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Introduction. Let Ω be a domain in R2 with a compact C°° boundary Γ,
and consider the mixed problem

i —j—Axu = f(x, t) in Ω X (0, * 0 ),

du ,
on Γx(0,f β ),

on Ω,

on Ω,

where v=v{x) is a non-vanishing real C°° vector field defined in a neighborhood
of Γ. We say that (O.I) is C°° well-posed when there exists a unique solution
u(xft) in C-(Πx[0, ίj) for any (/, £, w0, ^ G C ^ Ω x f O , ίj)X C~(ΓX [0, ί j ) χ
C°°(Π) X C°°(Ω) satisfying the compatibility condition of infinite order.

In the case where v is not tangent to Γ anywhere, various results have
been obtained. It has been well known for a long time that the problem (O.I)
is C°° well-posed if v is parallel anywhere to the normal vector n of Γ (the
Neumann boundary condition). Ikawa [3] showed that (O.I) is C°° well-
posed also if v is oblique (i.e. not parallel to n) anywhere on Γ (the oblique
boundary condition). When these two types are mixed, the shape of Ω has to
be taken into consideration. Ikawa [4,5,6] examined it in detail.

In the present paper we shall study (O.I) in the case where v is not neces-
sarily non-tangent to Γ. We assume that v is tangent to Γ at finite number
of points (of Γ). And we call them singular points. At each singular point
the Lopatinski condition is not satisfied therefore, the mixed problem frozen
there is not C°° well-posed (cf. Sakamoto [13]). We can classify the behavior
of v near each singular point into the following three types: As x' ( G Γ ) passes
the singular point in the direction of the tangential component of v(x') to Γ,

(I) <X#'), n(x')y changes sign from positive to negative;
(II) ζv(x')9 n(x')y changes sign from negative to positive;
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(III) ζv(xf), n(x')y does not change sign,
where n(xf) is the unit inner normal vector to Γ. Assuming that Ω=12+, the
author [15] has examined the problem (0.1) in the case (I) and (III). We want
here to investigate (0.1) in a more general domain in each case.

One of our main results is as follows:

Theorem 1. If the function <X#'), n(x')y (eC°°(Γ)) changes sign on Γ
{the case (I) or (II)), then the mixed problem (0.1) is not C°° well-posed.

As is seen from the proof of Theorem 1 (see §4), we may say that in the
case (I) the uniquness does not hold and that in the case (II) the solvability is
violated.

Another main result is the following

Theorem 2. Assume the conditions (a) and (b):

(a) ζv(x'), n(x')y does not change sign on Γ (the case (III)) and \(y(x'),
n(x')y 11/2 is C°° smooth on Γ;

(b) v is oblique anywhere.

Then, the mixed problem (0.1) is C°° well-posed, and domains of dependence are

bounded, but it has not a finite propagation speed.

Egorov-Kondrat'ev [1] considered an elliptic oblique derivative problem

similar to the above problem (0.1):

(A(x,Dx)u=f(x) in Ω,

{
where A(x,Dx) is an elliptic differential operator of second order on Π and v

is a non-vanishing real vecter field tangent to Γ on its submanifold Γo. They

assumed that dim Γ 0 =dim Γ—1 (^1) and that v is transversal to Γo. Then

the behavior of v near Γo can be classified into the three types (I)~(ΠI) in

the same way. On account of Egorov-Kondrat'ev [1], Maz'ja [11], the author

[14], etc., in short, in the case (I) the kernel of (0.2) is infinite-dimensional, in

the case (II) the cokernel of (0.2) is infinite-dimensional and in the case (III)
the same results as in the coercive case are obtained.

As can be readily seen, our results (i.e. Theorem 1 and 2) are analogous to

those of the above problem (0.2). Our methods, however, are little similar to

those in the elliptic case.

Let us mention the procedure of the proofs of Theorem 1 and 2. Let

& be the Poisson operator of the following Dirichlet problem considered in

appropriate functional spaces:
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t) = 0 in Ωχ(-oo,oo),

u\Γ = h(x', t) on Γχ(—00,00).

Set T h= £Pλ|Γ. Then the well-posedness of (0.1) can be reduced to that
ov

of the equation T h=g considered on Γ X ( - C Ό , 00). Although T is hard to

deal with, T approximates to a pseudo-differential operator T if the wave front

of the h (org) is near where the Lopatinskian vanishes. Analysing the (asym-

ptotic) null solution of T h=0, we prove Theorem 1 in §4. In §5, deriving

an estimate for T in the same way as in the author [15], we verify Theorem 2

by the procedure similar to that of Ikawa [3].

1. Notations and properties of pseudo-differential operators

We denote by Sm (m^R) the set of functions p(zf ω) e C°°(Λ2 X R2) satisfy-

ing for all multi-indices a, β

) and d*=( ) . For />(#, ω ) e S w we define a pseudo-
dz / V 3ω /

) and d (
dz / V 3ω

differential operator p(z, Dz) by

pu = p(z, D2)u(z) = \eizωp(z, ω)ύ(ω)dω, u(z) G S ,

where dω=(2π)~2dωy S is the space of rapidly decreasing functions and ύ(ω)

is the Fourier transform \e~tzωu(z)dz. We denote by Sm the set of these

operators p(z, Dz), and call p(z, ω) the symbol of p(z, Dz). It is well known

that the estimate

holds for p(z> ω)&Sm, where the norm || | | s is defined by

||tt||J =

For p(z, ω) G Sm and q(z, ω) e Sm' we set

σ(poq) (zy ω) = lim \ \e"l?s%(£ώ, £2)p(z> ω+ω)q(z+2, ω)d2dώ ,

where X(z,ω)(ΞS and %(0,0)=l. Then we have σ(poq) (z,ω)(ΞSm+m' and

σ(poq) {z,Dz)u = p(z,Dz) (qu),

Furthermore the asymptotic expansion formula
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(1.1)

is obtained for any integer N (>0). For p(zy CO)GSW there exists a symbol
such that

(p(zyDg)u,v) = (u,j

and the following asymptotic expansion formula holds for any N (>0):

(1.2) />*(*, ω ) - Σ ^—ψ- KDΐp(z, ω)6=5-"* .

These properties are described in Hϋrmander [2] or Kumano-go [7].
We introduce another class of pseudo-differential operators, whose symbols

have a parameter τ=σ—iγ (σGΛ1, 7^0). Namely, the symbol p(yyy>τ) is a
C°° function in R\ X R\ with the parameter T and satisfies the following inequality
for all non-negative integers ayβ:

where « ε Λ and Caβ is a constant independent of r. We denote by £"> the
set of these symbols, and for /)(y,i7,τ)eS™) define

pu = p(y,Dy,τ)u = γyΎlp{y,-η,r){i{rί)dη, u{y)<=S .

