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0. Introduction

In this paper we establish analyticity in ¢ of solutions to quasilinear evolu-
tion equations

(0.1) %—+—A(t, wu = f(t,u), 0<t<T,
(0.2) 4(0) = ;.

The unknown, %, is a function of ¢ with values in a Banach space X. For fixed
t and v € X, the linear operator — A(z,v) is the generator of an analytic semigroup
in X and f(,9)€X. Several authors Ouchi [6], Hayden and Massey[2], have
considered analyticity for semilinear equations du/dt+ A(t)u=f(t,u). And
Massey[5] discussed analyticity for quasilinear equations (0.1) when the domain
D(A(t,u)) of A(t,u) does not depend on ¢, u.

In the present paper, we consider analyticity for (0.1), (0.2) under the
assumption that D(A(¢,u)") is independent of ¢,  for some A=1/m where m is
a positive integer. In order to prove it we shall make use of the linear theory
of Kato[3].

In the following L(X,Y) is the space of linear operators from a normed
space X to another normed space Y, and B(X,Y) is the space of bounded linear
operators belonging to L(X,Y). L(X)=L(X,X) and B(X)=B(X.,X). || ||
will be used for the norm both in X and B(X); it should be clear from the context
which is intended.

We shall make the following assumptions:
A-1°) u,eD(4,) and A7* is a well-defined operator & B(X) where A,= A(0,u,).
A-2°) There exist h=1/m, where m is an integer, m=2, R>0, T,>0, ¢,>0
and 0<a<h, such that A(¢, A7"w) is a well-defined operator& L(X) for each
te3,={t=C; |arg t| <¢, 0= |t| <Ty} and weN={weX; |lw—Afu||<R}.
A-3°) Forany teZ,and weEN
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0.3) {the resolvent set of A(¢, A5"w) contains the left half-plane
and there exists C, such that [[(A—A4(¢, 45 °w)) | Cy(1+ [ 1 ]) 7%, Re A=0.

A-4°) The domain D(A(¢, A7 *w)*)=D of A(t,As"w)" is independent of tE3,
and wEN.

A-5°) The map P: (t,w)— A(t, A7 w)*As* is analytic from (Z,\{0})XN to
B(X).

A-6°) There exist Cy, Cy, o, 1 —h<<o=1 such that

(0.4) [|A(2, A5 w)* A(s, A7 %) *| < C, t,s€3, w,vEN,
05)  IA(, A5®w)*Als, A7) P—T|| < Cof|t—s|"+llw—oll}
t,se3, w,veN .

A-7°) f(t,A7°w) is defined and belongs to X for each t€3, and we N, and
there exists C, such that

0.6)  1Ift, 47%0)—f(s, A7) S Co{lt—s|"+llw—oll} ¢, sEZ, w,0EN.

A-8°) The map V: (¢,w) f(¢, A5 “w) is analytic from (5,\ {0} ) X N into X.
These constants C;(i&N,) do not depend on ¢,s,w,v.

The main result of this paper is the following theorem.

Theorem 1. Let the assumptions A-1°)—A-8°) hold. Then there exist
T,0<T=T, ¢,0<dp=¢,, K>0, k, 1 —h<<k<<1 and a unique continuous function
u mapping S={t=C; |arg t| <, 0= |t| <T} into X such that u(0)=u, u(t)<
D(A(t,u(t))) and ||Afu(t)—A%u||<R for t&3\{0}; u: =\{0} =X s analytic,

%JFA@, w(t)yu(t) =12, u(2)) for t€ S\{O}, and || A%u(t)— A%u|| <K |t|* for tES.

ReMARK. Under the assumption that D(A(Z,%)") is constant, Sobolevskii
[8] gave the existence of solutions to (0.1) with differentiable coefficients. But,
as far as the author knows, the proof of [8] (or similar results) is not published
yet. In this paper we give the existence of local solutions to (0.1) for A(z,u)
differentiable in ¢, # (Theorem 2). But in this case, the condition (3.5) seems
to be too restrictive to apply Theorem 2 to the Neumann problems. The
condition may be reasonable when A(t,u) is analytic in u and differentiable in t.

The author wishes to express her hearty thanks to Professor Y. Komura
for his kind advices and encouragements.

1. Fractional powers of operators which generate analytic semi-
groups

Assume that 4 is a closed operator in Banach space X with domain, D(4),
dense in X and that the resolvent set of 4 contains the left half-plane and (1
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[A])(A—x)"! is uniformly bounded in ReA=0. Then there exist M, 6,

0<0<% such that the resolvent set of A contains closed sectorial domain
S={\€C; |argA| =6} U {0} and

(1.1) IA—2) =M+ x )™ res,

(1.1y NAA—N)l = IT—AA-N)S1+M =M reX.

—A is a generator of an analytic semigroup in X, and the fractional powers
A% € R) are defined as follows;

4= a>0
I a=0

1

(1.2) 4% —
——S A(A—N)Mdh a<0
r

271

where the integration path IT' consists of the two rays a-tre*#[0<<¢p<m, a>0,
0<r< 0] and run in the resolvent of 4 from coe™* to cce’. We define that
A? attain positive values when A >0.

A® have the following properties;
1) For a<0, 4”=B(X).
2) For a>0, A® is a closed operator in X with domain, D(4%), dense in X.
3) D(A")DD(AP) for B>a>0.
4) For any a>0, 8>0, A"P=A"AP=APA" holds.

It follows from (1.1) that there exist >0, C >0 such that

(1.3) llexp(—rA)IS Ce™,
(1.4) |4 exp(—74)||=Ce™¥ 771,

For an operator A4 satisfying (1.3) we can give an equivalent definition of the
fractional powers A” as follows;

(0 g a>0
(1.5) = a=0
ﬁgo exp(—sA(t))s™*'ds a<O0.

For any << an inequality of moments
(L.6)  [|4Pull=C(at, B, V1A ul| B0 A%|=P/0=% [ue D(A")]

holds. (Krein[4] Chapter 1. Theorem 5.2)
For 0=<a<1, —A4°" is also the generator of an analytic semigroup in X and
has similar properties as 4 with @ replaced by af.
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Assume that A and B are closed operators in X with domain, D(4) and
D(B), dense in X and with property (1.1), and that D(4A)c D(B). Then D(A4F)
C D(B?) for 0<a<B=1. (Krein [4] Chapter 1. Lemma 7.3)

For these and other properties of analytic semigroups, see Tanabe[9]
Sobolevskii[7] Krein[4] Friedman[1] etc..

2. Kato’s results

We shall make the following assumptions:
1°) For each t€[0,T], A(t) is a densely defined, closed linear operator in X

with its spectrum contained in a fixed sector Sy={2€C; |arg 2| <0§%} . The
resolvent of A(t) satisfies the inequality
(2.1) I[z—A®]N=M,/|z]  for 2& S,

where M, is a constant independent of . Furthermore, 2=0 also belongs to
the resolvent set of A(¢) and

(2.2) 14(x)~Il= M,

M, being independent of .
2°) For some h=1/m, where m is a positive integer, =2, D(A(¢)")=D is in-
dependent of 7, and there are constants &, M, and M, such that

(2.3) A A@) M ISM,, 0=<t<T, 0<s<T.

24) AR —T|| M| t—s|*, 0=t<T, 0=s<T, 1—h<k=<1.
ReEMARK. From (2.2) there exists C,>0 such that

2.2) lA@)™M|=C,  for tE]0, T]

C, being independent of ¢.
Under these assumptions, we get the following theorems. They are due
to Kato.

