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Introduction. In the study of submanifolds of a riemannian manifold,
as a generalization of a totally geodesic submanifold, the notion of an isotropic
submanifold has been introduced by B. O’Neill [10]. On the other hand, as
another generalization of a totally geodesic submanifold, there is the notion of a
submanifold with parallel second fundamental form. Among submanifolds
belonging to both classes, those which are not totally geodesic have the property
that every geodesic in the submanifold is a circle in the ambient riemannian
manifold (K. Nomizu [8]).

These submanifolds have been studied recently when the ambient rieman-
nian manifold is a riemannian symmetric space. Among them totally umbilical
submanifolds are called extrinsic spheres. It is known that an extrinsic
sphere is isometric to a Euclidean sphere, a Euclidean space, or a real hyperbolic
space (B.Y. Chen [2] and H. Naitoh [7]). If the ambient manifold is a Hermitian
symmetric space, a Kihler submanifold belonging to both classes is congruent
to the Veronese manifold of degree two (H. Naitoh [7]). Moreover K. Nomizu
[8] has shown that if the ambient manifold is a complex projective space with
the Fubini-Study metric, the Veronese manifold of degree two is characterized
by the property that every geodesic in the submanifold is a circle in the com-
plex projective space.

Now nonzero isotropic submanifolds with parallel second fundamental form
are closedly related to planer geodesic submanifolds. When the ambient mani-
fold is a Euclidean sphere, the submanifolds coincide with those which are
planer geodesic but not totally geodesic, and they have been classified by
K. Sakamoto [12]. When the ambient manifold is the complex projective
space, submanifolds which are planer geodesic but not totally geodesic are
nonzero isotropic and have parallel second fundamental forms. Moreover it
is known that these submanifolds are compact riemannian symmetric spaces of
rank one (J.S.Pak [11]).

In this paper we study nonzero isotropic submanifolds with parallel second
fundamental form in a complex projective space with the Fubini-Study metric.
These submanifolds can be divided into the following three types; Kahlerian,
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P(R)-totally real, or P(C)-totally real (Proposition 2.2 and 2.3). In the K#hlerian
case they are congruent to the Veronese manifolds of degree two as above. In
the P(R)-totally real case they are planer geodesic but not totally geodesic in
some real projective space. Moreover, among nonzero isotropic submanifolds
with parallel second fundamental form, Kihlerian and P(R)-totally real sub-
manifolds exhaust all the planer geodesic submanifolds in the ambient complex
projective space (Theorem 3.8). In the P(C)-totally real case, nonzero isotropic
submanifolds with parallel second fundamental form are not planer geodesic
and locally isometric to the riemannian symmetric spaces; S'X S"(n=1),
SU(3)/SO(3), SU(3), SU(6)/Sp(3), Es/F, (Theorem 4.13).

In the section 6 we shall construct a model of imbeddings for the case the
submanifold is locally isometric to the riemannian symmetric space S'xS”
(Theorem 6.5) and in the section 7 for the case the submanifold is locally
isometric to the riemannian symmetric space SU(3)/SO(3) (Theorem 7.2).
Moreover in the section 8§ we shall show that these submanifolds have the
rigidity (Theorem 8.3 and 8.6).

The author wishes to express his hearty thanks to Professor M. Takeuchi
and Professor Y. Sakane for their useful comments during the preparation of
the present paper.

1. Preliminaries

Let M” be an m-dimensional riemannian manifold with a riemannian metric
<, > and M" an n-dimensional connected riemannian submanifold in M™.
Denote by ¥ (resp. V) the riemannian connection on M (resp. M) and by R
(resp. R) the riemannian curvature tensor for V¥ (resp. V). Moreover we
denote by o the second fundamental form of M, by D the normal connection on
the normal bundle N(M) of M and by R' the curvature tensor for D. For a
point pEM, the tangent space 7,(M) is orthogonally decomposed into the
direct sum of the tangent space T,(M) and the normal space N,(M). For a
vector X €T,(M), the normal component of X will be denote by X+. Put

Ny(M) = {o(X, V)EN(M); X, Y €T,(M)}r

where {*}r denotes the real vector space spanned by *. It is called the first
normal space at p. Then we have the orthogonal decomposition

Ny(M) = Ny(M)~+(N 5(M))*

where (N 3(M))* denotes the orthogonal complement of N (M) in N,(M). Let
S*T,(M)) be the set of all symmetric endomorphisms of T,(M). Then we
define the linear mapping 4: N,(M)—S* T ,(M)) by

<A§(X)’ Y> = <0-(XJ Y)) C>
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where X, Y&T, (M) and €N, (M). The symmetric endomorphism A; is
called the shape operator defined by {. By the definition of A4, the restriction
of 4 to N (M) is injective.

Now we recall the following fundamental equations, which are called the
equations of Gauss, Codazzi-Mainardi, and Ricci respectively.

(Ll)  <R(X, V)2, W) = R(X, Y)Z, Wy+<o(X, Z), o(¥, W))
—lo(X, W), o(Y, Z)>

(12)  {R(X, V)Z}* = (Vio)(Y, Z)—(V¥o)(X, Z)

(13)  <R(X, V)L, n> = <RYX, V)E, pp—<[4z, A)(X), V>

where X, Y, Z, WeT,(M), {, €N (M) and V* denotes the covariant deriva-
tion associated to the submanifold M C M, defined by

(Vio)Y, Z) = Dyo(Y, Z)—o(VyY, Z)— (Y, VxZ)

for vector fields X, Y, Z of M. The second fundamental form ¢ is said to be
parallel if V¥o=0. Now for a point pe M, put

O}(M) = T,(M)+N3(M)
which is called the first osculating space at p. Since the second fundamental
form ¢ is parallel, dimensions of N (M) and O(M) are constant on M, and
hence NY(M)=|JN}(M) and O M)= |)O}(M) are subbundles of T(M)|M,
» »

the restriction to M of the tangent bundle T(M) of M. Moreover we have
the following

Lemma 1.1 (See [7, Lemmas 1, 13]). If & is parallel and if M is a rieman-
nian locally symmetric space

a) R(X,Y)ZeT, (M)

b) R(X, V)o(T, Z)ENYM)

¢) RYT,S)e(X, Y)=c(R(T, S)X, V)+o(X, R(T, S)Y)

d) o(T, R(X, Y)Z)=R(o(T, X), Y)Z+R(X, o(T, Y))Z+R(X, Y)o(T, Z)

e) R(o(T, X), Y)o(S, Z)+R(X, o(T, Y))o(S, Z)c O} M)
where X, Y, Z, T, SET,(M).

For a given A =0, a riemannian submanifold M in a riemannian manifold
M is called a n-isotropic submanifold if |o,(X, X)|=x for each point pM
and every unit tangent vector X & T,(M).

Now we recall the notion of circles in a riemannian manifold M. A curve
%, of M parametrized by arc length is called a circle, if there exists a field of
unit vectors Y, along the curve which satisfies, together with the unit tangent
vectors X,=x,, the differential equations

v.X,=kY, and V,Y,= —kX,
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where k is a positive constant, which is called the curvature of the circle x,.
Let p be an arbitrary point of M. For a pair of orthonormal vectors X, Y €
T,(M) and for a given constant k>0, there exists a unique circle »,, defined
for ¢ near 0, such that

x=p, X=X, and (VX))o =~kRY.

If M is complete, x, can be defined for — oo <#<<-}oco.
A nonzero isotropic submanifold with parallel second fundamental form
has the property as given in the following lemma.

Lemma 1.2 (K. Nomizu [8]). If M is a A\(>0)-isotropic submanifold with
parallel second fundamental form in M, every geodesic in M is a circle with the
curvature \ in M.

2. Submanifolds with parallel second fundamental form in P"(c)

Let P"(c) be the m-dimensional complex projective space of constant
holomorphic sectional curvature ¢(>0) and M" an zn-dimensional connected
complete riemannian submanifold with parallel second fundamental form in
P"(c). Then M” is a riemannian locally symmetric space since P"(c) is a
riemannian symmetric space.

From now on we put M=P"(c). Let ] be the almost complex structure
on P"(c). Then we have the following

Lemma 2.1 (See B.Y. Chen and K. Ogiue [4]). If A, B, C are tangent
vectors of P™(c),

R(4, B)C = -(<B, C>A+<{JB, C>JA—<4, C>B

—<J4, C>JB+2{4, JB>]C).

Proposition 2.2 (cf. [4]). If M" is a riemannian submanifold with parallel
second fundamental form in P"(c), it holds either

a) J(T,(M))=T,( M) for every point pcM
or

b) J(T,(M))CTN,(M) for every point p M.

