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Orthogonal groups are considered as automorphism groups of some sym-
metric sets of vectors. From this point of view, we can prove the well-known
theorem of simplicity on orthogonal groups. (The cases for the other classical
groups are given in [5].) The proof consists of two steps. The first step which
will be given in 1 is to show that a transitive symmetric set of non-isotropic
lines (of a certain type) is simple. After a short review on simple symmetric set
is given, we will show the above fact. A point here is that it is so when dim V
is 3. The second step is to show that the group of displacements of the simple
symmetric set is a simple group, which will be given in 2. A useful supplement
to the main theorem on simple symmetric sets will be found, and using it we can
show the above fact when dim V>5.

1. A simple symmetric set of non-isotropic lines

Let V be a vector space over a field of characteristic Φ2 with a non-singular
orthogonal metric. Since the following results hold in a stronger sense for a
finite field as was shown in [4], we assume in this note that the base field k is in-
finite. Suppose that dim F > 3 and that V contains a hyperbolic plane. Then,
there exists a vector v such that v is orthogonal to a hyperbolic plane and (v, v)
=£Φ0. Throughout this note, we fix the element £. Now we consider A=
{ΰ\(u> u)—S}> where ΰ—<#)>—a subspace generated by u. On A, we define a
binary operation: ΰoϋ=w with w=uTv

y where τv is the symmetry with respect
to the hyperplane orthogonal to v. A is then a symmetric set, i.e., satisfies
Uoΰ=U, (Uoϋ)oϋ=ΰ and (Uoϋ)oΐΰ=(ΰ°w)°(ΰ°ffl).

We summarize some definitions and properties on simple symmetric sets.
Let S= {a, by c, •••} be a symmetric set. The right multiplication by an element
a is an automorphism of S, which we denote by σa. Let G(S)=(σa\a^Sy
and H(S)—(σaσb\a, b^Sy. The latter is called the group of displacements
of *S. Let T be another symmetric set. A homomorphism / of S onto T is
called proper if it is not one to one and if T contains more than one element.
When G(*S)=1, we say S is trivial. A non-trivial symmetric set is called simple
if it has no proper homomorphism (to some symmetric set). It is important
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to characterize a simple symmetric set in a different way as follows. Let / b e
a homomorphism of S to T. f~\t)y the set of all inverse images, for an element
t in T is called a coset of/. Then, S is decomposed into disjoint cosets of/:
S= U Si with Si=f~1(ti) with 5,- Π Sj=φ if ί φ j . In this case, as is easily seen,
σa induces a permutation on X= {S^, the set of cosets S{. It is also clear that
σa and σb induce the same permutation on X if a and b belong to a same coset.
Conversely, suppose that S= [jSi is a disjoint union of subsets S'i satisfying
the above two conditions on σa. Then we can define a symmetric structure
on X= {SQ in such a way that the restriction mapping of S to X is a homomor-
phism. Thus the concept of homomorphisms is equivalent with that of coset-
decompositions. When a homomorphism / is proper, we say that the corre-
sponding coset-decomposition is proper. The simplicity of a non-trivial sym-
metric set is now characterized by the fact that it has no proper coset-decompo-
sition.

A symmetric set S is called transitive if G(S) (or, equivalently H(S)) is a
transitive permutation group on S. If S is simple, then S is transitive. For,
otherwise, S= U S, with S{=orbits of elements in S by G(S) would be a proper
coset-decomposition. A symmetric set is called effective if σ aΦ<rb whenever
βφέ. The following is the main theorem on simple symmetric set obtained in
[2] and [3]. (See also [5].)

Theorem. Suppose that S is a transitive and effective symmetric set. Then,
S is simple if and only if H(S) is a minimal normal subgroup of G(S). The latter
condition is equivalent with that H(S) is either a simple group or a direct product
of simple subgroups Nλ and N2 such that N2=N<ιa for any element a in S. In the
latter case, N{ are regular permutation groups on S.

As the last part of Theorem is not explicitly given in the previous papers, we
explain it here. It is known that N{ are transitive on S. Now suppose that ar

=a for an element a in S and τ in iVf . Then, τ~1σaτ=σa, or r and σa are
commutative, and so τ=σ71τσa, which belongs to ΛΓj as well as to N2. Thus,
τ = l .

We now return to V and A. Let O(V) be the orthogonal group of V and
Ω—Ω(V) its commutator subgroup. Elements of O(V) naturally induce auto-
morphisms of A. So, there is a natural homomorphism h of O(V) to the group
of automorphisms of A. The kernel of h is Z= {±1}, the center of O(F), due
to Lemma 5.5, p. 206 [1]. Thus, PO(V) = O(V)/Z is condisered as a group of
automorphisms of A. In this respect, we want to show that PΩ=H(A). This
is equivalent with Ω=h~\H(A)). Since Ω is generated by τvτw with (v, v)=
(w, w)Φθ, it is clear that H(A)dPΩ. When dim V=3, PΩ, is a simple group
(Theorem 5.20, [1]). So, in this case, H(A)=PΩ. To show it in a general
case and also to show the simplicity of A, we use the following
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Lemma. If (u, u)=(v, v)=ε, then there exists a hyperbolic plane P such
that (u, P ) = 0 and v<=ζu>+P.

