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1. Introduction
Let
duldt+A(tyu = f(t), 0=:<T, (1.1)

be an evolution equation of ‘“hyperbolic” type in a Banach space E with A(f)
having a domain containing a fixed dense linear subspace F. T. Kato [1], [2],
J.R. Dorroh [3], S. Ishii [4],[5], K. Kobayasi [7] etc. have developed methods
of constructing an evolution operator for (1.1). The main theorem due to
T. Kato and K. Kobayasi is stated as follows:

Theorem. Let E and F be Banach spaces such that F is densely and con-
tinuously embedded in E, and {A(t)}o<,<r be a family of closed linear operators in
E with the domains

D(A(t))DF .

Assume that

(I) {A(®}osisy is stable on E,
(II) Ae(([0, T]; -L(F; E)),
(III) There is family {S(t)}o<:<r Of isomorphisms from F onto E such that

SeCY[0, T]; L(F; E)),
and

S()A@®)S() = A(t)+B(@)

for each t& [0, T with some
Be(([0, T1; L(E)).

Then we can construct an unique evolution operator {U(t, $)}o<,<i<1 With the
following properties
2) USC({(t,9); 0Ss=t=T}; LE)),

b) UeCl({(t,s); 0=s<t<T}; L(F),
o) U, s)U(s,n)=Ut,r), 0=r=s<t=<T; U(s,s5)=1, 0=s=T,
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d) U(-,s)eC\([s, T]; L(F; E)), 0=s<T; (0/ot)U(t, s)=—A(t)U(z, s),
e) U, -)eCY[0, t]; L(F; E)), 0<t=T; (0/0s)U(2, s)=U(t, 5)A(5).

T. Kato [1] first proved this theorem under stronger condition that A(t)
is norm continuous in t: A€(([0, T]; L(F; E)). J.R. Dorroh [3] then sim-
plified the proof of the differentiability of U(¢,s). The author [6] noticed that
if E and F are reflexive Banach spaces, then the norm continuity of A(%) is
weakened to the strong continuity (II). K. Kobayasi [7] recently eliminated
this restriction and proved the theorem for general Banach spaces. He showed
that a way of parting intervals used in the case of non-linear evolution equa-
tions (e.g. [8]) is available also for this linear problem. In this paper we will
notice that though in [7] he used the partition of each [s, T'] depending on s,
it can be replaced by an appropriate partition of the whole interval [0, 7. We
need more detailed consideration than [7] to obtain the partition independent
of s. But it makes it possible to utilize the Yoside approximation A4,(z) of
A(t) in proof of the theorem. We give in section 3 the proof in this method.
Once it is established that the evolution operator U,(t,s) for A,(t) is strongly
convergent, we can verify more immediately that the limit U(Z, s) is really an
evolution operator for A(t).

Throughout this paper, we use the same notation and terminology as in
[6]. Il-llz is the norm of a normed space E. For two normed spaces E and
F, L(E; F) is the normed space of all bounded linear operators from E to F
with the operator norm ||+|| r, and L(E; F) is the locally convex space .L(E; F)
equipped with the strong topology. L(E; E) is abbreviated as L(E), and
[l+llz,z as ||+|lg, if there is no fear of confusion. For a locally convex space
E, E-lim x, is the limit in E of a convergent family {x,} s of E, C(D; E) is the

Ao
set of all continuous mappings from a metric space D to E, and C*([a, b]; E) is the

set of all continuously differentiable functions in the interval [a, b]. Cj, C,, -+
denote constants determined by sup||A(t)l|rz supllS@E)Ilrz supl|lSE) Yz
t t t

sup ||dS/dt||p g, sup [|B@®)||z, T, ¢, and {M, B} alone; where ¢, is a constant such
t t

that ||+|[z= ¢+ ||z and {M, B} are the constants of stability of {4(¢)} on E. It
is known that the part of {4(f)} in F is stable with the constants of stability
{M, B} given by