Here we note that in the case a) M is a Kihler submanifold in P™(c) and
in the case b) we call M a totally real submanifold in P"(c). Moreover we
have the following

Proposition 2.3. If M" is an n(=2)-dimensional totally real submanifold
with parallel second fundamental form in P™(c), it holds either

b) J(T,(M)C(NXM))* for every point peM
or
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b)) J(T,(M))CN (M) for every point p= M.

Proof. For a vector {EN,(M), we denote by &, (resp. {;) the Nj(M)-
component (resp. (N }(M))t-component) of {. Let X, Y (resp. H) be vectors in
T,(M) (resp. in Nj(M)). Then we have

JY,H>JX—<JX, H>]JYEN (M)
by Lemma 1.1,b) and Lemma 2.1, and thus

21)  (UYV)e HX(JX)s = (JX)s HX(JY)s

Assume that there exists a vector JX such that (JX),=+0. Then putting H=
(JX), in (2.1), we have

22)  (JY)s = cxy(JX)s

U Y)w (JX)>

where ¢cyy=>J /o oz Hence by (2.1) we have
UX) (JX)s

U Y)a—exy(JX)s HX(JX), = 0.
If (JX); #0, (JY)s=cxy(JX), and thus together with (2.2), JY=cxy JX for any
vector Y& T,(M). This contradicts that dim M =2. Therefore we have
(JX);=0. By (2.2), (JY),=0 for any vector Y & T,(M), which shows

J(Ty(M))CN}(M). Since M is connected, we get our claim by the routine
way. q.e.d.

In the case b,) (resp. b,)) we call the submanifold M of type P(R) (resp. of
type P(C)).

Now we discribe the relation between the almost complex structure J
and the second fundamental form ¢ in the following

Lemma 2.4. If M" is a totally real submanifold in P™(c), we have
(T, X), JY> =<o(T, Y), JX>
for vectors T, X, Y € T,(M).

Proof. For vector fields T, X, Y tangent to M,

<0'(T: X)’ JY> = <VTX) ]Y> = _<JVTX: Y>
= —(VrJX, V> =<{JX, V;Y)
=<o(T, V), JX>. q.e.d.
Now we recall the notion of Lie triple system. Fix a point p&P"(c). Let
G be the identity component of the group of isometries of P™(c), and set K =
{g€G; g(p)=p}. Let §and ¥ be the Lie algebras of G and K respectively, and
let
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§= 5
be the associated canonical decomposition. Then the tangent space T,(P"(c))

is identified with p. A subspace m in P is called a Lie triple system if
[[X, Y], Z]lemfor X, Y, Zcm. Since

R(X,Y)Z = —[[X, Y], Z]

for X, Y, Z €p under the above identification, we call a subspace ¥ in T ,(P™(c))
a Lie triple system if R,(X, Y)Z €V for X, Y,Z€V. Then we know that for
a given Lie triple system V in T,(P™(c)), there exists a unique complete totally
geodesic submanifold NV in P"(c) such that p€N and T,(N)=V. If Misa
submanifold with parallel second fundamental form in P"(c), the subspace
T,(M) is a Lie triple system in T,(P™(c)) for every point p& M. Concerning
totally geodesic submanifolds in P"(c) we get easily the following

Lemma 2.5. Let M" be a complete totally geodesic snbmadifold in P"(c).
If M" is Kdhlerian, the manifold M" is isometric to the complex projective space
P’(c) (2r=n) of constant holomorphic sectional curvature c. If M" is totaly real,
the manifold M™ is isometric to the real projective space P*(R) of constant sectional

curovature %

3. Planer geodesic submanifolds in P"(c)

In this section we consider the cases when M is Kihlerian or totally real of
type P(R) (cf. Proposition 2.2 and 2.3). In the former case we have

Proposition 3.1 (K. Nomizu [8]). If M" is a complete nonzero isotropic
Kahler submanifold with parallel second fundamental form in P™(c), M" is the
full Veronese submanifold of degree 2 in some totally geodesic complex projective
space in P™(c).

Note that the local version is also true by a result of Calabi [1].

In the rest of this section we exclusively study the latter case.

Lemma 3.2. If M" is an n( =2)-dimensional P(R)-totally real submanifold
with parallel second fundamental form in P™(c), the first osculating space Oy(M) at
PEM is a Lie triple system in T,(P"(c)) and there exists a unique totally geodesic

submanifold in P"(c) of constant sectional curvature % whose tangent space at p
is the space Oy(M).

Proof. At first we shall show that Oy(M) is a Lie triple system in T,(P"(c)).
Along the same line as in the proof of Lemma 13 in [7], it is sufficient to show
the followings;
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R(X, o(T, Y))Z&N}(M)cOyM)
R(X, o(T, Y))o(S, Z)= T,(M)CO¥M)

for X,Y,Z,T,S€T,(M). By Lemma 2.1 and the condition that J(T,(M))C
(N }(M))*, we have

R(X, o(T, Y))Z = —%(X, Z>¢(T, Y)ENKM).
Similarly we have
R(X, (T, Y))o(S, Z) = %(@(T, Y), o(S, Z)>X

+<{Jo(T,Y), a(S, Z)> JX)
R(o(T, X), Y)o(S, Z) = —%(@(T, X), o(S, Z)>Y

3.1)

\ +<{Jo(T, X), (S, 2)>]Y).
By Lemma 1.1,e) and (3.1), we have
(T, ¥), oS, ZYWX—<Jo(T, X), (S, Z)>JY €OXM).
For any vector X there exists a vector ¥ &T,(M) such that X and Y are linearly
independent, since dim M =2. Hence by the condition that J(T,(M))C
(N 3(M))+, we have
{Jo(T, X), o(S, Z)> =0
and thus
(3:2)  <JNH M), NyM)> = {0} .
Hence by (3.1) and (3.2), we get

R(X, o(T, V))o(S, Z) = %@(T, Y), o(S, Z)>X eT,(M).

Now noting that the first osculating space O3(M) is a totally real Lie triple
system in T,(P"(c)) by (3.2) and the condition that J(T,(M))C (N }(M))t, we

have the second assertion by Lemma 2.5. q.e.d.
By Lemma 2.5, Lemma 1.2 and the uniqueness of circle, we have

Proposition 3.3. If M" is an n(=2)-dimensional complete nonzero isotropic
P(R)-totally real submanifold with parallel second fnndamental form in P™(c),
there exists a unique totally geodesic submanifold P’(R) such that

1) M?™" is a submanifold in P'(R)
and
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2) OYM)=T(P'(R)) for any point q= M.
Proof. Aanalogous to the proof of Proposition 15 in [7].

Now we recall the notion of planer geodesic submanifolds. A submanifold
M in a riemannian symmetric space M is called a planer geodesic submanifold
if for any maximal geodesic v in M, there exists a 2-dimensional totally geodesic
submanifold in M containing v. K. Sakamoto [12] has studied the case that
M is of constant sectional curvature. We discribe two lemmas which we use
in this paper.

Lemma 3.4 (K. Sakamoto [12]). Let M be a riemannian submanifold in a
riemannian symmetric space M(c) of comstant sectional curvature c. Then the
following three conditions are equivalent.

(P.G) The submanifold M is planer geodesic and not totally geodesic.

(ILP) The submanifold M is nonzero isotropic and has the parallel second
Sfundamental form.

(G.C) Every geodesic in M is a circle in M(c).

Moreover K. Sakamoto [12] has shown that a complete planer geodesic
and not totally geodesic submanifold M in the Euclidean sphere S™ is one of
the followings;

(1) M is a totally umbilical and not totally geodesic submanifold in S™.

(2) M is isometric to a real projective space, a complex projective space,
a quatanion projective space, or a Cayley projective space. And the imbeddings
are full and minimal ones constructed by S.S.Tai.

(3) M is a Tight imbedded submanifold in some totally umbilical sub-
manifold in S™.

Here along his argument we also have the following

Lemma 3.5 (K. Sakamoto [12]). Without the assumption of completeness,
the planer geodesic and not totally geodesic submanifold M is locally isometric to
one of the compact riemannian symmetric spaces of rank one. Here the dimension
of the first mormal spaces equals 1, (n—1) (n+2)/2, (n—1) (n+2)/2-+1 if M is
locally isometric to S"; (n—1) (2n+1) or (n—1) 2n+1)+1 if M is locally iso-
metric to P"(H); n*—1 or n* if M is locally isometric to P"(C); 9 or 10 if M is
locally isometric to P*(Ca).

Now we study complete nonzero isotropic submanifolds with parallel second
fundamental form in P'(R).

Proposition 3.6. Let M”" be a complete nonzero isotropic submanifold with
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parallel second fundamental form in P"(R) and let =: S"— P’ (R) be the covering
map. Then there exists a complete nonzero isotropic submanifold M with parallel
second fundamental form in S™ such that =: M—M is isometric.