Theorem A. Let the conditions 1°) and 2°) be satisfied. Then there exists
a unique evolution operator U(t,s)E B(X) defined for 0=s=t=T, with following
properties. U(t,s) is strongly continuous for 0=s<t=T and

(2.5) ui,rn) = U@, s)Us, ), r<=s=t,
(2.6) uie,t)=1.

For s<t, the range of U(t,s) is a subset of D(A(t)) and

(2.7) A@)U(t, s)eB(X), lAQ)U(, s)| =M |t—s| 7,
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where M is a constant depending only on 0, h, k, T, M,, My, M, and M,. Fur-
thermore, U(t,s) is strongly continuously differentiable in t for t>s and

2.8) 56; U, 9)+A@R U2, s) = 0.

If ue D, U(t,s)u is strongly continuously differentiable in s for s<t. If in particular
us D(A(s,)), then

2.9) a% U(t, )it ey = U, s0) Aso)t -
If f(2) is continuous in t, any strict solution of

(2.10) %JrA(t)u = f(?)

must be expressible in the form

.11 u(t) = U, O)u(O)+S:U(t, O (5)ds .

Conversely, the u(t) given by (2.11) is a strict solution of (2.10) if f(¢) is Holder con-
tinuous on [0, T']; here u(0) may be an arbitrary element of X.

Proof. See, [3].

Theorem B. Assume that A(t) can be continued to a complex neighborhood
A of the interval [0, T] in such a way that the conditions 1°), 2°) are satisfied for
t,s€A. Furthermore, let A(t)™* be holomorphic for t=A. Then the evolution
operator U(t,s) exists for s=<t, satisfies the assertions of Theorem A and is holomor-
bhic in s and t for s<<t. (Here “s<<t” should be interpreted as meaning “‘t—s€%”,
where =, is the sector |arg t| <w|2—0 of the t-plane, and “s=t” as “s<t or s=
r’.) If f(t) is holomorphic for t€A, t>0, and Holder continuous at t=0, every
solution of (2.10) has a continuation holomorphic for tE A, t>0.

Proof. See, [3].
It follows from 1°) and 2°) that
(212) 4@ exp(rA@)ISNeI7I ™" 0=a=2, |ag <% —0
(2.13) LAY U, I < (h-k—a) Ni(t—s)™*: 0Sac<k+h
(2.14) |lA@)* U2, s)A(s) M| < (k—a) 'Nyg(t—s)™": 0<a<k, 0<s=<t<T
Here the constants N,(i=4,7=N) are determined by M, M,,M,,M,,0,h,k,T.

For a proof of the above estimates, (2.12)—(2.14), see the argument in [3]. In
addition to these, we shall prove some estimates which will be used in the follow-

ing.
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Proposition 1. If 1—h<k<l,0<a<<a'<<1—k, then for any 0<r<s<t=<
T, the following inequalities hold:

(2.15)
(2.16)

14(0)*[U(, 0)— U(s, 0)]4(0) | < C(z—s)**
[1A0)*[U(t, r)— U(s, NI Ct—s) " (s—r) 7,

where the constant C is determined by M,,M,,M,,M,,0,h,k,a,T.

Proof of (2.15). Actually, by (2.5), the identity

(2.17)

holds.

AO0)°[U(, 0)— U(s, 0)14(0)”

= LA AW AW [U(E, ) —e I O14(9)
—A(O)“A(t)—“’s'_’A(t)“’e-w“dr
+AQ)° AW | A e a0 AP TAR) ™ — A) )
X A(s)U(s, 0)A4(0)!

For any 0<¢<T the following inequality holds:

(2.18)

1 A(0)* Aty || < Mow

where the constant M, depends on ¢ and ', but is independent of .

In fact, from formula (1.5) and from the inequalities (1.6), (1.3), (1.4) and
(2.3) it follows that for any vE X, we have A(f)"*v=D(A(0)*) and there exist
C>0,8>0 such that

(| A(0)*A(2)~* ||
= | A(0)" /P A(2)* o]
1

= ”A(O)h(a/h)—S”e_m(,)hs(a,//h)_lv sl
T(a'[h)Jo

c(o, a 1) . ) ,
S—nN S [|A(0)* A(#)*A(2)"e~*A" o||*/H]|e™ A" v | [t~ /B /h -1 ds
0
1‘(7)
< CHoL 1oy aqy i lawpe s e pemsemags
= 0
F(k)
< ”L”,M"/hcS‘We—‘ss(dlh)s~(“/h)e—-§s(l—"’/h)s(“'/h)—lds
(G
h

— H‘Z)H' Mm/;,cg(a-m')/hs Ne"t(“,’“)/h'ldt
24

TEORA

h
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”n - ~ , ’_
< I‘(%} M@« WI‘(“T“)Hle
< Muwllv|] .

Thus we obtain (2.18).
In the following, the constants C),C,,+- do not depend on s, ¢.
We verify the following inequality:

(2.19) LA [A@) " —AE) NS Cilt—s|*  0=s=<¢<T.

From formula (1.2) and from the inequalities (2.1) and (2.4) it follows that
A(t)'veD(A(t)*) and A(s) ‘v D(A(#)*) for any v X and

| A@)[A(t) ™ — A(s) el
= lA@)"[A@)* ™ —A(s)* ™ ]oll

- ||A(t)h§}z—isrx-m[(/1(z)h—x)-l—(A(s)h—x)-l]v al|
< WIE gy mon— A Ay — ) v— A I

= ”Ev;,ug IR LA@ O — A -1 ARYAG) T - LA L —A(s)) a1

= Cilt—s|*loll .

Thus we have (2.19).
For any 0<s<#=<T, the inequality
(2.20) [|A(t)e 4B A(s) || < Coe™ ¥

holds. In fact, from (1.3), (1.4), (2.19) and k>1— it follows that

ILA()e 40 As)|
— IIe—tA(f)__A(t)l—he—tA(t)A(t)h[A(t)—l___A(s)—l]||
= |le  4O|| ]| A2) e 4O |- || A(t) [A () —A(s) ]I
< Ce™ - Ce ¥+ 1Cy(t—s)t
< C(1+ClTk—(1—h))e—8t
< Ce™®,

Thus we get (2.20).
For any 0=<s=<t<T we get the bound

(2.21) 1A U(r, D46 IS Cy

Actually, for any vE X we have
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A@\U(r, $)A(s) o
— () [ 4O As) o | 0RO A)— AU, A() Mo de)
= A(r)e PO A(s5) Mo
+{ Aee-020 31 Ay-PLAGY AR~ DAGYUE, HAG) o de
= A(r)e" P40 A(s)
+33[ Apy-e-c-ouora@ya@) - NARPUE, DA Mo dt

Applying (2.20), (1.4) and (2.4), we get

[1A(r)U(r, s)A(s) 2|
< Ce 9 Jo]|

-I—ég:c(’—?)”h_ze_a("c)Ms|f—§ [*1AE) = 1 IAEQ)UE, 5)A(s)'olldE
= G799
+{ B e—tprrrtetenCr AU, 5)A() olld
= Ce 79l
gt $ 7000 max CEAIAQYUE, A6l
= G|
+{ er—gp-rmere-olla@) U, 9 4() olds
Therefore, applying Gronwall’s Lemma, we have
1A U(r, )A(s)™l
= Ce ¥ Vexp| S:Cs(r—g’)"‘“"’e"s("‘:)dé,‘|
= Cpe " Dexp|§F1-H CE,S:’_S)/Be"t"'(1"‘Ha’tI
<c,.