M = M sup||S(2)||sup |1S(2) "l exp {TM sup||S(t)™"||sup |S/dt||}
B = B+MsuplIB@)|
(see [1], [9])-
2. Existence of the appropriate partition of [0, 7]
For a finite partition A: 0=T,<T,<---<Ty=T of [0, T], A, denotes a
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step function of 4

A(Tj) ’ Ti§t§ Tj+l ’

AO=1ar,, =,

and {Ua(t, 5)}os.s <7 is the evolution operator for 4,

exp (—(t—)A(T)), T,Ss<t<T,.,
Ua(t, s) = { exp (—(t—T)A(T;))---exp (—(Tin—9)A(TY)),
T,§S§ Ti+l"' Tlé té Tj+l .

Proposition 2.1. For any €>0 and any y=F, there exists a finite parti-
tion A of [0,T] such that
sup |[{A(@®)—4s} Ua(t, shyllz=€.
0<s<i<T , ) .
Proof. We define inductively an increasing sequence {T;};—o, .. of [0, T

in the following way. = T,=0. Assume that {7},<,<, is defined so that the
estimate

sup_ H{A@)—Aas, )} Ua (8, spyllz= € (2.1)

0SS

holds for the partition ‘A,: 0=T,<.-<T,=T, of [0, T}]. If T,<T, we con-
sider a set J, of all elements A& (0, T—T,] such that
sup |[{A(®)—A(T.)} exp (—7A(TW)3llz=¢
Tst<Th+h
0<T<h
holds for every
€L, = {Us(t,5)y; 0=s=t<T}} .

Since L, is compact in F, J, is non-empty and has the maximum. Putting
h,=Max J,, we define T,,,;=T,+h, Then the estimate

sup  [[{A(t)—4s,., (O} Us,,, (6, Dllz=& (2.2)

0SSSISThey

is valid. In fact, (2.2) is trivial if t="Tyy,. If Tyu>t=s=T,, 44, ()=
A(Ty) and Uy, (2, s)y=exp (—(t—s)A(T,))y. Therefore it follows that

Il {A(?)—AAlﬁl(t)} UAk+1(tJ s)yl |E
< sup [[{A@#)—A(Ty)} exp (—TA(T))yllz=¢ .
Tyst<Ty+hy
0ST<hy,

I Tyu>t=T,>s, Uy, (¢ s)y=exp(—(t— T)A(T))Un (T}, s)y. Similarly

Ua (T4 5)y is an element of L, Finally if T,>t=s, Uy, (8 )y="Ua,2, s)y-
(2.2) is nothing but the assumption (2.1). Untill T}, reaches T, we continue



236 A. Yacr

the inductive procedure. In order to complete the proof, it remains now to
prove that such a procedure finishes within finite times. Suppose the contrary.
Then we would have an infinite sequence {T;};—12,.. of [0, T) satisfying (2.1)
for each k. To reach a contradiction we will prove that

L={ L,
k=0

is relatively compact in F by using the next lemma essentially due to K. Koba-
yasi [7].

Lemma 2.2. There exists a constant C, such that the estimation

I T exp (—mid(t))s— IT exp (—mA(t))alle

=C{ 2 mrexp (8,33 Il 23)
+Crexp (B 31 mlISE) [T exp (—md(u))s—alle  (24)
+Cult—t)+ 33 7} exp (8,33 m)lalle 25)
holds for any x, 2€F, 7,20(1=k=p), 0=t,<---=<t,<T, and integers
p=q=r=1.
Proof.

1T exp (—meA(t))e— ILexp (—mA(t)=
= { 1T exp (—md(t))— T1 exp (—7, ()} S(t) X
x {8(t,) 1 exp (—md(1)z—2}
+{ IT exp (—md(t)— IT exp (—mA()} S(t) "
= R1+R2 .
R, is estimated by (2.4).
Ry = S(t,)45(t) T1 exp (—7,4(1))S(5)"

—S(t,) TT exp (—7,A(1))S(t,) "}

+ (2, {S(t)— St} T exp (—miA(t)S(t,)
= 3+R4 .
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R, is estimated by (2.5).

