
Then the following conditions are equivalent for a finite cardinal n.

1) M is A(n-dim(L(M)))-quasi-continuous.

2) M satisfies the condition (C,) for A(n-dim(.L(M))), and for any pair a,
BE1 every monomorphism from M, to My is an isomorphism.

3) M has the extending property of finite direct sum for A(n-dim(L(M))).

Proof. The implication 1)=>3) is clear.

3)=2). Let a, B€I with a=+g, and f a monomorphism from M, to M,.
Putting M*= {x+f(x)|x= Mo}, we see M¥PMg=M,PM,; whence MID
M. On the other hand M} +M,=M} PM,= M, PDMg. Therefore we have
M, DM*¥=M,PDM; by the assumption. Thus f(M,)=M,.

2)=1). By [8, Theorem 12], M satisfies the condition (Cs) for A(1-dim
(-L(M))); whence M is A(1-dim(L(M)))-quasi-continuous. Let A€ A(n-dim
(-L(M))) and NeL(M) such that APM, N{PM and ANN=0. Here,
from the Azumaya’s theorem ([1]), 4 is expressed as a finite direct sum of uni-
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form modules. Hence we can see AGNPM since M is JA(1-dim(-L(M)))-
quasi-continuous.

Theorem 2.3. The following conditions are equivalent for a finite cardinal

1) M is A(n-dim(-L(M)))-continuous.
2) i) M satisfies the condition (C,) for A(n-dim(L(M))),
ii) each M, satisfies the condition (M—1),
iii) for any pair a, B in I, every monomorphism from M, to Mg is an
isomorphism.

Proof. The implication 1)=>2) is clear.

2)=1). By ii) each M, is completely indecomposable. To show 1) we
may show that M satisfies the condition (C,) for A(n-dim(-L(M))). Let A€
A(n-dim(L(M))) and AC@M. Then by the Azumaya’s theorem ([1]), 4 is
expressed as a direct sum of uniform modules, each of which is isomorphic to
some member in {M,},;. Hence, for a monomorphism f from 4 to M, f(M)
is indeed a direct summand of M by [8, Theorems 13 and 16].

Theorem 2.4. Assume that each M, is completely indecomposable and let
7 be a cardinal number. Then the following conditions are equivalent:

1) M is A(n-dim(L(M)))-quasi-continuous for every finite cardinal n, and
{M,}, is a locally semi-T-nilpotent set.

2) M has the extending property of direct sums for A(t-dim(L(M))).

Proof. 1)=2). Let {4g},; be an independent subfamily of A(7-dim(-L
(M))). Since M satisfies the condition (C,) for A(1-dim(L(M))), there exists
a direct summand AX @M satisfying 4,<,4% for each a¢cl. Then, the
condition (C;) for A(n-dim(L(M))) shows that ; DAY DM for any finite

subset K of J. Since {M,}, is locally semi-T-nilpotent, it follows that >IPAF
J

{&®M by [9].

2)=1). By Theorem 2.2, M is JA(n-dim(-L(M)))-quasi-continuous for all
finite cardinal 7, and every monomorphism from M, to M, is an isomorphism
for any pair e, B in I. To show that {M,}, is locally semi-T-nilpotent, let
{a;1i=1, 2, -~} I with a; = «; if =5, and let f;: My,—M,,, be a non-mono-
morphism, =1, 2, ---. We put M} = {x+f(x)|x€M;}. Then MF{BM for
each 7 and 2_}) D Mo, == i} @ M. Hence using 2) we see i SMz{PM by
again [9]. As a result i @Ma‘.=2 @MZF. Therefore it follows that for any

% in M, there exists n such that f, f,_, -+ fi(x)=0.

Theorem 2.5. The foZlowing conditions are equivalent for a given cardinal
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T>X,!
1) M is A(r-dim(L(M)))-continuous.
2) M is A(7-dim(-L(M)))-quasi-continuous with the conditions:
i) Each M, satisfies the condition (M—1I),
i) {My}; is locally semi-T-nilpotent.
3) M has the extending property of direct sum for A(v-dim(-L(M))) and
each M, satisfies the condition (M—1I).

