MODULES OVER DEDEKIND PRIME RINGS. V

HIDETOSHI MARUBAYASHI

(Received December 1, 1977)

Let R be a Dedekind prime ring, let F be a non-trivial right additive topology on R and let F_l be the left additive topology corresponding to F (cf. [8]). For any positive integer n, let F^n be the set of all right ideals containing a finite intersection of elements in F, each of which has at most n as the length of composition series of its factor module. An exact sequence $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ of right R-modules is EF^n -pure if the induced sequence $0 \rightarrow \operatorname{Ext}(Q_{F^n}/R, L) \rightarrow \operatorname{Ext}(Q_{F^n}/R, M) \rightarrow \operatorname{Ext}(Q_{F^n}/R, N) \rightarrow 0$ is splitting exact, where $Q_{F^n} = \lim_{l \to \infty} I^{-1}(I \text{ ranges over all elements in } F^n)$. If R is the ring of integers, P is a prime number and P is the topology of all powers of P, then P^n -purity is equivalent to P^n -purity in the sense of [12].

The aim of this paper is to investigate the structure of EF^n -pure injective modules. In Section 1, a notion of maximal F^n -torsion modules will be introduced. It is shown, in Theorem 1.10, that there is a duality between all maximal F^n -torsion modules and all direct summands of direct products of copies of $\hat{R}_{F_l^n}$ by using the results in [9], where $\hat{R}_{F_l^n} = \lim_{\leftarrow} R/J$ ($J \in F_l^n$). In Section 2, we shall study the category $C(F^n)$ of F^n -reduced, EF^n -pure injective modules. After discussing some properties of EF^n -puries and F^n -purities we shall give, in Theorem 2.9, characterizations of projective objects in the category $C(F^n)$. In particular, it is established that a module is a direct summand of a direct product of copies of $\hat{R}_{F_l^n}$ if and only if it is a projective object in $C(F^n)$. F is bounded if each element of F contains a non-zero ideal of F. If F is bounded, then $\hat{R}_{F_l^n} = \Pi R/P^n$, where F ranges over all prime ideals contained in F. So our results may essentially be interesting in case F contains completely faithful right ideals of F in the sense of [3].

1. The Harrison duality

Throughout this paper, R will be a Dedekind prime ring with the two-sided quotient ring Q and $K=Q/R \neq 0$. By a module we shall understand a unitary right R-module. In place of \bigotimes_R , Hom_R , Ext_R and Tor^R , we shall just write \bigotimes , Hom , Ext and Tor , respectively. Since R is hereditary, $\operatorname{Tor}_n=0$ = Ext^n for all n>1 and so we shall use Ext for Ext^1 and Tor for Tor_1 . Let I be

an essential right ideal of R. Then R/I is an artinian module by Theorem 1.3 of [3]. So the length of the composition series of the module R/I is finite. We call it the length of I. Let F be any non-trivial right additive topology, then F consists of essential right ideals of R (cf. p. 548 in [8]). For any positive integer n, let F^n be the set of all right ideals containing a finite intersection of elements in F, each of which has at most n as the length. Let M be a module. An element m of M is said to be F^n -torsion if $O(m) = \{r \in R \mid mr = 0\} \in F^n$, and we denote the set of all F^n -torsion elements in M by M_{F^n} . M_{F^n} is a submodule of M, because F^n is a pretopology on R. Following [8], we shall denote the left additive topology corresponding to F by F_I . In a similar way we can define the concepts of F_I^n -torsion elements and F_I^n -torsion sumbodules for left modules. We put Q_F^n = $\lim I^{-1}$ ($I \in F^n$) and $Q_{F_I^n}$ = $\lim I^{-1}$ ($I \in F^n$).

Concerning the terminology we refer to [8] and [9].

Lemma 1.1. (1)
$$Q_{F^n} = Q_{F_l^n}$$
 and so Q_{F^n} is an (R, R) -bimodule. (2) $K_{F^n} = Q_{F^n}/R = K_{F_n}$

Proof. (1) We shall prove that $Q_{F_n} \supseteq Q_{F_l^n}$. To prove this let J be any element of F_l^n with length $J \subseteq n$. Then the length of the composition series of the module J^{-1}/R is at most n. By Proposition 1.4 of [8], J^{-1}/R is F-torsion. Hence, for every element $q \in J^{-1}$, we have $qI_q \subseteq R$ for some $I_q \in F$ with length $I_q \subseteq n$. Hence $q \in qI_qI_q^{-1} \subseteq RI_q^{-1} \subseteq Q_{F_l^n}$ and thus $J^{-1} \subseteq Q_{F_l^n}$. So $Q_{F_l^n} \subseteq Q_{F_l^n}$ by Lemma 4.8 of [5]. Similarly $Q_{F_l^n} \supseteq Q_{F_l^n}$ and thus $Q_{F_l^n} = Q_{F_l^n}$.

(2) is evident from (1).

The exact sequence $0 \to R \xrightarrow{\iota} Q_{F^n} \to K_{F^n} \to 0$ yields the exact sequences:

$$0 \to \operatorname{Tor}(M, K_{F^n}) \to M \stackrel{\iota_*}{\to} M \otimes Q_{F^n} \to M \otimes K_{F^n} \to 0 ,$$

$$Hom(K_{F^n}, M) \to Hom(Q_{F^n}, M) \stackrel{\iota^*}{\to} M \to \operatorname{Ext}(K_{F^n}, M) ,$$

where $\iota_*(m) = m \otimes 1$ and $\iota^*(f) = f(1)$ $(m \in M \text{ and } f \in \text{Hom}(Q_{F^n}, M))$.

Lemma 1.2. (1) $Tor(M, K_{Fn}) \simeq M_{F^n}$.

- (2) If M is F^n -torsion, then $M \otimes Q_{F^n} \cong M \otimes K_{F^n}$.
- (3) $Im \iota^* \subseteq \cap MJ(J \in F_l^n).$

Proof. (1) is obtained by the similar way as in Theorem 3.2 of [11], and (2) is evident from (1) and the above exact sequence.