Ry = 5(t){S(t) 11 exp (—mA())S()" — TT exp (—mdt)}e

k 1

— (2 {S(te) IT exp (—7,A1)S(t) "~ IT exp (—mid(t))}x

k=T+1

+5(t) ™ 1T exp (—md(t)— IT exp (—mid(t)}
= Ry+Re+R; .
SR = 33 [ 11 exp (—mA() () exp (—m.A(1)

—exp (—mAL)SE)} I1 exp (—mid(t)]S(t)
» ? i-1
+ 2 LI exp (—md (@) {S@) =S} 11 exp (=7 A(@))1SE) "> -
From this we obtain the estimate of Ry by (2.5), and similarly that of R;. From

S (tp)R7 =

?
i=q+1

{exp (= A@)—1} T1 exp (—mid(t)
1t follows that R; is estimated by (2.3).

k>

Let T.=lim T,. Noting that U, (¢, s)y coinsides for all k such that t< T,
we define ‘
Us. (2, 8)y = lim U, (¢, )y
k>

for 0<s<t<T.. By the preceding lemma we have the following:

Lemma 2.3. For each 0<s<T. there exists a limit

F- lim U,_(t,s)y. (2.6)
W,8)>(Too0, )
Too >t/ 28/ 20

Proof. If s<T., s<T;<T. with some j. In this case the limit (2.6) is
easily reduced to

F- lim U,_(t', T))= (2.7)
t/>T o
with 2=U, (T, s)yEF. Let t">t'>T; be such that
T’< oo Tj+r—1< el Tj+q—l§ t,< Tj+q." Tj+p-2§ t”< Tj+p-l
with some p>¢>7, and apply Lemma 2.2 with

Tivias 1=k=g,
Tjsp2, q+H1=k=p,

tk=
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Tis—Tiipn, 1=k=g—-1
tl—Tj+q.—l ’ k=q
Tk == Tj+q—tl Py k=q+1
Tiipr—Tiip2, q+H2=sk=p—1

J

tl,_ Tj+ﬁ‘2 ) kzp .
Then we get
”UA.,‘,(t”» Tj)z_ UAw(t” Tj)z”F ‘ (2.8)
= CleET {(Tm— Tj+q—l)”xl |r+ HS(t-,) kl—=[1 exp (—T,,A(t,,))z——xHE
2T Ty )llalls} -

For any >0, Tm—Tj,,,o_lgp with some Tor and
152, L exp (—74(t)s—alls=7
with some x,EF. ||x,||z is dominated by
lle=7-+115(2,0) IT exp (—7A(t)2l1s= 7+ B sup 1S il

Therefore if />'>T,,,_1, (2.8) is smaller than
Co{(Teo—T j1g-2)llol | -+ (1412 )2} -
If g, is large enough for (Tw— T, 40-1)l|%l| r=7, then t">t'> T, _, implies
|1Ua (", Tj)z—Us (¢, T))2llr=Cs(1+|l2lIF)7,
which shows the existence of (2.7). If s=T., we can prove

y=F- lm U, (t, s)y. (2.9)

W, 83200y Too)

Let ¢'>5’ be such that
Tj§S'< Tj+1“‘Tj+p_2§t’< Tj+p—1

with some j and p=2, and apply Lemma 2.2 with

. { T;, k=1,2

e Titr-2r 3<k=p,
0, k=
Tin—s', k
Tispr—Tip4n, 3=k=p—1

tl—Tj+p—2 s k:p ’

Tk=.
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and g=r=1. Then we get

NUs &'y $")y—115= Ce {(TomT )l s+ 11S(T;)y—=l|}
= C{(To—T )%l 21 p) + ST )y —=l1 £} -

For any 70, ||S(T)y—x,ll;< 7 with some %,&F, and (Tw—Tjo)(xolle+13117)
=<7 with some j,. Therefore t'=s">T}, implies

” UAm(t') sk,)y_y”i'g Cs ’
which shows (2.9)
We have known that U,_(t,s)y can be extended on 0=s=<¢<T. con-
tinuously. Hence L contained in {U,_(2, s)y; 0=s=<t< T..} is a relatively com-
pact set in F.