Thus (2.21) is proved.
Next, for any 0=s=<t¢=<T, the inequality

(2.22) 1A@)" [U@, 5)—e™ ¢ 2401 A(s) || < Coft—s)H*
holds. In fact we can write
A TUG, ) —e 001 )
= AW exp(—(—n) A AW~ ANTG, a1 A)



ANALYTICITY OF SOLUTIONS OF QUaSILINEAR EvoLuTioN EQuaTIONS 677

S'A(t)“’e-«-'wo pi', AP LAR)AF) P — 1A U(r, s)A(s) " dr

— p:lS:A(t)¢'+l‘Phe_(l"f)A(')[A(t)hA(T)_h—I]A(r)(P—m)h A(r)U(r,5)A(s)"'dr .
Therefore, from (2.12), (2.4) and (2.21), it follows that
142) [U(e, )41 40|
< 3 Nu(t—ry - My(e—r () Codr

»=1Js
t , m
= NMG (r—r) 4 33 709 max || ()| dr
s =1 1™
< Cy(t—s)++.

Thus (2.22) is obtained.

-5 t-s , ,
(2.23) ug' A e 4Oy gs Nyg=dr < Cy(t—s)* .
0 0
This follows from (2.12).
Finally, from (2.12) and (2.19) it follows that

(2.24) |Ijt_SA(t)”‘”'"‘e""“)A(t)"[A(t)“‘—A(s)"]drl|
0
= S:_sNer"*l‘“'C,(t——s)"dr
< Cyft—s)+h .
Then from (2.17), (2.18), (2.22), (2.23), (2.24) and (2.21), we get

14(0)*[U(z, 0)— (s, 0)]4(0) |
S { Mo Co(t— )% - My Cot— )"~ + Mo C(t—5)* =¥} C,
S C3M oy {CsT* P4 Cr-CyTH AW} (2—s)=*
< C(t—s)*

Thus, (2.15) is proved.
Proof of (2.16). Actually, by (2.5), the identity

(2.25)  A(0)[U(t, r)—U(s, 7)]
— {A0)" A AW U, 5)—e =IO A(s) ™

—A(O)“A(t)‘“'S;_SA(t)“'e‘M(”dC
A A0 (| Aey e A LAG) I~ AG) ML} AU
holds. By (2.13)
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(2.26) A()U(s, 7)|| < (h+-E—1) " Nig(s—r)" .
Then, from (2.25), (2.18), (2.22), (2.23), (2.24) and (2.26), we have

14(0)*[Uz, r)—Uts, ]I
S AMou Co(t—5)" "+ Mu Colt—7)"" ++ M aaCy(t—s)*+*~*'}
X (h+k—1)" Nyy(s—7r)7
< C—s) ¥ (s—1)!

Thus, (2.16) is proved.
Remark. Even if 0<a<a’<h, (2.18) holds good.

Proposition 2. Let the function f(t) be continuous on [0,T). Then for any
0=s=t1=T, O<a<a'<a”<h, the following inequality holds:

(2.27) ||A3[S:U(t, r)f(r)dr—S:U(s, AN < Caw | t—s]* (| log(t—s)| +1) .

Proof. In fact, first let s<¢t—s. Then from (2.18) and (2.13) it follows
that

1451 U nfer)ar— | Uts,
= {1450 I 1) lar+ 14500, M- 1L £ 1
< 11454~ I 14" Ut l1-11 )
4 |[A':;A(s)-ﬂ|S:”A(s)“’U(s,r)H-lIf(r)IIdr
< Mawllhth—a) Nl (t=2) 1 f0)lldr+{ (=) /)l
< Moo (k=) Nig(1—a') [+~ max | £
And ¢<2(t—s) since s<t—s. Therefore N
A 4 S 20— )Y ()Y S (2T 1) (E—o)
hence, put
Cawr = Mua(hth—a’) (1) H2+1) s [1/0) 1N

and we obtain (2.27) for s<t—s.
If s=t—s, then s—(2s—¢)<t—s and from (2.18) and (2.16)

1451, Ut rfar—{ U Dftrsarl
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<4zl venfnar—{ U nfonl
14540 AW 06— U0
< Clarlt=s 1"+ Maw | 1=/~ (s=) | )l
< Chorl =51+ Clnlt—)™ [110g(t—s) | +1] max L)
Hence, put
Caw = Clar-+ Cla s (107
and we obtain (2.27).

Proposition 3. If 0<a'<a”<h, then for any 0=<r<t<T, the following
tnequality holds:

(228)  [JA@®Y U@ NA@F) M| S Et—r)"*""1  p=1,2,-,m.
Proof. First we note the following identity:
(2.29) A@)* U(z,r)A(r)
= A" {exp(—(t—7)A4(r))
—ggiU(t,s)A(s)"”’[A(s)”A(r)"‘—I]A(r)”'

X exp(—(s—r)A(r))ds} A(r)*~**
= A()” exp(—(@—r)A(r) A(r)-**

_gS:A(t)w’ U(t,$) A(s) [ A(s) A(r) " — I] A(r)} -+
X exp(—(s—7r)A(r))ds .
Set
Xﬁ(t,.s) = A(t)“’ U(t,S)A(S)l-ph

(230)  1X,4(t,5) = A AGY Pexp(—(t—9)A(s))
K, (5,7) = —[A@)"A@) ™ —TJA(r)#+hexp(—(s—)A(r))

We obtain a system of integral equations satisfied by X,,p=1,+-,m.

In writing down these integral equations, we find it convenient to introduce
the following notation. For any two operator-valued functions K'(t,s), K”(,s)
defined for 0<s<i<<T, we define their convolution by

K = K'*K", K(t,r) = S’K'(t,s)K"(s, r)ds .

Then the system of integral equations for X, has the form
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(2.31) X, =X, +21 XK, P=12-m.
=1
From (2.30), (2.18) and (2.12) it follows that
(2.32) 11X, o(2.7)l

< 4@ A |1 exp(— (=) AE)
= Ma/a//NG(f_r)ﬁh—l—"” < El(t__r)ph_a”_l )

From (2.30), (2.4) and (2.12) it follows that

(2.33) (K, (5,7l < || A(s)*A(r)*—I||- || A( )} =+ hexp(—(s—r) A(r))
= Ma(s—-r)kNe(s_r)ph-lh—l < Ez(s_r)k+ph—1h—1 .

Suppose that the system (2.31) has been solved for X, by successive ap-
proximation in the form

(2.34) X,(t,7) = 5‘3 X, (t7),
(2.35) X iv1 = 122; X, %Ky, .

Applying (2.32) and (2.33), we shall show that the series (2.34) are in fact con-
vergent, with the rate of convergence determined by the constants, T,0,k,k,a’,
a”, My, M,, M,, M, alone. For convenience in this estimation, we further in-
troduce the following notation. We denote by P(a, M) the set of all operator-
valued function K(t,s), defined and strongly continous for 0=<s=<¢=<T such that

[1K(t,$)l| = M(t—s)**.

In particular, K& P(a, M) with a>1 implies that K(z,s) is continous even for
s=t and K(2,t)=0. The following Lemma is a direct consequence of the de-
finition.

Lemmal. If K'eP(a’,M’) and K"€P(a’, M") with a’ and a’" positive,
then K'sK"” €P(a’+a”,B(a’,a’)M'M"). Here B denotes the beta function.