Let us define a norm | | | | | | s ( jeΛ) with the parameter T by

Then, for/>(jy,v,T)e5^) the following estimate holds:

The above constant C is uniform in T. Hereafter, all the constants in estimates
stated with the norm \\\ \\\s are independent of T. Obviously we obtain
the same properties as for the class *S"". Let us note that if p(y,η,σ)^Sm

(z=(y,t)> ω=(ηy<r)) then p(y>V>σ) can be regarded as a symbol in S^σ) ( τ = σ ^ 1).
We say that a symbol p{yyv,τ)^Sfc has a homogeneous asymptotic expansion

Xy,^τ) when pm-J(y9\v9\τ)=\"-i-pm_J(y,η9τ) for λ ^

}=0,l,...) 2ndp(y,v,τ)-^pM-j(y,v9τ)eΞSftN(N=l,2,.- ) . We call^(y,^,r)

the principal symbol of p and denote it by σo(p) (y,v,τ)

Proposition 1.1. Let % , I ? , T ) G S J T ) and ρ(y,η,τ)^S™τ). Suppose that
supp % ώ m an open conic set Δ and that the principal part pm(y,V,T) {i-e. pm^

1JT
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S(

m

τ) &p—pMeSfol) satisfies

\τ\)» (δ>0)

when (^7,τ)eΔ and \η\ + \τ\^L (L is a large constant). Then the following esti-
mate is obtained for any constant i V > 0 :

MII.-*). ueS (S<ΞR).

We can prove this proposition by constructing a parametrix for p(y,Dy,τ)
available on Δ (cf. Hϋrmander [2]).

Proposition 1.2. Let ρ{yJ ηyr)^S\Γ) and its principal part pι(yyV>τ) fulfil

where δ(τ) is a positive function (2^1) and Δ is an open conic set. Then, for any
(T) satisfying s u p p X c Δ there is a constant C such that

Corollary. In the above proposition, if X(yyv,τ) (^S°iT)) depends on y
and satisfies supp %CΔ, then we have for any N>0

Proof. We set

q(y,V,τ) =

where %'(?7,τ)eS(

o

τ), X'(i?,τ)=l on supp % and supp %'CΔ. Then it follows

that

for

Im ((p-iS(τ))Xvy Xv)^

Let g> denote the Friedrichs approximation of q (cf. Theorem 5.1 of Kumano-
go [7]). Then, we have q—qp^S0^) and (qFv,v)^0. Therefore we obtain

US = Im((p-iδ(τ)Xv,Xv)^-C2\\\Xv\\\l.

Next, let us check the corollary. Let X"(η,τ)&Sln9X"(η,τ)=l on supp X

and supp % " c Δ . Then, from the above proposition it follows that

Im i
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On the other hand we have

Im (pX"Xv, X"Xv) = Irn (p%v, %t>)+Im (pX"Xv, (X"-l)Xv)

+Im(p(X"-l)Xv,Xv)

Therefore the corollary is obtained. The proof is complete.
Now, let L be a differential operator of the from

L(y,Dx,D,,τ) = D 2

X ^ J
y=o,i

where τ=σ-iγ(σGΛ 1 ,γ^0) and α ^ E ^ β ^ ί / G C 0 0 ; sup \d*yf(y)\<
+ °° for a=0,1, •••}. We denote by ξί(y,y,τ) the roots of the equation (in ξ)

L0(y,f,^τ) = p+^Σβ2^/(y)τVf - 0.
y=o,i

Obviously, f ίCv, *7, T) are homogeneous of order one in (77, r) and are smooth

where ξo(yyv>τ) and f<Γ(3>,??,τ) are distinct each other. We obtain the following

factrization formula, which is proved in Kumano-go [9] (see Theorem 0 of

[9])

Proposition 1.3. Let ξo(y,y,τ) and ξ'ό(yfVyτ) be distinct on Λ } χ S ( v )

(Δ is an open conic set). Then there are symbols | ± ( J ^ , T ) G * S ( T ) such that

i) ξ±(y,v, T) have homogeneous asymptotic expansions whose principal symbols

<τo(f *) satisfy

roiξ*) {y>V,T) = ff(y,77,T) for yeΛ1, (77,T)GΔ;

ii) 5 ^ L±=Z)x-?±(3;,Z)^τ). Then for any X{yyy,r)e5^ satisfying

supp %CΔ, e

%L = XL~L++r3Dx+r4,

Γηr= Π S?τ) ( j-1,-.,4).

Let β(y) be a real-valued C°° function on Λ1 satisfying | θ(y) | ^ 1 for

= ^ for | j | ^ — and 5(y)=l for | y | *>1. For^tyj^TjeS") we set

(1.3) ί w ( y ^ ,

Then p(p)(y,v,τ) belongs to Sfc. Moreover, p(p)(y,y,τ) is equal to p(y,y,τ)

if I y I <̂  -̂ -, and independent
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Lemma 1.1. Let Δ', Λ' be open sets of S+={(η,τ): η2-\- | τ | 2 = l , γ =

— Im τ^>0} and 5 ' c Λ ' . Assume that q(y>η,τ)^Slτ) has a homogeneous asympto-
CO

tic expansion Σ ίi-yO^*7") suc^ that qi{y,V,τ) is real-valued and satisfies
j = 0

(1.4) I9rfi(y,7,τ)|^δ (>0), yeJP, ( ΐ , τ ) e 5 + .

Γλere, ί/ p > 0 if smα// enough for an integer N>0, there exists a symbol ζ{y,y,τ)
<=Slr) such that

(i) [?«(y,D,,τ), r(y,β,,τ)] (= qWζ-

(ii) supp?(j^

ζ(y,V,τ)=l

where A (resp. A)={(v,τ)=(\η\ λτ') . (17', τ ')6Δ' {resp. A'), λ>0}.

This lemma in the case i V = l is due to Ikawa [3].

Proof. We take open sets Δ{, Δ2, •••, Aĵ  and Λί, Λ2, •••, Λĵ  in S+ such that

Δ ' c c Δ i c c Δ .iCC c c Δ ί c c Λ c c c c Λ c c Λ ' ,

where AacB denotes AczB. For Δ{ , Δ£, •••(cS+) we set

Δi = {(?7,τ) = (\vf, λr'): (*', τ')GΔ(, λ>0}, ...