(3) Let J be any element of F_l^n . Then from the exact sequence $0 \rightarrow R \rightarrow J^{-1} \rightarrow J^{-1}/R \rightarrow 0$ we have the following commutative diagram with exact rows:

$$\operatorname{Hom}(Q_{F^n}, M) \to M \to \operatorname{Ext}(K_{F^n}, M)$$

$$\downarrow \qquad \qquad || \qquad \downarrow$$

$$\operatorname{Hom}(J^{-1}, M) \to M \to \operatorname{Ext}(J^{-1}/R, M).$$

From this diagram and Proposition 3.2 of [13], we get $\operatorname{Im} \iota^* \subseteq MJ$ and so $\operatorname{Im} \iota^* \subseteq \cap MJ$.

We denote the submodule Im ι^* of the module M by MF^n , and if $MF^n = 0$, then M is said to be F^n -reduced. If M is F^n -reduced, then it is F-reduced in the sense of [9].

Lemma 1.3. Let $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ be an exact sequence such that Ext $(Q_{F^n}, L)=0$ and M is F^n -reduced. Then N is F^n -reduced.

Proof. This is evident from the following commutative diagram with exact columns:

$$\begin{array}{ccc} \operatorname{Hom}(Q_{F^n}, M) \to M \\ \downarrow & \downarrow \\ \operatorname{Hom}(Q_{F^n}, N) \to N \\ \downarrow & \downarrow \\ 0 & 0 \end{array}$$

For any module M we denote by M_F the submodule of F-torsion elements in M. If M_F =0, then we say that M is F-torsion-free.

Following [9], an exact sequence $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ is F^{∞} -pure if the induced sequence $0 \rightarrow L_F \rightarrow M_F \rightarrow N_F \rightarrow 0$ is splitting exact. A module is F^{∞} -pure injective if it has the injective property to the class of F^{∞} -pure exact sequences. We denote the injective hull of a module M by E(M), and the F-injective hull of M by $E_F(M)$. By the results in §1 of [9], we have the following:

- (1) A module G is F^{∞} -pure injective if and only if $G \cong E(GF^{\infty}) \oplus \operatorname{Ext}(K_F, G)$, where GF^{∞} is the maximal F_I -divisible submodule of G.
 - (2) For a module G, the following are equivalent:
 - (i) G is F-reduced and F^{∞} -pure injective.
 - (ii) $\delta: G \cong \operatorname{Ext}(K_F, G)$, where δ is the connecting homomorphism.
 - (iii) G is F-reduced and $Ext(Q_F, G)=0$.
 - (iv) G is F-reduced and Ext(X, G)=0 for every F-torsion-free module X. These results will be used in this paper without references.

Lemma 1.4. Let M be a module. Then $H_n = Hom(K_{F^n}, M)$ and $G_n = Ext(K_{F^n}, M)$ are both F^n -reduced and F^{∞} -pure injective.

Proof. (1) H_n is F^{∞} -pure injective by Proposition 5.1 of [13] and Proposition 1.4 of [9]. Further, from the exact sequence $Q_{F^n} \rightarrow K_{F^n} \rightarrow 0$ and Proposition 5.2' of [2, Chap. II], we get the following commutative diagram with exact rows:

$$0 \to \operatorname{Hom}(K_{F^n}, H_n) \longrightarrow \operatorname{Hom}(Q_{F^n}, H_n)$$

$$\downarrow \parallel \qquad \qquad f \qquad \downarrow \parallel$$

$$0 \to \operatorname{Hom}(K_{F^n} \otimes K_{F^n}, M) \to \operatorname{Hom}(Q_{F^n} \otimes K_{F^n}, M).$$

By Lemma 1.2, f is an isomorphism and so H_n is F^n -reduced.

(2) From the exact sequence $0 \rightarrow M \rightarrow E(M) \stackrel{g}{\rightarrow} E(M)/M \rightarrow 0$ we derive an exact sequence $0 \rightarrow H_n \rightarrow \operatorname{Hom}(K_{F^n}, E(M)) \stackrel{g}{\rightarrow} \operatorname{Hom}(K_{F^n}, E(M)/M) \rightarrow G_n \rightarrow 0$. Since $\operatorname{Hom}(K_{F^n}, E(M))$ is F-reduced and F^{∞} -pure injective, $\operatorname{Ext}(Q_{F^n}, \operatorname{Hom}(K_{F^n}, E(M)) = 0$. So $\operatorname{Ext}(Q_{F^n}, \operatorname{Im} g_*) = 0$ and thus G_n is F^n -reduced by (1) and Lemma 1.3. By Proposition 3.5a of [2, Chap. VI], we have $\operatorname{Ext}(Q_F, G_n) \cong \operatorname{Ext}(\operatorname{Tor}(Q_F, K_{F^n}), M) = 0$. Therefore G_n is F^{∞} -pure injective.

Let M be any module. From the exact sequence $0 \rightarrow R \rightarrow Q_{F^n} \rightarrow K_{F^n} \rightarrow 0$ we have the exact sequences:

$$\operatorname{Ext}(K_{F^n}, M) \xrightarrow{\delta'} \operatorname{Ext}(K_{F^n}, \operatorname{Ext}(K_{F^n}, M)) \to \operatorname{Ext}(Q_{F^n}, \operatorname{Ext}(K_{F^n}, M)),$$

$$M \xrightarrow{\delta} \operatorname{Ext}(K_{F^n}, M) \to \operatorname{Ext}(Q_{F^n}, M).$$

The second exact sequence yields a homorphism $\delta_* \colon \operatorname{Ext}(K_{F^n}, M) \to \operatorname{Ext}(K_{F^n}, \operatorname{Ext}(K_{F^n}, M))$.

Lemma 1.5. δ' and δ_* are both isomorphisms.

Proof. From the exact sequence $0 \to R \to Q_{F^n} \to K_{F^n} \to 0$ we have the isomorphism: $\operatorname{Tor}(K_{F^n}, K_{F^n}) \cong R \otimes K_{F^n}$. Applying Theorem 2.1 of [11] we get the commutative diagram:

Hence δ' is an isomorphism.

