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Orthogonal groups are considered as automorphism groups of some sym-
metric sets of vectors. From this point of view, we can prove the well-known
theorem of simplicity on orthogonal groups. (The cases for the other classical
groups are given in [5].) The proof consists of two steps. The first step which
will be given in 1 is to show that a transitive symmetric set of non-isotropic
lines (of a certain type) is simple. After a short review on simple symmetric set
is given, we will show the above fact. A point here is that it is so when dim V'
is 3. The second step is to show that the group of displacements of the simple
symmetric set is a simple group, which will be given in 2. A useful supplement
to the main theorem on simple symmetric sets will be found, and using it we can
show the above fact when dim V >5.

1. A simple symmetric set of non-isotropic lines

Let V be a vector space over a field of characteristic #2 with a non-singular
orthogonal metric. Since the following results hold in a stronger sense for a
finite field as was shown in [4], we assume in this note that the base field & is in-
finite. Suppose that dim V' >3 and that V' contains a hyperbolic plane. Then,
there exists a vector v such that v is orthogonal to a hyperbolic plane and (v, v)
=&=0. Throughout this note, we fix the element &. Now we consider 4=
{#|(u, u)=¢&}, where #=<{up=a subspace generated by u. On A4, we define a
binary operation: #Zo0=w with w=u"", where 7, is the symmetry with respect
to the hyperplane orthogonal to v. A is then a symmetric set, i.e., satisfies
#oll=1m, (AoD)o0=n and (HoD)oW= (AW )o(VoW).

We summarize some definitions and properties on simple symmetric sets.
Let S=1{a, b, ¢, ---} be a symmetricset. The right multiplication by an element
a is an automorphism of S, which we denote by o,. Let G(S)=<(o,|acS>
and H(S)=<o,0;|a, 6€S>. The latter is called the group of displacements
of S. Let T be another symmetric set. A homomorphism f of S onto 7T is
called proper if it is not one to one and if 7' contains more than one element.
When G(S)=1, we say S is trivial. A non-trivial symmetric set is called simple
if it has no proper homomorphism (to some symmetric set). It is important
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to characterize a simple symmetric set in a different way as follows. Let f be
a homomorphism of S to T. f~(#), the set of all inverse images, for an element
tin T is called a coset of f. Then, S is decomposed into disjoint cosets of f:
S=US; with S;=f"(¢;) with S;NS;=¢ if i=&j. In this case, as is easily seen,
o, induces a permutation on X= {S;}, the set of cosets S;. It is also clear that
o, and ¢, induce the same permutation on X if @ and b belong to a same coset.
Conversely, suppose that S= U S/ is a disjoint union of subsets S/ satisfying
the above two conditions on o,. Then we can define a symmetric structure
on X={S7} in such a way that the restriction mapping of S to X is a homomor-
phism. Thus the concept of homomorphisms is equivalent with that of coset-
decompositions. When a homomorphism f is proper, we say that the corre-
sponding coset-decomposition is proper. The simplicity of a non-trivial sym-
metric set is now characterized by the fact that it has no proper coset-decompo-
sition.

A symmetric set S is called transitive if G(S) (or, equivalently H(S)) is a
transitive permutation group on S. If S is simple, then S is transitive. For,
otherwise, S= U .S; with S;=orbits of elements in S by G(S) would be a proper
coset-decomposition. A symmetric set is called effective if 0,40, whenever
a=b. The following is the main theorem on simple symmetric set obtained in

[2] and [3]. (See also [5].)

Theorem. Suppose that S is a transitive and effective symmetric set. Then,
S is simple if and only if H(S) is a minimal normal subgroup of G(S). The latter
condition is equivalent with that H(S) is either a simple group or a direct product
of simple subgroups N, and N, such that N,=N¢¢ for any element a in S. In the
latter case, N; are regular permutation groups on S.

As the last part of Theorem is not explicitly given in the previous papers, we
explain it here. It is known that IV, are transitive on S. Now suppose that a”
=a for an element @ in S and 7 in N;. Then, v7'¢,7=0,, or 7 and o, are
commutative, and so T=o7'70,, which belongs to NNV, as well as to V,. Thus,
T=1.

We now return to ¥V and 4. Let O(V) be the orthogonal group of V' and
Q=Q(V) its commutator subgroup. Elements of O(V) naturally induce auto-
morphisms of 4. So, there is a natural homomorphism % of O(V) to the group
of automorphisms of A. The kernel of & is Z= {41}, the center of O(V), due
to Lemma 5.5, p. 206 [1]. Thus, PO(V)=O(V)|Z is condisered as a group of
automorphisms of 4. In this respect, we want to show that PQ=H(4). This
is equivalent with Q=h"(H(A4)). Since € is generated by 7,7, with (v, v)=
(w, w)=0, it is clear that H(4)CPQ. When dim V=3, PQ is a simple group
(Theorem 5.20, [1]). So, in this case, H(4)=PQ. To show it in a general
case and also to show the simplicity of 4, we use the following
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Lemma. If (u, u)=(v, v)=E&, then there exists a hyperbolic plane P such
that (u, P)=0 and velu)>+P.

