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Let R be a ring with 1(#0), 7 an automorphism of R, and D a 7-deriva-
tion of R (i.e. D(ab)=D(a)t(b)+a-D(b) for all a, b&R). Then a skew polyno-
mial ring A=R[t; 7, D]=R@tRPH#RP--- is well defined by at=tr(a)+D(a)
(a€R). Then if R is a two-sided simple ring, every ideal of A is invertible.
On the other hand, as is well known, a (commutative) polynomial ring over a
Krull domain is also a Krull domain. Furthermore, if R is a (non-commutative)
Krull order in the sense of Marubayashi, then so is R[#] ([11]). This is the
case when 7=id and D=0. In this paper we define a new “Krull order”, and
prove the following. If R is a Krull order then 4 is also a Krull order. Further
we obtain some results on the structure of the group of reflexive fractional ideals
of 4. Any two-sided simple ring is a Krull order in our sense. In the case
when R is a prime Goldie ring, R is a Krull order if and only if R is a maximal
order and the ascending chain condition on integral reflexive ideals holds.

As a matter of fact, we prove main results in a more general situation. Na-
mely we take some ““positively filtered ring” instead of R[¢; 7, D]. By virtue of this,
for example, if M is an invertible R-bimodule over a Krull order R then the
tensor ring T(M) is a Krull order. We believe this generalizatiln is proper for
this kind of study. However, if we assume R to be a prime Goldie ring, ar-
guments may become more brief. But this exclude the case when R is a3 two-
sided simple ring from our study. As is seen in §1, we take, as a starting point,
the set of ideals which have trivial dual modules. This may be a feature of
our study on Krull orders. Main results are analogous to those on a polynomial
ring over a unique factorization domain.

For the completeness of this paper, we need some arguments on the construc-
tion of a positively filtered ring. But we postpone these until the forthcoming
paper. However the case when A=R{[t; 7, D] is treated in 4. Appendix.
In all that follows, all rings are associative, but not necessarily commutative.
Every ring has 1(%0), which is preserved by homomorphisms, inherited by
subrings and acts as the identity operator on modules.

1. Preliminary results

Let A4, B be rings. If M is a left (resp. right) A-module, we write ,M
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(resp. M,). If N is a left A-, right B-bimodule we write ,Nj, and we briefly
call N an A-B-module.

Let @ be a ring, and M an additive submodule of @. We define the left
order of M (in Q) as O(M)={x=Q: xM M}. Similarly we define the
right order of M as O, (M)={x€Q: MxZM}. Then, {x€Q: MxMc M}
={x€Q: MxCO(M)}={x=Q: xM <O,(M)}, which is denoted by M™.
Evidently M ™! is an O,(M)-O,(M)-submodule, MM is an ideal of O,(M), and
MM is an ideal of O,(M). Let R be a subring of @. By T(Q; R) (abbr. T(R))
we denote the set of all ideals I satisfying the following conditions.

(1) I is faithful as a left R-module as well as a right R-module.

(ii) If xICPR or IxCR (x€Q) then xER.

Evidently T(R) satisfies the following.

(1) ReT(R).

(i) If I€T(R), and I’ is an ideal of R such that IC I’ then I'€T(R).

(i) If I, ,ET(R) then I,[,eT(R), and so I,N L, T(R) (by (ii)).

(iv) If I€T(R)then O((I)=R=O0O,(I). Therefore if x/=0 or Ix=0(x=Q)
then x=0.

Proposition 1.1. Let A, B be subrings of Q, and M an A-B-submodule
of Q. Then the following conditions are equivalent.

(1) There are R-A-submodules M', M" of Q such that MM' = T(A4), M"M
ET(B).

(2) MM~ €T(A), and MM T(B).

(3) O(M)=O0,MM"=A, and O (M)=O,M~M)=B. Further M,
My, MM73*, and ;MM are faithful modules.

@) O(M)=0(M™Y)=A, and O(M)=O(M-)y=B. Further M, M,
M3z, and ;M are faithful modules.

Proof. The implication (2)=> (1) is trivial, and it is easy to see that (2)=
(3), B)=#4). (1)=(2) Evidently O(M)=A4, and O,(M)=B. Therefore M'C
M™, and M"CM™. Hence MM'CMM™, and M"MCM™M. Thus we
obtain (2). (4)=(2) If M*MyZB then M'MyM< M, hence MyM™C
O, (M™)=A. Therefore yM'CM™, so yeO(M™")=B. On the other hand,
if 2M'MZR then M 'CM™, hence 2€0(M")=B. If bM'M=0 (hB)
then bM'CO(M)=A4, and so bM*=0. Hence b=0. Thus zM M is fai-
thful. Similarly MM} is faithful. Hence MM &T(B). Symmetrically we
have MM T(A4). This completes the proof.

Let A, B be subrings of Q. By F(Q; A4, B) (abbr. F(4, B)) we denote the
set of all A-B-submodules M satisfying the condition (1) of Proposition 1.1.
We put F(Q)= ) 4 5F(Q; 4, B), where 4, B run through all subrings of @. In
the sequel, if MeF(Q; A, B) then we write ,Mz=F(Q), conveniently. Note
that T(Q; A)SF(Q; A, A), and that if Mz F(Q) then xM=0 or Mx=0(x&
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Q) implies x=0.

Proposition 1.2. Let ,Mp, ;N = F(Q).
(i) zMz7'€F(Q), and MIM € T(A) for any I = T(B).
(i) AMN.EF(Q).

Proof. (i} It follows from Proposition 1.1 that ;M3'€F(Q). LetI< T(B).
If MIM™'xC A(x<Q) then IM xS M, and so IM'xM M *MCB. There-
fore M'xMCB, hence M 'xCM™. Thus x€O,(M")=A. On the other
hand, yMIM ™ C A4 implies that M"'yMIM *M < B, and so M"'yM C B. Hence
M™7'ycM™, and therefore yeA. Thus MIM'eT(A4). (ii) If xMNCMN
then M 'xMNN*C M *MNN*CB, and so M 'xMCB. Then x4 as in
(i). Thus O(MN)=A, and similarly O,(MN)=C. Now, MNNM™MNC
MM7MNCMN, and so N'M7c(MM)™. Therefore MNN'M™C
(MN) (MN)™, and N7TMMNCZ(MN)(MN). Since NN'eT(B) and
M~Me& T(B), it follows from (i) that (MN) (MN)"*& T(4) and (MN)"{(MN)e
T(C). By Proposition 1.1, we have ,MN € F(Q).

If ;M;=F(Q) then ;Mz'€F(Q), and so 4(MY)z'€F(Q). Since MM™'C
A we have MS(M™")7'. Then M'D((M™)™*)"'. On the other hand, M™'C
(M™)™7 Hence M'=(M)™™. We put M*=(M™)"'. Then MCM*
=M** for any M F(Q).

Proposition 1.3. For any ,MzcF(Q), M*=={xcQ: IxCM for some
IeT(A)}={x€Q: xJSM for some J=T(B)}.

Proof. If x&M* then M 'xCB, and so MM 'xCM, where MM™
T(A). Conversely if Ix&M for some I€T(A4), then IxM'CMM™CA, so
xM7CA. Hence x&(M™)'=M*. Symmetrically we obtain the latter half.

Evidently, for any subring 4 or Q, T(Q; A)={IF(Q; 4, A): I*=A4}.

Proposition 1.4. Let ,My, ;N.EF(Q). Then (MN)'=(N"'M™)*, and
(M*N)*=(MN)*=(MN*)*.

Proof. Since N'M™'C(MN)™, we have (N*M)*C((MN)™)*=(MN)™.
On the other hand, x&(MN)™* implies that MNxC A4, and so NxCM™'. Then
NNxSNM™ hence x&(N*M™)*, because of N'N&T(C). Thus (MN)™*
=(N"'M™)*. Using this, (MN)*=((N"M)*)'=(NM)". As (M*)™
=M™, we have (M*N)*=(N M) '=(MN)*. Similarly(MN*)*=(N"'M™")™"
— (MNY*.