From Theorem 1.5 of [9] we obtain the following commutative diagram with exact row:

$$0 \to M \xrightarrow{h} E(MF^{\infty}) \oplus \operatorname{Ext}(K_F, M) \to \operatorname{Coker} h \to 0$$

$$\parallel \qquad \qquad \downarrow p$$

$$M \xrightarrow{\delta_1} \operatorname{Ext}(K_F, M),$$

where p is the projection and δ_1 is the connecting homomorphism. Since Coker h is F-torsion-free and injective, applying $\operatorname{Ext}(K_{F^n}, \)$ to the diagram we have the isomorphism $\delta_{1*} : \operatorname{Ext}(K_{F^n}, M) \cong \operatorname{Ext}(K_{F^n}, \operatorname{Ext}(K_F, M))$. From the exact sequence $0 \to K_{F^n} \to K_F$ we have the commutative diagram:

$$M \xrightarrow{\delta_1} \operatorname{Ext}(K_F, M)$$

$$\parallel \qquad \qquad \downarrow \theta^*$$

$$M \xrightarrow{\delta} \operatorname{Ext}(K_{F^n}, M)$$

From this diagram we get the commutative diagram:

$$\operatorname{Ext}(K_{F^n}, M) \stackrel{\delta_{1*}}{\simeq} \operatorname{Ext}(K_{F^n}, \operatorname{Ext}(K_F, M))$$

$$\parallel \qquad \qquad \downarrow (\theta^*)_*$$

$$\operatorname{Ext}(K_{F^n}, M) \stackrel{\delta_*}{\to} \operatorname{Ext}(K_{F^n}, \operatorname{Ext}(K_{F^n}, M)).$$

By Proposition 3.5a of [2, Chap. VI] and Lemma 1.2, $(\theta^*)_*$ is an isomorphism and so δ_* is also an isomorphism.

From the inclusion map $\theta: K_{F^n} \to K_F$, we get the epimorphism θ^* : Ext $(K_F, M) \to \text{Ext}(K_{F^n}, M)$ for any module M.

Lemma 1.6. Ker $\theta^* = Ext(K_F, M)F^n$.

Proof. We consider the following commutative diagram with exact row:

$$0 \to \operatorname{Ker} \theta^* \longrightarrow \operatorname{Ext}(K_F, M) \longrightarrow \operatorname{Ext}(K_{F^n}, M) \to 0$$

$$\downarrow \qquad \qquad \downarrow \delta'$$

$$\operatorname{Ext}(K_{F^n}, \operatorname{Ker} \theta^*) \to \operatorname{Ext}(K_{F^n}, \operatorname{Ext}(K_F, M)) \stackrel{(\theta^*)_*}{\longrightarrow} \operatorname{Ext}(K_{F^n}, \operatorname{Ext}(K_{F^n}, M)).$$

By Lemma 1.5 and its proof, δ' and $(\theta^*)_*$ are both isomorphisms. Hence Ker $\theta^* = \text{Ext}(K_F, M)F^*$.

Lemma 1.7. Let N be an F_i -torsion let module. Then $E_{F_i}(N)$ is a direct summand of a direct sum of copies of K_F .

Proof. Since E(N) is a torsion left module, there is a torsion left module L such $E(N) \oplus L = \Sigma \oplus K$. So $\Sigma \oplus K_F = \Sigma \oplus K_{F_I} = (\Sigma \oplus K)_{F_I} = E(N)_{F_I} \oplus L_{F_I}$ by Proposition 1.4 of [8]. It is evident that $E(N)_{F_I} \subseteq E_{F_I}(N)$ by Proposition 6.3 of [14]. Since N is F_I -torsion, the converse inclusion also holds. Thus $E_{F_I}(N)$ is a direct summand of $\Sigma \oplus K_F$.

An F-torsion module D is said to be maximal F^n -torsion provided $(E(D))_{F^n} = D$. This is clearly equivalent to $(E_F(D))_{F^n} = D$. For any module M we define $\hat{M}_{F_l^n} = \lim_{\leftarrow} M/MJ$ $(J \in F_l^n)$. Then $\hat{R}_{F_l^n}$ becomes a ring and $\hat{M}_{F_l^n}$ becomes an $\hat{R}_{F_l^n}$ -module by the similar way as in §4 of [13]. Let $\alpha \colon M \to \hat{M}_{F_l^n}$ be the canonical map. Then $\ker \alpha = \bigcap_{\sim} MI$ $(I \in F^n)$.

Lemma 1.8. Let M be an F-torsion-free module. Then

- (1) $M \otimes K_{F^n}$ is maximal F^n -torsion.
- (2) There are isomorphism $\hat{M}_{F_l^n} \cong Hom(K_{F^n}, M \otimes K_{F^n}) \cong Ext(K_{F^n}, M)$ such that the diagram

$$M = M = M$$

$$\downarrow \alpha \qquad \downarrow \beta \qquad \qquad \downarrow \delta$$

$$\hat{M}_{F_{i}} \cong Hom(K_{F_{i}}, M \otimes K_{F_{i}}) \cong Ext(K_{F_{i}}, M)$$

commutes, where $\beta(m)$ $(\overline{q})=m\otimes \overline{q}$ $(m\in M, \overline{q}\in K_{F^n})$ and δ is the connecting homomorphism.

Proof. (1) The commutative diagram

$$0 \to R \to Q_{F^n} \to K_{F^n} \to 0$$

$$\parallel \qquad \downarrow \kappa \qquad \downarrow \theta$$

$$0 \to R \to Q_E \to K_E \to 0$$

yields the commutative diagram with exact rows:

By Proposition 1.1, Lemma 2.5 of [8] and Lemma 1.7, $\operatorname{Tor}(M, Q_F/Q_{F^n})=0$. Hence κ_* is a monomorphism and so θ_* is also a monomorphism. Let x be any element in $M \otimes K_F$ such that $I = O(x) \in F^n$ and let y be an element in $M \otimes Q_F$ mapping on x. Then $yI \subseteq M$ and so $y \in M \otimes I^{-1}$ in $M \otimes Q_F$. This implies that $y \in M \otimes Q_{F^n}$ and thus $x \in M \otimes K_{F^n}$. Hence $(M \otimes K_F)_{F^n} = M \otimes K_{F^n}$. Therefore $M \otimes K_{F^n}$ is maximal F^n -torsion, because $M \otimes K_F$ is F-injective.