Proof. If ζtiy vy is singular, it is easy to find the above P. Suppose that
ζu, Vs} is non-singular. Then, v—au-\-v', where vr^ζii)^ and (v\ Ϊ / ) Φ 0 .

(Naturally we are assuming dim ζu, v)=2.) By the assumption on £, <M>J~

contains a hyperbolic plane. Since a hyperbolic plane contains an element w
such that (w, w) is any element in the base field, i.e., is universal, we can find
an isometry on ζu)Λ~ by Witt theorem which maps w to v'. We can let P be
the image of the hyperbolic plane under the isometry.

From Lemma, we can conclude that H(A)=PΩy as we can always restrict
our consideration to a 3-dimentional case. We can also conclude that A is
transitive. For, Ω acts on A transitively. Here note that ζu}~L is universal
and we can insert σa with no effect on u where (a, a) is any prescribed value.
Now we show that A is simple. Assume that A is not simple. Then there
exists a proper coset-decomposition A=(jAi. Let a and b be two distinct
elements in Aγ. Let £/=<α>-[-P> where (α, P ) = 0 and b^U from Lemma.
Then A{U)~ {ΰ\u^U, (u, u)=β} is simple by the main theorem. Restrict
A=[jAi to the elements in A(U). We can conclude that ^ ( t / ^ A Now
let Q be a hyperbolic plane such that {a, Q)=0. Since O(V)=O(P)Ω as we
know, there exists an element in Ω which fixes a and maps P to Q. This implies
that A1 contains every element ffi such that zc^ζuy+Q, (w, zo) = S. Using
Lemma, we can conclude that A=AU which is a contradiction. Thus, A is
simple.

2. Simplicity of the group H(A)

Let S= {a} b, •••} be an effective simple symmetric set. Suppose that H(S)
is not a simple group. Then, H(S)=NιXN2 with simple subgroups N{ such
that N2=N°a for any element a in S. Moreover, N{ are regular permutation
groups on S. Let r be an element in Nλ and express it as a product of disjoint
cyclic permutations: τ = ( , a, by cy •••). (•••) ••• We show that a<τι> = c. Since
Nι and iV2 are commutative, we have ττ ( r*=τ σ»τ, or rσbrσb=σbτσbτ. Therefore,
<rb(τ<Γbτ<Γb) = τ<Γbτ=(τ<7bτ<rb)<Γb' So, p~1σbρ=σby where ρ=τσbτσb=rτ(rb. Since

p-la-bp~o-bP and 5 is effective, we have &p=έ, or bTT<rb=b. So, i ( T ( r i ) x — i τ = c .
On the other hand, τ σ * = ( ,ασ*,δ,cσ», •••)•". So, #τ σ*>"1 = αβ*. Therefore,
β σ *=c, as required. In the above, (•••, a, b, c, •••) coincides with a cycle defined
in the theory of symmetric set. Note also that r is a product of cycles of the
same length and every element of S must appear in a cycle. This is a supple-
ment to the main theorem on simple symmetric sets. In the above, especially,
r={a, b) (c, d) - if aσ*=aJc

(Γd=cJ etc. Since Nλ is regular, such an element r
exists if there exist a and b such that aσb=a. In this case, we can show that if
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an element σ in H fixes a, b and c, then σ must fix d as well. For, rσ= (a, b)
(c, dσ)" must coincide with r as both are elements in a regular permutation group
and move a to b.

Now we return to A. Assume that dim V>5 and that H(A) is not simple.
Thus, H(A)=N1χN2 as above. Let ux be an element in V such that (uu u^
=6 and let P be a hyperbolic plane orthogonal to ux. Select u2 in P such that
(u2, U2)=£. Since iV̂  is transitive, there exists an element T in iVj such that
Ul=^U2. Then, τ=(» 1, #2) (ϋ, ffi)—9 where we assume that v&P. Since ̂ σδ*
=??, we have (vy w)=0. Also we have that (u2, w)=0, because T maps ^
and V to f?2 and zZ; respectively and (uly ^)=0. Thus, (wy P ) = 0 as P=ζu2, v).
Let W=PΛ~. W contains % and w and dim W>3. There exists an element
p in Ω(W) such that i/J—Uλ and WPΦW. For example, let p be a rotation around
#! in some non-singular subspace of dim 3 containing ux and w. Then, p (ex-
tended as an element in Ω(V) in a natural way) fixes ttu U2 and ϋ but moves w7,
which contradicts the above argument. Thus, we have shown that H(A) must
be a simple group if dim F > 5 .
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