Lemma 2.4. For any n>0 there exists 8,>0 such that

sup
1= Tool <8,
057<8;

Il exp (—A®)z—zll <7

for every z& L.
Proof. Letp=2, ¢g=r=1, t;=t,=t and 7,=0, 7,=7 in Lemma 2.2. Then

llexp (—TA())z—=2||p < Cré {7|x|| p+S(£)z— x| 2}
< Co {71l - 11S(T)z— || s+ | £ — T | 1|21} -

Since S(T..)(L) is precompact in E and F is dense in E, S(T.)(L) can be covered

with a finite number of open balls {B(y;; 7/3Cs")},<;<, with centers y,EF.
Hence for any = L

lexp (—7A®)s— 211 = Cef” {r Max |||+ 11— T- | llsll 53

Similarly for any >0 there exists §,>0 such that

sup  [[{A(t)—A(T=)}sllz=7

18- Tool <8y

for every x&€L. Put ~=Min {3,, 8;}. Then for T;,>T.—h the estimation
sup |[{A(t)—A(TW)} exp (—7A(T4)3llz

TRSt<Ty+h
0<ST<h

< sup (AW AT)}alls+Cil exp (—rA(T)e—ll]
0ST<h

= 01077

holds for every x&LDL,. This shows kA& J,, if we take n=C713¢é. But ke J,
contradicts ‘
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h> Too— Tk> Tk+1—Tk = hk .
3. Proof of the theorem
For each integer n>8, 4,(t) is the Yosida approximation of A(t)
A,(t) = n—n(I+n"tA(2))™*. (3.1)
Lemma 3.1. 4,(([0, T]; L(E))NC([0, T]; L(F)).
Proof. In view of (3.1) it suffices to prove
(AAHA(-) 7 e[0, T]; LAE) N0, TT; L(F)) 3-2)
for A>pB. For x=F we can write

A+ A@E+-R) 7 —(AA+-A(2)
— (AR AR — AR AD)
Together with the uniform boundness of [[(A4A(+))7!|, this shows that
(M+A4(+))x is continuous in ||+||z. For general x€E it follows from the

density of Fin E. To see the strong continuity in F of (3.2) we have only to
show

_ AA-A()+B(-) (0, TT; LAE), (3-3)
since
MHAD) = SOTOHADFBOISE (4
on F. But (3.3) follows from
(A FA@R)+B@) ™ = A+A@) HI+BENM A} (3-5)

and the strong continuity of (A+4(+))™* in E proved above.

Lemma 3.2. {4,(t)},s:<r s stable on E (resp. F) with constants of stability
{M, Bn(n—B)™} (resp. {M, Bn(n—pB)7'}).

Proof. The stability of {4,()} is observed directly by

(a0 = S () (24 a0)

For n> B let {U,(, s)}o=s<:<sr be the evolution operator for {4,(t)}o<:<r-
From Lemma 3.1 and 3.2 we conclude

U,eC({(t,5); 0<s<t<T}; L(E)), ||U,(2, $)||z= MePs¢t9 (3.6)
with B,=Bn(n—B)™! and
U,eC({(t, 5); 0=sSt=<T}; LF)), ([UL@E, 9)llp < Mefrt=2 (3.7)
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with B,=@n(n—B)". , ,
Let yeF be arbitrarily fixed, & be any positive number and A be the
partition of [0, 7'] satisfying

sup [[{A(t)— A} Us(t, syllz=€ (3-8)

o<s<i<T
whose existence is guaranteed by Proposition 2.1. We can estimate the di-

fference between U,(t, s)y and U,(Z, s)y by the following:

Proposition 3.3. There exists an integer N such that for any n=N
sup ||U,(2, 8)y—Ua(t, s)yl|z<2MTEeT .