(2) By the similar way as in Lemma 2.7 of [8], we have $\operatorname{Hom}(K_{F^n}, M \otimes K_F) \cong \operatorname{Ext}(K_{F^n}, M)$ such that the diagram

$$\begin{array}{ccc}
M & \longrightarrow & M \\
\downarrow & \downarrow & \downarrow \\
\operatorname{Hom}(K_F, M \otimes K_F) \cong \operatorname{Ext}(K_F, M) \\
\downarrow & \downarrow & \downarrow \\
\operatorname{Hom}(K_{F''}, M \otimes K_F) \cong \operatorname{Ext}(K_{F''}, M)
\end{array}$$

commutes. Since $(M \otimes K_F)_{F^n} = M \otimes K_{F^n}$, we have $\text{Hom}(K_{F^n}, M \otimes K_F) \cong \text{Hom}(K_{F^n}, M \otimes K_{F^n})$. This is the proof of the assertion to the right diagram. Next we consider the following commutative diagram with exact right column:

$$\hat{M}_{F_I} \stackrel{oldsymbol{\gamma}}{
ightarrow} \operatorname{Hom}(K_F, M \otimes K_F) \ \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \ \hat{M}_{F_I^n} \stackrel{oldsymbol{\gamma}'}{
ightarrow} \operatorname{Hom}(K_{F^n}, M \otimes K_F) \, (= \operatorname{Hom}(K_{F^n}, M \otimes K_{F^n})) \ \downarrow \qquad \qquad \downarrow \ 0 \ .$$

where $\eta(\hat{m})(\bar{q}) = m_J \otimes \bar{q}$ ($\hat{m} = ([m_J + MJ])$), $\bar{q} = [q + R]$ and $q \in J^{-1}$), η' is the homomorphism induced by η and the map: $\hat{M}_{F_l} \rightarrow \hat{M}_{F_l''}$ is the natural homomorphism. By Lemma 2.7 of [8], η is an isomorphism. If $\eta'(\hat{m}) = 0$, where

 $\hat{m}=([m_J+MJ])\in \hat{M}_{F_I^n}$, then $m_J\otimes J^{-1}/R=0$ in $M\otimes K_{F_I^n}$. This implies that $m_J\otimes J^{-1}\subseteq M$ by the diagram (A) and so $m_J\in MJ$. Hence $\hat{m}=0$ and thus η' is an isomorphism. The commutativity of the left diagram is clear.

Lemma 1.9. Let M be an F-torsion-free module. Then $Ext(K_{F^n}, M)$ is isomorphic to a direct summand of a direct product of copies of \hat{R}_{F^n} .

Proof. Since $M_F=0$, the exact sequence $0 \to \operatorname{Ker} f \to \Sigma \oplus R \xrightarrow{f} M \to 0$ is F^{∞} -pure and so the sequence $0 \to \operatorname{Ext}(K_F, \operatorname{Ker} f) \to \operatorname{Ext}(K_F, \Sigma \oplus R) \to \operatorname{Ext}(K_F, M) \to 0$ is splitting exact by Lemma 1.3 of [9]. By Proposition 3.5a of [2, Chap. VI] and Lemma 1.2, this sequence yields the splitting exact sequence $0 \to \operatorname{Ext}(K_{F^n}, \operatorname{Ker} f) \to \operatorname{Ext}(K_{F^n}, \Sigma \oplus R) \to \operatorname{Ext}(K_{F^n}, M) \to 0$. So it suffices to prove that $\operatorname{Hom}(K_{F^n}, \Sigma \oplus K_{F^n})$ is a direct summand of $\operatorname{Hom}(K_{F^n}, \Pi K_{F^n})$ by Lemma 1.8. To prove this we consider the following commutative diagram with exact rows and columns:

$$0 \qquad 0$$

$$\downarrow \qquad \downarrow$$

$$0 \to \Sigma \oplus K_{F^n} \to (\prod K_{F^n})_{F^n}$$

$$\downarrow \qquad \qquad \downarrow$$

$$0 \to \Sigma \oplus K_F \to (\prod K_F)_F.$$

The second row splits, because $\Sigma \oplus K_F$ is F-injective. Since $(\Sigma \oplus K_F)_{F^n} = \Sigma \oplus K_{F^n}$, the splitting map induces an splitting map of the first row. Hence $\operatorname{Hom}(K_{F^n}, \Sigma \oplus K_{F^n})$ is a direct summand of $\operatorname{Hom}(K_{F^n}, (\Pi K_{F^n})_{F^n}) = \operatorname{Hom}(K_{F^n}, \Pi K_{F^n})$.

Theorem 1.10 (The Harrison duality). The correspondence

(B)
$$D \rightarrow G = Hom(K_{\mathbb{R}^n}, D)$$

is one-to-one between all maximal F^n -torsion modules D and all direct summands G of direct products of copies of $\hat{R}_{F_i^n}$. The inverse of (B) is given by the correspondence $G \rightarrow G \otimes K_{F^n}$.

Proof. (i) Let D be maximal F^n -torsion and let $H=\operatorname{Hom}(K_F, E_F(D))$. Then H is F-torsion-free, F^{∞} -pure injective and $\eta: H \otimes K_F \cong E_F(D)$ by Theorem 2.2 of [9], where $\eta(x \otimes \overline{q}) = x(\overline{q})$ ($x \in H$ and $\overline{q} \in K_F$). From the exact sequence $0 \to K_F \to K_F$, we get the exact sequence: $H \to \operatorname{Hom}(K_{F^n}, E_F(D))$ ($= \operatorname{Hom}(K_{F^n}, D)$) $\to 0$. This yields the commutative diagram:

$$H \otimes K_F \cong E_F(D)$$

$$\uparrow \theta_* \qquad \gamma' \qquad \uparrow$$
 $H \otimes K_{F^n} \rightarrow D$

$$\searrow (\theta^*)_* \nearrow \varphi$$
 $+ \text{Hom}(K_{F^n}, D) \otimes K_{F^n},$

where $\varphi(x \otimes \overline{q}) = x(\overline{q})$ and η' is the map induced by η . Since H is F-torsion-free, θ_* is a monomorphism and $H \otimes K_{F^n}$ is maximal F^n -torsion. Hence η' is an isomorphism, and $\varphi(\theta^*)_* = \eta'$ implies that φ is also an isomorphism, because $(\theta^*)_*$ is an epimorphism. From $D \cong H \otimes K_{F^n}$, we have $\operatorname{Hom}(K_{F^n}, D) \cong \operatorname{Hom}(K_{F^n}, H \otimes K_{F^n}) \cong \operatorname{Ext}(K_{F^n}, H)$ by Lemma 1.8. Hence $\operatorname{Hom}(K_{F^n}, D)$ is a direct summand of a direct product of copies of \hat{R}_{F^n} , by Lemma 1.9.