Assume that ζ(y, ηy T) is of the form

where ζ-j(y,Vjτ) (G*S^') is homogeneous of order —7 in (17,T)
Then it follows from the formula (1.1) that the symbol of [<?(P), ζ] has the
asymptotic expansion

(1.5) Σ {M°CV, V, τ)β,r- ; 0>, 9, τ ) - 2 ) ^ ( y , v, τ)6,r_,(y,,, T)Σ

Here r_N(y,i7,τ) is a symbol belonging to S$ and Φ_ ; (3/,77,τ) is defined by

Φo = 0,

*-j(y, V, r) =ίΈ.+i^WqΆ(y,V, τ)Z)&_,(y, 7, T)

We shall choose f0, •• ,ξ'_jV+1 so that each term in the summation (1.5)
vanishes. Note that Φ-j(y,V,r) is determined by only ξ09 ζ_ly •••, f_y+i and
homogeneous of order —/ in (97, T) (?72+ | T | 2 ^ 1). Let X(η> T) be homogeneous



206 H. SOGA

of order 0 in (y,τ) (η2+ | τ | 2 ^ l ) and satisfy 0 ^ % ^ 1, supp XcAj and X(η,τ)=l
on Ax Π {v2+ | τ | 2 ^ l } . Let us consider the following equation with the para-
meter T:

dr,qΫ\y,V,r)dyζ.j-dyqγ\y,v,r)d7lζ.j+iΦ.j(y>v,r) = 0,
(1.6)

The characteristic curves of this equation are given by

(1.7)

ds

dη

ds '

Since 9,ίίp)(j,57,τ) and d^["\y,η,τ) are C" real-valued functions on Λ^ „>, we
have a unique solution (Xί ^T), i}(s;η,τ)) of (1.7) defined on — ° ° < ί < ° ° . It
follows from the definition (1.3) that

(1.8)

where Ca and Cβy are constants independent of y, η, r and p. From these
inequalities and the assumption (1.4) we obtain

(1.9) δ

(l.io) \*r(s;v,τy

for constants Cx and C2 independent of s, η, τ and p. Combining (1.8), (1.9)
and (1.10), we see that if p is small enough the following statements i )~i i i )
are valid:

i) Ci"1(1771 —|— M ) ^ \v(s\V,τ)\-\- \τ\ ^ C 3 ( M + | τ | ) , s^Ry η2-\- | τ | 2 ^ l ;

ii) If (ηyr)^Aj—Άj (η2+\τ\2^ί)y then (ff{s;η9τ)9τ)GAj+ι—ΆJ+1 for
seR(j=l,-~,N, Λ^+x^Λ, A^+ 1=A);

iii) det

ds

Therefore, we obtain the required solution ζ_j(y,η,τ) of (1.6). Noting that
y(s\V,τ) and fί(s;η,τ) are homogeneous of order 0 and 1 in (η,τ) respectively,
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we see that ζ_j(y,ηyτ) is homogeneous of order —j in (77,T). Furthermore,
from the above statement ii) it follows that

ζo(y>V>r)=l if (v,T)eΔ2, supp f0(y,97,τ)cΛ2,

supp f-yO^

supp Φ - y - ^

Hence the lemma is proved.

REMARK 1.1. We can make the assumption (1.4) in Lemma 1.1 weaker as
follows:

In fact: There exist symbols Ϊ ^ ^ ^ J G S J T ) satisfying all the assump-
tions in Lemma 1.1 and equal to q(y,y>τ) on Σ± = { ( 7 7> τ ) e Λ— Δ;

Applying Lemma 1.1 to q±, we have ξ±(y, v> r) e 5(T) such that

(i)

(ii)

>τ)=ζ'+(3;>77>τ)ζ'-(3;>^>τ) fulfills all the requirements.

2. Reduction to the problem in a half-space

Let x=(xly x2) be an orthogonal local coordinate system defined near a
singular point xό^T such that Xι=x2=Q denotes x'o and the # 2 - a χ i s is tangent
to Γ at x'o. Let the curve Γ (near x&) be expressed by the equation ^=^(^2)
and Ω (near x'o) by x1>μ(x2). We take another local coordinate system: %=
Xι—μ{x2)y y=x2. Then we have

i) Ω is mapped near x'o to (a neighborhood of) a half space
and Γ to {(%J): 2=0}

82 82

ii) Δ . = — r + — - is transformed near x'o to
8ΛΪ 3Λ;|

where ^ ' = ^ i and ί * " = 4 ^ (note that μ'(0)=0);
dy aψ

iii) — is transformed near x'o to
81/



208 H. SOGA

where a($) and β($) are C°° functions defined near y=0 and satisfy αr(O)=f=O

and /8(0)=0.
Rewriting £, $ with #, 3;, we set

My) = Φ
For a C°° function <p(j) defined near y=0 we define 9»(P)(y) (p>0) i n t n e

same way as (1.3), and write for . 4 = 2 ΛyOO ̂ ί* »<)
YY

From the statements i)~iii) stated earlier, it follows that (0.1) is equivalent

to the followin

singular point:

(2.1)

to the following mixed problem if u has support in -^-neighborhood of the

, Dx, D,, Dt)u = f(x,y, t) in R\ X (0, t0),

u)\x=* = g(y,t) on&xφ.to),

which we call the mixed problem localized at the singular point. The classi-
fication (I)'—'(III) stated in Introduction is rewrited respectively by the term
i/r(P)(j>) in (2.1) in the following way (let p > 0 be small enough):

((1) ψ(p)(y) > 0 for y < 0 and ψ(p\y) < 0 for y > 0

(2.2) I(II) ψW(y)<0 forj;<0 and ψ^(y)>0 for;y>0;

((III) ψ(p)(y)>0 (or <0) for every yφO .

Hereafter we often abbreviate L(p\ ψ ( p ), ••• to L, ψ, •••.

Proposition 2.1. i) If the problem (2.1) localized at any singular point is

C°° well-posed for a p > 0 , then (0.1) is C°° well-posed.

ii) If (0.1) is C°° well-posed, then the problem (2.1) localized at any singular

point is C°° well-posed for any small p > 0 .

We note that if (0.1) (or (2.1)) is C°° well-posed then so is also the mixed
problem considered on ti^t^Lt2 (for any t1<.t2) with the initial condition on
t=tx.

Proof of Proposition 2.1. Let us prove only i). ii) can also be verified
in the same way.

Let {Xj}j=lt... N be the singular points, and set for £>0
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(2.3) Uf = {*eΠ; \x-x/

j\<S} .