Proof. The subset #7(M) in S” is a submanifold since 7 is a covering
map. Let M be a connected component of z~}(M). Then M is a complete
nonzero isotropic submanifold with parallel second fundamental form in S’
We shall show that z: M~ M is isometric. Suppose that z: M—M is not in-
jective. 'Then there exist distinct points x and y in M such that z(x)=7(y).
Here we note that x and y are anti-podal in S”. Let v be a geodesic in M
joining x and y. By Lemma 3.4, 7 is a circle in S". This is a contradiction.
Hence z: M—M is injective. Since M is compact, we get our claim. q.e.d.

Now summing up some results of J.S.Pak [11], we have the following

Lemma 3.7 (J.S. Pak [11]). A planer geodesic and mot totally geodesic
submanifold M in P"(c) is either nonzero isotropic Kdahlerian with parallel second
fundamental form or nonzero isotropic P(R)-totally real with parallel second
Sundamental from. (Here we need not assume the completeness of the submanifold

M)

The Veronese submanifold in P"(c) of degree 2 is planer geodesic and not
totally geodesic (cf. J.S. Pak [11]), and by Lemma 3.4 so are the submanifolds
in Proposition 3.6. Hence together with Lemma 3.7 and Proposition 3.1, 3.6
we have the following

Theorem 3.8. Let M" be an n(=2)-dimensional complete nonzero isotropic
submanifold with parallel second fundamental form in P™(c). Then the submanifold
M is planer geodesic if and only if M is Kdhlerian or P(R)-totally real. Moreover
such submanifolds are those given in Proposition 3.1 and 3.6.

4. Non planer geodesic submanifolds in P"(c)

In this section we study the case when M is totally real of type P(C) (cf.
Proposition 2.3).

Lemma 4.1. If M" is an n(=2)-dimensional complete P(C)-totally real
submanifold with parallel second fundamental form in P"(c), the first osculating
space O)(M) at p& M is a Lie triple system in T,(P"(c)) and there exists a
unique totally geodesic Kdahler submanifold P’(c) in P"(c) such that p=P’(c) and
T(P'(c)=0}(M).

Proof. At first we shall show that O;(M) is a Lie triple system in T,(P"(c)).
Along the same line as in the proof of Lemma 13 in [7], it is sufficient to show
the followings;
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R(X, o(T, Y))Z€0)y(M) and R(X, o(T, Y))o(S, Z)cO}M)

for X,Y,Z,S, TeT,(M). By Lemma 2.1 and the condition that J(T,(M))C
N (M), we have

R(X, o(T, Y))Z = 3 ({Jo(T, ), Z>JX—<X, Z>o(T, )
+24X, Jo(T, Y)>JZ)EN (M) .

Similarly we have

R(X, o(T, Y))o(S, Z) = %(@(T, Y), o(S, Z)>X
+<{Jo(T,Y), a(S, Z2)>JX—<JX, o(S, Z)> Jo(T, Y)

@.1) +2<X, Jo(T, Y)> Jo(S, 2))

E(o-(T, X), Y)o(S, Z2) = %((]Y, (S, Z)> Jo(T, X)
—<o(T, X), o(S, Z)>Y—<Jo(T, X), o(S,2)>]Y
+2{o(T, X), JY> Jo(S, 2)) .

By Lemma 1.1,¢), (4.1), and Lemma 2.4, we have
42) <JY,H>Jo(T, X)—<JX, H)Jo(T, Y)EO,(M)

for X, Y, T€T,(M)and H=N (M). For any vector X there exists a nonzero
vector Y €T,(M) such that X and Y are orthogonal, since dim M =2. Since
J(T,(M))C N (M), we may substitute H for JY in (4.2). Hence we have

(4.3)  Jo(T, X)EOXM) and thus JN3(M)COYM).

By (4.1), we have R(X, o(T, Y))o(S, Z)EO}(M).
Moreover (4.3) and the condition that J(T,(M))C Nj(M) imply that
JO,(M)cO}(M). Hence the second assersion is proved. q.e.d.

In the same way as Proposition 3.3, we have the following

Proposition 4.2. If M" is an n( =2)-dimensional complete nonzero isotropic
P(C)-totally real submanifold with parallel second fundamental form in P"(c), there
exists a unique totally geodesic Kdhler submanifold P’(c) such that

1) M" is a submanifold in P’(c)
and that
2) Oy M)=T,(P'(c)) for every point g= M.

Now we have the following fundamental
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Lemma 4.3. Let M be a totally real \(>0)-isotropic submanifold with
parallel second fundamental forms in P™(c) and let N be a totally geodesic submani-
fold in M. Then N is a totally real \-isotropic submanifold with parallel second
fundamental form in P™(c).

Proof. We claim that N is a submanifold with parallel second funda-
mental form in P"(c). The second fundamental form for the imbedding N—
P"(c) is the restriction of o to T(IN) X T(NN), so we use the same notation o for
the imbedding N—P"(c). Denote by D¥ (resp. V*¥) the normal connection on
N (resp. the covariant derivation for normal bundle valued tensors on N). At
first we note that the Lie triple system T,(M) in T,(P"(c)) defines a totally

geodesic submanifold of constant sectional curvature % Thus T,(N)is a Lie

triple system in T,(P"(c)). So, by the equation of Codazzi-Mainardi, V*¥o is
a symmetric tensor on N. We shall show that

(VE'6)(X, X)=0 forany X T,N).
Let X, be the tangent vector field of the geodesic in N starting from p with
initial vector X. Then we have
(Vo) (X, X)) = DYo(X,, Xi)| 1o
= D:U(Xb Xt) , tzo—(AdX_x)X)'L
= —(Aotx,0X)*

where (*)* denotes the normal component of * with respect to the decomposition
T(M)=T,(N)+(T,(N))*. Since M is isotropic in P"(c), we have

<A0‘(X_X)XJ Y> = —<0-(X: X)) O'(X, Y)> = 0

for any vector Y &T,(M) orthogonal to X. Hence we have (Vi"s)(X, X)=0.
Now the other assertions are easy to see. q.e.d.

For orthonormal vectors X, Y &T,(M), denote by K(X,Y) (resp.
K(X,Y)) the sectional curvature of the plane spanned by X and Y for M (resp.
for M), and put Ay,=K(X, Y)—K(X, Y). We call A the discriminant at p< M.
Then we have

Lemma 4.4 (B.O'Neill [10]). Let M" be a \(>0)-isotropic submanifold
in a riemannian manifold M. Assume that the discriminant A at pEM is con-
stant. Put m,=n(n+1)/2, and h,= (n+2)/2(n—1). Then we have —h A \*<A
<\ Furthermore, if o, is the second fundamental form at p, then

(1) A=N*eM is totally umbilical at p<dim N ,(M)=1

(2) A=—h\eM is minimal at p<=dim N }(M)=m,—1
3) —kAN<A<ANedim N (M)=m,.
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Now we need some propositions in order to get our reduction.

Lemma 4.5. Let T" be an n(=2)-dimensional flat manifold. If T" is a
nonzero isotropic submanifold with parallel second fundamental form in P"(c), then
n<3.

Proof. Note that T is P(C)-totally real and that the discriminant equals

negative constant —%. Thus by Lemma 4.4, we have

44) dimNy(T"=m,—1.
On the other hand, by the equation of Ricci and Lemma 1.1, c), we have
RX,V)H,H» = —{[4n, 45)X, V>
for X, YeT,(T") and H, HEN}(T"). Noting that T" is P(C)-totally real, by
Lemma 2.1, we have
(45)  [An A X = T<JX, H>(JH)—¢ <JX, H>(JAY

where (*)" denotes the T,(7")-component of *. Set

NKT") = J(TTNHJ(TLT))* -
If H He(J(T(T"))Y, [Ax Az]=0 by (4.5). Let S¥T,(T")) is the vector
space of all the symmetric endomorphisms on T,(7") as in section 1. 'Then
we get

dim {( J(T,(T")))'} <the dimension of a maximal abelian

subspace in S*(T,(T"))
=n

and thus

dim Ny(T")<2n.
Together with (4.4), we see that n=2 or 3. q.e.d.

From now on a riemannian submanifold in a riemannian manifold is said
to be first full if the first normal space equals the normal space at any point.

Proposition 4.6. Let T? be a 2-dimensional first full \-isotropic flat submani-
fold with parallel second fundamental form in P’(c). Then r=2, x:—z\\//%.

Moreover T? is a minimal submanifold in P*(c).
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Proof. Note that 72 is P(C)-totally real. Since the discriminant A

equals negative constant —%, we have dim Nj(T?%=2 or 3 by Lemma 4.4.

If dim Nj(T?=3, then dim P’(c¢)=5, which is a contradiction. Hence
dim Nj(T%=2 and thus r=2. Again by Lemma 4.4, T? is a minimal sub-
Ve
. - _ Ve
manifold in P%c) and 7&—2\/ 2 q.e.d.