(ii) Let G be a direct summand of a direct product of copies of $\hat{R}_{F_I^n}$. Then we may assume from Lemma 1.8 that $G \oplus X = \operatorname{Hom}(K_{F^n}, \Pi K_{F^n}) = \operatorname{Hom}(K_{F^n}, (\Pi K_{F^n})_{F^n})$, where X is a module. Since $(\Pi K_{F^n})_{F^n}$ is maximal F^n -torsion, we get, by (i), the isomorphism $\varphi \colon (G \otimes K_{F^n}) \oplus (X \otimes K_{F^n}) \cong (\Pi K_{F^n})_{F^n}$. Hence $G \otimes K_{F^n}$ is maximal F^n -torsion. Applying $\operatorname{Hom}(K_{F^n}, G \otimes K_{F^n}) \oplus \operatorname{Hom}(K_{F^n}, X \otimes K_{F^n}) \cong G \oplus X$. We may define $\lambda \colon G \oplus X \to \operatorname{Hom}(K_{F^n}, G \otimes K_{F^n}) \oplus \operatorname{Hom}(K_{F^n}, X \otimes K_{F^n})$ by $\lambda(g+x)(\overline{q}) = (g \otimes \overline{q}) + (x \otimes \overline{q})$, where $g \in G$, $x \in X$ and $\overline{q} \in K_{F^n}$. Then it follows that $\varphi_*\lambda = 1$ and that $\lambda(G) \subseteq \operatorname{Hom}(K_{F^n}, G \otimes K_{F^n})$, $\lambda(X) \subseteq \operatorname{Hom}(K_{F^n}, X \otimes K_{F^n})$. Hence $G \cong \operatorname{Hom}(K_{F^n}, G \otimes K_{F^n})$.

This duality was first exhibited by Harrison in [4] between all divisible, torsion abelian groups and all reduced, torsion-free cotorsion abelian groups. This duality was generalized by Matlis [10] to modules over commutative integral domains. To modules over non-commutative complete discrete valuation rings the result was established by Liebert [6]. The author generalized it in [9] to the case of modules over Dedekind prime rings.

2. Projective objects of the category of F^n -reduced, EF^n -pure injective modules

In this section we shall define a notion of EF^n -pure injective modules and give characterizations of direct summands of direct products of copies of $\hat{R}_{F_I^n}$ which were discussed in §1.

A short exact sequence

(E):
$$0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$$

of modules is said to be F^n -pure if $MJ \cap L = LJ$ for all $J \in F_n^n$. (E) is said to be $Ext-F^n$ -pure (abbr. EF^n -pure) if the induced sequence $0 \to Ext(K_{F^n}, L) \to Ext(K_{F^n}, M) \to Ext(K_{F^n}, N) \to 0$ is splitting exact. A module G is EF^n -pure injective if it has the injective property relative to the class of EF^n -pure exact sequences. A right additive topology F is bounded if any element of F contains a non-zero ideal of F.

Lemma 2.1. (1) If (E) is EF^n -pure, then it is F^n -pure. (2) If (E) is F^{∞} -pure, then it is EF^n -pure.

- (3) If F is bounded and (E) is F^n -pure, then it is EF^n -pure.
- Proof. (1) If (E) is EF^n -pure, then the induced sequence $0 \rightarrow \text{Ext}(K_{F^n}, L) \rightarrow \text{Ext}(K_{F^n}, M)$ is splitting exact. Let J be any element of F_I^n . Then we get the following commutative diagram with splitting exact rows:

$$0 \to \operatorname{Ext}(J^{-1}/R, \operatorname{Ext}(K_{F^n}, L)) \to \operatorname{Ext}(J^{-1}/R, \operatorname{Ext}(K_{F^n}, M))$$

$$\emptyset \qquad \qquad \emptyset \qquad \qquad \emptyset$$

$$0 \to \operatorname{Ext}(\operatorname{Tor}(J^{-1}/R, K_{F^n}), L) \to \operatorname{Ext}(\operatorname{Tor}(J^{-1}/R, K_{F^n}), M)$$

$$\emptyset \qquad \qquad \emptyset \qquad \qquad \emptyset$$

$$0 \longrightarrow \operatorname{Ext}(J^{-1}/R, L) \longrightarrow \operatorname{Ext}(J^{-1}/R, M)$$

$$\emptyset \qquad \qquad \emptyset \qquad \qquad \emptyset$$

$$0 \longrightarrow L/LJ \longrightarrow M/MJ.$$

Hence (E) is F^n -pure.

- (2) If (E) is F^{∞} -pure, then the induced sequence $0 \to \operatorname{Ext}(K_F, L) \to \operatorname{Ext}(K_F, M)$ is splitting exact by Lemma 1.3 of [9]. Applying to $\operatorname{Ext}(K_{F^n}, L) \to \operatorname{Ext}(K_{F^n}, M)$ by the same way as in (1). Therefore (E) is EF^n -pure.
- (3) Let P be a prime ideal of R. Then the set $F_P = \{I | I \supseteq P^k \text{ for some non-negative integer } k$, I is a right ideal of $R\}$ is a right additive topology. We shall prove that $F_p^n = \{I | I \supseteq P^n \text{ and } I \in F_p\}$. It is well known that $R/P^n = (D)_m$, where D is a completely primary ring with the Jacobson radical J(D) such that one-sided ideals of D are only $\{J(D)^l | l = 0, 1, 2, \dots, n\}$ (cf. Theorem 4.32 of [1]). we can easily see that $P^n \in F_p^n$. Let I be any element of F_p^n . To prove that $I \supseteq P^n$, it suffices to prove it in case the length of I is k ($k \le n$). If k=1 and $I \supseteq P$. Then I+P=R. Since $I \in F_p$, we may assume that $I \supseteq P^{i-1}$ and $I \supseteq P^i$ for some natural number i. It follows that $P^{i-1}=(I+P)P^{i-1}\subseteq I$, which is a contradiction. Hence $I \supseteq P$. Assume that k > 1. Let I_0 be any element of F_p such that $I_0 \supseteq I$ and the length of I_0 is k-1. By induction assumption, we have $I_0 \supseteq P^{k-1}$. Write $I_0 = aR + I$. Then we have $a^{-1}I \supseteq P$, since the length of $a^{-1}I$ is 1. Thus we get $P^k = P^{k-1}P \subseteq I_0P \subseteq I$. Hence $I \supseteq P^n$, as desired.