We make £ so small that U{P Π Uf—φ (iφj) and that in each Uψ (0.1) is equiv-
alent to the localized problem (2.1). From the results in the case where there
is no singular point (cf. Ikawa [3]), we see that if the data in (0.1) vanish on

(U Uf) X [0, t0] (t0 is small enough for £) there is a solution u(x, t) with support

in (Π— U Uψ2)) X [0, ί j . Furthermore, we see that if (x, t) e (Π— U Uf) X (0,/0l

there exists the bounded domain of dependence of the point (x,t), which is dis-

jointed with U Uψ2) X [0, t0].

Let u(Xyt) be a solution of (0.1) with null data (i.e. f=0, g=0, M O =H 1 =O). '

Then, from the above statement concerning the domain of dependence it follows

that supp MC U Ufx[0ft0]. Since the uniqueness for each localized problem

(2.1) is assumed, we have u=0. Therefore the solution of (0,1) is unique in
C~(Πx[0Λ]).

Let us show existence of the solution of (0.1). Solving the Cauchy problem
ignoring the boundary condition of (0.1), we may assume that/=0 and uo=Uχ=
0. Then the compatibility condition implies that Dk

tg\t=+0=0 for &=0,l, .

Take a partition of unity {φj(x)}j=o,-,# o n Ω such that supp φ o cΩ—U Uψ2)

and supp φ, C Uf (j=l, # >Λ0 Obviously if (fyg,uOyu1)=(0,^0,0) is compat-
ible, so is (OyφjgyOyO) (j—0, •• ,ΛΓ). From the results in the non-singular case,
we find a solution u(0)(x,t) satisfying

= 0 in Ωx(0,ί 0),

= φog on Γx(0,* 0),

= 3ίW(°)I/=0 = 0 on ί ] ,

Since each localized problem (2.1) is supposed C°° well-posed, for the data with
support near the origin there is a unique solution of (2.1) with support near
the origin (apply Theorem 3.1 in §3). Therefore, for j=l,2, « ,iV we have a
solution u(i) satisfying

in

on ΓX(0,*0),
dv lί " J O

tf(/)|ί.o = 8ί«
(i)L.o = O on Ω.

)=^uU)(x>t) (^C°°(ΩX[OΛ])) ί s the required solution. The proof is
y=o

complete.
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3. Domains of dependence

In this section, assuming that the solution of (0.1) is unique, we shall study
the domain of dependence. We note that the solution is unique on tι^t^t2

for any tx<t2 if the uniqueness is guaranteed on 0<^t^tQίor some to>O (because

•> — are independent of t). From Theorem 3.1 and 3.2 stated later, it follows
dv

that the domain of dependence is bounded at any point although (0.1) has not
a finite propagation speed. The results in this section are all valid also for
the problem (2.1).

For a set S oί R\ x [0, oo) W e set

(
Jε"

o

where *Σί={X=(x,t): t^\x\}. Then, as is well known, the solution of the
Cauchy problem

Όu=f(x,t) in Λ2x[0,oo) ,

x) on R2,

1(x) on R2

has support in $](S) (S = (supp /) U (supp u0 X {t = 0}) U (supp u1χ{t = 0} )).
Let Γ be given by

* = *'(*), \ψ(s)\ =1
as

(x'(s) is a periodic C°° function on jR1), and for ΛIQGΓ set

<s) = φ;4) - f K^MAxmi dχ {χ, = χ,(So)).
ho \v{x(X))\

( d/c \~ι

— (s)) is equal to the propagation speed of the mixed problem frozen at
ds J

x=x'(s) (let x'(s) be a non-singular point) (cf. Appendix of Ikawa [3]). We set

2 ( * ί Λ ) = i(x',t)eΞΓx[0,oo); x' = X'(s), t-ΐo^ \κ{s;xΌ)\, SEER1} ,

Theorem 3.1. Assume that the solution of (0.1) is unique in C°°(Ωx [0,£0]).

Let S be (supp/)U (supp uox {ί=0})U(supp uxx {t=0}) and S' be (Σ(5)Π

(Γ X [0, t0])) U supp g. Then the solution u(x, t) of (0,1) has support in

From this theorem it is seen that for any £>0 there is a constant ?(£)>0
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such that U supp \u(x,t)] is contained in ^-neighborhood of U supp Γthe
o<ς/<7c«;> * - o^/^Γcβ) *

data].
In the case where (0.1) has no singular point the above theorem has been

obtained (cf. Ikawa [3]).

REMARK 3.1. If the uniqueness in the Sobolev space holds, the above
theorem is valid for the solutions and data in that space.

Proof of Theorem 3.1. Because • and — (in (0.1)) do not depend on ty

ov
it suffices to show that supp uΠ {O^t^to} CL*Σ(S) for a sufficiently small £0>0.
For each singular point x) (j=h —N) we define Uf (£>0) by (2.3). Let 8 be
so small that Uf) Π Ufz)=φ if i Φ j and take a small t0 such that every

-Ufl2))Π { 0 ^ ^ ί 0 } ( j = l -,iV) is disjointed with yy
Let φj(x)=l on Uf/2) and supp φjd Uf\ and set u^=φj(x)u(xJt). Then

u(i) satisfies

in Π x ( 0 , g ,

on
πv Lfllz/ J

( 3 - 1 ) «ω I / = 0 = φjUa (=«&») on Ω ,

on Ω .
\ 8ί "~u τ

Obviously it follows that

where 5 y =supp (/«', ga\ uij), u\j)). Set

Then, for any ? ( 0 < ? < ? ; ) we can solve (3.1) on O^t^t by the methods in
the non singular case (cf. Ikawa [3]), which implies that supp uU) Π {O^t^t} C
^Σl(Sj) (because the solution is unique). Next, consider the problem (3.1)
on t^t^tQ with the initial data (u(})\ ,.7, dtu

ω\tm,7) on t=t. Then, by the
result concerning the domain of dependence in the non singular case, we see
that supp ua) Π {tj^t^t0) c Σ ( S y ) Therefore it is concluded that

supp u& Π {O^t^Q c 2 ( S y ) 0' = 1, -.,JV).

This yields



212 H. SOGA

Take a C°° function φ(x) such that φ(x)=l on Π— U t/(/ε/3) and φ(χ)=0 on
IT # * = *

U C/(//3), and consider the following equation for a sufficiently small constant tx

= [Π, <?> in Ωχ(0,ίO ,

o n

Then, by the result in the non singular case, we see that

supp [φu] n (Ω- 5 TO X [0, ίJcΣ(S).

Therefore we obtain the theorem.
The following theorem is another main result in this section:

Theorem 3.2. Let the mixed problem (0.1) be C°° well-posed. Then (0.1)
has not a finite propagation speed.