Now we have from (2.32) and (2.33)

(2.36) X, EP(ph—a", E)),

(2.37) K, ,eP(k-+ph—Ih, E,);

(2.36) and (2.37) lead to the following estimate on X, ;:
(2.38) X, . €P(ph—a"'+ik, LE(mE,)’) ieN

where {L;} is a sequence defined successively by
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(2.39) Ly=1, L,yJL; = B(h—a''+ik, h-+k—1).

(2.38) can be proved by mathematical induction. For 7=0, it coincides
with (2.36). Assuming that it was proved for 7, we have from (2.35) and (2.37),

using Lemma 1,

X, K, ,EP(ph—a"+(i+1)k, C,,.),
C,: = B(lh—o ik, k-+ph—Ih)LEmE+
< B(h—a'+ik, h+k—1)L,Em Ei*t

from which (2.38) follows for 7 replaced by +1 in virtue of (2.39). Here it
should be noted that lh—a”+ik=h—a"’+ik>0, k+ph—Ih=k—mh-+h=k—
1+4>0.

It follows from (2.39) that

Liy[L; = 0@z~ ¢*++0) [t = +o°].

Since A+k—1>0, we see from (2.38) that the series in (2.34) are absolutely
convergent for s<t, the convergence being uniform for z—s=a>0. Noting
that the first term in each of these series is estimated by (2.36), we thus obtain
the estimates

XPEP(Ph_a”) E) p= 1’29"',7”-
where E may depend on «,0,h,k,M,,--- alone. Thus (2.28) is proved.

Proposition 4. Let the function f(t) be Holder continuous on [0,T]. Then
for any 0=r =T, the following inequality holds:

@40) 140 U fodl S B ip=1,2,0m.
0
Proof. Actually, the identity
(2.41) S;U(r,s)f(s)d-s

— S:[exp(“(f—s)/l(r))+S:eXp(—(r__§) AN [A(F)—A©)]
X U(L,$)dE](s)ds
- S:exP(“(’—S)A(r))f(S)ds
+33[ | 40y-rep(—r—0) A A0 A0~ 1
X Ay UL, )dE f(s)ds
=g;e"p(“('—s)f4('))f(~v)ds



682 K. Furuya

+gS:A(r)l'ﬁhexp(—(r—g)A(r)) [A(r) AE) " —I]

X SEA(C)”' U(E,9)f(s)dsdt .
Multiplying (2.41) from left by A(r)*, we obtain a system of integral equations
(2.42) Y, = Yq,0+§ H,4Y, q=12-m,
where

Y,(r,0) = A0 U .s)f)ds

@4)  17,0,0) = A0 exp(—(r—) AR5
H, ,(r,5) = A(r) "~ exp(—(r—s)A() [A@)A(s) 1] .

In the following the constants Ej, E,, - do not depend on 7,s.
We get

(2.44) 1Y, 0| SEg*?*  g=1,2,,m.
In fact, for ¢=1,2,---m—1, from (2.12) it follows that
V0, 0l < { 1140) exp(——)AE)I-11 /) s
= S:Ns(r—S)"”‘dsor;}g 1Al < Eg*~".

The case g=m. Noting that there exists E5>0, 0<k=1 such that || f(#)—f(s)||
<E;|t—s|* for every s,tin [0,T], from (2.12), we have

1Y, o(r, 0)|

= 1[4 )exp(—(r—5) A ) —Fr)1ds+ | Aryexp(—(—s)A@))as
= {I140)exp(— =) A1 1)~ lds+1[ Zexp(——5) A0 )asf)
= | Nur—s) Byl —r | ds-+-2N; max [0

<E.

Hence for a constant E;=max{E,, Eg} we obtain (2.44).
From (2.11) and (2.4) it follows that

(2.45) [|1H, ,(r,9)Il
< ||A(r) o+ Phexp(—(r—s)A(r))I| - | A(r)* A(s) 1|
< Ny(r—s) ooy —s)h

é E7(r_s)k+ph—qh—1 .
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Suppose that the system (2.42) has been solved for Y, by successive ap-
proximation in the form

(2.46) Y0 =3 Y,.r,0),
(2.47) Y in= ;:.; Hy Y, ;.

Applying (2.44) and (2.45), we shall show that the series (2.46) are in fact
convergent.

We have from (2.44) and (2.45)
(2.48) Y, EP(2—qh, E,)
(2.49) H, , P(k-+ph—qh, E;)
(2.48) and (2.49) lead to the following estimates on Y ;:
(2.50) Y, € P(2—gh+ik, L,E(mE;)’) iEN
where L; is a sequence defined successively by
(2.51) L,=1, L;,/L; = B(1+4-ik, k+h—1)

It follows from (2.51) that

Liwa[L; = 0@~ ***™)  [i—> 0]

Since A+k—1>0 we see from (2.50) that the series in (2.46) are absolutely
convergent for s<{t, the convergence being uniform for t—s=a>0. Noting
that the first term in each of these series is estimated by (2.48), we thus obtain
the estimates

(2.52) Y,eP2—qh E;) q=12,-;m
Hence put E'=Eg, and (2.40) is proved.

3. Existence of the solutions on the real axis

We consider the Cauchy problem
(3.1) %—{—A(t,u)u —fitw) O=t=T
(3.2) u(0) = u,.

We shall make the following assumptions:
3°) For some 0<a<h=1/m, where m is an integer, =2, and R>0 and for any
veN(R)={veX;||lv]|<R} the operator A(t, As"v)=A(t, A(0, up)~*v) is well
defined on D(A(t,A7%)), for all 0=¢t<T.
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4°) For any t<[0,T] and v& N(R), the operator A(t, A;"v) is a closed operator
from X to X with a domain D(4(¢, A5 "v)) dense in X and

(3.3) [IA—A(t, A7%0))7Y|| = CyJ(14|n|) for all A with Rex <0

where C, is a constant independent of #,v.

5°) For every t€[0,T] and vEN(R), the domain D(A(t,A7"v)")=D of A(¢,
A5®v)" does not depend on #,v. Furthermore, for any ¢,s&[0,7] and v,wE N(R)
34 [|A(t, A5 o) A(s, A5 "w) ~*|| < C,

(3.5) [|A(t, A5 ") A(s, A5 “w) " —1I|| = Cs{|t—s|°+|lv—w]|}

where 1 —h<a<1.
(6°) For every t,s€[0,T] and v, wEN(R)

(3.6) |1 f(t, A5 *0)—f(s, A7 *w)|| < Ce{ [t—s|"+lv—w][}
7°) u,=D(4,) and
3.7) ASu,eN(R) .

Theorem 2. Let the assumptions 3°)-7°) hold. Then there exists a unique
solution of (3.1) which is continuously differentiable for 0<t=<t*, continuous for
0=<t<t* and satisfie. (3.2).

Proof. We first introduce sets Q(s,L,k). Here % is any number satisfying
1—h<k< min{l—a,s} and L is any positive number. A function v(¢), defined
for 0<t=<s, is said to belong to O(s,L,k) if

2(0) = Afu,

and if for any 1,7, in [0,s]
(3.8) llo(t)—v(@)ll = L1t —1]* .

Suppose 5,(0,7]. Then for any v€Q(s,, L, k)
3.9) @)l = LIt—0]*+lo(0)]| = Lt*+ || ASu,| -
From (3.7) and (3.8) it follows that if 0<<s,<<min{s;, [L"Y(R—||4%,|)]"*}, then

oI <LIL™(R—|lA%u,l)]+l4%ul| = R for tE[0,s,] .