Proof. Every condition of 1)~3) implies that each M, is completely
indecomposable; so the implication 2)«3) follows from Theorem 2.4.

1)=2). We may only show that {M,}; is locally semi-T-nilpotent. In
order to prove this, as in the proof of Theorem 2.4, consider {a;|i=1, 2, ---}
€I and non-monomorphisms {f;: Ma—~Ma, [|i=1, 2, ---}, and put MF=

{x+fi(x) | x€Ma}, i=1, 2, ---. Then we see i @Migei @ M.,; whence
the condition (C,) for A(7-dim(.L(M))) shows 2} PBMECPM. (Note 7>X,). As
a result i DBMe,= 2 @Mz and hence we see that for any x in M,,‘1 there

exists # satisfying f, f,-; -+ fi(x)=0.

2)=1). We want to show that M satisfies the condition (C,) for A(7-
dim(-L(M))). More strictly we can show that M satisfies the condition (C,)
for L(M). Let A be a direct summand of M. Since {M,}, is locally semi-
T-nilpotent, A4 is expressed as a direct sum of uniform modules {4g}; each
of which is isomorphic to some M, (cf. [7], [13]). Therefore for any mono-
morphism f from A4 to M, f(A) is a direct summand of M by [8, Theorems
13, 16 and Corollary 14].

3. Quasi-continuous modules and the extending property of direct
sum

Quasi-continuous modules are characterized as follows:

Proposition 3.1 (cf. [11]). For a given R-module M, the following con-
ditions are equivalent:

1) M is quasi-continuous.

2) Every decomposition E(M)=E\® --- @E, implies M=(E,NM)P --- B
(E,NM).

3) Every decomposition E(M)= 2 @DE, implies M= 2 @D (E.NM).

Proof. 1)=2). Let E(M)=E® --- E,. Then M,2(E,NM)D -+ P
(E,NM) and each E;N M is a closed submodule of M; whence we see from 1)
that M=(E,N M)® --- ® (E,NM).

2)=1) Let A be a submodule of M. We take its injective hull E(4) in
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E(M). Then Ac/(E(4)NM) and, by 2), E(A)NM{PM. Hence M satis-
fies the condition (C,) for .L(M). Similarly the condition (C;) for L(M) is
shown.

3)=>2) is clear.
2)=3). Let E(M)=>)®E,, and x&M. Then x lies in Ey D -+ DE,,

for some ay, -+, @, €1. By 2) we see M N (En D -+ DEq,)=(Ee, NM)D - D
(Ea,N M); whence xE(E, N M)D -+ B (Ea, N M) S >3 D (E«N M) and hence
I

M= 3@ (E.NM).

Theorem 3.2. Let R be a righi Noetherian ring. Then the following
conditions are equivalent for a given R-module M:

1) M is quasi-continuous.

2) M has the extending property of direct sum for L(M).

3) M has the extending property of direct sum of uniform modules.

Proof. Since R is Noetherian, we know from [14] that every direct sum
of injective R-modules is also injective and every injective R-module is ex-
pressed as a direct sum of indecomposable modules. Therefore the proof
follows from the above proposition.

Combining Theorem 3.2 to [8, Theorem 31], we have

Corollary 3.3. Let R be a Dedekind domain. Then an R-module M is
quasi-continuous if and omly if either i) M is quasi-injective or ii) M—=K®E
where E is torsion and injective and 0= K S O, the quotient field of R.

Corollary 3.4. Let R be a Dedekind domain. Then an R-module M is
continuous if and only if it is quasi-injective.