If ;M;=F(Q) and M*=M, we call M a reflexive A-B-submodule of . By
F*(Q; A, B) (abbr. F*(A, B)) we denote the set cf all reflexive A-P-submodules
of @, and we put F¥(Q)=J 4 zF*(Q; 4, B), where A, B run through all sub-
rings of Q. By F{(Q; A) (abbr. F;(4)) we denote {MEF(Q; A4, A): MC 4},
and we denote Fy(Q; A)NF*(Q; A, A) by F¥(Q; 4) (abbr. Ff(4)). If I
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F(A4) (resp. I€F¥A)) we call I an integral ideal (resp. reflexive ideal) of A.
Let ;Mg jNc€F*(Q). We define MoN by (MN)*. Then, from Propo-
sition 1.2 and Proposition 1.4, we have the folllwing.

Theorem 1.5. The set of all reflexive submodules of Q, F*(Q) is a Brandt
groupoid. The set of identities of F*(Q) is the set of all subrings of Q.

Let A, B be subrings of @, and ;M an A-B-submodule of Q. If there are
B-A-submodules M’, M” of @ such that MM'=A and M”M=B, we call M an
invertible A-B-submodule of @. Then it is easily seen that ,M,c F*(Q; 4, B)
and M'=M'=M". Here we note the following

Proposition 1.6. Let ,Mp, ;N.€F*Q). If ,My or zN, is an invertible
submodule then MoN=MN.

Proof. We first assume that ;N is invertible. If xMNCC then xM N7,
so NxMC NN™'=B. Therefore Nx&M™, and so x&N'M™'. Thus (MN)™!
=N7"TM"'. Similarly (MN)=N"M™!, when ,M, is invertible. Hence MoN
=(N"M"")'=M*N*=MN, when ,Mj or ;N is invertible (cf. Proposition
1.4).

Remark. Let ,Mj be invertible in Q. Then Q® ,M=Q, ¢qQmi—qm (¢
Q, me M) (, and symmetrically MQ ;Q=Q). In fact, if 1=Smim; (micsM™,
m;E M) then the inverse of the homomorphism Q® ,M—@Q is given by the map
g2 qmi!@m; (9€Q). As is well known, M is an invertible A-B-bimodule,
that is, M is finitely generated, projective, and a generator, and A=SEnd (M)
by the map induced by M (cf. [3]).

Let A, B be subrings of Q. If there exists an 4-B-submodule M€ F*(Q;
A, B) we wiite A~B (in @). Then “~" is an equivalence relation on the sub-
rings of .

If O,(I)=0,(I)=A4 holds for any ideal I of 4 such that both ,/ and I,
are faithful, we say that 4 is maxmial in Q.

Proposition 1.7. For any subring A of Q, the following conditions are
equivalent:

(1) A is maximal in Q.

(2) J,EFQ; A, A) for every ideal I of A such that both ,I and I, are
faithful.

Proof. The implication (2)=>(1) is trivial, and (1)=(2) follows from Pro-
position 1.1 (3).

Proposition 1.8. Let ,U,€F*Q; 4, B).

(i) If A is maximal in Q then so is B.
(ii) Thereis a group isomorphism F*(Q; A, A)SF*(Q; B, B), M—(U*MU)*
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=U"'oM-U (MEF*; A4, A)).
(iii) If A is a prime ring then so is B.

Proof. (i) Let I’ be an ideal of B such that zI’, I} are faithful. Put I=
UI'U™'. Ttis easy to see that both ,I and I, are faithful. Therefore, by as-
sumption, O(I)=0,(I)=4. Itxl'CI’ then UxU ' I=UxU'UI'U'c UxI'U™*
CUI'v™'=I, and so UxU'cO,(I)=A. Then xU'c U™, so xU'UCU .
Hence x€B. Thus O)(I'y=R. Similarly O,(I’)=B. Hence B is maximal in Q.
(i) This follows from Theorem 1.5. (iii) Let I, J be ideals of B, and assume
that [J=0. Then UIU'-UJU'=0, and so UIU'=0 or UJU'=0. If
UIU™'=0 then UI=0, so I=0. Hence B is a prime ring.

Proposition 1.9. Let A, B be subrings of Q such that A~B in Q, and
assume that A is a prime ring and is maximal in Q. Let M be an A-B-submodule
of Q. Assume that there are elements u, v of Q such that 0uM B and 0%
MvCA. Then Mz F(Q; A, B). ‘

Proof. By Proposition 1.8, B is a prime ring, and is maximal in @. Since
BuM and MwvA are non-zero ideals of B and A respectively, we have O,(M)=B
and O,(M)=A. Since M 'Su,v, MM and MM ™! are non-zero ideals of B

and 4, respectively. Then, by Proposition 1.1 (3), MeF(Q; A4, B).
' Now we define a Krull subring of @. A subring A4 of @ is said to be a Krull
subring of Q if A is maximal in @ and the ascending chain condition on reflexive
ideals of 4 holds. The following proposition foilows from Proposition 1.8.

Proposition 1.10. Let A, B be subrings of Q such that A~B in Q. If A
is a Krull subring of Q then so is B.

Let A be any subring of @. Let PEF¥Q; A), and let P+=A. Then P
is said to be irreducible if P=I,0I,(1,, ,eF¥(Q; A)) implies that P=1I, or P=
I,, and P is said to be maximal if P<I'e F¥(Q; A) implies that I'=4. Assume
that P is maximal in F¥Q; A4), and let P=I,ol,, Then P=(IL)*CI}=I,
(#=1,2), hence P=I; or I;=A. Therefore P is irreducible. Conversely, if P
is irreducible then P is maximal. Thus ‘“‘maximal” and “irreducble” are
equivalent.

Assume that A4 is maximal in @, and let P be irreducible in F¥(@Q; 4). If
IJC P for some ideals I, J of A then (I+P)(J+P)CSP. If I<Pand J<EP then
I+-P, J+P=T(Q; A) by Proposition 1.7, so that (I4+P)(J+P)eT(Q; 4). Then
have a contradiction PT(Q; A). Hence P is a prime ideal. Conversely if
PeF¥Q; A) is a (proper) prime ideal then P is irreducble. Therefore, as is
well known, if P, P’ are irreducitle in F¥(A4) then PoP'=P’oP. Then, in
the usual way, we have the following.

Proposition 1.11. Let A be a Krull subring of Q. Then any irreducible re-
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flexive ideal of A is a prime ideal, and F¥(Q; A) is commutative. Any element of
F¥Q; A) is uniquely represented as a product of irreducible elements of F¥(Q; A).

Proposition 1.12. Let A be a Krull subring of Q, and let ,Mz=F(Q; A, B).
Assume that A is a prime ring. Then any non-zero A-B-submodule of M belongs to
F(Q;A,B), and there are elements x,,-++,x, of M such that M*=(3;-, .. ,Ax;B)*.

Proof. By Proposition 1.8, B is a prime ring and is maximal in €. Let
M, be a non-zero A-B-submodule of M. Then, since MM, and M,M™" are
non-zero ideals of B and A4 respectively, we have M EF(Q; 4, B), by virtue of
Proposition 1.9. Now let 0x,€M. Then Ax,BEF(Q; A, B), and (4x,B)*
CM*. If (AxB)*&M* then there is an element x,&M with x,&(4x,B)*.
If (Ax,B+ Ax,B)* & M*, then (Ax,B+ Ax,B)* & (Ax,B-+Ax,B+ Ax,B)* for some
¥ M. Continueing this process we obtain xy, -+, x, &M such that M*=
(23 Ax;:B)*, because ACC holds on {NeF*(Q; A4, B): NcM*}. (In fact,
NS M* means No(M*)'C 4, and conversely.)