Hence the operator
(3.10) A(t) = A(t, A7"(t))
is well defined for t[0,s,] and, by (3.3)
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IM—A,@) M= CJ(1+|n]) if Rea =<0, 2£[0,s,] .
From (3.4) we obtain
|4, ()* A, () = Cy  if £,5€[0,s,] .
From (3.5) and (3.8) we also get

14,(2)* Au(s) " — 11| = Co{|t—s]"+lo(t) —2(s)I}
= CA{T "+ L} [t—s]*.

By Theorem A, there exists a fundamental solution U,(#,s) corresponding
to A,(¢) and all the estimates for fundamental solutions derived in previous
section hold uniformly with respect to v in O(s;,L,k). In paritcular, from
(2.15) and (2.16) we get for 0<a<a'<l—k, 0=r=s=t=<s,

(3.11) || A2[U,(t,0)— Us,0)]45"|| < C|t—s |
(3.12) 1AS[U(t,)— U s, )]l < Clt—s|** |s—r|

where C is the constant depending on 6,4,k,a, C,, C,, Cj,s,.
Setting f,(t)=f(t, A5 "v(t)), it follows from (3.6) and (3.8) that

(3.13) L£@)—fO) = Co{ [ t—s|"+lo(@)—v(s)I[}
< CAT *+L} |t—s|*.

Since £,(0)=£(0, 47 *2(0))=f(0,%,) is independent of v, (3.13) implies that
(3.14) max |01 < 10wl +Cs ™+ L} < Gy
Set w,(t)=A%w(t), where w is the unique solution of
(3.15) ‘2_1;’+A0(:)w —f)  1€[0,s]
(3.16) w(0) = u,.
Then from (3.13) and Theorem 4, w, is given by
(3.17) w,(t) = ASU(t, O)uo—l—A%’S:U,(t,s)f,(s)zls .
In view of (3.17), for any ¢#,1, in[0,s,] we obtain

(3.18) lloy(t,) —,(t,)]
= 1 45[Uy(8,0)— Uit 0)] 45" || - | Agaue] |

+143[ Ut )~ [ U
Making use of (3.13), (3.14) and (2.27), we find that
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t t
(3.19) [EC| N AORYAOY S ARV AR |
= Clo—t,|""(|log(ti—1) | +1)
Therefore from (3.18), (3.11) and (3.19) it follows that

”wu(tl)_wv(tZ)”
< Clty—t,| " || Aol | +C | t;—1, |~ (| log(ti— 1) | +1)

Hence if 5,0 satisfies Cs3™*~|| Agto||+Cs3™* =2 | #,—1,| (| log(t,—1,) | +1)< L
where 0<€<1—k—a' and if §;=s,, the inequality

(3.20) llov,(t) —w, () |S L t,—1,|*  for #,2,E[0,s5)
holds.

Since (3.16) implies

(3.21) 0,(0) = A%(0) = Aty

we get w,E O(ss, L, k).

We set F3=0(s;, L, k) and define a transformation w,=Tv for v€F;. Then
from (3.21) and (3.20) we have

(Tv)(0) = w,(0) = Afu,,
(To)(t)—(To) ()= L|t,—1,|*  for t,,2,E[0,s,]

that is, T maps F; into itself.
We now consider F; as a subset of the Banach space Y=C ([0,s5]; X] con-
sisting of all the continuous functions v(¢) from [0,s,] into X with norm

il =0§}1§Q3Hv(t)ll .

We shall prove that T is a continuous mapping in F; (with the topology
induced by Y) and that furthermore, if s; is sufficiently small, then T is a con-
traction mapping.

i) The case of bounded A(¢, 45 *v).

If A(¢,A7%v) is assumed to be bounded for some #<[0,s;] and some vE
N(R), in addition to the assumptions 4°) and 5°), it follows that A(¢, 45"v) e
B(X) for all t€[0;s,] and v&€N(R). In fact the boundedness of A(t, As"v)
implies that of A4(¢, 45"v)" so that the constant domain D=D(A(¢, A5"v)") must
coincide with X. From (3.4) it follows that for any s in [0,s;] and we N(R)

[1AGs, Ao "w)*|| < 1|1 A(s, A7 "w)* A(t, A7 *v) || || A(2, A5 ")l
= GillA@t, 45 "0)"|

Thus A(s, A5 "w)" € B(X) and hence A(s, Ay “w) € B(X) for all s and w.
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Let v,,v, belong to F; and set

A(t) = A(t, A5 v,(2))
Ui(t,s) = U,(t,s)
fi#) = f(t, A7%0,(2))

zi(t) = Av"w,(t) i=1,2.

(3.22)

Thus, for i=1,2.

dz; —

7?+Ai(t)zi =fi(®)

2(0) = u,.

Note that 2,(t) € D(4,(t)), 2At) € D(A,(t)) since A;(t)€ B(X) [i=1,2], and we get

(3.23)

(3.24) %(21—22)+A1(t)(21—2z) = [A) =A@ +-[H(O) D] -
Now, we shall show the following,
Lemma 2. [A4,(t)—A,(t)]=(2) is Holder continuous in t for 0=t=<s,.

Proof of Lemma. Write

(3.25) [Ax(t)—Ai(2)]2:() — [Ax(s) — Au(5)]2(5)
= [Ay(t)— Ax($)]2:2) - Ax($) [2:) —2o()]
- [Al(t)~A1(s)]z2(t)—A1(s) [zz(t)—zz(s)] .

First we verify the following two inequalities:
(3.26)  |I[4:(t)—A:i($)]=A)| = Dy(t—s) 0=s=t<s,1=1,2,
(3.27) [14:(s) [22(8) — 28)]l| = Dyt —s)' ™" 0=ss=st=s,1=12,

where the constants D,, D, do not depend on v;, s, ¢ but depend on |[4¢][.
In fact from (3.4), (3.5), (2.13) and (3.14) we have

LA — A=A
— 2 A7 A ALY~ DAY U Ot | Uty
= 34 1A A 111G IP

XUt uell+ { 11T, 1)1

< mC%(t—s)"[(h-+k) " Niglluol|+-£(h+R) NysCs]|| 45" Cs
< E(t—s)’.
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In fact from (3.4), (3.11) and (3.19) we have

11 4:(s) [2:(8)— 2:()]ll
< [14,)45°1|- 143U, Oyt | Ut n)ftr)dr

— Uyfs, O)utp— SO (s, Nfundr |
= 14:(s)A5°|[{I1AT[Ut, 0)— Uy(s, 0)1 457 |- || Al

st Ot = Ok A
< CPIAMIIAT{C(E—) 1 gul|+ C(t—s)* (|log(t—s) | +1)}
< Dy(t—s)'*.

Thus using (3.25), (3.26) and (3.27) we obtain

(3.28) [A(2) — Au()]2:(2) — [Ao(s) — As($)]2(5)]1]
< 2D, |t—s|"4-2D,|t—s|*
< Dy|t—s|'™*

so that [A,(t)—A,(t)]2x(¢) is Holder continuous. q.e.d.
From (3.6) for any 0<s=<1=<s; it follows that

(3.29) L&) L] —[A) oIl = 2C, 1 —s]" .