Now let F be a bounded right additive topology. Then by Proposition 1.2 of [8], F is determined by a class $\{S_{\gamma}|\gamma\in\Gamma\}$ of simple modules and each S_{γ} is annihilated by a prime ideal P_{γ} of R, since F is bounded. Further, we obtain that a prime ideal P of R is an element in F if and only if simple modules in R/P are isomorphic to S_{γ} for some $\gamma\in\Gamma$, because R/P is a simple and artinian ring. So $F=\{I|I\supseteq P_{1}^{n_{1}}\cap\cdots\cap P_{k}^{n_{k}}, \text{ where } P_{i}\in F \text{ and } n_{1},\cdots,n_{k} \text{ are non-negative integers}\}$ by Proposition 1.2 of [8]. Thus we have $F^{n}=\{I|I\supseteq P_{1}^{n}\cap\cdots\cap P_{k}^{n_{k}}, \text{ where } P_{i}\in F\}$ and so $K_{F^{n}}=\Sigma\oplus P^{-n}/R$, where P ranges over all prime ideals contained in F. If (E) is F^{n} -pure, then it is P^{n} -pure in the sense

of [7] for any $P \in F$ and so the sequence $0 \rightarrow L/LP^n \rightarrow M/MP^n$ splits by Lemma 1.1 of [7]. Hence we get the commutative diagram with splitting exact rows:

$$\begin{array}{ccc} 0 \to \Pi \; L/LP^n & \longrightarrow & \Pi \; M/MP^n \\ & & & \parallel & & \parallel \\ 0 \to \operatorname{Ext}(K_{F^n}, L) \to \operatorname{Ext}(K_{F^n}, M) \; . \end{array}$$

Therefore (E) is EF^n -pure.

Lemma 2.2. The following conditions of a short exact sequence $(E): 0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ are equivalent:

- (1) (E) is F^n -pure.
- (2) For any finitely generated F^n -torsion module T, the natural homomorphism $Hom(T, M) \rightarrow Hom(T, N) \rightarrow 0$ is exact.
- (3) For any F_i^n -torsion left module T, the natural homomorphism $0 \rightarrow L \otimes T \rightarrow M \otimes T$ is exact.

Proof. Let I be any element of F^n . Then $I^{-1}/R \subseteq K_{F^n}$ by Lemma 1.1 and it is finitely generated. So $I^{-1}/R \cong \Sigma \oplus R/J_i$ for some $J_i \in F_i^n$ by Theorem 3.11 of [3]. Applying Hom(, K_F) to this isomorphism we get $R/I \cong \Sigma \oplus J_i^{-1}/R$ by Proposition 3.3 of [13], because $\operatorname{Hom}(R/J_i, K_F) \cong J_i^{-1}/R$. Further any finitely generated F^n -torsion module is a finite direct sum of modules R/I ($I \in F^n$). Combining these facts with Lemma 5.2 of [11], we get the equivalence of (1) and (2). For any module X and any left ideal J, $(X/XJ) \cong X \otimes R/J$ and \otimes commutes with direct limits. So the equivalence of (1) and (3) is also evident.

Lemma 2.3. If a short exact sequence $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ is F^n -pure, then the induced sequence $0 \rightarrow L_{F^n} \rightarrow M_{F^n} \rightarrow N_{F^n} \rightarrow 0$ is exact.

Proof. It follows from Lemmas 1.2 and 2.2.

Lemma 2.4. For a module G, the following are equivalent:

- (1) G is F^n -reduced and EF^n -pure injective.
- (2) G is F^n -reduced and F^{∞} -pure injective.
- (3) The connecting homomorphism $\delta: G \to Ext(K_{F^n}, G)$ is an isomorphism.

Proof. (1) \Rightarrow (2): It is evident from Lemma 2.1.

 $(2) \Rightarrow (3)$: We consider the commutative diagram:

$$G \cong \operatorname{Ext}(K_F, G)$$

$$|| \underset{\delta}{\delta} \quad \downarrow \theta^*$$

$$G \to \operatorname{Ext}(K_{F''}, G)$$

$$\downarrow$$

$$0$$

By Lemma 1.6 and the assumption, θ^* is an isomorphism and so δ is an iso-

morphism.

 $(3) \Rightarrow (1)$: It is evident from Lemma 1.4 and definition.

Let $f: M \to E(MF^n)$ be an extension of the inclusion map $MF^n \to M$ and $\delta: M \to \operatorname{Ext}(K_{F^n}, M)$ be the connecting homomorphism. We define a map $g: M \to E(MF^n) \oplus \operatorname{Ext}(K_{F^n}, M)$ by $g(m) = (f(m), \delta(m))$ for every $m \in M$.

Lemma 2.5. The sequence

$$0 \to M \stackrel{g}{\to} E(MF^n) \oplus Ext(K_{F^n}, M) \to Coker \ g \to 0$$

is exact and EF^n -pure. Further $E(MF^n) \oplus Ext(K_{F^n}, M)$ is EF^n -pure injective and Coker g is injective.

Proof. By the similar way as in Lemma 2.7 of [7], Coker g is injective. The other assertions follow from Lemmas 1.5 and 2.4.

Lemma 2.6. Let M be any module. Then the natural homomorphism η : $M \rightarrow M/MF^n$ induces the following commutative diagram:

$$(C) \quad \begin{array}{c} \delta \\ \longrightarrow \\ + \infty \end{array} \operatorname{Ext}(K_{F^n}, M) \xrightarrow{\quad f \quad } \operatorname{Ext}(Q_{F^n}, M) \\ \downarrow \eta \\ \longrightarrow \\ + M/MF^n \longrightarrow \operatorname{Ext}(K_{F^n}, M/MF^n) \longrightarrow \operatorname{Ext}(Q_{F^n}, M/MF^n) \ . \end{array}$$

Proof. It is evident that f, η_1 , η_2 are all epimorphisms. δ induces the homomorphism δ : $M/MF^n \to \operatorname{Ext}(K_{F^n}, M)$ such that $\delta \eta = \delta$. Hence we get the commutative diagram with exact column:

By Lemma 1.5, δ_* is an isomorphism. Therefore η_1 is an isomorphism. So it follows from the diagram (C) that η_2 is also an isomorphism.