Proposition 1.13. Let Q' be any overring of Q, and A a prime subring
of Q. Assume that, for any nom-zero ideal I >f A, IQ=QI=Q holds. Then
TQ; A)=TQ'; A), and F(Q; A, A)={MecF@Q'; 4, A): M<Q, MQ=QM
—Q}. Therefore F(Q; A)=F,(Q'; A), and F¥Q; A)=F¥@Q’; A).

Proof. Evidently T(Q; A)2T(Q'; A). Let IET(Q; A), and let Ix A
(»€Q’). Then Qx=QIxCQA=Q, so x=Q. Hence x€A4. Similarly y/<
A(ye Q') implies that ye 4. Thus I€T(Q’; 4). Let MEF(Q; A4, A), and
put M'={xcQ: MxMcM}. Then MM', M'MeT@Q; A)=TQ'; A).
Then, by Proposition 1.1 (1), we have MeF(Q'; A, A). Furthermore, @2
MQ2o2MM'Q=Q, and so MQ=Q. Smilarly QM=Q. Conversely, let
NeF@Q'; 4, A), NCQ, and NQ=QN=Q. If zNCA(:€Q’) then 2Q=
sNQC AQ=Q, and so z=Q. Hence NeF(Q; A, A). The remainder is
obvious.

Corollary. Assume the same assumptions as in Proposition 1.13. If A 1is
maximal in Q (resp. a Krull subring of Q) then A is maximal in Q' (resp. a Krull
subring of Q'), and conversely.

Proof. This follows from Proposition 1.7 and Proposition 1.13.

Let A be a subring of . By S(Q; 4) (abbr. S(4)) we denote UI™!, where
I runs through reflexive ideals of 4. Evidently S(Q; 4) is a subring containing
A. We call S(Q; A) the Asano overring of A in Q.

Proposition 1.14. Let A be a prime Krull subring of Q. Assume that
I1-8Q; A)=S(Q; A)I=S(Q; A) for any non-zero ideal I of A. Then any ir-
reducible reflexive ideal of A is a (non-zero) minimal prime ideal of A, and con-
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versely (cf. [11]).

Proof. Let PEF¥(Q; A) be irreducible. Then P is a prime ideal. If
there exists a non-zero prime ideal P’ of 4 such that P’SP. Then (P'P™Y)PC
P’ implies that P’'P"'C P’. Then we have a contradiction P"'C 4. Hence P
is minimal in the set of all non-zero prime ideals of 4. Conversely, let P be a
minimal prime ideal. Since P-S(Q; A)=S(Q; A)=1, there are reflexive ideals
1,1, of A such that I,---I,CP. Then I;CP for some 7. Hence some irre-
ducible component P” of I; is contained in P. Then, by the minimality of P,
we have P”=P. This completes the proof.

Note that, in the above case, A4 is a Krull subring of S(@; 4), and S(Q; 4)
is a left and right Utumi’s quotient ring of 4.

Proposition 1.15. Let A be a prime subring of Q, and assume that A is
maximal in Q. Let M be a non-zero left A-submodule of Q. Put O,(M)=B
and M'={x=Q: MxZ A}.

(a) If M'MET(B) then MEF(Q; A, B).

(B) Assume that M satisfies the following conditions:

(1) «M’'=0 for any non-zero x= M.

(i1) My is faithful.

(i) {yeQ: yM'cA}=M.

Then MeF*(Q; A, B) (, and conversely). (Cf. [6].)

Proof. (a) As M'M&T(B), we have MM'M=+0, so MM'+0. Hence
MM'eF(Q; A), and so O(M)=A. Therefore M'=M". If MM'xCA
then M'xSM’',so MM'x<MM'. Hence x€ 4. If yMM' < A4, then MM'yMM’
CMM’', and so MM'yC A. Hence yeA. Thus MM'eT(A). Hence Me
F(@Q; A4, B). (B) Since MM’ 1s a non-zero ideal of 4, we have MM'EF(4),
and M'=M"". If xM'CM’ then MxM'CMM’'C A, hence MxZ M by (iii).
Therefore x€B. If xM’'=0 then x&M, hence x=0 by (i). Thus O,(M")=
B, and zM' is faithful. Therefore (4) of Proposition 1.1 holds. Hence M F*

(Q; 4, B), by (iii).

2. A positively filtered ring over a Krull order

Let R be a subring of a ring @. If R, @ satisfy the following conditions
we call R a Krull order of Q.

(i) Risa Krull subring of Q.

(ii) @ is a left and right quotient ring of R.

(i) IQ=QI=Q for any non-zero ideal I of R.

RemMARK. If R is a prime Goldie ring, and @ is the maximal quotient
ring of R then (ii), (iii) hold. Evidently every two-sided simple ring is a Krull
order of itself.
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Let R be a Krull order of @. Let M be a non-zero R-R-submodule of Q.
Then MNR=*0, and so QM NR)=Q=(MNR)Q. Therefore QM=Q=MQ.
Hence @ is a simple R-@-module as well as a simple @-R-module. In parti-
cular, @ is a two-sided simple ring. Let MeF(Q; R, R). Then QM=
@>1, so that IC M for some dense left ideal I of R. Then IRC M, and so
0+IR-M*CR. Put IR-M™*=]. Then RDIR-MM=]M, hence M J™.
Since (IR)*oM™'=]* we have M*=(IR)*oJ '. Conversely, let N bc a non-
zero R-R-submodule of @ such that NC J7' for some non-zero ideal J, of R.
Then, by Proposition 1.12, NeF(Q; R, R). Summing up, we have

Proposition 2.1. Let R be a Krull order of Q.

(1) Both oQp and pQq are simple.

(ii) Fer a non-zero R-R-snbmodule N of Q, NEF(Q; R, R) if and only if
NC I for some non-zero ideal I of R.

(i) F*Q; R, Ry={Io]J™*: I, JEF¥Q; R)}, which is an abelian group.

For any ring 4 we denote by Q,(4) (resp. ,(A4)) the left (resp. right)
maximal quotient ring of A. Further we put Q(4)=&,(4)NQ,(A4), more
precisely, Q(4)={x=Q,(4); [vC A for some dense left ideal I}. By Corollary
of Proposition 1.13, if R is a Krull order of @, then R is a Krull order of Q(R)
(29Q).

In the remainder of this paper we assume the followings: R is a Krull order
of Q. X is @-Q-module containing @, as a @-Q-submodule, and such that
X/Q is an invertible @-@Q-module. Y is an R-R-submodule of X containing
R, such that Y/R is an invertible R-R-module, and such that X=Q® ;Y=Y
®Q. Q<X is an overring of @ satisfying the following conditions:

(1) Q<KX>2X as a Q-@Q-submodule, and Q<X D= J;2.X’, where X°=@Q.

(i1) For any integer =1, the canonical map

(X/Q)®aq** Qo(X/[Q) (i-times) — X7/ X",

(%4 Q)R+ (%4 Q) x,-+-a;++ X" is an isomorphism (cf. [13]).
We put R<Y)>=(];3Y’, where Y°=R. If {<0 then we put X'=Y*
=0. Evidently QQ4(Y/R)=X/Q. <]®('y—l—R)|——>qy—]'-Q, and (Y/R)Q Q= X/Q,

i i
(O+R)®q—y9+Q. Therefore Q@ (@ (Y/R))=®o(X, /Q) as @-R-modules,

1 i :
and (@ x(Y/R)) Q05 R o(X/Q) as R-@Q-modules, where @ (Y/R)=(Y/R)Qg:-
®@&(Y/R) (s-times). For any /=1, the following diagram is commutative:

D:(¥IR) > ®o(X/Q)

| . |~

Yl'/Yi—l > Xi/Xl'—l
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i 4 i
Since @ x(Y/R) is projective, the canonical map Q(Y/R)—QQ x(Q(Y/R))

i

(= ®o(X/Q)) is a monomorphism, so that ¢ is an isomorphism. Therefore
3 is a monomorphism, that is, YN X" '=Y*"*. In particular, Y N@=R. Using
the diagram

. &; )
QRY* — X

l l

Q®R( Yi/Yi—l) __i Xi/Xi"l s

by induction on 7, we can prove that each &; is an isomorphism. Therefore
QR R_I_?( Y>=Q<X>, and symmetrically R{Y>R® Q=Q<X)>. We put @=Q<X>
and R=R{Y).