Hence from (3.28) and (3.29) the right-hand side of (3.24) is Holder continuous.
Then applying Theorem A to (3.23) and 2,(0) —=2,(0)=0 we can write

(3:30) &) =)= S:U (&) {[Aer) — Ai(1)]aor) + (1) —fn)]} ar
Therefore from the definition of w, we get the identity

(3.31) W, (2) —w,,(t)
= A%z (t)—A5zy(2)

— — 5[ ) (40— Al + L)~ dr

= —A;‘,’S;Ul(t, 1) 2} A A Ar) TV ALr ol
+ 43 U L) i)

- —:IS:AﬁUl(t,r)Al(r)“""[Al(r)"Az(r)‘"—I]Az(r)""zz(r)dr

+ [ asven Ui —finar.

In the following the constants E,, E,, -+ do not depend on s, £, v;, ||44|.

-
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For any 0=<t¢=<s,, the following inequality holds:
(3.32) 1], 43U, (e.) ) — il < B o,
We see this, using (2.18), (2.13) and (3.6) for 0O<a<<a'<Hh, as follows;
If AsTE O el

< [ 145407114 Ve, 11K~

< [ MuaAlt k=) "Nt =) C,llos(r)— o)l ldr

< B Hlo,—oll] .

Here we cite (2.28) for A=4,, U=Uj;

(3.33) | 4,()* U(t, 1) Ay(r) || < E(t—r)?~* 1.
Note that
(3.34) Ay(r)Pz(r) = Ay(r)?"Uyr, O)uo—i—Az(r)“’S’Uz(r,s)fz(s)ds
(3.35) (| Ay(r)?" Uy(r, 0)uol| < || Ax(r)?* Uy(r, 0) A5 ™| - || Al |
=< (k—ph+-h) "INy~ #"| Abu,|
g Earh—ph

since by (2.14).
From (2.40) we find that

(3.36) 147 U, )l < B

Hence using (3.34), (3.35) and (3.36) we have

(3.37) |Ay(r) P 2y(r)|| < Egh= k4 E gt~ "
é Esrh—ph

Therefore from (3.31), (3.33), (3.5), (3.37) and (3.32) it follows that
(338)  llw, (&) —wa(0)
= W BTN ACY 1146V A0 =111 | Ay =) dr
+ [, 45U i —Fle e
< Y Ee—rp o) — i) B Pdr+ it oyl

< Bt 271l lo—wlll

689
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= E7th_¢”|||7)1_‘vz|” .
Hence
(3.39) | To,—To,|l| = sup |lw, () —w,,(t)|| < Essh="|lloy—w,lll .
0t<s.
='="3

This means that T is a Lipschitz continuous operator.
Furthermore, if 0<<s;<< EV®' W for O— E7s’§“””<1, we get

(340)  NTor—Tolll = sup llw, ()—w, ()]
=73
< Bt lllo—odll < Olllo—vlll.  v,0,EF,

So T is a contraction mapping, and by applying fixed point theorem we can
prove that there exists unique point v in F; such that Tv=v.

i1) The general case.

We now turn to general case in which A(¢, 47 ") is not necessarily bounded.
We first construct a sequence of bounded operators 4,(¢, A7 “v) that approximate
A(t,A7"v) in a certain sense. We set

(3:41) {A"(”A‘Tw”) = A(t,45%) ], (1, 45"2)

Ja(t,A5%) = [14+n7*A(t, As®0)" 1™  n=1,2,-

Obviously 4,(t, A7 *v) belong to B(X) and satisfy the assumptions 1°),2°). There-
fore, all the estimates deduced in the preceding section are valid with constants
independent of #n. Hence from i) there exist a fundermental solution U; ,(2,s)
corresponding to A,(t,4y"v,(t)) and a solution 2;, of

dzi n
- +An t,A_m‘Z),-(t )zi,n :ft(t)
dt ( ’ ) ‘ZJ,‘EFE,
\zi’n(O) = u() i: 1)2 .

Then, we get
(3'4'2) IIAn(O’uO)w[zl,n(t)_z&n(t)]l| = EsSﬁ‘””Hlvl—vzHl neEN,

Due to Kato [3], we obtain that A4,(0,u4,)"U; .(¢,0)—AU(,0) as n— oo.
Thus T is a Lipschitz continuous operator.

Furthermore, if 0<s,<<min{s;, E}*~*"} and set F,=0(s,, L,k), same as
i), there exists 0<<6<1 such that for any v,,v,EF, the inequality |||To,—Tv,|||
<0||lv;—w,]|| holds. Then there exists unique point v in F, such that To=v.

Thus in i) and ii) we have shown the existence of the fixed point v for T.
Noting Tv=w, and w,(t)=A%w(t), we have Afjw(t)=v(t) or w(t)=As"v(t).
Applying (3.15) we find that

ditAo- o(t)+A(t, A1) Ao (1) = fit, A7 "0(2)) .
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This finishes the proof of Theorem 2 for t*=s, and u=A5"v.

4 Further results on linear equations

In the proof of Theorem 1 we shall use some results on analyticity of solu-
tions of linear evolution equations of the form

b Ao = 1)
w(0) = u,.

(4.1)

We shall make the following assumtions:
8°) For each teS={tC; |arg t|<¢, 0= |t| =T}, A()€L(X) which has
resolvent set containing the sector Q= {AEC; |(arg \)—=| =7[2+¢} and

(#.2) Ix+A@) = CA+ 1A, A€Q,1€2,

where C is a constant independent of A and ¢.

9°) There exists h=1/m, where m is an integer, =2 such that the domain, D,
of A(t)* is independent of # and dense in X.

10°) There exist C, Cy, Cs, k, 1 —h<<k<1 such that

(4.3) NAAGS) ™M =C, tsEE, |arg(t—s) | <o,

(4.4) NA@)A(s)  —I|| < Cylt—s|*  t,sEZ, |arg(t—s)| <.
11°) The map ¢+ A(#)*4(0)* is analytic from =\ {0} to B(X).
12°) fmaps = into X with

(4.5) A —f($) < Cylt—s]* 1,s€3, |arg(t—s)| <o,
13°)  f: 2\ {0} — X is analytic.

14°)  u,=D(A4(0)).

Theorem 3. Let the assumptions 8°)-14°) hold. Then there exists a unique
continuous function u: Z—X such that u: Z\{0} - X is analytic, u(t)s D(A(t))
with du(t)/dt-+ A(t)u(t)=f(t) for t3\{0} and u(0)=u, Furthermore, A(0)"u:
S\{0} = X is analytic and, for 0<<a<<1—R, there exists constant G >0, such that

(4.6) [14(0)*u(t)— A0)u(s)l| < G|t—s|t,  t,sE3, |argt—s)| <o .

Proof. We first restrict ¢ to be real in (4.1), t[0,7). Then the family
{4(2);0=t<T} and the function f:[0,7")— X satisfy the hypotheses of Theorem
A. Thus there is a continuous function #:[0,7")—X which is a solution to (4.1).

From (2.15) and (2.27) for any 0<a<<1—*k and s,7 in [0,T) we obtain

(+.7) 114(0)"(2)— A(0)"u(s)!l
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— QU Ot | Ut o)

—A(0)"[Us, O)uo—I-S:U(s, nfr)ar]l
< 114(0)°[U(2,0)— U(s, 0)1A(0) |- | A(O)u

+ IA(O)"’[S:U(t, Nfydr—| :U(s, nfrarl

< CTV 4 |t—s|*+C | t—s| (| log(t—s) | +1) I<a<a'<l—k
=G It——slk .