Proof. Quasi-injectives are always continuous modules by Theorem 1.1.
Now assume that M is continuous. If M is not quasi-injective then M is writ-
ten as M=K@E where E is injective and 0K SO, the quotient field of R.
However, inasmuch as M is continuous, K satisfies (M—I); whence K co-
incides with Q, a contradiction. Thus M must be quasi-injective.

Finally, we show the following theorem.

Theorem 3.5. For a given R-module M the following conditions are equiva-
lent:
1) M is quasi-continuous and every internal direct sum of submodules of M
which is a locally direct summand of M is a direct summand of M
2) M has the extending property of direct sum for _L(M).
3) M is written as M= 33 @M, with the following conditions:
I
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i) Each M, is uniform.

il) {My}, is locally semi-T-nilpotent.

iti) For any partition I=I, U I, and any submodule A of >3 P My, every
I

homomorphism from A to ;‘,EBM.z is extended to one from ;}GBM& to ;}@Mﬂ.
2 1 2
Proof. It is easy to see 1)=2).

2)=>3). Take an independent family of non-zero cyclic submodules {x,R} x
of M with D1Px,R<,M. Then by the assumption we get a decomposition
K

M =;GBN,2 such that x,R< N, for each a. Let a=K and suppose that N,
is not finite dimensional. Then there exists a countable family {N,,|i=1, 2,
.-} such that iEBN w;SeNo. Agan by the assumption there exists a decom-
position M=(2%N£)€B&_Z(M)EBN‘; with N,, S ,Ng for each 7. Then

%R No= E DN .

But this is impossible. Thus each N, must be finite dimensional, and hence
by the assumption, M is written as a direct sum of uniform modules; say

M=‘IQ@M¢.

Now, as in the proof of Theorem 2.2, we can show that, for any pair «,
B in I, every monomorphism from M, to M, is an isomorphism. Using this
fact, we can also show that {M,}, is locally semi-T-nilpotent as in the proof
of Theorem 2.4.
Next, let /=1I,UI, be a partition of I, A an essential submodule of M(Z,)
=IZ @M, and f a homomorphism from 4 to M(Iz)=12 @M, By the as-
1 2

sumption we get M=A*PM(1,) such that {x+f(x)|xsAd} =, 4*. Let z be
the projection: M=A*®M(I,)— M(I,). Then we can see —z|A=f.
3)=2). Let M=2 @M, be a decomposition with the conditions i)~iii).
I
We first show that for any submodule 4 of M there exists a direct summand

A*{BM such that 4<,A* and A* is written as a direct sum of uniform mod-
ules. By Lemma 2.1 there exists K <7 such that

M2 A (S OMy) .
Put M(K)=>1@PM; and M(I—K)ZIEEBM,,, and denote the projections:
K -K

M—>M(I—K) and M—M(K) by =, and =,, respectively with respect to M=
M(K)®M(I—K). Then the mapping f: 7,(4)— M(K) given by =(a)—n,(a)
is well defined. By iii) f is extended to a homomorphism f': M(/—K)— M(K).
Put
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A* = {xtf(x)| xeMI—K)} .

Then we see AC,A¥*{PM and A=M(I—K) as claimed.

From this fact, our proof follows if we show the following: Let {4},
be an independent family of indecomposable (uniform) direct summands of M
with M,D ;@Aa. Then M=2L,"GBA,,.

We claim that ;@A, is a locally direct summand of M. Let {a, -,
a,y Oy} ©L and assume éGBA.,,.(GaM. Then by Lemma 2.1 we can take
a subset J <1 such that
M = M(I—])®M(])
eQAal@ o A@a"H@M(]) .

Then the dimension of M(/—]) is equal to n+41; so M(I—])=M,® - ©

M,,,, for some {a,, **+, @,.;} S1. Here using the condition iii) we get a homo-

morphism g from M(I—J) to M(J) such that AC,T= {x+g(x)|xcM(I—])}
{HM. Then

M= T®M(]).