REMARK. Let @=@Q(R), and let Y be an R-R-module containing R, as an
R-R-submodule, and such that Y/R is an invertible R-R-module. Then, X,
Q<X>, and RCY) as above exist, and those are uniquely determined by Y2R.
The proof is given in §4, in the case when Y/Ry5R;.

First we prove the following

Theorem 2.2. If R is a Krull order then R{Y) is also a Krull order.
We need many lemmas.

Lemma 2.3. For any integer i=1, there is a one to one correspondence
from the set Jf all R-R-submodules of @ to the set of all R-R-submodules of X*| X7,
such that M— (MY'+ X1/ X2,

Proof. This follows from [12; Proposition 3.3 and its proof].

Corollary 1. For any integer i=1, X}/ X*"! is a simple Q-R-module as well
as a simple R-Q-module.

Proof. This follows from the fact that (@, Q¢ are simple.

Corollary 2. For any integer i=1, there is a ome to ome correspondence

M — M’ from the set of all R-R-submodules of Q to itself, which is defined by M' Y+
Xi'=Y'M~+ X', (Note that this map is multiplicative.)

Lemma 2.4. Let M be an R-Q-submodule of X'(r=1) such that X" '@
M=X". Then QMCM.

Proof. Any y in QM is written as a sum y=y,+y,(y,€EX""}, y,€M), and
Iyc M for some dense left ideal I of R. 'Then, for any eE€l, ay,=ay—ay,E
X 'NM={0}. Hence Iy,=0. Since ¢X" ! is projective, we have y,=0. Thus
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y=y,€M.
Lemma 2.5. Let A be an R-Q-submodule of Q. Then QAC A.

Proof. We may assume that 0 4=Q. Then, since zQ, is simple, we have
QNA=0. Therefore there exists an integer 7 such that X"'NA=0 and
X"'NA=+0. Since X’/X"!is a simple R-Q-module, we have X" '@(X" N A)=
X', hence Q=X""'P(X" NA)R¢R) by [13; Corollary 1 of Proposition 1].
Then A=ANQ=X"'"NA+(X"NA)RL=(X"NA)®cQ. By Lemma 2.4,
QX'NA)SX NA,and so QACA.

Corollary. If A is an ideal of R then QA=AQ (, so that QA is an ideal of
Q).

Proof. Noting that Q=QR=RQ, AQ is an R-Q-submodule. Hence
QACAQ. Symmetrically we obtain AQCQA.

The following is well known, but we give its proof for completeness.

Lemma 2.6. Let B be a ring, and I an ideal of B. Then the following
conditions are equivalent:

(1) I is an invertible B-B-module.

(2) I 1is invertible in Q(B).

Proof. The implication (2)=>(1) is well known. (1)=(2) Put {ac
Q,(B): aICB}=I'. Then, since I is a dense right ideal, I'=xHom (I3, Bp)
canonically (cf. [16]). Since I is a generator, we have I'J=B. Since I is
finitely generated and projective, we have II'=DB, Then, since I is a dense left
ideal, I'CQ(B), and so I'CQ(B). Thus I is invertible in Q(B).

Lemma 2.7. Every non-zero ideal of @ is invertible. (Cf. [14; Examples].)

Proof. Let A be any non-zero ideal of @. We may assume that A=+Q.
Then there is an integer r=1 such that X* !N 4=0 and X"N A+0. Put M=
X'NA. Then, as in the proof of Lemma 2.5, X’ '@M=X", and A=M®®,Q
=Q®M. Since M=X'|X""Y, M is an invertible @-Q-module. Then it is
easily seen that Q3End (4g) by the map induced by 74, so that gAg is inver-
tible, because Ag=M® Q7 is finitely generated, projective, and a generator
(cf. [12; Lemma 3.1]).

If every non-zero ideal of a ring B is invertible, B is said to be an Asano
order. Noting Lemma 1.6, an Asano order is a Krull order. A Krull order
R is an Asano order if and only if T(Q(R); R)={R}.

Lemma 2.8. (i) S(R)QS(Q)QQ(E)=Q£Q). (i1) For any non-zero ideal
A of R, A-S(Q)=S(Q)A=S(Q). Therefore R is a prime ring.

Proof. Since o& is projective, {x€@: Ix=0}=0 for any dense left
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ideal 1 of R. Then, as QR=Q, we have QCQ,(R). Symmetrically QCQ,(R),
and hence QCQ(R). Thus Q(R)=Q(Q). Since AQ(=AQ) is a non-zero ideal
of @, we have S(Q)4A=S(Q)QA=S(Q). Similarly 4-S(@)=S(Q). Therefore
R is a prime ring, and 47'CS(Q). Hence S(R)<S(Q).

In virtue of Propositions 1.13 and 2.8, the notations T(R), Fi(R), F¥(R),
T(R), F(R), and F¥(R) do not produce ambiguity.

By p; we denote the correspondence Mi—M' given in Corollary 2 of
Lemma 2.3. Then p;(M)Y'+X'=Y M+X'"!, and if MCR then p,(M)Y*
+ Y '=Y M+ Y*, because of X'"'N Y=Y "', Further, note that p,(M’)
pi(M"y=p,(M'M") for any M', M”. Put p,=p. Then it is easy to verify
that p;=p’ for all 1 =>1.

For any R-R-submodule M of Q(R), we put M*={x=Q(R): xI <M for
some JET(R)}. Note that R*=R and @*=Q.

Lemma 29. (i) p(T(R))=T(R). (i) For any R-R-submodule M of Q,
p(M*)=(p(M))* holds. Therefore p(F¥(R))=F*(R).

Proof. (i) For any ideal I of R and any x=@Q, I-RxRER (or RxR-I<R)
if and only if p(/)p(RxR)Z R (or p(RxR)p(I)<=R), because of p(R)=R. There-
fore we obtain (i). (ii) If k& M™* then xI M for some I €T(R). Then p(RxR)
p(I)S p(M), and so p(RxR)S p(M)* by (i). Thus p(M*)S(p(M))*. Similarly
P M*)S(p ™ (M))*. Then p~Y((p(M))*)S M*, whence (p(M))* < p(M*).

Lemma 2.10. R is maximal in Q(R).

Proof. Let A be any non-zero ideal of R, and let yAS A(yEQ(R)). Then
yAQEAQ, and so yEQ, because AQ is an invertible ideal of @. Put W=
{x€@: xA<A}. Then W is an R-R-submodule containing R. For any
i=0, there exists a unique R-R-submodule W; of @ such that (W NX*)+X!
=W;Y'+ X"} by Lemma 2.3. Similarly, for 4, (ANX)+X"'=4,Y+
X1 where A4; is an R-R-submodule of Q. Since W2R, we have WNX'
DY and so W,2R. Since ACR, we have ANX'=ANY*, and so 4;ZR.
It is easy to verify that W;:pi(4,)Y"*CA, ;Y 4+X*1 for all 4, j=0.
Therefore W;«pi(4;)SA4;,; for all 7,j=0. Noting that 4,CA,CA,C-+-, we
pat J={J;2¢4;. Then I is a non-zero ideal of R, and W;p/(I)< I for all j=0. By
Lemma 2.9, p/(I*)=(p/(I))*, and so W;-p/(I*)cI*. By Lemma 2.9 (ii),
the number of irreducible components of p/(I*) is equal to the one of I*. As
RCW,;, we have p/(I*)CI*, hence p/(I*)=I*. Thereby W;CR, and so
WNX/CY/4+X"'. Noting that W2 R, we obtain WNXi=Y/+WnXi?
for all j=0. Now WNQ=W,ZR, hence WNX/CY’ for all j=0. Thus
WCR, as requered. Similarly AxC A implies that xE R.