Proof. We can prove this theorem by the same procedure as in the author
[15] (see Theorem 4.1 of [15]). Let us mention an outline of the proof.

Obviously we have only to study near each singular point xί. For v>0 and
set

Then,

= D = {(*,f)€ΞΠx[O,fJ; \x-x'0\ ^(t.-

Assume that (0.1) has a finite propagation speed not more than ^
for any / 1 (0<ί 1 ^ί 0 ) it follows that if the equalities

0 on D(xi9tι;v)9

(3.2) , = 0 on

on

hold the solution u{xyt) equals 0 on D. In the same way as in the proof of
Theorem 4.1 of [15], we can construct an asymptotic solution

uN(x,t;k) =

such that

*•'>*,(*,*) (ik)-j

ΠuN = e" Π»Λ(&)-» - in ax(O,to),

| ^ l r = o on z>n(rx(θ,g),

0 = dtuN\t=0 = 0 on Z>n {ί = 0} .
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Since (0.1) is supposed C°° well-posed, there exists a solution wN(x,t;k) satisfying

oN = eik*ΠvN in Ω x (0, t0),

on Γx(0,ί 0 ),

Ό = 0 on Ω ,

and the estimate

holds for constants Cly C2, / and a domain D' (Z)D) independent of k. Take
JV so that 1<N> and set

u(x,t;k) = uN(xJ;k)-(tk)-NwN(xyt;k).

Then u(x9t;k) satisfies (3.2), but i/(#o,*r,&)4=0for large k9 which proves Theorem
3.2.

4. Proof of Theorem 1

If the assumption of Theorem 1 is fulfilled, the ψiP)(y) in the problem
(2.1) localized at a certain singular point satisfies the condition (I) or (II) of
(2.2). To prove Theorem 1, it suffices from ii) of Proposition 2.1 to verify

Theorem 4.1. Suppose that ψ(p){y) in (2.1) satisfies the condition (I) or
(II) of (2.2). Then the mixed problem (2.1) is not C°° well-posed.

In the case (I) we can prove the theorem in the same way as in the author
[15], namely, by constructing an appropriate asymptotic solution of (2.1) violat-
ing an ineuqality to be satisfied if the problem is C°° well-posed (see §5 of [15]).
But this method cannot be applied in the case (II). In this paper we employ a
method applicable to both cases.

At first we shall construct an (approximate) Poisson operator of (2.1) by
the methods of the Fourier integral operator. Consider the equation (in ξ)

= 0

for y<ΞR\ (^σ)GΛ 2. When (yyσ)<=A= {(η,σ): σ2-η2>8(σ2+η2)} (8 is a small
positive constant), this equation has the distinct real roots

ζt(y,V,<r) = -a(y)VψVb(y) ( σ * -

Applying Proposition 1.3, we have symbols ξ±(yJv>σ)^S1
 (G5 ( V), | σ | 2^1) with

the properties stated in i) and ii) of Proposition 1.3. Hereafter we denote by
ξi(y>Ύl>σ) t n e principal symbols of ξ±{yyVy^)y and assume that ξt(y,y9σ) are
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real-valued on whole R) X R2^,^. We set

Lemma 4.1. Let Λ+ be a conic open set such that Λ+CΔ+, and let p in
(2.1) be small enough. Then, for any X+(yytyvycr)&S0 satisfying supp % + cA +

and supp %+c[? 0, oo), there exists a bounded operator <P+(#) on Hm(Rly,t)) (the
t

mapping: x-^^B+(x) (0^x^x0) is C°° smooth in the operator-norm) such that

ii) &+(0)=X+(yytyDyyDt)y

iii) LS>+(X)ZΞC7(S-~) (O^X^XO),

iv) supp [@+(x)h](Z {{x,yyt): to+%x<^t} for some constant δ > 0 (h(y,t)^S),

v) defining Tby

we have T^S1 and

σo( f ) = (η+ψ(y)ξt(yy Vy σ))X+(yy ty ηy σ) .

Proof. We make the above operator 3?+(x) in the same way as Kumano-go
[8] constructed fundamental solutions for operators of the type L+=DX— ξ+

(see §3 of [8]).

As is described in Theorem 3.1 of [8], the eiconal equation

has a unique solution φ(x,y,tyη,σ) satisfying φ—yη—tσ^C7{Sι). We assume
that @+(x) has the form

+h) (xyyyt) = [U(^'<'^> 2 ej(x,y,t,v,<r)k(v,σ) dηdσ ,
JJ y=o2

y=o

and define {eft inductively so that the requirements i) and ii) are satisfied.
Then we obtain the transport equation of the form

(4.1)

•3 C?(S") denotes the set of S^-valued C~ functions.
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where g is a function independent of {βj} and fj is determined with only

e09 e-i, - , eJ+1. (4.1) has the solution ej(x,y,t,v,σ)^C7(S>) (j=0, - 1 , ••.) (cf.

proof of Theorem 3.2° of Kumano-go [8]). There exists a symbol e(x,y,t,ηyσ)

eCΓ(S°) such that e\x=Q=X+, supp *C~Jsupp βj and e{x>yst>η,σ)—^keAx>y>t>
j=0 j=0

V,σ)(Ξ:C7(S-N) (ΛΓ=1,2, ) (cf. Theorem 2.7 of Hormander [2]).

Now we set here

(4.2) (5>+A) (x,y, t) = j Jexp {iφ{x,y, t, η, σ)} e{x,y, t, v, σ)h(v, σ)dndσ.

Then, obviously ίP + satisfies i) and ii). Since supp e c i , we obtain iii) by

Proposition 1.3 (Proposition 1.3 is valid also when X in ii) is a Fourier integral

operator). From the definition it follows that

= ξt(y,Dy,Dt)X+(y,t,D,,Dt)h+r(y,t,D,,Dt)h,

where r(y,t,η,σ)^S°, which yields v). The bicharacteristic curve {q(x),p(x)}xzo

= {(?i>ίa). {P1.P2)} through (y,t,v,σ) (v2+σ*^l) is defined by

ψ = 9,eί(ft,ί), ψ = dyξtiquP),
dx ax

ψ = -8σf ί(ft,ί), ψ = Qtξt{quP) (= 0),
dx ax

It is seen that if p > 0 is small enough {p(x)}x7t0(ZΔ+ follows from^(0)=(i7,σ)

A+ and that -teξHy,*f,*)=- ^ . ^ ^ ^ > 0 ) f o r

Δ + (^ 2 +d^^l) . From these facts we have -5?(#)2^δ for #2^0, which implies
dx

%x^q2(x) for ΛJ^O. Therefore, noting that {q(x)}x>0 is a characteristic curve of

(4.1), we see that supp βjC {(xyy,t): to+^x^t} ( j=0, — 1, •••). This yields iv).