Proposition 4.7. Let T" be an n(=2)-dimensional flat manifold. If T" is
a nongzero isotropic submanifold with parallel second fundamental form in P™(c),
then n=2.

Proof. By Lemma 4.5 it is enough to see that # 3. Suppose that n=3.
Then by Proposition 4.2 and Lemma 4.4, T2 is a first full minimal submanifold
in P¥c). Let T? be a 2-dimensional totally geodesic flat submanifold in 72
Then by Lemma 4.3 and Proposition 4.6, 77 is a minimal submanifold in P(c).
For a point peT? let {e, e, e;} be an orthonormal basis in T,(7%) such that
{es, e;} is an orthonormal basis in T,(7?). By the minimality of imbeddings
T3 P*c) and T?—P*c), we have

a(ey, &)+ a(e, e)+a(es, e3) =0
0'(6’1, el)—l_o'(eb ez) = 0

and thus o(e;, 5)=0, which contradicts the fact that 7° is a nonzero isotropic
submanifold in P*(c). q.e.d.

Lemma 4.8 (B.Y. Chen and K. Ogiue [4]). Let M" be a totally real minimal
submanifold immersed in P"(c). If M" is of constant sectional curvature and has
the parallel second fundamental form, then M" is either totally geodesic or flat.

Proposition 4.9. Let M" be an n(=2)-dimensional first full totally real
nonzero isotropic submanifold with parallel second fundamental form in P'(c).
Then M" is not of rank one.

Proof. Assume that M" is of rank one. Let v be a geodesic in M. Since
M is of rank one, it is easy to see that there exists a 2-dimensional complete
totally geodesic submanifold N? immersed in }/ which has nonzero constant
sectional curvature and which contains ¥ (cf. [3]). By Lemma 4.3, N2 is a
nonzero isotropic totally real submanifold immersed in P’(c) with parallel second
fundamental form. Suppose that the submanifold N? immersed in P’(c) is of
type P(C). Then by Lemma 4.4, N? is a first full minimal totally real nonzero
isotropic submanifold with parallel second fundamental form in P?*). This
contradicts Lemma 4.8. Hence the submanifold N? immersed in P’(c) is of
type P(R) and thus planer geodesic. Therefore M is a planer geodesic sub-
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manifold in P’(c). By Lemma 3.7, the imbedding M —P’(c) is of type P(R).
This is a contradiction. q.e.d.

Proposition 4.10. Under the assumption of Proposition 4.9, a riemannian
locally symmetric space M" has not noncompact factors.

Proof. Assume that M has a noncompact factor. Then it is easy to see
that there exists a two dimensional totally geodesic submanifold N? in M of
constant negative curvature [cf. [3]). By Lemma 4.3, N?is a nonzero isotropic
submanifold with parallel second fundamental form in P’(¢). Since N? is of
constant negative sectional curvature, we see that the discriminant A of the

imbedding N?*—P’(c) is not more than —%. This contradicts Lemma 4.4,

since 7\=2\\//C7 by Proposition 4.6, 4.7 4.9. q.e.d.

Let M" be an n(=2)-dimensional complete nonzere isotroplc P(C)-totally
real submanifold with parallel second fundamental form in P"(c). Then by
Proposition 4.7, 4, 9, and 4.10, M" is a riemannian locally symmetric space of
rank two and without noncompact factors. We shall consider the submanifold
M" in detail.

Proposition 4.11. Let N be a riemannian locally symmetric space locally
isometric to ome of the following riemanniann symmetric spaces S'Xx P*C),
S'XPYH), or S'XP%Ca). Then N can not be locally imbedded in P"(c) as a
nonzero tisotropic P(C)-totally real submanifold with parallel second fundmental
form.

Proof. We consider the case when NN is locally isometric to S*XP¥C).
Suppose that N is locally imbedded in P™(c) as a nonzeao isotropic P(C)-totally
real submanifold with parallel second fundamental form. Then we may assume
that the above imbedding is first full in P’(c) by Proposition 4.2. Moreover by
Lemma 4.3, the local imbedding P*C)—S'X P¥C)—P’(c) is nonzero isotropic
totally real, and has parallel second fundamental forms. Since P*C) is of
rank one, the local imbedding is planer geodesic and not totally geodesic by
Proposition 4.9. By Lemma 3.5, the dimension of the first normal space
N2y of PC) equals either 3 or 4. Suppose that

(4.7)  dim Nj2¢) = 3 (resp. dim N2y = 4) .
Then the first osculating space of the imbedding P*C)—P’(c) is a Lie
triple system which defines the unique totally geodesic submanifold P'(R)
(resp. PX(R)), and hence we have 7=<r (resp. 8<7). On the other hand we

have the local imbedding P%C)—S*X P¥C)—P’(c), and thus by (4.7) we see
that dim O%1xp2) <13 (resp. dim O%1yp2) < 14) and thus <6 (resp. r 7).
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This is a contradiction.
The other cases can be proved by the same way. q.e.d.

Proposition 4.12. Let N be a riemannian locally symmetric space locally
isometric to the riemannian symmetric space S*X S®.  Then N can not be locally
imbedded in P"(c) as a nonzero isotropic P(C)-totally real submanifold with
parallel second fundmeutal from.

Proof. Assume that N is locally imbedded in P™(c) as a nonzero isotropic
P(C)-totally real submanifold with parallel second funpamental form. Take
a point pEN and identify p with a point (p,, p,)ES2X.S% Then the tangent
space T,(S?x S?) is decomposed into two orthogonal subspaces T (S?) and
T,(S?. Let X (resp. Y) be a unit vector in T, (S?) (resp. T,,(S?). Then the
Lie triple system {X, Y} in T,(S?X.S? defines a two dimensional flat totally
geodesic submanifold in N. Hence by Lemma 4.3 and Proposition 4.6, we have

4.8) o(X, X)+o(V,Y)=0.

We may assume that the above imbedding is first full in P’(c) since the
symmetric space S?XS? is of rank two. Note that (X, X)=0(Z, Z) for all
unit vectors X, Z&€ T, (S?) (j=1, 2) by (4.8). Then we have 2r=dim O}(S*x S?)
<9 and thus 7<4. On the other hand since the Lie triple system T,(S?X S?) in
T,(P’(c)) defines a unique totally geodesic submanifold P4R) in P’(c), we have
4<r and thus r=4. Again by (4.8) there exists a nonzero vector H such that

{0(X, X), o(Y, ¥); XET, (5%, YET,(S)}r= {H}r.

Since two totally geodesic submanifolds S? in S?x S? are planer geodesic and
not totally geodesic in P*(c) by Proposition 4.9, we have J(T)(S?)1 H and
J(Ts(S») L H and thus J(T,(S?*xS%)_ H. This is a contradiction to our
assumption that N is P(C)-totally real. q.e.d.

Now B.Y. Chen and T. Nagano [3] have classified the maximal totally geodesic
submanifolds in irreducible compact riemannian symmetric spaces of rank two.
Their classification make a mistake for the riemannian symmetric space SU(3).
(Table VIII in [3] shows that the space SU(2)X SU(2) is totally geodesic in
SU(3).) But along their arguments we can see that the riemannian symmetric
spaces S'X P¥C), S'X P*(H), S'x P*Ca), S*x S? can not be locally imbedded
in SU(3) as totally geodesic submanifolds. Together with their classification
for the other spaces we see that every space except the following spaces
SU(3)/S0(3), SUQA), SU(6)/Sp(3), Es/F, contains one of the above four spaces
immersed totally geodesic submanifolds. Then, by Lemma 4.3 and Proposi-
tion 4.7, 4.9, 4.10, 4.11, 4.12, we have the following

Theorem 4.13. Let M" be an n(=2)-dimensional complete P(C)-totally real
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N> 0)-isotropic submanifold with parallel second fundamental from in P"(c),
Tnen the submanifold M is locally isometric to one of the riemannian symmetric

spaces; S'x 8" (n=2), SU3)[SO(3), SUQ3), SU(6)/Sp(3), E¢/F, Moreover

Ve
the constant A equals N

Proof. The second statement follows from Proposition 4.6. q.e.d.

5. P(C)-totally real ZL\/S‘Z—-isotropic flat submanifolds with parallel

second fundamental from in P"(c)

Let M? be a 2-dimensional complete first full P(C)-totally real Q\% -isotro-

pic flat submanifold with parallel second fundamental form in P’(¢). Then by
Proposition 4.6, r=2. In this section we shall construct such sumbanifolds.

At first we study isometric equivariant imbeddings of riemannian locally
symmetric spaces into a complex projective space P"(c).