Lemma 2.11. For any i=1, (Y)*=Y*, and R*=R.
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Proof. Let f be any right R-homomorphism from R to R. Extend f to a
right @-homomorphism f from @=R®;Q to Q. If yeR* then yICR for
some I € T(R), and so yQ. Then f(y)I SR, and so f(y)ER for any f. If (f,,
) (NEA) is a projective coordinate system for Rp, then so is (fi, %) (ACA)
for Q. Therefore y=3Yufi(y)ER. Hence R*=R. If x&(Y*)* then xJ <
Y’ for some JET(R). Then, as JQ=Q, we have x€X’. Hence x= X’ N R*
=X'NR=Y'.

Lemma 2.12. Let A be any reflexive R-R-submodule of Q(R). Then
A*=A.

Proof. If xIcA for some IET(R), then AxICA7ACR. Using
Lemma 2.11, A7 R. Therefore x&€(4™) =4

Lemma 2.13. Let A be any non-zero R-R-submodule of R. Then there
exists a finitely generated R-R-submodule A, of A such that AC U j2eB(4,),
where B(M)=M?* for any R-R-submodule M of Q(R).

Proof. For any 10, Y//Y*™! is an invertible R-R-bimodule. Therefore
there exists a unique ideal 4; of R such that (AN Y+ Y '=Y4,+ Y. In
particular, ANR=A4, Since Y(ANY)SANY*, we have an ascending
chain 4,cA4,cA4,=+-. If A;=0 then ANY'C Y}, and so A,+0 for some
k. Then A¥c A¥,,< -, which are reflexive ideals of R. Therefore, for some
integer m=k, A¥=A,,*=---. By Proposition 1.12, A¥=);_, .. Rz;R)* for
some 2, -, %,4,. Noting that Y™ is finitely generated, we have that
2L Y"2;,RSILRb,R+Y™™! for some b, --,b,€ANY". Let n=m. Then
ANY'C Y AF4+ Y '=Y"4F+ YY" (3, Y"2;R)*+ Y*'. Therefore, if
acANY" then aJ S Y" "), Y"2;R)+ Y" ! for some J=T(R), and so aJ =
VLY "0, R+Y"* . ThenaJS2, Y "0, R+ANY* . ThusANY'c>LY*™
b,R+ANY*N* for any n=m. By induction we obtain 4N Y"'c B
Y "0, R+ANY™ ") (n=m). However, from the above proof, this holds
whenever A4,+0 and Ak=:--=A¥. Therefore, for any n=0 with 4,30,
ANY'SCRR+AN Y™ Y)* for some ¢y, +++,c,€ANY". On the other hand,
if A4,=0 then 0=4,=+--=4,, and so AN Y"=0. Hence there exists a finitely
generated R-R-submodule W of 4N Y™ ! such that AN Y 'c 8"(W). Then,
for any n=m, ANY"CR* "I, Y "0, R+ B"(W)) =B Y* b, R+ W).
This completes the proof.

Now we can complete the proof of Theorem 2.2 with the following

Lemma 2.14. The ascending chain condition on reflexive ideals of R holds.

_ Proof. Let A,CA,CA,C -+ be an ascending chain of reflexive ideals of
R. Put A=(J;4;. Then, by Lemma 2.13, AC |J;2,8/(4’) for some finitely
generated R-R-submodule 4’ of 4. Then A'CA4; for some i. By Lemma
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2.12, B(A;)=A4;, and so B/(A")S A4; for all j. Hence A=A,.
Next we proceed to the proof of the following

Theorem 2.15. For any non-zero ideal A of Q<X>, ANRLY) is are-
flexive ideal of RCY .

Lemma 2.16. The following conditions are equivalent.

(1) For any non-zero ideal A of @, ANR is a reflexive ideal of R.
(2) For any BE T(R), QB=Q holds.

(3) For any non-zero ideal C of R, (QC) '=C"'Q=QC™ holds.

Proof. (1)=>(2) If QBSQ then BCQBNRSR, and QBN R is a reflexive
ideal, a contradiction. (2)=>(3) From CQ=@QC, we have C"'CQC'=C™'QCC™.
Then, by assumption, QC'=C"'Q. Hence (QC)'=C7'Q=QC™'. (3)=(1)
Let CET(R). Then QC=Q, because of C'=R, Now, put ANR=4". If
CxC A'(x€ R), then Qx=QCxC A4, and so x€ ANR=A’. Similarly yC< A4’

implies that yeA4’'. Hence A’ is a reflexive ideal, by Proposition 1.3.

Remark 1. The condition (2) is equivalent to that BN R=0 for any Be
T(R).

Remark 2. If C is an ideal of R such that CNRET(R), then Ce T(R).
In fact, if xCER then #(CNR)CR, and so xR, by Lemma 2.11.

Lemma 2.17. For any IEF(Q; R, R), (RI"Y*=RI* holds.

Proof. The proof is similar to the one of Lemma 2.11.

Let M be a monic @-@-submodule of degree # (i.e. X" '@M=X"). Then,
by [13; Corollary 1 of Proposition 1], X**"=X""'P(X" QM) for any m=0.
Therefore X"Q M= X**"/X*™! as Q-@-bimodules, canonically. Since Y**"
NX*1=Y*1 Y™/ Y*! is canonically embedded in X"/ X" and QQ;
(Y»*+m/y» 1 Xn+m/X""1. Hence there exists a unique R-R-submodule V,, of
X"®oM such that the following diagram is commutative:

X"QoM = Xrtm| X -1

J T

Vm ~ Yn+m/Yn—l.

Namely, V,+X* =YY"+ X*1 Then QQV,=X"QM, and V,=X"MN
(Y*tm XY, Therefore V,CV,CV,C+, where Vi=MN(Y"4+X"""). By
[13; Corollary 1 of Proposition 1], @=X"'D@QQM). Put A=QQR M.
Then AN(R+X")=);V;, and A=) yad X"®M)= U n2o(Q®:V ) =Q®
#V, where V={J,V;. By Lemma 2.13, AnRc|) iz0B(A") for some finitely
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generated R-R-submodule 4’ of ANR. However, by virtue of Lemma 2.11,
B(ANR)=ANR, whence ANR=1]),5,8/(A’). As gA% is finitely generated,
A'C RV, for some s. Now we assume that M is invertible in Q(R). Then,
since V, is an invertible R-R-module and QQ;V, =M=V R, we know
that zV,; is invertible in Q(]?). In this situation, we need the following

Lemma 2.18. For any R-R-submodule W of Q, W*V5'=(WV5")* holds.

Proof. By virtue of Proposition 1.2, there is a one to one mapping I+
VallV, from T(R) onto itself. Let x be in W*V5'. Then xV,CW*. Since
Vo is finitely generated, xV,] S W for some I €T(R). Then «V I[Vi'CWV7,
and so x(WVy")*. Similarly we can prove that (WV3)*C W*Vy?,

We still assume that M is a monic @-@Q-submodule which is invertible in
Q(R), and notations are the same as before. Since V,CA—=QM=QV, we
have V,V3'<@. Since both RV, and RV35! are finitely generated, V, V5! is
also finitely generated, and so ¥, V51 S R for some non-zero ideal I of R, because
of Q=RQ. Then,as A'CRV,, wehave A’V ICR,andso A'ViII'*C RI™.
Then, by Lemma 2.18 and 2.17, Bf(A’)Vglzﬁf(A’VEI)QEI"I for all 7=0.
Hence, as AN R=];2,8/(A4’), we obtain (ANR)Vs' ICR. Put N={xe
Q(R): (ANRx<R} and N'={ycQ(R): AycQ}. Evidently N'=V7'Q,
and V7' ICN implies that N'CN@Q. Next, let us prove that NQCN'. Since
#V, is finitely generated, there exists a non-zero ideal I’ such that V,I'’CR.
Then V,I'=1"V, for some non-zero ideal I” of R, for zxVz is invertible. There-
fore A=QV,=QI"V,=QV,I'CQ(AN R), whence A=Q(ANR). Hence NC
N’. Thus N'=NQ. Finally, x2NCR implies 2N'=zNQcQ, and so z€
QV,=A. Since RSN, we have zR. Hence :€ANR. Therefore a left
R-submodule 4 N R satisfies () of Proposition 1.15. Thus we have the following

Proposition 2.19. Let M be a monic Q-Q-submodule which is invertible
in QR). Put A=QM, A'={xeQ(R): Ax<=Q}, and (ANR)"'={x=Q(R):
(ANRxCR}. Then A=Q(ANR), and A'=(ANR)'Q. Further, ANRE
F*(Q(R); R, B), where B=0,(AN R).