The proof is complete.

Now, let us consider the Dirichlet problem

w = 0 in R2

+x(— °°,*o)>

w\x=0 = h on Rιx(— °°yt0).

This satisfies the uniform Lopatinski condition (cf. Sakamoto [12]). We set
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C7(Mx(-oo,ίj) = {wGCM(Mx(-oo,ί0]); supp ua[tlyt0] for some

tλ (<t0)} {M=R\oτRι).

Then, for any h(y,t)^Cχ(R1x(— °°Λ]) there exists a unique solution «ϋ(#,y,f)

in C+(i2+x(— °°Λ])> a n d s u p p w c ^ ί j follows from supp Acp^fJ. We

define an operator T on C~(Rι X (— °° Λ]) bY

77/ = Bw I ,= 0 ( = (Z>,+ψ(y)Z>> I , = 0 ) .

As is easily seen, this operator T= Tto does not depend on tQy that is, for ar-

bitrary toX (to<^o) Ttoh=Tto>h on — oo<t^tQ. It follows that

the mixed problem (2.1) is C°° well-posed if and only if for any

(4.3) g(y,t)^C+ satisfying supp gCl[0,t0] there exists a unique solution h{y,t)

of Th=g in C + ^ X ί — °°,ί0]) whose support is in ^x fOj ίJ .

In fact: Ignoring the boundary condition of (2.1) and solving the Cauchy

problem, we may assume that the data (f>g,uOyUι) in (2.1) satisfy / = 0 , «0=w1=0

and 9 ^ | / = 0 = 0 (y=0,l, ) If for any g ( e C j ) with supp ^c[0, ίJ there

exists a solution A(j,ί) stated in (4.3), we have a function w(x,y,t) (^C+) such

that supp w(Z[O,to]y w\x=0=h and Lw=0 on JR+ X(— °°^o] This w is a solution

of (2.1) for the data (0,^,0,0). Conversely, if w(xyy,t) ( G C + ) with supp wCZ

[0,t0] is a solution of (2.1) for the data (0,£,0,0), h(yyt)=w\x=0 satisfies Th=g.

The operator T stated in Lemma 4.1 approximates to T in the following

sense:

Lemma 4.2. Let φ{f) (eC°°)=l on [2t0, <») and supp
^(0 (eC 0 0 ) satisfy supp ^ c ( - o o , ? ) (0<2? 0 <ί). Furthermore, let X(η,σ) (e*S°)
i^ homogeneous of order 0 (^72+σ2^l) ΛWJ supp X c S + ( c CZΔ+), αwrf assume that
'X+(y>t,y><r) in Lemma 4.1 ώ equal to A on a neighborhood of supp [φ(t)X(η,σ)].
Then, for any positive integer N we have

i) \\Φ{T-T)φXh\γN^C\\h\\U, h{y,t)^S;
ii) (if p in (2.1) is small enough for N)

\\Xφ(T-T)φh\\'N^C\\k\\'u h(y,t)eS,
where | | | |^ « the norm of the Sobolev space HN(Rfy_t)).

Proof. By means of Corollary of Theorem 2 in Sakamoto [12] II, for
wt—0, 1, ••• we have the estimate

(4.4) |
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where Z) ί« | # H ) =Oίor j=0, l , - ,»+l , | | « | | i > β <,< ί l = Σ ((( \Dtx.,.nu\2dxdydt

and \\u\\'m
2

0<t<t = Σ (( \n*iy.t)U\x=Q\2dydt. Let to(x,y,t) (<=Cϊ) be the solu-
1 \*\£,*» jj

tion of

ί Lw = 0 in Λ+x(— oo, t),

^ I χ = 0 = φXh on 121χ(— °°,?),

and set

Then it follows that

\\φ(T-T)φXh\\'N^\\B(w-w)\\'N,o<t<l

It is obvious from ii) of Lemma 4.1 that

l | tt-Λ| |^+ 1 .o<κ*^ll(l-

Using (4.4) and iii) of Lemma 4.1, we obtain

Therefore i) of Lemma 4.2 is derived.
Let us show ii) of Lemma 4.2. Let p in (2.1) be so small that by Lemma

1.1 we have a symbol ζ(yyv,σ)^S°(^Sl)) satisfying [?, ξ-]^S~N-\ ζ{y,v,σ )
= 1 for (i?,σ)Gi+ and supp fcΔ+. Denote by w(xyy,i) (^C+) the solution of

zv = 0 in Rlx(— oo,?+l),

o n

and take C°° functions 9>i(ί)> Φ\{t) such that supp ^^(J, , , oo), supp ^ c
(—oo, ? + l ) and φ1(t)=ί on supp 9), &( ί )=l on (— 00,f]. Then, using (4.4),
we have

\\Xφ{T-T)φh\\'N =

^ \\X<pB{φιζφ1W-2>+(φh))\\'N+C1\\φh\\'1 .

Let us express ψiζfyw by the Fourier integral operator. We write

L(φιζψ1w) = φ1ζLφ1zo+[L,φ1]ζφ1zv+φ1([L,ς]-[L-L+,ζ])φ1w
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It is easily seen that

for any a and /=1,2. In view of Proposition 1.3 we have for any a

From finiteness of propagation speed, there is a constant x0 such that

C[0,*0). Let θ(x) ( e C ~ ) = l on (-00,X] and 0 on [*+l,oo), where X is a

constant larger than Xo+tf+lfi'1 (^ is the constant in iv) of Lemma 4.1).

We set

ϋ{x,y,t) = θ(x)\*9+{x-s) {[ξ+,
Jo

Then, from Lemma 4.1 it follows that

0|*-o = O> supp ί)c[?0,oo),
t

Here, the inequality ||ί>o,.o-ί'+ίJllo,ϊ<χ<;+i^Qll95iK)lli is derived from the fact
that supp Φiw(s) Π supp e(x—ί)=φ if i^X^a;(e(ic) is the symbol in (4.2)).

y,t y,ι

Noting 74=9Ί^"K+.?]^i«Ή-9Ί[?'.r]^+95i«' and [ξ-,ζ]eS~N-\ by Proposition
1.3 and the last of the above estimates we have for any a

Thus we see that ίO(x,y,t)=ϋ-\-2'+(φ1ζφι<ph) is the required expression of

<PiζPiw: $ satisfies

From these and (4.4), it follows that

On the other hand we have
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+Cu\\φh\\ί,

and by Lemma 4.1

\\XφB{w-2>+(φh)}\\'N^\\XφB2>+(φ1ζφ1-l)φh\\'N+\\XφBΰ\\'N

Therefore we obtain the estimate ii) of the lemma. The proof is complete.