0SS<EST

Proof.
{Ualt, )= Ut, %y = | Unlt, A7)~ A} Uslr, )y
= § ULt DA (r)— A} U, s)ydr
+ [ Ut A — Au(M} U, shydr

The second term is evaluated by (3.8). Hence our proposition follows from
the next lemma.

Lemma 3.4. For any compact set K of E, there exists an integer N such
that for any n=N

sup ||(I+n7'A(R)) 'e—x|| =&
0St<ST
holds for every xe K.

Proof. K is covered with a finite number of open balls {B(y;;
&[2(M+1)},<;<, in E with centers y;€F. Hence for any x&K, taking some

Yis
(I+n""A(2)) e —x||s
SIHUIA#A@) =D (a—y)lls+ 11 {T+n7A@) ' — 1} yills
< (&/2n(n—8) "+ M(n—8) Max || A(®)yils -

We can now prove that {U,(t, s)},>5 is convergent in _L(E) uniformly in
(t,s). In fact we have

sup ||U(t, $)y—U, (2, s)y||z=2MT¢&(efnT -+ T)

0gs<i<T

for any m, n=N by the mediation of U,(t,s)y. {U,(, s)y},>5 is convergent
in E uniformly in (¢,5). Since yeF was arbitrary and ||U,(%, s)|| is uniformly
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bounded by (3.6), {U,(¢, s)x},>5 is uniformly convergent in E for any xEE.

Thus the operator U(Z, s) is defined by
U(t, s) = L(E)-lim U,(t,s) .

(3.9)

Obviously U(t, s) satisfies a) and c). To see the remaining properties we in-

troduce bounded operators on E
W,(t,s) = S@)U,¢,$)S(s)™t, 0=s=t<T,
for each n> 3 analogously to [1]. By (3.7)
W,eC({(t,s); 0=s=t=T}; L(E)).

W,(t, s) is connected with U,(¢, s) by
W, (t,5)— U,t,s)= [ taﬁ U, (¢, )S(T)U,(7, 5)S(s)"dr
s OT

= J UL(t, AW (7, )dr

with

Cut) = A0)—SOAWSE ™+ LS, ost=T.

Lemma 3.5.
L{E)-lim C,() = —BO+2° 0S()

uniformly in t.
Proof. Clearly (3.10) is equivalent to
L(E)-lim {S@)A,(1)S(#) " —A.(8)} = B(?)

uniformly in z. By (3.1), (3.4) and (3.5)

S(t)A,()S()™
= (A@t)+B@) {I+n " (A@®)+B(t)}
= (A@O)+B@)[+n7 A() " {I+n"B(t)(I+n7 A(t)) 7}
= {4,)+B@)I+nA))} {{+n'B@)(I+nA(t)) "}
= {4,()+ @7 4,@)+I+n72A(2)) )B@)I+n7 A(2) '} X

X {I+n" Bt)(I+n1A(2)) "}

= A,)+{I+n" A1) 'B@#)(I+n*A(t)) 1 X

(3.10)

(3.11)

X {I4+nBE)(I+nA(2)"} " .
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(3.11) is reduced to
L(E)-lim (I+n'A(t)™ = I,

but this has already been established (Lemma 3.4).
Let {W(t, 5)}os.<:<7 be a solution of the integral equation
W(t,s) = U(t, $)+ J UG, 7YCr)W(r, s)dr
in L(E) with the kernel (3.10) s
¢ = —Bay+Lwse.
Obviously
Wel({(t,s); 0=s<t=T}; L(E)).
We can deduce from (3.9) and (3.10)
Wit, s) = L(E)-lim W2, )
uniformly in (2, s). In other words
S(0) W2, )S(s) = LF)-lim U2, ) (3.12)

uniformly in (¢,5). We know that all other properties are immediate conse-
quences of (3.12) ([9]).
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