Evidently Theorem 2.15 follows from Proposition 2.16, Proposition 2.19
above and Lemma 20 below. (Cf. the proof of Lemma 2.7).

Lemma 2.20. Let A be any non-zero ideal of Q. Then A=QM=MQ
for some monic Q-Q-submodule M. Such a M is uniquely determined by A, and
is invertible in S(Q).

Proof. The first half follows from the proof of Lemma 2.7. Since A=
MQ®Q, any right @-homomorphism from M to @ can be extended to a right
Q-homomorphism from 4 to @. Since A4 is invertible, this is given by a left
multiplication of an element of A4~!. Therefore if we put M'={xed™:
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xM<Q}, then M'M=@, because My is a generator. Symmetrically MM"'=
Q for some Q-@-submodule M” of A™'. Hence M is invertible in S(@). Let
N be any monic @-Q-submodule with A=QN. Let deg N=r. Then Q=
X"'@A, and N=ANX’, by [13; Corollary 1 of Proposition 1]. Hence N
is uniquely determined by 4.

In all that follows we denote F*(Q(Q); Q, Q), F(Q(Q); @, Q), F*(Q(R); R,
R), and F(Q(R),R,R) by F*{Q}, F{Q}, F*{R}, and F{R}, respectively.
Similarly we denote F*(@; R, R) and F(Q; R, R) by F*{R} and F{R}, respec-
tively (cf. Proposition 1.13).

Let MeEF{R}. Then MICR for some ICF,R), by Proposition 2.1.
Using Corollary of Lemma 2.5, QMI=MIQ=MQI, and so QMQ=MQ, for
QI is invertible. Symmetrically QMQ=QM, whence MQ=QM. Let x&
Q(M™)™.. Then xCZQM for some CeT(R). Since CQ=Q, we have x&
QMQ=MQ. Thus QM=Q(M")7'. Therefore a group homomorphism
Y from F*{R} to F*{Q} is well defined by (M)=QM. Let A, B be
non-zero ideals of Q. Then ABNR2(ANR)o(BNR). Since ABNRc
BN R, we have (ABNR) (BNR)™'CR. By Proposition 2.19, B'2(BN R)™,
and so (ABNR) (BNR)'CANR. Therefore ABNRS(ANR)s(BNR).
Hence ABNR=(ANR)o(BNR). Then a group homomorphism ¢ from
F*{Q} to F*{R} is well defined by ¢(AB™)=(4ANR)o(BNR)™". Because
of Proposition 2.19, y¢=id. Hence F*{R} = Im ¢ x Ker r, and F*{Q} = Im ¢.
Let I, J be in F¥R). If IQC JQ then 1€Q<I'JQ, and so GSI™'J for
some GEF,(R). Then (RGR)*CI % J. Therefore I ' JKer ) if and only
if (RGR)*CI ' JS((RFR)*)™ for some F, GEF,(R). In particular, J &Ker
4 if and only if JNR=0. In this case, JNREF¥(R), by Lemma 2.12. Let
P'eF¥@Q) be irreducible. Then, by Corollary of Lemma 2.5, P'NR is a
prime ideal, so that P'N R is irreducible in F¥(R), and Q(P'N R)=P’ by Pro-
position 2.19. Conversely, if PEF#(R) is irreducible and QP=+@Q then, by
the maximality of P in F¥(R), we have QPN R=P, and QP is maximal. Let
]EF?‘(E), and J=Po:--oP,, where each P; is irreducible in F’,"(R) Then
QJNR=(QP,NR)o--o(QP,NR), and each QP;NR is either P; or R. Let
I', I” be in F¥R). Then, I'o]""'€Ker +oQI'=QI"=QI'NR=QI"NR.
Therefore Ker 4= ]| (P), where P ranges over all irreducible reflexive ideals P
such that PN R=0 (or equivalently, QP=@), and (P) denotes the infinite cyclic
group generated by P.

Lemma 2.21. (i) Let I&F{R}, and assume that IR=RI. Then RI<
F{R}, (RD)'=RI"'=I"'R, and RINX'=IY'=Y'I for all i=0. Therefore,
I=F*{R} then RISF*{R}.

(i) Let J=F¥(R) be irreducible, and asume that JY=Y]. Then, if aRbC
RJ (a, beR) then acR] or beR]. Therefore R] is irreducible in F¥(R).
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Proof. (i) Since 0%RI-I7'!R<R and 0% RI*-IR, we have RIS F{R},
by Proposition 1.9. Let x&(IR)™. Then xI € R, and so xII"'C RI"'. By Lemma
2.17, x€RI™*. Hence (IR)'=RI, and symmetrically (RI)"*=I"'R. Since
Yt/ Y% is projective, Y*'=Y'@PW for some right R-submodule W of Yi*.
Then R=Y'®(WQzR), by [13; Proposition 1]. Then @=R® :Q=(Y'®:Q)
DWRRR:Q)=X'D(WRQ), and RI=YIGWRI. Hence X' RI=Y'I,
and symmetrically X*NIR=IY*. (ii) By (i), JREF¥R). Let B, C be
R-R-submodules of R such that BCC JR. Then, as (B+JR)(C+JR)C JR,
we may assume that B, C2 JR. For any integer i =1, there are ideals B;, C; of R
such that (BN YY)+ Y '=B, Y+ Y, (CNY)+Y'=C;Y'4+Y*?, because
each Y?/Yi™! is an invertible R-R-bimodule. Then, as JRN Y *=]Y*, we
have B;:p/(C;)< J for all i, where p is the one as before. Now, assume that
B2 JR. Then B;< ] for some j, so that p(C;)SJ. Then C;Sp7i(J)=] for
alli. Noting that C;=C N RC J, this implies that CC JR. This completes the
proof.

Here we consider the following condition.

(#) Forany IEF¥Q; R), I[Y=YL

Lemma 2.22. Assume that the condition (§) holds. Let PEF¥(R). Then
P is an irreducible ideal such that P N\ R=:0 if and only if P=IR for some irreducible
reflexive ideal I of R.

Proof. The “if” part follows from Lemma 2.21. Conversely, let P&
F¥(R) beirreducible, and let PNR+0. Then PNREF¥R). If IJTCPNR
for some I, ] €Fy(R), then I* J* C PN R, because of PNREF¥(R). Then I*R-
J*RCP, whence I*CP or J*CP, because P is a prime ideal. Hence PN R is
a prime ideal of R. Then, by Lemma 2.21, (PN R)R is irreducible. Hence
(PNR)R=P.

Assume that the condition (#) holds. Let I, J be in F*{R}. Then
(RI)o(R])=((RI-R])™")'=((RI])™ *=R(Io]), by Lemma 2.21. Therefore
the mapping @: I+— RI is a homomorphism from F*{R} to Ker ¢. Evidently
ICRINQ. LetI=FoG {F,GEF¥R)). Then (RINQGSRFNQ=RFN
R=F, because R, is a direct summand of R,. Therefore (RI N Q) GG 'CFG™,
and so RINQCSFoG'=I. Hence I=RINQ. On the other hand, all ir-
reducible PEF¥(R) with PN R=+0 generate Ker 4. Therefore, by Lemma
2.22, 0 is an isomorphism from F*{R} to Ker ». Thus we obtain the follow-

ing

Theorem 2.23. Assume that the condition (§) holds. Then 6: F*{R} =
Ker v, It— RI, as groups. Further, RINQ=I for all I F*{R}.