Next, lee us construct an aymptotic null solution of Th=0 which is of the
form

hN(y,f,k) = Σ&«*»v-ty,t)k-ι (*>0),

where Φ(y,i) is a real-valued C°° function. As is stated in Lemma 4.1, the

symbol of T has a homogeneous asymptotic expansion 23i-/CM> V><r) a n d its

principal symbol q1 is of the form stated in v) of Lemma 4.1. The following
proposition plays a basic role on construction of the required solution.

Proposition 4.1. Let ρ(z,ω)^Sm and h(z)^C%(Rn). Assume that l(z) is

a real-valued C°° function and satisfies

inf
zesupp

Then we have

i) sup I D*zp(z, Dz) {eiklh) (z) \ ̂

ii) if p(zy ω) is homogeneous of order min ω{\ω\^\)ythe following asymptotic

expansion is obtained for any integer iV>0:

e~iklp{zyDz) (eiklh) (z) =^aj{z)km^+rN(z;k)km-N

= p(z,Vl(z))h(z)km

where ao(z), — ,aN_i(z) and rN(z;k) (e.C°°(Rΐ)) satisfy

supp α ycsuρρ

sup
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We can prove this proposition by the method of stationary phase (e.g., cf.
§4 of Matsumura [10]).

REMARK 4.1. In the above statement i), p(eiklh) is computed also in the

following way:

By this proposition we can write

Σ Qφ(z, VΦ)DιjV.ι
J-l '

where 7(3r)=ίo(3:,VΦ)—γ{Σi

9«»i

9ω,?i(^,VΦ)9,J.32;Φ(a;)} and •$-_&) is a func-

tion determined with only v0, •••,©_,+!. Let us solve the following two equation

(corresponding to the eiconal and transport equations):

(4.5) ?iC

(4.6) d,qι(y1t,VΦ)Dfv.l+dσq1{y)t,VΦ)Dtv_l+Ύ(z)v_l = ψ.,{y,t).

(4.5) is of the form

(d}Φ+ψ(y)ξt(y,VΦ))X+ = 0.

It is easily seen that the function

φ ( y t)= Γ ΨiS)

is a solution of the equation

and satisfies

(4.7) VΦ(;M)eΛ+ and |VΦ(y,t)\ ^~ , {y,

for a conic neighborhood A+ (CCΔ+) of σ-axis (σ>0) (if p in (2.1) is small

enough). Put this Φ(y,t) into (4.6). Then, noting that (if p in (2.1) is small

enough)
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,t,v,σ) = ψ(y)

ξo(y>V,σ)+a(y)η

we see that the characteristic curve t=t{y) of (4.6) is of the following form:

i) if the condition (I) of (2.2) is satisfied, the curve is convex (i.e. — (y)<0

dt dy
for j><0 and —(y)>0 forj;>0);

dy
ii) if the condition (II) of (2.2) is satisfied, the curve is concave (i.e.

ψ(y)>0 ίory<0 and ^(y)<0 forj>>0).
dy dy

Since σo(T*) is of the same form (cf. (1.2)), the above statements are

valid also for T*.

Therefore, by choosing the solutions v0, v_ly ••• of (4.6) appropriately,

we have

Lemma 4.3. i) Let p in (2.1) be small enough to have i) of Lemma 4.2.

Then, if the condition (I) of (2.2) holds, there is an asymptotic solution hN(y,t;k)

for any integer N>0 such that

supp hNd[2t0y

sup I hN(0y t;k)\*zl for large k>

where the norm | h \ m 0 ^ ^ τ denotes 2 sup | D"h(y, t) \.

ii) For any integer N>0 let p in (2.1) be small enough to have ii) of Lemma

4.2. Then, if the condition (II) of (2.2) is satisfied, we have an asymptotic solution

gN(y, t k) such that

s u p p ^ c [ ? 0 , 3?0]>

I\gκ\Io,570/2<K370^ 1 for large ky

11 7**,, 11/ -. ~ <C hm~N

Proof of Theorem 4.1. At first let us prove the theorem in the case (I).

Assume that (2.1) is C°° well-posed. Then, for any compact set DcR\ there are

Assume that χ+ in Lemma 4.1 satisfies supp ^ + c [ ? 0 , °°) and X^{ytt^,a) = \ for 07,σ)eΔ+,
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an integer / and a compact set D' ( D D ) such that

Ih Io,z>χ[o,37ol=CI Th 11tD

where D{h \ t=<y=Q for/=0,1, ••• (cf. (4.3)).Putting hN(y,t\k) stated in i) of Lemma
4.3 into the above estimate, we have (by i) of Lemma 4.2 and 4.3)

Let JV>7. Then the above inequality does not hold when A-»+oo.
Next, let us examine the case (II). Let (2.1) be C°° well-posed for a p(>0).

Then, it is so for any small p (>0). Furthermore, there are a constant tp (>0)
for any small p (>0) and an integer / independent of p such that the estimate

(4.8) l|A||ί.o<f<47p^C||Γ«A||f.o<f<47^

holds for h(y>t)(=CZ(Rlx [0,4?p]) with Z)/A|#.0=0 0 = 0 , 1 , •••)• I n f a c t> fix P=
p0. Then, for any ?>0 we have

(4.9) lAli.Dx

for AeCJT^xfO,?]) with Dίh\t=0=0 0*=0,l, ), where lo is an integer inde-
pendent of ty D=[— 1, 1] and Dr is a compact set containing D. Let ao(y) and

αi(^) be C°° functions such that α o W + α i ^ ^ l , supp α o c —-£-, -̂ - and supp

— oo, —R- U — , °°), and let hQ and hλ be the solutions of T(p)h0=

ao(T<μ>h) and T^h^a^T^h) respectively. Then, h=ho+hu and it follows

from the result in §3 concerning domains of dependence that supp A03 —^-,

-£-1 and supp % c ( - o o , —_£_Ίu["j?_, o Λ if 0 ^ ί ^ 4 ? p (?P(>0) is a small con-

stant depending on p). By the resuls in the non singular case (cf. Ikawa [3]), we
have

Since T^ho= T^% if O^ί^4? p ι (4.9) yields

Therefore (4.8) is obtained. Let φ(t)^C°°9 supp φd(2ϊPf oo) and φ(t)=l on

— ?P,-°°)>
 a n d let A be a solution of T(p)h=φ2gN, where £# is the function

stated in ii) of Lemma 4.3 (set to=tp). Then, from ii) of Lemma 4.3 it follows
that