Corollary 2.7. For any module M, M/MF^n is F^n -reduced.

Proof. It is clear from the diagram (C).

Let $C(F^n)$ be the category of F^n -reduced and EF^n -pure injective modules together with their homomorphisms. We note that a module G is an element in $C(F^n)$ if and only if $\operatorname{Ext}(Q_F,G)=0=GF^n$ by Proposition 1.4 of [9] and Lemma 2.4.

Proposition 2.8. $C(F^n)$ is an Abelian category.

Proof. Let M, N be modules in $C(F^n)$ and $f: M \to N$ be a homomorphism. Then the exact sequence $0 \to \operatorname{Ker} f \to M \to \operatorname{Im} f \to 0$ yields an exact sequence: $0 = \operatorname{Hom}(Q_F, \operatorname{Im} f) \to \operatorname{Ext}(Q_F, \operatorname{Ker} f) \to \operatorname{Ext}(Q_F, M) \to \operatorname{Ext}(Q_F, \operatorname{Im} f) \to 0$. The first term is zero, because Q_F is F-injective and $\operatorname{Im} f$ is F-reduced. Therefore $\operatorname{Ext}(Q_F, \operatorname{Ker} f) = 0 = \operatorname{Ext}(Q_F, \operatorname{Im} f)$, because $\operatorname{Ext}(Q_F, M) = 0$ and so $\operatorname{Ker} f$, $\operatorname{Im} f \in C(F^n)$. Next we consider the exact sequence $0 \to \operatorname{Im} f \to N \to \operatorname{Coker} f \to 0$. By Lemma 1.3, $\operatorname{Coker} f$ is F^n -reduced. Since $\operatorname{Ext}(Q_F, N) \to \operatorname{Ext} (Q_F, \operatorname{Coker} f) \to 0$ is exact, it follows that $\operatorname{Coker} f \in C(F^n)$. It is easy to prove the other axioms for Abelian categories.

A module in $C(F^n)$ is said to be $C(F^n)$ -projective if it is a projective object in the category $C(F^n)$.

Theorem 2.9. Let G be a module. Then the following conditions are equivalent:

- (1) G is $C(F^n)$ -projective.
- (2) G is a direct summand of $Ext(K_{F^n}, \Sigma \oplus R)$.
- (3) G is a direct summand of $\prod \hat{R}_{F_i^*}$.
- (4) G is isomorphic to $Ext(K_{F^n}, \dot{M})$, where M is an F-torsion-free module.
- (5) G is a direct summand of $Ext(K_{F^n}, \Sigma \oplus \hat{R}_{F^n})$.

Proof. We shall give the following implications: $(2) \Leftrightarrow (5)$ and $(1) \Leftrightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (2)$.

- (2) \Leftrightarrow (5): By Lemmas 1.8 and 2.5, the exact sequence $0 \to R \xrightarrow{g} E(RF^n) \oplus \hat{R}_{F_l^n} \to \text{Coker } g \to 0$ is EF^n -pure and Coker g is divisible. So it is F^n -pure by Lemma 2.1. Hence the exact sequence $0 \to \Sigma \oplus R \xrightarrow{\Sigma \oplus g} \Sigma \oplus E(RF^n) \oplus \Sigma \oplus \hat{R}_{F_l^n} \to \text{Coker } (\Sigma \oplus g) \to 0$ is F^n -pure and $\text{Coker } (\Sigma \oplus g)$ is divisible. Applying Hom $(K_{F_l^n}, \Sigma)$ to the exact sequence we obtain the exact sequence $0 \to \text{Hom}(K_{F_l^n}, \Sigma \oplus E(RF^n) \oplus \Sigma \oplus \hat{R}_{F_l^n}) \to \text{Hom}(K_{F_l^n}, \text{Coker } (\Sigma \oplus g)) \to \text{Ext}(K_{F_l^n}, \Sigma \oplus R) \to \text{Ext}(K_{F_l^n}, \Sigma \oplus R)$.
- (1) \Rightarrow (2): An exact sequence $0 \rightarrow \operatorname{Ker} f \rightarrow \Sigma \oplus R \xrightarrow{f} G \rightarrow 0$ yields the exact sequence $0 \rightarrow \operatorname{Ker} f_* \rightarrow \operatorname{Ext}(K_{F^n}, \Sigma \oplus R) \xrightarrow{f_*} \operatorname{Ext}(K_{F^n}, G) \ (\cong G) \rightarrow 0$. Since $\operatorname{Ext}(K_{F^n}, \Sigma \oplus R)$, $G \in C(F^n)$, we have $\operatorname{Ker} f_* \in C(F^n)$ by Proposition 2.8. Hence, by assumption, the sequence splits.
 - $(2) \Rightarrow (3)$: This is clear from Lemma 1.9.
- (3) \Rightarrow (4): By Theorem 1.10 $G \cong \operatorname{Hom}(K_{F''}, D)$, where D is a maximal F''-torsion module. We let $H = \operatorname{Hom}(K_F, E_F(D))$. Then it is F-torsion-free and $G \cong \operatorname{Hom}(K_{F''}, H \otimes K_{F''}) \cong \operatorname{Ext}(K_{F''}, H)$ by Lemma 1.8 and the proof of

Theorem 1.10.