Proposition 2.24.  Assume that the condition (4) holds. If I-S(R)=S(R)I
=S(R) for all IEF(R), then A-S(R)=S(R)A=S(R) for all ASF(R). (Cf.
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Proposition 1.14.)

Proof. From (), it follows that S(R)CS(R). Let AEF, {(R). Then
AA™ N R=*0, because of Lemma 2.16. Therefore S(R)SAA™'S(R)SA-S(R),
hence 4-S(R)=S(R). Symmetrically S(R)4=S(R).

3. In this section, we study further on reflexive R-R-submodules of
Q(R). For any additive submodules V, W of Q(R), we put (V.- W)= {x=Q(R):
xWc TV}, and (W-.V)={x=Q(R): WxcT}.

Proposition 3.1. (i) If NEF(Q(E);R, R) and NCR, then QN=NQ.

(ii) Let NeEF(Q(R); R, R), and assume that QN=NQ. Then QN is an
invertible Q-Q-submodule of Q(R) (QN)'=QN'=N"1Q, QN*=N*Q, and
RN*=(RN)*. Furthermore, (RN+.R)=N"'R, and (R.-N'R)=RN*.

(iii) Let M be a Q-Q-submodule of Q, and assume that M 1is invertible in
Q(R). Then MNREF*(Q(R); R, R), and QUM NR)=M=(MNR)Q. Fur-
ther there is an invertible R-R-submodule V, of Q(R) such that Vi*(M N R), (M N
RV eF*{R} and QV,=M=V,Q.

Proof. (i) First we prove that ¢@N; is simple. Let U be any non-zero
Q-R-submodule of QN. Then Q=QNN'2UN'+0, and so Q=UN"},
because oQ; is simple. Then QN=UNT!NCU, whence U=QN. Thus
o®Ny is simple. Then there is an integer #=0 such that QN N X*'=0 and
QN NX"+0. By making use of Corollary 1 of Lemma 2.3, we have X* '@
QN=X". Then, by Lemma 2.4, QN2NQ. Symmetrically QNCNQ,
whence QN=N@, as desired. (ii) QN=N@Q yields N'Q=N"'QNN'=N"!
NQN'=QN", and so N7'Q=QN'. Therefore (@Nj is invertible in Q(R),
and (QN)'=N"'Q=QN . Hence QN=((QN) ) '=N*Q=QN*. Now, R®
QN=R® QR QN=0® QN =Q-QN=RQN (cf. Remark to Proposition 1.6),
and therefore any right R-homomorphism f from R to R can be extended to a
right @-homomorphism f from RQN to @N. Then, for any xE(RN)* we
can see that f(x)€ N*, whence it follows that x& RN*, because Ry is projective.
(Cf. the proof of Lemma 2.11.) Since RN*C(RN)* is evident we have RN*=
(EN)* Symmetrically, Jyc N R (JET(R)) implies that yEN *R. Let RNz
CR. Then N'NzcN™'R, and so x&N"'R, because of N '=(N"Y)*. If
uN'RC R then uNNC RN, whence u&(RN)*=RN*. This completes the
proof of (ii). (iii) Since ¢Qq is simple, an invertible @-@-module M is also
simple. Then, as in the proof of (i), X" '@M=X" for some #=0. Then
M= X"|X*"', canonically. Let V, be as in Lemma 2.18. Then M=Q®Q;V,
=V,Q:Q, and «Vor is invertible in Q(R). Put N=MNR. Then N=0, for
R is essentialin Q. Put I={x€Q: Vix&N}. Then N=V,QI, because V,
is invertible. Since Vi is finitely generated, J V,Z R for some non-zero ideal
J of R. Put Hom (Rg, Ry)(JVy)=]'. Then, since R, is projective, J' is a
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non-zero ideal of R. Noting that R®.Q=Q, we have J'ISR. Therefore, by
Proposition 2.1, IEF{R}. If :I'CI(2€Q, I'=T(R)) then VzI'cV,I=N, and
so VigCMNR=N, thatis, 1. Thus I€F*{R}, and hence N=V J=V,o
IEF*(Q(R); R, R). Further, NQ=V,IQ=V,Q=M. Likewise QN=M. It
is evident that I=V7'N. Symmetrically NV5'eF*{R}.

Let N'eF*Q(R); R, R), and assume that N'CR. Put QN'NR=N.
Then NeF*(Q(R); R, R). Therefore if we put J=N’oN~), then JEF¥R),
and N'=JoN. Evidently QNN R=N. Further, as in (iii) above, N=IV,,
where I F*{R}. Therefore N'=(JoI)V,, where JoIF*{R}, and V, is an
invertible R-R-submodule of Q(I?) with V,Q=QV,=QN’.

Proposition 3.2. Let USF(Q(R); R, R), and suppose that RU=UR and
QU=UQ.

(i) RUEFQ(R); R, R), (RU)'=RU'=U"R, and QU'=U"Q.
Therefore (RU) ™) '=RU*=U*R, and QU*=U*Q.

(i1) QU is written as a product QU=M,M7" with monic Q-Q-submodules
M; such that QM,=MQ (i=1,2).

(iil) U*Y=YU*.

Proof. (i), (ii) Put M=QU. Then, by assumption, QM=MQ. By
Proposition 3.1, U'Q=QU'=M"?, and hence QM F*{Q}, because of
QM '=M"'Q=(QM)™'. Therefore QM=(QM,)"(QM,) for some monic Q-
Q-submodules M; such that QM;=M,Q (i=1,2), by Lemma 2.20. Since
(QM,)'=QM7'=M7'Q, we have QM=QM7'M, and so QM7'M,M™'=Q.
Then Mz'M,M™! is a monic Q-Q-submodule, and so M37'M,M™'=@Q, by [13;
Corollary 1 of Proposition 1]. Hence M=Mj5;'M,. As RU=UR, we have
U'RUU'=U"'URU", whence U*R=RU* by Proposition 3.1 (ii). Since
UU™'&T(R), it follows from Remark 2 of Lemma 2.16 that RU-U'‘Re T(R).
Similarly RU-UR&T(R). Hence RUF{R}. The remainder follows
from Proposition 3.1 (ii). (iii) By (i), we may assume that U=U%*. Since
QM,;=M.Q, it follows from [13; Corollary 1 of Proposition 1] that XM,;=X"*!
NQM;=X*"NM;Q=M;X, where n;—=deg M; (i=1,2). Then, as M=
M37*M,, we have XM=MX. Since U'CcM™, UYU'CMXM™'=X, and so
UYU'CXNR=Y. Then UYU'WWCYU. Now, XM=XQM=Y® M,
so that any right R-homomorphism from Y to R can be extended to a right
Q-homomorphism form XM to M. Then, since Y, is projective, we have
(YU)*=YU. Therefore UYC YU, and symmetrically YUCUY. Thus YU
=UY. (Cf. the proof of Lemma 2.11.)

Theorem 3.3. Assume that the condition (#) holds. Let M be a monic
Q-Q-submodule of Q<X such that Q<X>M=MQ<X>, and let N=M N R{Y).
Then M is invertible in S(Q<X)), NEF*(Q(E); R, R), M=QN=NQ, and
QLX>MNRLY>=R{Y)N=NRLY>.
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Proof. By Lemma 2.20 and Proposition 3.1, M is invertible in S(Q),
M=QN=NQ, and NEF*Q(R); R, R). Put A=QMNR and RN=B.
Then A2B, and QB=BQ=QM=QA=AQ. By Proposition 2.16 and The-
orem 2.15, (QA)'=QA'=A47'Q. Therefore QA'B=QA™'-QB=(QA4)'Q4
=@, hence ICA™'B for some IEF,(R). Then AICB, so AI*CB*=B by
Proposition 3.1. Therefore if we put /={x&R: AxCB} then I=I*. As-
sume that I==R. Then ICP for some irreducible P€ F¥(R). Put B'=(B'-R).
Then, by Proposition 3.1 (i), B'=N"'R, and BB’AICSAICRP. Now AI-
RB'=AIB'CBB’'CR, and so RB'C(AI)™. Then, by Proposition 1.11,
RB'eF{R}, and so RB’-AICR by virtue of the commutativity of F*{R}.
Then, by Lemma 2.21 (ii), BCRP or B’AICRP. However, if BCRP then
NP 'CRNM=N, so P"'CR, a contradiction. On the other hand, if B'AIC
RP then RB’AIP'C R, and so RB'-A-R(I-P™)C R. Therefore A-R(I-P™Y)-
RB'CR, hence A(Io-P™)<(R.-B’)=B by Propositions 3.1 and 3.2. This is
a contradiction. Thus I=R. Hence A=B, that is, QM NR=RMnNR).
Symmetrically MQ N R=(M N R)R. This complete the proof.