Let G=SU(m+1) be the special unitary group and set

a|0---0

g={|0 4 |ESUm+1); acT(1), 4€Um) ).
0

Fix a G-invariant metric <, > on the homogeneous space G/K=P"(C)
induced from a bi-invariant metric on G. Then the riemannian manifold
(P™(C), <, >) has constant positive holomorphic sectional curvature. Let
g (resp. E) be the Lie algebra of G (resp. K) and §=F-p be the canonical de-
composition. Then we can identify the tangent space T5(G/K) with the vector
space P canonically, where 6=eK. Let G be a connected compact Lie group
and p an injective homomorphism of G into G. Then the imbedding f of the
homogeneous space M=G/K into P”(C) is induced as follows;

f(gK) = p(g)K forany g &G

where K=p~}(K). Moreover when we take the metric on M induced from the
metric on P"(C), the imbedding f is G-equivariant and isometric. Let g
(resp. f) be the Lie algebra of G (resp. K).

From now on we assume that g is an orthogonal symmetric Lie algebra
with the subalgebra f as the fixed points of the involution. Then M is a
complete riemannian locally symmetric space, and we have the canonical decom-
position g=%+p and identify the tangent space T,(M) at o0=eK with the vector
space p canonlcally Let m be a subspace in D consisting of p-components of
elements in dp(p) with respect to the decomposition §=¥-+P and let m* be the
orthogonal complement of W in p. Then we may regard the second funda-
mental form o, at o of the imbedding f as an element in S*(p*)Qmit.
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Proposition 5.1. For X,Y &p,
oo(X, Y) = ([dp(X), dp(V)g))z"
where (x); (resp. (*)g) denotes the F-component (resp. D-component) of * with respect
to the decomposition §=¥+D, and (x)_* denotes the Ti‘-component of % with
respectto the decomposition p=m+m™".

Proof. Let A* (resp. B*) be the Killing vector field of M (resp. of P"(C))
generated by AP (resp. BE§). For X, Y €p and Hemit,
oo X, Y), HY = {Vuptrdp(Y)*, H*,
= %K[ﬁ, dp(X)]*, dp(Y)*>+<[H, dp(Y)]*, dp(X)*>
+<[dp(X), dp(V]*, H*},
= %<[dp(X)» dp(Y)]+[dp(Y), dp(X)5], H>

= 3 <dp(X)y, dp(V)gl+dp(Y)y dp(X)5), B

since g is an orthogonal symmetric Lie algebra with the compactly imbedded
subalgebra f. Thus we have

ol X, V) = 2 {{dp(X)dp( V)51 +[dp(V)p dp(X)5lhz

Noting that (g, f) and (g, f) are orthogonal symmetric Lie algebras such that
dp(t)c¥, we have dp([X, Y])<F for any X, YEp and hence
[dp(X)p dp(Y)gl+-[dp(X)g dp(Y)g] = 0.
Thus
oo X, ¥) = [dp(X)p dp(Y)5l" -
q.e.d.

Proposition 5.2. The imbedding f of M into P"(C) has the parallel second
fundamental form if and only if the following conditions are satisfied;

[dp(X);, [dp(V)y, dp(Z);Tl €™
and
[dp(X)p [dp(X)p dp(X)llEm
forany X, Y,Z p.
Proof. Since f is a G-equivariant, we may consider only at the point o.
By the equation of Codazzi-Mainardi, the first condition implies that (V¥*s),&

S¥p*)@mL. Since the integral curve of X* through o for X &b is a geodesic
in M, we have
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L(V*o)(X, X, X), H) = Dyu(o(X*, X*))—20(VX *, X *), H*,
= LD ys(a(X*, X*)), H*D) = Vipixr»Vap+dp(X)*, H*,
= {dP(X)*<Vdp(X)*dP(X)*a H*>}o—<Vdp(x)'dP(X)*s Vdp(x)*ﬂ*>o

for Hemt. Note that dp(X)* and H* are Killing vector fields of P"(C). By
the same calculation as in Proposition 5.1, we have

the first term of the right hand
= <{[dp(X)p [@p(X)y dp(X)l], H

and

the second term of the right hand

Thus

= —<[@p(X)p, [dp(X)p dp(X)5]), H .

(V*o)o(X, X, X) = 2[dp(X)yp, [dp(X)p, dp(X)gllgz" -
So the second condition implies that (V*o)y(X, X, X)=0 for any X €p. The

converse follows by the same way.

Now we consider the case of P*C).

07 0)
100
000
000
00¢
070

X, =

0 =

Set
00¢ 0-—-10
000(, H,=[1 00|,
100 0 00
00 0 (iO 0
00—-1|,S=|0: 0],
01 0 00 —2;

q.e.d.

00 —1
00 O
10 O
i 0 0)
0 —20].
0 00

a,—

T=

Then = {Q_, R,S,T}r and p={X;H,;j=2, 3}x. Moreover the bracket
relation [4, B] is given by the following table 1.

Table 1.

NElx | x| B | B | G R 5 T
X, 0 R of | ¢ | B | =% | o | —2m,
X, o | - | S+7| B, | X | —38.| —m,
A, 0 X, | -H. | o | 2%,
A, 0o | X% | m | 3% | X

4 0 |5-T| -3k | R
R 0 3Q —Q
5 0
T 0
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Note that the almost complex structure J on p is given by
= ad( L(§43T

J= ad(Z(S—l—B'T))
and that

]X2= E’z, ]H2= '“Xz; JX3= Hs: jH3= —X3-
Now we define an inner product on § by

<{A4,B>= 2 trace A.B*

c

for 4, B€3. Then this inner product induces the metric of P*C) of constant
holomorphic sectional curvature c.

Now we shall find out our examples in orbit spaces of maximal tori of
G=SU(3). Let A (resp. B) be a unit vector in § such that

Ay = aS+BT+vR+380 (resp. By = aS+BT+7R+80)
and
/‘Tﬁ = X, (resp. EE = X;)

where a, 3, 7, 8, &, B, %, 8€R. Set a(4, B)= {4, B}z. Then, by Table 1,
we have the following

Lemma 5.3. The followings are equivalent:

(1) The vector subspace &(A, B) is an abelian subalgebra in §.
o | 7=7=0, 8=~—28, Sa+5+5=0,
14+ 3a6—RB86—38@-+88=0.
Let T(A, B) be the maximal torus in G with the abelian Lie algebra
a(4, B) and T'(4, B) the discrete subgroup in 7(A4, B) defined by

(4, B)= {t€ T(4, B); t-6=0} .

Then the homogeneous space M(A, B)=T(A4, B)/T(4, B) is an abelian Lie
group. Since the imbedding f 5): M(4, B)—>P¥c) is T(A, B)-equivariant, the
induced metric < , > 3 on M(4, E) is flat. Moreover we have the following

Lemma 5.4. The imbedding fia 5y of the compact flat manifold M(A, B)
into P*(c) is minimal if and only if the following conditions are satisfied;
{B:—-a’ 7:0) 8 =24
B=—a, 7=0, §=—2a and 8a*+82*=1.
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Proof. Since f(a 3) is T4, E)-equivariant, it is enough to see our claim

at the point o—=eI'(4, B). Note that vectors 4 and B are orthogonal and
have the same length with respect to <, > 5), and that mi={X,, X;}z and
mt={H,, Hj}r. Hence by Proposition 5.1, the imbedding f(1 5) is minimal
if and only if the following condition is satisfied;

{[giu XZ]_I_[EE) X3]};J— =0.
By Table 1, we see that this is equivalent to
(5.1) —8+28=0 and —8+3a+B=0.
Now our claim follows from (5.1) and Lemma 5.3, (2). q.e.d.
Now put azz—\}—f cos ¢ and &= —24\71:2: sin z, and for simplicity denote

the vectors

0 1 0 0 0 7
i— 7 %icost %isint  B— 0 %isint ——%icost
0 %z’sint —%icost ) ——%icost —%isint

by 4,, B, respectlvely, the abelian subalgebra a(A B) by @, the maximal
torus T(4, B) by T, the discrete subgroup T'(4, B) by T, the compact flat
manifold M(A, B) by M,, the minimal imbedding fa » by fi, and so on.

Lemma 5.5. The minimal imbedding f,: M,— P%(c) has the parallel second
fundamental form o .

Proof. Since f; is T,-equivariant, it is enough to see our claim at o,. By
Table 1, fi={X,, X;}r is a Lie triple system in p and hence the first con-
dition of Proposition 5.2 is satisfied. Again by Table 1, we have

[(A_)ir (gt)ﬁ]’ [(gt)}‘» (Et)ﬁ]’ [(Et)f’ (‘qt)ﬁ] ’ [(B_t)i’ (B-t)ﬁ]e {HZ: Hs}R
and

[(A)p H), (A H, (B, ), [(B)y H)E{X,, Xr.
Thus we get

[(7\'1414‘ ILEI)i, [(7\/11‘,‘ #Et)p (A,ATFF ILEt)ﬁ]] Em

for A, pER. by Proposition 5.2, ¢, is parallel. q.e.d.
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Lemma 5.6. The minimal imbedding f,: M,—P%(c) is totally real first full
Ve
2V'2

Proof. Since f, is Tj-equivariant, it is enough to see our claim at o,, The
imbedding f; is totally real at o, since Jm=mL. '

Now by Proposition 5.1 and Table 1, we have

isotropic.