We fix @, 0<a<<1—Fk, and we have [|4(0)"4(¢)|| bounded on [0,7T). In fact for
any ¢ in [0,7) from (4.7) we have

14(0)°u()ll = G, [ 2*+-114(0)*uol| = G T*+1A(0) wll -

For 0<é<T/2 we consider the sector Z.={t&C; |arg(t—E)| <o, [t|<
T—¢&}. Since the functions #+— A(t)"4(0) ™" and ¢+ f(t) are analytic in a neigh-
borhood of the closure of =, and by (4.5) f(f) is Holder continuous, we can
apply Theorem B: u has an extention to U {3,; >0} =3\{0} such that u:
2\ {0} — X is analytic, u(t) € D(A(t)) and du(t)/dt-+A()u(t)=f(t) for t€=\{0}.

Next we shall show that A4(0)"u: =\ {0} - X is analytic. Actually seeing
that ¢ A(1)*4(0)™* is analytic, t+— A(0)*A(f)™" is analytic. By rewriting the
equation as A(t)u(t)=f(t)—u'(t) and using the fact that —u(t) and ¢ f(t) are
analytic, we have that tt— A(¢)*u(t)=A(t)""**[ f(t)—u'(¢)] is analytic. Then t+—
A(0)u(t) is analytic from Z\{0} to X as we see the differentiability of A(0)"u(2)
in the following identity

A(0Yru(t+ At)— A(0)u(t)
= A(0)* A(t+At)"*[A(t+ At)'u(t-+ At)— A(t) u(2)]
+[A4(0Y* A(t+ At)~*— A(0)* A(t) "1 A(t)"u(t) .

It remains to show inequality (4.6). We do this in several steps.
i) First, suppose s&(0,T) and

(4.8) t=s+ A ET, 0] <P, 1y>0.
Then v(A)=u(s+nre') is a solution of the equation

“9) %v(x)+ef0A(s+xef0)v(x) — GO f(stNe)  O=AZN,

2(0) = u(s) .

The family B(A)=e"A(s+ne?), 0<A=2,, and the function g(n)=e" f(s+re*),
0=X\=)\,, satisfy the hypotheses 1°) and 2°), and the various constants are in-
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dependent of s,z. In fact, set f=s+reE3, 0<A=<)\,. Then for any A E
[0,7], D(B(\))=D(A(t))) is dense in X and B(\) has resolvent containing the
sector Q= {yeC: Re y<0}.

And for any ye@ from (4.2) it follows that

I(y—BM) 7! = ll(e™*r—A(£:)
< C(1+ ey ]) = C(1+|7])".
Furthermore for any A, x in [0,%] from (4.3), (4.4) and (4.5) we get the follow-
ings,
IBOV'B(p)~*| = lle™A(t)'e™ " A(tu) "]
= [[A@Y At =Cy,
BV B(p) "Il = | A(:)"* A(t) "1l
< Cyls+ne—(s+pe)|* = CIr—pl*,
llgO) —g(p)ll = 1l f(s+-ne®)—f(s+ne”)l|
= Cz|s+7\aeia“(5+#3m)|k = C:sl)\_‘l”k .

Thus B(\) satisfy 1°) and 2°) and g is a Holder continuous mapping. Hence
in the same way as (4.7), we find that

(4.20)  IB(0)'v(A\)—BO0)* v(p)l £ GIn—pl*  a<a'<l—k
where B(0) = e®A(s).
Therefore from (2.18) and (4.10) we get

@11 [JAO)"u(t)— A w9
— LAY A(s)™ Als)” u(s-+re®)— A(0)* A()™ A(s)* u(s+ 06
= [14(0)°A(s)™ ll |~ 11 B(0)" 2(A)—B(0) 2(0)
= MawGIM|* = Gslt—s|*.
if) in the case of s=0.
From (4.7) for any £>0, there exists s (0, T), |arg(t—s)| <¢, such that ||4(0)*
u(s)— A(0)"u(0)|| < €.
Hence according to i) we get
I1A(0)u(t)— A(0)*u(0)|
< I1A(0)u(t)— Q) u()] |+ A0 u(s)— AO)u(O)
< Gslt—s|*+-€
= Gslt|*+€.

Then as £€— 0, we get

4.12)  [1A©0)°u(t)—A©0)uO)l < Gslt|*  largt|<¢, tEX.
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iif) 'The general case.
In the same way as in i) for with general s, 12\ {0}, |arg(¢—s)| <&, we obtain

(+.13) 1AO)u(t)— AQYu)| < Gilt—s]* .
Thus for G=max{G,, G;,G;} Theorem 3 is proved.

5. Proof of Theorem 1

From (0.3) there are constants C,, ¢, >0, T,>0 such that for 13, wEN
and |0| <@, the resolvent set of e”A(¢, Ay “w) contains the left plane and

(5.1) (v —ePA(t, A7) || < Cy(1+Ia])™  Rer=0.

where 3, ={1eC; |arg t| <¢,, 0L |1| < Ty}.
We let ¢p=min{¢p,, ¢,}, and in (0.1) and (0.2) we make the change of
variable t=7e®, 7€[0,T}], || <, so equations (0.1) and (0.2) become

00, i i — L0 i
(5.2) aT+e A(re®, v)v = € f(Te®, v),
2(0, %) = u,.
where v(7,e)=u(1e®), u(t)=v(|2|, t/|¢]).

We hold |0|<¢ fixed and apply Theorem 2 to equation (5. 2). In order
to make precise, let

B(T’ @, 0) = eioA<Tei6) ZU), g(T) w, 6) = ei@f(-reio’ Z())

for T€[0, T1), ||4A5w— A%ul|<R, 10| <¢p. We shall show that for fixed 6, B(r,
w,0) and g(T,w,d) satisfy the hypotheses 3°)-7°) of section 3 with constants in-
dependent of 4.

Since A(¢, A7"w) is well defined for any w& N and ¢€73, and

B(7,B7"w,0) = B(,B(0,u,,0) *w,0) = ¢ A(7e®®, A7" (e "w))
B(, By"w, 0) is well defined for we N and 7 &[0, T'], which verifies 3°).
4°) is verified since by (5.1) and D(B(r,B5®w,0))=D(A(7e®, A7*(e™*"*w))).
For any we N and 7€[0, T] we have
D(B(r, By®w, 0)") = D(e"A(r, A7*(e " *w))") =D,
and from (0.4) and (0.5) it follows that
|1B(1, By *w, 6)*B(7,, By, 6) 7|
=< |leA(Tie®, Ay e "w)te™ 0 A(T,e, A7 %™ "00) 7|

=G
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and
[|B(7y, Bs"w, 6)"B(7,, Bs"v, 0)*—1||
= [|A(,e®, Az w)* A(Te", A5 "v) "t —I||
= Cy{| e —7° |7+ |le™* P —e~ 00| |}
= C{|1,—7,| "+ |lw—o|[} w, 0N, 7,7,€[0,T}] .
Therefore 5°) is verified.
Next from (0.6) we get

llg(Ty, By *w, 6)—g(Ts, Bi", O)|
= ||e® f(r.e", A5 "™ w)—e” f(:", A7% "00))||
= C{lme =] "+l ™w—e o]}
= C4{ITI_TZIO-+”ZU—"UI|} 717726[0) Tl]; 7),‘ZDEN,
which verifies 6°).