- (4) \Rightarrow (2): Let M be an F-torsion-free module. Then an exact sequence $0 \rightarrow \operatorname{Ker} k \rightarrow \Sigma \oplus R \xrightarrow{k} M \rightarrow 0$ is F^{∞} -pure and so it is EF^{n} -pure. Hence the induced sequence $0 \rightarrow \operatorname{Ext}(K_{F^{n}}, \operatorname{Ker} k) \rightarrow \operatorname{Ext}(K_{F^{n}}, \Sigma \oplus R) \rightarrow \operatorname{Ext}(K_{F^{n}}, M) \rightarrow 0$ is splitting exact.
- (2) \Rightarrow (1): It suffices to prove that $\operatorname{Ext}(K_{F^n}, \Sigma \oplus R)$ is $C(F^n)$ -projective. We consider a diagram of the form

$$\begin{array}{ccc} \Sigma \oplus R & & \swarrow \eta & \searrow \delta & \\ & \swarrow \eta & & \searrow \delta & \\ \text{(D)} & 0 \to \Sigma \oplus R / (\Sigma \oplus R) F^n \to \operatorname{Ext}(K_{F^n}, \Sigma \oplus R) \to \operatorname{Ext}(Q_{F^n}, \Sigma \oplus R) \to 0 \\ & M & \xrightarrow{f} & & \searrow g & \\ & M & & \longrightarrow & 0 , \end{array}$$

where M and $N \in C(F^n)$, f is an epimorphism, δ is the connecting homomorphism and η is the natural homomorphism. Then there is a homomorphism $h: \Sigma \oplus R \to M$ such that $g\delta = fh$. The homomorphism h and η yield the commutative diagram by Lemmas 2.4 and 2.6:

$$\begin{array}{ccc} M & \stackrel{\delta_1}{\cong} & \operatorname{Ext}(K_{F^n}, M) \\ \uparrow h & \delta & \uparrow h_* \\ \Sigma \oplus R & \stackrel{\delta}{\longrightarrow} & \operatorname{Ext}(K_{F^n}, \Sigma \oplus R) \\ \downarrow \eta & & \forall \eta_* \\ (\Sigma \oplus R)/(\Sigma \oplus R)F^n \stackrel{\delta_2}{\to} & \operatorname{Ext}(K_{F^n}, (\Sigma \oplus R)/(\Sigma \oplus R)F^n) . \end{array}$$

We put $\overline{h} = \delta_1 h_* \eta_*^{-1} \delta_2$. Then $h = \overline{h} \eta$. The upper row in the diagram (D) is exact and is EF^n -pure by Lemmas 2.5, 2.6 and Corollary 2.7. So we have a a homomorphism k: $\operatorname{Ext}(K_{F^n}, \Sigma \oplus R) \to M$ such that $k\overline{\delta} = \overline{h}$. Hence $g\delta = fh$ $= f\overline{h} \eta = fk\overline{\delta} \eta = fk\delta$. So g-fk induces a homomorphism g-fk: $\operatorname{Ext}(K_{F^n}, \Sigma \oplus R)/\delta(\Sigma \oplus R) \cong \operatorname{Ext}(Q_{F^n}, \Sigma \oplus R)$ and $\operatorname{Ext}(Q_{F^n}, \Sigma \oplus R)$ is a homomorphic image of $\operatorname{Ext}(Q, \Sigma \oplus R)$. Hence $\operatorname{Ext}(Q_{F^n}, \Sigma \oplus R)$ is injective. Since N is reduced, i.e., the injective submodule of N is zero, $g-fk=\overline{0}$ and so g=fk. Hence $\operatorname{Ext}(K_{F^n}, \Sigma \oplus R)$ is $C(F^n)$ -projective.

Corollary 2.10. There is one-to-one between all maximal F^n -torsion modules and all $C(F^n)$ -projective objects in the category $C(F^n)$.

REMARK. (1) Let $C(F^{\infty})$ be the category of F-reduced and F^{∞} -pure injective modules together with their homomorphisms. Then the corresponding results to Theorem 2.9 also hold for the category $C(F^{\infty})$, where $\hat{R}_{F_l^{\infty}} = \hat{R}_{F_l}$ and $K_{F^{\infty}} = K_F$. Further a module G is $C(F^{\infty})$ -projective if and only if $G \in C(F^{\infty})$ and G is F-torsion-free by Proposition 2.3 of [9].

- (2) $C(F^n)$ -projective objects are not necessaily F-torsion-free. For example, let P be a prime ideal of R and let $F_p = \{I \mid I \supseteq P^k \text{ for some } k\}$. Then the $C(F_p^n)$ -projective object $\operatorname{Ext}(K_{F_p^n}, R)$ is F_p -torsion, because $\operatorname{Ext}(K_{F_p^n}, R) \cong R/P^n$ by Proposition 3.2 of [13].
- (3) $C(F^n)$ -projective objects are not necessarily F-torsion. For example, let R be a simple hereditary noethenian prime ring and let F be any non trivial right additive topology. Then $0 \to R \to \operatorname{Ext}(K_{F^n}, R)$ is exact, because $RF^n = 0$. Thus the $C(F^n)$ -projective object $\operatorname{Ext}(K_{F^n}, R)$ is not F-torsion.

References

- [1] K. Asano: Theory of rings and ideals, Tokyo (in Japanese), 1947.
- [2] H. Cartan and S. Eilenberg: Homological algebra, Princeton University Press,
- [3] D. Eisenbud and J.C. Robson: Modules over Dedekind prime rings, J. Algebra 16 (1970), 67-85.
- [4] D.K. Harrison: Infinite abelian groups and homological methods, Ann. of Math. 69 (1959), 366-391.
- [5] J. Kuzmanovich: Localizations of Dedekind prime rings, J. Algebra 21 (1972), 378-393.
- [6] W. Liebert: Characterization of the endomorphism rings of divisible torsion modules and reduced complete torsion-free modules over complete discrete valuation rings, Pacific J. Math. 37 (1971), 141–170.
- [7] H. Marubayashi: Modules over Dedekind prime rings. II, Osaka J. Math. 11 (1974), 517-545.
- [8] H. Marubayashi: Modules over Dedekind prime rings. III, Osaka J. Math. 11 (1974), 547-558.
- [9] H. Marubayashi: Modules over Dedekind prime rings. IV, Osaka J. Math. 11 (1974), 559-567.
- [10] E. Matlis: Cotorsion Modules, Mem. Amer. Math. Soc. 49 (1964).
- [11] R.J. Nunke: Modules of extensions over Dedekind rings, Illinois J. Math. 3 (1959), 222-241.
- [12] R.J. Nunke: Purity, Notices Amer. Math. Soc. 8 (1961), 562.
- [13] B.O. Stenström: On the completion of modules in an additive topology, J. Algebra 16 (1970), 523-540.
- [14] B.O. Stenström: Rings and modules of quotients, Springer, Heidelberg, 1971.

Department of Mathematics College of General Education Osaka University Toyonaka, Osaka 560 Japan