(5.2) o((cos 0 A,+sin 0B,, cos 8 A,+sin 6B,
— —\/1—~r2:(cos (t—20)H,+sin (t—20)H,).

Thus f; is the first full imbedding. Moreover we have

|oi(cos 8A,+sin OB, cos §A,+sin 6B,)| = x/%
while
2
Ve
Thus the imbedding f, is z\og-isotropic. ged.

Moreover, by (5.2), note that the second fundamental form o; at o, is
given by

[cos 04,+sin 0B;|; = | cos 0X,+sin 8X,| =

a4, 4) = —\71_2:(cos tH,-sin tH,)

(5.3) { odB, B) = \/%(cos tH,+sin tH,)

B, 4;) = \717(cos tH,—sin tH))

Lemma 5.7. The discrete subgroup T, is given by
T, = {aE;; a€C, a® = 1}
where E; denotes the unit element in SU(3).

Proof. _ Talje g€T,. Since g T, Ad(g)|a,=id|q, and thus Ad(g)4,=4,
and Ad(g)B,=B,. Also since g=K, Ad(g)tct and Ad(g)pcp. Hence we
have

(54) Ad(g)X,=X, and Ad(g)X,= X,.

By (5.4) and the condition that g& K, we have
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g€ {aE;;aceC, a® =1} .
Conversely, noting that the subgroup {aE;; a=C, a®>=1} in K is the center in
SU(3), we have
{aE;; aeC, *=1}cKNT,=T,;. q.e.d.
Summing up Lemma 5.3, 5.4, 5.5, 5.6, 5.7 and (5.3), we have the following

Theorem 5.8. For a real number t, the minimal imbedding f; of the compact

flat manifold M,=T,|T; into P%(c) is first full %%-isotropic P(C)-totally real
and has the parallel second fundamental form. Moreover the second fundamental
form o, is given by (5.3) and the discrete subgroup T, is the center of SU(3).

Now we can write down the minimal imbedding f,: M;—P?%c) explicitly.
When t=0, we have

0 7 0 0 0 7
.1 1.
_ - 0 _ o 1
a-|" v2' and B,— V2!
1 : 1
0 0 —_L —L1 i 0
V2@ Ve
Put
1 11
vV3i V3 V3
p_|¥YZ 1t 1
“IV3 Ve V6
o L 1
V2 V2

Then we have

V2i 0 0 0 0 0
1. V3
_ 0 — 0 _ 0 V3; o
tpAP — V2 ,PBP—| V2'
1 3
0 0 —— 0 0 —
NN V2!
and thus
evZrni () 0 e~ i ()
= ——)‘:i +==f .
exp(M,+pB)=Pl0 772" tP=P|0 e O|P

AL v
0 0 e vz vl 0 0 e
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where x———w y g
Hopf fibring. Then we have

_:_:_(e—(z-f-y)i_l_ezi_*_eyi)

w and y=—%§—-:§—§p. Let z: S°— P%c) be the

(5.5) fo(Mo) =7 3\/ 3 (23 (x+y)i__ zi_eyi) ECs; x,yER .
\/lz_ exi___eyi)

6. P(C)-totally real Z\K/?Z-isotropic submanifolds with parallel

second fuudamental form in P"(c) which are locally isometric to the
riemannian symmetric space S'x S"

In this section we construct the model of (n-1)-dimensional complete

P(C)-totally real 2\\//_52l-isotropic submanifold with parallel second fundamental
form in P**!(¢) which are locally isometric to the riemannian symmetric space
StxS”

Let § be a Lie algebra of G=SU(n+2), ¥ be a Lie algebra of the Lie
subgroup K=S(U(1)x U(n+1)) in G and §=F4p be the canonical decomposi-
tion. Then we have

0 a,+1b, -+ @y i5+-1b,.,
—a,+ib, ; a;, b, ER ).
_an;—2+ibn+2

Moreover b is a direct sum of p? and b’, where

o

0 a; - a,.
pE= "‘;1 0 ) ,ER
N\ yy2
and
0 by byt
pr={(|bi ; B,ER).
by

Note that the metric on P***(¢) is induced from a bi-invariant metric on SU(n-+-2).
Set
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g’ 0
G,= 0 1 eGqG; geSUQ3)

1
and
K,=G,NnK.
Then the submanifold P¥c)=G,/K, is totally geodesic in P**!(c). Set

J
0700

X;=j 0 (2=j=n+2).

0
0
i
10
0
Then the set {X;; 2<j<n4-2} is a basis of p’.
Now the minimal submanifold fy(M,) in (5.5) is identified with the set

1, 23 i 2
-3~(e +e3" +e3)
1 2—’;"’:‘ %z %—z
3\/7(e —ed —ed)
A (y? §—i) ; %, yER).
——=(e® —e
V6
0
0

By putting e*=e({+iy) and e =e®({—in) <6;ﬁz—1>, we have
1, -%; 4
?(e 3°420e37)
A 20 . 3.
fO(MO) =7 2 . o, > 0) &, nER, C2+772:1 .
Je
0
0

Set
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100--0
0100
£=100 =K
Piog
00
for g£SO(n). Then the subset L*"'= . S[bj(”) 2(f((M)) is given by
2, 1.\ \
—;’—(e_To‘—[—deTa‘)
\/37(6—%-0'.—* 58%0‘)
2 . Loi Ftnt=1
3 \/Fﬂvst 5 0! g’ 7 ’ijR: ” )
2
2 1 pi :z=; vi=1
7?77'721'3 s
2 . 30
V6T )
and thus putting {=a,, »v;=a; (1=j <n), we have
) - 1 1 1}
VE (el
L ={x 2 1, ; 0,a,ER, f]a?:l .
\/Kialﬂ =0
\/Z_ia e%;‘
6 n

Now we define a mapping /4: S'X.S"—P*(c) as follows;
~ 24 1,;
(T 2008

2, -2 Loi

V2 (5 et

h(e%; ag, -+, a,) = =
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for ¢ S* and (ay, +--a,)ES"C R"'. By the easy calculation, we see that the
mapping % is well-defined. Let ¢ be a diffeomorphism of S!x S" defined by

¢{(e0i; gy *** an)} = (_eo,; —ap " _an) .

Since ¢ has no fixed points on S'x S” the quotient space S'XS"/¢ is a di-
fferentiable manifold. Since ko¢=#, the mapping % induces the mapping
h: S'x 8*|¢p—P"(c).

Now we shall show that % is an imbedding into P**!(c), and that the
imbedded submanifold L**! is nonzero isotropic and has the parallel second
fundamental form. At first we recall the Hopf fibring z: S?+3—P"*}(c). Note
that the metric { , D5 on S*3 is given by

<4, B = *(4, B)

where (, ) is the canonical Euclidean metric. Then the fibring z: S#**—
P"*Y(¢) is a riemannian submersion. Denote by V° (resp. V) the riemannian
connection on S**? (resp. on P**!(c)). For a point p=S™*3, let V, be the
subspace given by

V,= {AdeC"*; (4, p) = (4, ip) = 0} .

Then V, is the horizontal subspace of the connection of the principal S'-bundle
m: S*HBSPY ) and my | V,: V= Typn(P**(c)) is isometric. Moreover we
have the following

Lemma 6.1 (K. Nomizu [8]). Let p, be a horizontal curve in S™** and
w,=mny(p:). If Z; is a horizontal vector field along p, and if W,=mny(Z,), then
VW, =n4(ViZ,). Moreover V7 p, is horizontal.

Let h: RXS"—>S%*3 be the differentiable map given by

-2 4 Loiy )
(€T 4 2ae")
5 2y 1,
—\/32 (e T"“‘loeTo)

k®, ay - a,) = o

\T?lale
1.,

L_ ’a,,eTa'

V6

¢

Then we have
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(6.1)

ha£)

Il

2
V6
2
V6
where £=(£;)eT(S"), that is; _‘_Z"g‘jaij. Hence by easy calculations, the

1..
tEe3 ”

P
i£ e

. . A . . . . .
differential £, is injective into V4.,
Now we define the metric <, > on S'x S" as follows;

CA+E Bin> = 9§<A, Bya+3<E, moer
c 3¢

for 4, B€T(S") and &, nT(S"), where <, >s (resp. {, D¢n) is the canonical
metric on S* (resp. S”). Since ¢ is an isometry of S*xS” with respect to
this metric, this metric induces the metric on S'XS"/¢p. Then we have the
following

Lemma 6.2. The mapping h: S*X S"|¢p—P"*Y(c) is an isometric imbedding.