Finally, note that

eu,=D(eA4,) = D(By),
|| Boe™uy— e Aju,|| <R,
and 7°) is verified.
Hence it follows from Theorem 2, that there exist 7,0<T < min {7, T}

and a unique solution v(t,e”) of (5.2) defined for 7€[0,T7, |0|<¢, which also
satisfies

(5.3) VASv(T,, e®)—Afv(, €| = K|m—m,|* 7, 7.E€[0, T
1—h<k<min{l—a,c}
(5.4) ||A%v(r, €®)—Afu,l|I<R T€[0,T]

where the constant K does not depend on 4.
Let S={t=C; |arg t| <, 0= |¢| =T} and

{u(t)zv(ltl,tlltl) te=\ {0}

6-3) (0) = u, .

We shall show that u satisfies the conclusions of Theorem 1.
The fact that u(t) € D(A(t, u(t))) and

[|ASu(t)—Ajugl| <R for t3\{0},
[|A%u(t)—A%u,|| < K |t|*  tor tES

follow from the corresponding properties of v.
We now show that Afu; Z\{0} - X is analytic. Actually the proof of
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Theorem 2 shows that o(t, e®) is the limit of a sequence {ov,(7,€?)} where
vy(T, €9)=u,, TH>v,(T, €) is the unique solution of the linear equation 9v,/0T
+e0A(Te, v,_,)v,=e" f(re®, v, ) T€[0,T], (set A5v,,,=T(A%v,) for nEN,)
and also A%v,(7,€") converges to A3o(7,e*) uniformly in 7 &[0, T], v, also satisfies

(5.6) [|A50,(7, €®)— AJu|| <R 7<[0,T],
(5.7) | A30,(T1, €9)—ASv,(T5, €| S K |Ty—7,|* 7, ,E[0,T].
Since Agv, converges to Afv, we have
ou(t) = };EE Afu,(t) where u,(t) = v,(|t], t/|t]).
Therefore, we get the following Lemma,
Lemma 3. Afu is analytic.

Proof of Lemma. From (5.6) it follows that {||4%,(¢)||} is uniformly
bounded in nEN and t€3. Therefore, in order to show Agu is analytic, it
suffices to show

(5.8) ou,: S\ {0} = X is analytic for each n.
We shall show (5.8) by induction, combining with the following inequality
(5.9 [|A%u,(t)— ASu,(s)|| < K, | t—s|* for t,s€3, |arg(t—s)| <.

This is true for n=0 since u(t)=v,(|t|,?/|2|)=u,. Suppose they are true for
#,-1. We shall apply Theorem 3 to the equation

dw B
(5.10) oA uw = ftu) 1€
w(O) = U .
We must show

H(t) = A(t, u,—(1)) and h(t) S (2, (1)

satisfy the hypotheses of Theorem 3.
The fact that each H(t) has resolvent containing the sector |(arg\)—7|
=<=/2+4 ¢ with the estimate

HOv—H(#)) 7 = [[(v—A(2, A7°A%u, (1)) | = C(1+ M) tEZ
follows from (0,3) and the fact that
[|ASuy—1(t)—ASuol| <R  tEX.
From (0.4), we have
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I\H(8)"H(s) ™| = I|A(t, A" Afu,-(t))" Als, Az A%u,o(s)) ™| < C,
t,s€Z, |arg(t—s)|<¢.
Using (0.5), k<o and the induction hypothesis on #,., it follows that
IH(e)"H(s) ™" — 11| = || A(2, Av"Adu,-1())"* A(s, A7*ATu,-o(s)) ™" —1]|

= Cof{lt—s|"+14%u,-1(t) — A3, 1(5)]]

< C{T"*+K, )} [t—s]?

< Ci|t—s|* t,sE3, |arg(t—s)| <.

The analyticity of the map
H(@)"H(0)™" = A(¢t, A7 A%u,_,(t))" 45"

follows from the analyticity of the maps @: (¢, w)— A(t, As "w)"As*
Applying (0.6), 2= and the induction hypothesis on u,_, and ¢ Afu,_,(2).
we obtain

ey —hEI| = 1| £(t, A7™ Aty (£)—f(s, A5 A%t o(5))
= Cf{lt—s| "+ A%u,-1(t) — Adu,_,(s)I1}
= C4{Td_k+Kn—1} [t—s]|*
= Ci|t—s]* t,sEZ, |arg(t—s)|<¢.

The analyticity of the map
h(t) = f(t, A7 Au,(t))

follows from the analyticity of the maps W: (¢,w) f(t,A5"w) and 1+ Au,_(£).

Therefore H(t) and h(t) satisfy the hypotheses of Theorem 3. So (5.10)
has a unique solution w satisfying the conclutions of Theorem 3, i.e. w satisfies
(5.10) and w: S\ {0} — X is analytic. Furtheimore A(0)*w: =\ {0} — X is analytic,
and there exists K,>0 such that

|| A%w(t)— ASw(s)|| < K, |t—s|* t,sE3, |arg(t—s)| <o .
Next, we claim #,=w. We must show v,(7, e®)=wn(7e®). This is true
because the function 7> w(7e®®) is also a solution to %Yﬁ‘—ke""A(Te"", Vyoy)Vp=
T

' f(re',v,_,) and hence v,(7, €")=w(7e’®) by uniqueness. Hence (5.8) and (5.9)
are obtained.
This completes the proof that Afu: Z\{0} — X is analytic. q.e.d.

The continuity of A3u:Z—X follows from the analyticity of A%u: =\ {0} >X and
the estimate ||A5u(f)—Afuy||<K|¢|* for ¢ in =. Finally the fact that u satisfies
the differential equation (0.1) and (0.2) follows from the corresponding property
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of v.
To show that u is unique, it suffices to restrict to real ¢ since # is analytic.
However, for real ¢, uniqueness is included in Theorem 2.

This finishes the proof of Theorem 1.

References

[1] A. Friedman: Partial differential equations, Holt, Rinehart and Winston, New
York, 1969.

[2] T.L.Hayden and F.J. Massey 111: Nonlinear holomorphic semigroups, Pacific ]J.
Math. 57 (1975), 423—439.

[3] T. Kato: Abstract evolution equations of parabolic type in Banach and Hilbert
spaces, Nagoya Math. J. 5 (1961), 93-125.

[4] S.G. Krein: Linear differential equations in a Banach space, Izdatel’stov Nauka,
Moscow. (in Russian); Japanese transl., Yoshioka-shoten, Kyoto, 1972.

[5] F.J. Massey I11: Analyticity of solutions of nonlinear evolution equations, J.
Differential Eqations 22 (1976), 416—427.

[6] S. Ouchi: On the analyticity in time of solutions of initial boundary value problems
for semi-linear parabolic differential equations with monotone nonlinearity, J. Fac. Sci.
Univ. Tokyo, Sect. 1A 20 (1974), 19-41.

[7] P.E. Sobolevskii: Eguations of parabolic type in a Banach space, Trudy Moscow
Mat. Obsc. 10 (1961), 297-350. (in Russian); English transl., Amer. Math. Soc.
Transl. Ser. II, 49 (1965), 1-62.

[8] P.E. Sobolevskii: Parabolic equations in Banach space with an unbounded variable
operator, a fractional power of which has a constant domain of definition, Dokl. Akad.
Nauk SSSR, 138 (1961), 59-62. (in Russian); English transl., Soviet. Math. Dokl.
2 (1961), 545-548.

[91 H. Tanabe: Equations of evolution, Iwanami-shoten, Tokyo. 1975. (in Japanese);
English transl., Monogr. & Studies in Math. vol, 6. Pitman, 1979.

Department of Mathematics
Tokyo Metropolitan University
Fukazawa, Setagaya-ku

Tokyo 158, Japan