Proof. If <u, v) is singular, it is easy to find the above P. Suppose that
{u, v is non-singular. Then, v=au+v’, where v'€{ud* and (v, v')=*0.
(Naturally we are assuming dim {u, v>=2.) By the assumption on &, {u>™
contains a hyperbolic plane. Since a hyperbolic plane contains an element w
such that (w, w) is any element in the base field, i.e., is universal, we can find
an isometry on <{u>™ by Witt theorem which maps w to »’. We can let P be
the image of the hyperbolic plane under the isometry.

From Lemma, we can conclude that H(4)=PQ, as we can always restrict
our consideration to a 3-dimentional case. We can also conclude that A is
transitive. For, Q acts on A transitively. Here note that {u)>" is universal
and we can insert o, with no effect on u where (a, 4) is any prescribed value.
Now we show that 4 is simple. Assume that 4 is not simple. Then there
exists a proper coset-decomposition 4= UA;. Let @ and b be two distinct
elements in 4,. Let U=<{a>+P, where (4, P)=0 and b= U from Lemma.
Then A(U)={u|lucU, (u, u)=&} is simple by the main theorem. Restrict
A=UA; to the elements in A(U). We can conclude that A(U)C4,. Now
let O be a hyperbolic plane such that (a, Q)=0. Since O(V)=O0(P)Q as we
know, there exists an element in Q which fixes @ and maps P to Q. This implies
that A4, contains every element @ such that welw)+0, (w, w)=E¢. Using
Lemma, we can conclude that 4=4,, which is a contradiction. Thus, 4 is
simple.

2. Simplicity of the group H(A)

Let S={a, b, ---} be an effective simple symmetric set. Suppose that H(S)
is not a simple group. Then, H(S)=N,X N, with simple subgroups N; such
that N,=N7i* for any element @ in S. Moreover, N; are regular permutation
groups on S. Let 7 be an element in IV, and express it as a product of disjoint
cyclic permutations: 7=(--, a, b, ¢, =-:).  (-+*) -~ We show that a”»=¢. Since
N, and N, are commutative, we have 77%=77, or To,70,=0;,7o;7. Therefore,
oy(toyTa)=T0,7=(T0,T0;)0;,.  So, pTlo,p=0,;, where p=7o,ro,=77%. Since
plop=a, and S is effective, we have b°=b, or b""=b. So, b"¥ '=b"=c.
On the other hand, 7% =(--,a%,&,c%,)=--. So, b""¥ '=a%. Therefore,
a’v=c, as required. In the above, (-, a, b, ¢, -++) coincides with a cycle defined
in the theory of symmetric set. Note also that 7 is a product of cycles of the
same length and every element of S must appear in a cycle. This is a supple-
ment to the main theorem on simple symmetric sets. In the above, especially,
v=(a, b) (¢, d)-++ if a”v=a, c"a=c, etc. Since NV, is regular, such an element 7
exists if there exist @ and b such that a®»=a. In this case, we can show that if
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an element o in H fixes a, b and ¢, then o must fix d as well. For, 77=(a, b)
(¢, d7)++- must coincide with 7 as both are elements in a regular permutation group
and move a to b.

Now we return to 4. Assume that dim V' >5 and that H(A4) is not simple.
Thus, H(A)=N,X N, as above. Let u, be an element in V' such that (u;, %)
=¢ and let P be a hyperbolic plane orthogonal to u,. Select u, in P such that
(45, u)=E. Since N, is transitive, there exists an element 7 in NV, such that
aj=u, Then, 7=(#, @) (9, w)--+, where we assume that v&P. Since 0%
=0, we have (v, w)=0. Also we have that (u,, w)=0, because 7 maps %
and 9 to %, and W respectively and (u,, v)=0. Thus, (w, P)=0 as P={u,, v).
Let W=P*. W contains #;, and w and dim W >3. There exists an element
p in Q(W) such that #{=u, and w°+w. For example, let p be a rotation around
%, in some non-singular subspace of dim 3 containing %, and w. Then, p (ex-
tended as an element in Q(V) in a natural way) fixes #;, %, and © but moves w,
which contradicts the above argument. Thus, we have shown that H(4) must
be a simple group if dim V' >5.
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