Proof. We shall show that % is injective. Suppose that A(e®, a,:-a,)=
h(e®, a,---a,). Then there exists ¢*<C such that 71(0, ay++a,)=eh(0, ay--a,).
Thus we have

2, 1, 2. 15
e ‘3“"_,_2%63—9‘ = T‘”'—I—Zaoe("‘JrT‘”‘

2, 1, 2 & 1.
— 20 -0 ®—5-0)1 @+--0)i
e 3 —aed = £ —aoe( 7

1, 1=,
-0t a+-—-0)i
aed = ale( 3

1. la
3-0i (@+-18)i
\a,e3 =a,e 3
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and consequently

_2,. _2 .
e 3O _ e(a 0
1,. 1=,
=0 a+—-0)8
a0e3 ¢ o aoe( 3 )
o (a+ly
aed =ae 3

and moreover
{"oe“’-‘o); =a

a,e® % = a,

Since a;, a; are real numbers, we have e® =1, If @ =1, (&%, ay--a,)=
(€%, ay--a,). If e®Di=—1, (¥, ay+-a,)=(—e", —a,+-—a,). Hence the map-
ping k4 is injective.

The other assersions follow from the following diagram.

A

R XS" i) S2n+3

A A 4
SIX8’[p — P*(e) q.ed.
Lemma 6.3. The isometric imbedding h is \\// -isotropic.
Proof. Note that 3\\;_;4}1* (69) and zh*(§)<2 El= 3_‘:) are orthonormal

vectors and that the normal component of h*(T(Slx S™) in V is given by the
vector space

{i#(2), tate); £eT(S7),-
Then by Lemma 6.1 we have
AN 275 a) = 205 las)

62 {,(VE(2) )= Ve mihe) (DE-Y)

761 = <6 w5 5p)
N

for & &, =T(S"™). Hence by the easy computation o is 2 \/7-isotropic.
q.e.d.
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Lemma 6.4. The isometric imbedding h has the parallel second fundamental
Sform.

Proof. Let X, Y,Z, W be cither of (%) and E(E€T(S"). Then by the
definition we have
63)  (VENY, 2), mu(ihs W)

= {Dy(a(Y, 2)), ”*(i?i* W)>—<a(VrY, Z), ”*(i‘i‘*W»
—<a(Y, VxZ), my(ih W) .

Now the first term of (6.3) is calculated by Lemma 6.1 and (6.2) as follows:

<‘DX(0-( Y’ Z))’ ﬂ*(l?t*W)> __; <V¢*(ﬁx)(0'( Y) Z))’ ﬂ*(l?l*W)>
= (Vi (o (Y, 2))), malihs W)
= Vto(c™(Y, 2)), thu W) = <X(c™(Y, Z)), ths W
where (T, S)=the horizontal lift of &(T, S) for T, S€T(RxS"). Hence

the first term of (6.3) is calculated by (6.1), (6.2) and the above formula. Note
that

0 n
(6.4) V(a/ao)(%) =0, Vot = Vs(a—%) =0, ViE=V;E

where ¢, £ are T(S")-valued vector field on RXxS” and V" denotes the rie-
mannian connection on S®. Then the second and the third terms are calculated
by (6.1), (6.2), (6.4) and Lemma 6.1. By the above explicit computation we
have V*o=0. . qeed.

Summing up our results in this section, we have the following

Theorem 6.5. The isometric imbedding h: S'X S"|p—>P**Y(c) is first full

P(C)-totally real z\f/%-z'sotropic and has the parallel second fundamental form.

7. P(C)-totally real 2\\//?7-isotropic submanifolds with parallel

second fundamental form in P"(c) which are locally isometric to the
riemannian symmetric space SU(3)/S0O(3)

In this section we shall construct the model of the P(C)-totally real

Ve
2V'2
which is locally isometric to the riemannian symmetric space SU(3)/SO(3).

Let S3(C) (resp. S*(R)) be the complex (resp. real) vector space of all the
complex (resp. real) symmetric matrices of degree three, and S(1) be the

-isotropic submanifold with parallel second fundamental form in P5c)
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unit spherte of S*C) with respect to the canonical Euclidean metric (4, B)=
Re(TrAB*). Then we have the Hopf fibring z: S™(1)—>P%c). We retain
the same notations as in the section 6. Moreover giving a metric < , Dg on

S™(1) by <, >S=i( » ), we have the riemannian submersion (S™(1), <, >s)—
c

P%(c).
Now we construct the equivariant imbedding g of the homogeneous space
M>=S8U(3)/SO(3) into S"(1) as follows;

1
—_hth
V'3

for ke SU(3). Then we can check that ¢ is a well-defined imbedding. And
since the SU(3)-action on M?> and the Ad(SU(3))-action on S*(1) are com-
patible each other for the imbedding g, the homogeneous space M? is a riemann-
ian symmetric space with respect to the metric induced from that on S*(1).
Moreover we may check easily that g,(T,(M®)C Vi, for any point pM?,
using the fact that the 4d(SU(3))-action on S*(1) is compatible with the com-
plex structure on S*C).

Now we consider the isometric immersion g==og: M®*— P%c). We can
show that the manifold M/ is the 3-sheeted covering of g(M?®). Then since the
tangent space g4(T.sow(M?)) is totally real and the Ad(SU(3))-action on S™(1)
induces holomorphic isometries on P3(c), the imbedding g is totally real. On
the other hand, along the discussion in [8] we have the following

8(hSO(3)) =

Lemma 7.1. Let g: M"—P"(c) be a totally real isometric imbedding. Then
the imbedding g is nonzero isotropic and has the parallel second fundamental form
if and only if the imbedding g transfers geodesics in M" into circles in P™(c).

Now we have the following

Theorem 7.2. The isometric imbedding g: M°— P5(c) is Zf/é-isotropic

and has the parallel second fundamental form.

Proof. By the virture of Lemma 7.1, it is enough to see that geodesics in
M are circles in P%(c). Set

—x—y 0 O
a={i| O x 0]; x,yER).
0 0y

Then the subspace a is maximal abelian in p={id; 4= S¥R), Tr A=0}.
Since g is an equivariant imbedding, it is enough to see that the geodesic para-
meterized by arc-length
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e—(z+y)ti 0 O
y#)=| 0 e 0 [-SO(3)
0 0 et

is a circle, where x*+xy4y?= g,£2 Then the curve g(7(#)) in P5(c) is given by

e~ ANt () 0
1 .
Ev(®) = == 0 & 0
\/ 3 0 0 eZJm’
and the tangent vector field X{(¢) along g((¢)) is given by
—2(x+-y)ie 2=t 0 0
Ty 0 2xie® 0
0 0 2yie®

X0 =5

Then using Lemma 6.1, we have easily

|V X, | = 2\\//92— and V%Xt = _%Xt

and thus g(v(¢)) is a circle in P%(c). q.e.d.

8. The rigidity of P(C)-totally real Z\Q»%-isotropic submanifolds

with parallel second fundamental form in P"(c)

At first let M**! be an (n4-1)-dimensional complete first full P(C)-totally

real 2\\//_%-isotropic submanifold with parallel second fundamental form in

P’(c) which is locally isometric to the riemannian symmetric space S'X.S".
Then we have the following

Lemma 8.1. The integer r equals n+1.

Proof. Fix a point o€M"*'. Note that the tangent space T((M) is de-
composed into T¢(S*) and To(S™). For unit vectors Y €T (S*) and X T(S"),
the Lie triple system {Y, X} in T (M) defines a unique totally geodesic flat
submanifold in M of 2-dimensional. By Lemma 4.3 and Proposition 4.6, we have

o(¥, V)+o(X, X)=0.

This implies that dim O§(M)=<2n-+2, and hence r<n+1 by Proposition 4.2.
On the other hand a unique totally geodesic submanifold defined by the Lie
triple system To(M) in Ty(P’(c)) is P**Y(R) and thus n+1=<r. Hence we have
r=n-+1. q.e.d.



458 H. Narrou

Since the group SU(n+2) acts transitively on the bundle of all the unitary
frames of P**)(c), we may assume that the submanifold M**! contains 6=eK
€P**Y(c) and identify the tangent space T5(M) (resp. the first normal space

Ni(M)) with the subspace b’ (resp. p¥). Moreover we may identify the sub-
space T5(SY) (resp. T5(S") in T5(M) with the subspace {X,}r (resp. {X;(3=
j=n+2)}g). Set H=S(O(1)x O(n+1))c K. Then we have the following

Lemma 8.2. There exists h=K such that
Ad(h)p! = p?

and that the second fundamental form o* at 0 of the submanifold k(M) is given by

81 oKX, X)= -\/L7 JX, (T, ¥) = \/% X,
(X, V)= \/71 Y
for any vector YE{X,3<j<n+2)}r of length —~— \/ —.
Proof. At first we consider the case when #=1. Then the submanifold
M? is minimal and \\// > -isotropic in P%(c).