Theorem 3.4. Assume that the condition (§) holds. If every reflexive ideal
of R is invertible then so is R{Y .

Proof. Let A be any reflexive ideal of R. Then A can be written as
A=(IR)o(BN R), where I € F¥(R), and B=QA=AQ (cf. Theorem 2.23). By
assumption, IR is invertible. On the other hand, B=QM=MQ for some
monic @-@-submodule M, by Lemma 2.20. Put M N R=N. Then BNR=
RN=NR by Theorem 3.3. By Proposition 3.1 (iii), N is written as a product
N=]V,, where JEF*{R}, and V, is an invertible R-R-submodule of Q(R).
By Propositions 2.1 and 1.6, J is invertible, hence so is N. Then BNR is
invertible. In fact, (BN R)'=N"'R=RN~'. Thus 4 is invertible.

_Theorem 3.5. Assume that the condition (#) holds. Put S={NeF*
(Q(R); R, R): QN=NQ, RN=NR}. Then \: SF*{R} as group, where
A(N)=RN.

Proof. By Proposition 3.2, A is well defined, and is a group homomor-
phism. If RN=R then N, N"!CR. On the other hand, @-QN=@, and so
QN=Q, as in the proof of Proposition 3.2. Hence N, N7'C@. Therefore
N, N'CRNQ=R. Thus N=R. Let AcF¥R). Then A=(RI)s(RN),
where I€F¥(R), and N is as in Theorem 3.3. Therefore Im A2 F#(R), and
so Im A=F*{R}, because of Proposition 2.1.

Assume that the condition (#) holds. Evidently AM(N)SR if and only
if NCR, so that ) induces a semi-group isomorphism from S={Ne&S: Nc
R} to F¥(R). Further, by Theorem 3.3, S,={N&S: QNNR=N} is iso-
morphic to {ASF¥R): QANR=A}. Therefore S,={N,oNz': N, N,
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S} =Im ¢(==F*{Q}) as group. Hence the direct product F*{R}=Im ¢ x
Ker + induces the direct product S=S,xF*{R}. Let NES,. Then N is
written as a product N=V,I, where I&F*{R}, and V, is an invertible R-R-
submodule of Q(R) such that QV,=V,Q. Then RN=NR=VJIR=V,RI,
and so RVJII"'=V,RII"'. Hence V,R<(RV,)*=RV, by Proposition 3.1.
Symmetrically RV, V,R, whence V,R=RV,. Therefore S is generated by
F*{R} and the subgroup of all invertible R-R-submodules V' of Q(R) with
QV=VQ, RV=VR.
Finally we note the following

Lemma 3.6. If R is a prime Goldie ring and Q=Q(R), then any monic
Q-Q-submodule is invertible in Q(R).

Proof. Let M be a monic @-Q-submodule of degree n. We may assume
that n=1. Then, since MQ=M®Q, any right @-homomorphism f from M
to @ can be extended to a right @-homomorphism f from M@ to Q. Since
Q(R)z is injective (cf. §4. Appendix), f is given by a left multiplication of an
element of Q(R). Since My is a generator, if we put M'= {x€Q(R): xM S Q}
then M'M=@Q. Symmetrically MM"”=@ for some Q-Q-submodule M" of
Q(R). Hence (M, is invertible in Q(FR).

4. Appendix
Lemma 4.1 If ;R is Noetherian then so is zR.

Proof. It suffices to prove that any left ideal of R is finitely generated.
Let I be any left ideal of R. For any integer =0, Y"/Y*™! is an invertible
R-R-bimodule, and hence there exists a unique left ideal I, of R such that IN
Y'+Y*'=Y"I,+Y*! Then I=INRcI,cl,c---. Therefore, I,=I,.,
=-.- forsomem. Put J=I,. Since ] and zY"™ are finitely generated, zpY"J is
also finitely generated, so that Y” J=>7; Ra,+ Y™™ for some a,,+-:,a, of INY".
Then, for any n=m, INY*'CY"J+Y* '3 Y* "a;+ YY"}, andso INY"=
S Y* g, - INY* ' Therefore INY*C>); Ra,+IN Y™ ! for all n==m. Hence
I=3Y; Ra,+I1N Y™, Since xI N Y™ ! is finitely generated, zI is finitely gene-
rated.

If R is a prime Goldie ring and Q=@Q(R), then @ is a prime Goldie ring,
by Lemma 4.1. Hence, as is well known, Q(Q)g is injective.

In the sequel, R is any ring. Let o, 7 be automorphisms of R, and D
an endomorphism of R as an additive group. If D(xy)=a(x)D(y)+D(x)7(y)
for all x, yER, then D is said to be a (o, 7)-derivation of R ([5]). If oc=idp,
D is called a T-derivation. Let I be a dense right ideal of R, and f a right
R-homomorphism form I to @,(R). Then, as is well known, there exists a
unique element b of Q,(R) such that f(x)=bx for all x&I (cf. [16]). Let »
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be any automorphism of R. Then v is uniquely extended to an automor-
phism of @,(R), and symmetrically of @,(R). And these induce the same
automorphism of Q(R). Therefore we denote these automorphisms by v,
too.

Lemma 4.2. Let 7 be an automorphism of R, and g an additive homomor-
phism from a dense right ideal I to Q,(R) such that g(xa)=g(x)7(a) for all xE1,
a€R. Then there exists a unique element b of Q.R) such that g(x)=b-7(x)
for all x<1.

Proof. Put h=g7™'. Then % is a right R-homomorphism from a dense
right ideal 7(I) to @,(R). Hence there exists a unique element & of Q,(R)
such that A(7(x))=b-7(x) for all x& L.

Lemma 4.3. Let D be a (o, T)-derivation of R. Then D is uniquely ex-
tended to a (o, T)-derivation of Q.(R), and symmetrically of Q,(R). And these
induce the same (o, T)-dertvation of Q(R).

Pioof. Let b=@Q,(R), and let I be a dense right ideal of R such that b/ <
R. A map g from I to Q,(R) is defined by g(x)=D(bx)--a(b)D(x) (x1).
Then g is as in Lemma 4.2, whence there exists a unique b’'€Q,(R) such that
g(x)=>b"+7(x) for all x&1. Note that " does not depend on the choice of I.
Put D’(b)=>b’. Then D’ is a unique (o, 7)-derivation of @,(R) such that
D’'|R=D. Similarly D is uniquely extended to a (o, 7)-derivation D” of
Q,(R), and it is easy to verify that D'|Q(R)=D"|Q(R).

We denote D', D”, and D’'|Q(R) by D, too.

Let D be a 7-derivation of R, and put @=@Q(R). By Lemma 4.2, the
skew polynomial ring R[t; 7, D] defined by at=t7(a)+D(a) (aER) is a sub-
ring of the skew polynomial ring Q[¢; 7, D]. Put Y=R-+¢R and X=Q-+1Q.
Then, for any i=1, Y'=R+tR+:-+tR, and X'=Q+tQ+---+£Q. It is
easy to see that these satisfy the conditions in §2.
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