Since Aﬂlea - DA LDT, we have T=A31€9 - DAg DX for some indecom-
posable module X. Since (4p, P -+ DAg,) N M(J)=0 there exists ;€ {ay, -+,
Oy+1} such that

M,QAgx@ e @Ap,,@ng@M(])

(cf. Lemma 2.1). We can assume o;=a,4+, without loss of generality. Since
Ap D -+ BAg KBM, we see from the condition iii) that

M= A4, - B4p,OM,,, OM(J).

Since Ag,, N(ApD -+ ©As, BM(J))=0 and A4, , DM, we see again by
the condition iii) that

M=A4,@ --- DAs,DA4s,,, DM(J]) -
Consequently >1p 4, is a locally direct summand of M. On the contrary to
the assertion, v:e assume M2>1PA, Then there must exist a; 1 such that
M, < ;{]@Aa. Pick quMc:with x,,eE}K]EBA,,. Since M,Q%@A,, there
exists rER such that 0Fx,re F21®Ap for some finite subset F;C K. By the

above,

M= Iﬁl SA4:OM(J) - (%)
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for some J; of I. 'We express ¥y, in (*) as

Xy = Y1 HXpp Xt o Xy,
where yleFZIGBA,,, EM,,, -, xl,,leM,,ml (Qtizy **+5 a1y € J1). Then (0: xy)
S(0: xy;), j=2, +-+, m; since O#xllre%]EBAﬂ. Because of x;, e ;EBAS, one
of {xy, - %, } does not lie in ;@Aﬁ; say x,. Then M, #M,, and x,E
M,, and x,,& ;} DA,

Since M,,Q%}@Aa, there exists 7,&R such that O#xlzrzeEEBAﬁ for
some F,DF,. Since %}@Aﬁ,(GBM and F,DF, we see from (*) ané the con-
dition iii) that

M= (22] D©4s)DOM(J2) -+ (++)
for some J,C J;. We express x;, in (**) as
Xy = Yoty t o0+,
where yze%]EBAp, %y EMy,,, 1=3, -+, m,. Then (0: x,,) S(0: x,)), =3, -+,
n,, and some x,j, say %,; does not lie in LZ@A,,. Then x,,6E ;@A‘”’ 0: xy)
S(0: %) (0: x5) and My, =+=M,, for i=1,2. Continuing this fashion we
get a countable subset {a;|i=1,2, -} <1 and {x;;s,EMy|i=1,2, ---} such
that a;#a; if i< j and (0: x,,) & (0: x3,) £ (0: x,5) & +--. Hence using the condi-

tion iii), we get a homomorphism f;: M,,—~>M,,,  such that fi(x; ;1) —> %1142
for each 7, which contradicts the condition ii). Thus we have M=3>1PA4,.
K

We end this paper with the following remarks:

1) Let M be a non-singular R-module, and consider submodules A4,
B and C with Ac,C<PM and A<,B. Then B is contained in C. For,
set M=C®C’ and n: M—C and =n': M—C’ denotes the projections with
respect to M=C@C’. Since AC,B we see BNC'=0; so the mapping f:
n(B)— ='(B) given by 7(b)— n'(b) is well defined. Since A Cker(f), it follows
ker(f)S x(B). As a result, n(B)/ker(f) is a singular module, while f(z(B))=
7'(B) is non-singular. 'Therefore »'(B)=0 and hence B==(B)<C.

2) A von Neumann regular ring R is right X,-continuous in the sense
of Halperin if and only if it has the extending property of module for the family
of all X, generated right ideals of R (see [2]). Combining this to the remark
1) we see that a von Neumann regular ring R is right X,-continuous if and
only if it is A(X,-gen(-L(M)))-continuous.

3) We also see from the remark 1) that a non-singular module with es-
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sential socle has the extending property of simple module if and only if it has
the extending property of uniform module.

(1]

[2]
B3]

[4]
[5]
(6]
[7]
(8]
[91
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]

[18]
[19]

4) 'The dual result of Theorem 3.5 is also shown (see, [16]).
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