Now we know the following

Lemma (B. O’Neill [10]). If a riemannian manifold M is \-isotropic in
another riemannian manifold M, then

Azw+3 |0'(Z: W)lz = A2
for orthonormal vectors Z, W of M.

Then, since M? is flat minimal l/—c_-isotropic in P%c), together with the

2V 2

above lemma, we have

lo(Z, Z)| = |o(Z, W)] =2Vf?

<°'(Z) Z)’ O'(Z: W)> =0
o(Z, Z)+o(W, W) =0

for orthonormal vectors Z, W of M. Setting Z=L2?—X*2 and W=\/T?X3we

(8.2)

have
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(X, X)) = Vl—f(cos 0,] X, +sin 0,]X,)

o(Xp, Xy) = j;\%(sin 0,J X, +cos 6, ] X;)
for some 6, in R.
Now for R, put

1 0 0
k(@) =|0 cosd —sinf|eH.
0 siné cos 0
Then we have
_ X, cos —sinf)(X,
(83)  A2HO) [XJ N [sin @  cos 9] [XJ '

Since the second fundamental form ¢"®®™ at § of the submanifold %(6)(M?) is
given by

o"r(”(Mz)(Z, W) = Ad(ﬁ(@))(a(Ad(ﬁ(G)_l)Z, Ad(ﬁ(ﬁ)—l)W))
for Z, Wemi={X,, X,}&, we have

0 (R, Ry) = —(cos(0,F20—0)] Xo-sin(0, F20—0)] Xy)
by (8.3). Hence, taking @ suitably, we may assume that
O M2 1
ot )(XZJ X) = ~\/—~ZJX2 .

Now we get our claim by (8.2) and Lemma 2.4.
Next we consider the case when n=2. For any vector Ye{X,3<;<

n+2)}r of length \727, the Lie triple system {X,, Y}z in T5(M) defines a

unique flat totally geodesic submanifold in M. Hence we have o(X,, X)),
o(X, V), (Y, Y)E{JX,, JY}r Since n=2, we have

{]sz ]7}13 = {]XZ}R

¥e(X;3sisn+2))
and thus
o(X,, X)) {J X}z

Moreover we have o(X,, Xz)zi\/% JX, by (8.2). Now note that the in-
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volution £ at & is an elementin K. Then, if nessesarily, taking the submanifold
k(M) for the submanifold M we may assume that

—_ 1
O'(Xz’ Xz) = \/7]X2 .

Hence we have o(X, 1’/):\71_7 J¥ and o7, 17)=\/L7 JX, by (8.2) and
Lemma 2.4. q.e.d.

Note that the conditions (8.1) determine the second fundamental form o*
uniquely. By the uniqueness of circle, we have the following

Theorem 8.3. Let M™*! be a complete P(C)-totally real 2\\//77-isotropic
submanifold with parallel second fundamental form in P"*'(c) which is locally
isometric to the riemannian symmetric space S*X S*. Then the submanifold M"*!
is congruent to the model in Theorem 6.5 by some isometry of P**'(c).

Next let M° be a complete first full P(C)-totally real 2\/ %-isotropic sub-

manifold with parallel second fundamental form in P’(c) which is locally iso-
metric to the riemanian symmetric space SU(3)/SO(3). Set

a=3u(3), t=80(3)
and
p= {iX; XeS¥R), TrX=0}.

Then we have the canonical decomposition g=f-+p and identify p with the
tangent space To(M°)=T(SU(3)/SO(3)) at 0=eSO(3). Put

1 10 0 ~100 010
. 1 . 1.
L=——il01 0|L=—i| 010|L,=—i100
6 2 2
V6 o0 —2 vV 000 V2600
000 001
1. 1.
L=-——ilo01| ,=——ilo0o0].
2 2
VZ i1 VZlio0o

Then {I;(2<j=6)} is an orthogonal basis in T,(M?®) of the same length.
that the subspace {I,, I;, I} r is a Lie triple system in Ty(}°) which defines
the totally geodesic submanifold S*x S? locally (cf. See [3]), we have

0'(12, Iz) = _0'(13: 13) = _0'(14: I4)

8.4
&4 oIy I) =0
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by Proposition 4.6. Now put

cosf 0 —sind 1 0 0
o@=| 0 1 0 |and RO)=|0 cosd —sind|.
sind 0 cos 0 0 siné cos @

Then we have

Ad(Q(O))], = (1 —% sin? 0)12+>/_23j sin? 01,—/3 sin 0 cos 01,

Ad(QO); = \%3— sin? 91,4 (1—Si‘122 )1+ sin 0 cos 01,

Ad(Q(0))I, = cos §1,—sin 0I5 .
Since the subspace {4d(Q(O),, Ad(Q(0))1;, Ad(Q(0))}r is a Lie triple

system in T,(M°) which also defines the totally geodesic submanifold S*x S?
locally, we have

o (Ad(QO)]z, AAQO)) = —o(Ad(Q(O)]5, Ad(Q(O)I)
(8.5) = —o(4d(QO)1,, 4dfQ(9))1,)
o (Ad(Q(0) I, Ad(Q(6)1,) = 0

as (8.4). By the last equation in (8.5), we have

VT3 cos 0 sin? Oc (I, I,)+sin @ cos? 0o (1,, 16)_\/23 sin® 0o (1,, I;)

12
—sin 0(1 —S"; 0)0(13, Is)—sin? @ cos 8o (I5, Ig) = 0
and thus

\% cos @ sin 0o (1, 1,)+ cos? 0o (1, Iﬁ)—\/T?’ sin? 8o (1, I5)

T2
—(1 e ‘9) (I, Is)—sin 0 cos 0o (Ty, 1) — 0.
Here putting =0 (resp. = —Z—), we get

8.6) oIy, Is) = o(1,, I;) (resp. \/ 3 a({y, I5)+o(ls, Is) = 0).

Moreover by (8.6) the above equation implies

\/23 cos @ sin §o(1,, 1)+ sin 0 cosa(Is, I) = 0

and thus
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3
\/T o(lp, I)+o(ls, Is) = 0.

Using the other equations in (8.5) and the equations for R(f), we have the
following Table 2 by the same calculation as above.

Table 2 (o(T, S))

N I, Is I Is I,
I, 4 B c D E
I —4 0 —'3D V3E
I, —A4 —V'3E —V3D
I %(\/?B+A) ‘% c
I, -/ 3B—4)

Proposition 8.4. The integer r equals 5.

Proof. By the above Table 2, we have r<5. ' On the other hand the Lie
triple system 7Ty(M?®) in T5(P’(c)) defines a totally geodesic submanifold
P%R). Hence we have =5 and thus r=S5. q.e.d.

Now we may identify the point o in M* with the point 6=eK in P5() and
the tangent space T,(M?®) with the totally real subspace p’ in p. Moreover by
taking a suitable real number #, we may identify X, with I; for each j=2---6.
Then we have the following

Lemma 8.5. There exists g =K such that
Ad(g)p" =P’
and that the second fundamental form o¢ at 6 of the submanifold g(M?®) is given by

S_ — __,1_ g- ) = L X . .=

o (Xz, Xz)_ \/—ZJXz: (- (Xz: X:) \/——2] i (1=3,4),
(X, X)——__1 1% (i—

o (XZ: J) 2 2] j (] 5, 6)

Proof. The Lie triple system {I,, I;, I,}r defines a totally geodesic
submanifold S*x S? locally such that Ty(S*)={l,}z. Note in Lemma 8.2 that
the isometry % is the involution at 0 or identity map when n=2. Hence we
may assume that
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(X, X)) = _\717 JX, and o(X,, X)) = 71-7_ JX, (=34).

By Table 2 and Lemma 2.4 we have

{o(X,, X5), ]X,-) =0 (j=2,3,4,6)
and

2
PV

<0'(X2) XS)J JX5> = -

Thus o(X,, Xs)=—5;/1—7 JX.. Similarly we have o(X,, Xﬁ)z—__zi/l7 JX,.

g.e.d.

Note that Lemma 8.5 and Table 2 determine the second fundamental
form % uniquely. By the uniqueness of circle, we have the following

Theorem 8.6. Let M® be a complete P(C)-totally real 2\\//%
manifoldt with parallel second fundamental form in P5(c) which is locally isometric
to the riemannian symmetric space SU(3)/SO(3). Then the submanifold M> is

congruent to the model in Theorem 7.2 by some isometry of P5(c).

-isotropic sub-

REMARK 8.7. In the next paper we shall give examples of P(C)-totally real
Ve
2V'2
the other spaces; SU(3), SU(6)/Sp(3), E¢/F,.

-isotropic isometric immersions with parallel second fundamenal form of
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