= (Th, gNy =
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where φ(t) ( e C ~ ) = l for ί^3? p and φ(t)=0 for ί^4?P. We take a symbol
X(v,σ) (eS°) such that X{η,<jr)=\ on a conic neighborhood of o -axis (σ ̂ l ) and
supp %CΔ+(Λ+ is the set in (4.7)), and write

, (x-i)gNγ
+(Φ(τ-T)φh, xgNy+{ΦTφh, (i-x)gNγ

ii) of Proposiion 4.1 yields that for any m>0

where D is a compact set in R2. Therefore, using (4.8), we have

l-%)^ | | ί 2 ( ί ) ) (D = supp φTφh)

Similarly, it follows that

(4.8) and ii) of Lemma 4.3 yield

Mil = \(Φh, T*gN)Ί£CM\ίji,<,<a,\\T*g»\\l.#,<i<*7,

By means of ii) of Lemma 4.2 and Proposition 4.1 (Remark 4.1), we have

\I3\S\\Xφ{T-T)φh\\'N\\gN\\LN

We choose N beforehand so that 1<N. Then it follows that

which is a contradiction when k->o°. The proof is complete.

5. Proof of Theorem 2

If the assumption (a) of Theorem 2 is satisfied, the ψ(y) in the problem

(2.1) is written by the form

Ψ(y) = <p(y)2 ( o r -<p(y)2)>

where <p(y) is a real-valued C°° function defined near y=0 and satisfies ?>(0)=0
and φ(y)z¥θ for j/φθ. Let us consider the problem
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(L« \r)u=D"\y,Dx>Dy,r)u=f(x,y) in R\ ,

=0 = g(y) on & .

Here τ=σ—irγ (σGΛ1, 7^0) and 0fS£<£0 (£0 is a samll constant). We define

a norm | | | |IL (w=0,l, ) with the parameter T by

Similarly, 111 111 's (s e Λ) is defined by

We shall derive estimates with the norms | | | |IL> | | | | | |ί uniform in T. A main

task in this section is to prove

Theorem 5.1. For any integer m (^0) there exist constants γ0 and C

independent of r and £ such that if 7= — Im τ > γ0

m + l

τllNIU+1+Σ
j = 0

We note that the statements in this section are all valid also in the case

where the boundary operator in (5.1) is of the form Dy—(φ(p\y)2-\-S)Dx.

Now, we consider the equation (in ξ)

(5.2) Lo(y9ξfV,τ) = ξ2+2a(y)vξ+b(y)v2-b(yy = 0 ,

R\ 7= - I m τ > 0 .

This has two roots £?(>>, v,τ) of the form

(5.3) B{y, v, T) = -a{y)v±</b(y) (r^-

where \ ^ ~ means the square root with positive imaginary part. From the

hyperbolicity of Lo the following estimate holds:

(5.4) ±Imξt(y,η,τ)^Sy (δ>0).

For σG-β1 we define ff(3;,97,σ ) = lim ξf(y,v,o—17), which coincide with
7-* +0

ζi{y> V,σ) defined in §4. Obviously ξί(y,v,τ) are homogeneous of order one in

(v,τ). We set
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=h v(=R, 7=-Imτ

(5.5) Δί = {(V,τ')eS+; W\<d) (d>0),

'd, λ>0} .

Let d,dud2 be small positive constants (d2<dι). Then, if p in (5.1) is small
enough, from the form (5.3) we have

(5.6) ξS(y,v',

(5.7) |Reθ^i

Since ξt(y,v,τ) and ξ^(y,v,τ) are distinct on 5^, we can apply Proposition
1.3 to the operator L(τ) (=L(P)(τ)), and we have symbols ξ±(y, V, T) e <5(T) such
that σ^&v.T^ζt&v.τ) on i ^ Π {v>+ | τ | 2 ^l } and L±=JD t-?±(^Z)>,τ)
has the property ii) of Proposition 1.3. We set

The following lemma plays an essential role on proof of Theorem 5.1.

L e m m a 5.1. Let X(ί?,τ)(GSJ τ )) be homogeneous of order 0 (?? 2 +|τ | 2 ^>l)
and satisfy X(v9r)==l on Δ/ΓΊ {v2+ | τ | 2 ^ l } (d'>0) and supp XdAdi {dx is the
constant in (5.6)), and let ζ{yyv,τ) ( G S ( T ) ) be equal to 1 on a neighborhood of R)
X(supp %). Then, for s^R there are constants γ0 and C independent of 6 and r
sucn that if y=—Im τ ^ γ 0

Hi lllί-ϊ), v(y)(ΞS (0

We shall prove this lemma later. By Sakamoto [12] I we have

Proposition 5.1. For m=0> 1, ••• there are constants C and γ 0 independent
of T such that if γ = —-Im τ ^ γ 0

Combining this proposition with Lemma 5.1, we obtain

Lemma 5.2. Let X(v,τ) ( G 5 ( T ) ) be the symbol stated in Lemma 5.1.
Then, for m=0,1, ••• there are constants γ0 and C independent of 8 and r such that

ί



226 H. SOGA

Proof. Let X'(y,τ) ( 6 5(°τ)) be homogeneous of order 0 (v2+ | τ | 2 ^ l ) ,

supp X'cAd and X'(η,τ)=l on a neighborhood of supp X., At first, we show

that for s^tO there is a constant y1 such that if 7^7i

(5.8) IIIX^IIIi^C^IIIA'XoL-ulllo+HIA'-^lll!), v{x,y)eCo(Rl),

where X0(v,τ) (e*S°τ)) is homogeneous of order 0 (η2+ | τ | 2 ^ l ) , XΌ(η,τ)=l on

Δrfl Π {v2+ I T | 2 ^ 1} and supp %OCΔ (Δ is the set in Proposition 1.3). We may

assume that the principal symbols of ξ± satisfy the inequalities (5.4) for every

y>V,τ:

(5.4)' ±Im&0(ξ±)(y,v,τ)^Sj,(y,η)ζΞR1xR\Ύ>0.

Combining (5.4)' and Proposition 1.2, we have

(5.9) Im (A'X'L-U, AsX'v) = — |||X'?>|||f-Im {AsX'ξ~vy AsX'v)

Take symbols XI(I?,T), Xzί7?,7") i^scr)) homogeneous of order 0

such that Xi(v,τ)+X2(η}τ)=l on supp X' Π supp (1—%')> s+ Π supp XjCH' =

(Δίχ—S£') Π {γ̂ -- —Im τ < i } (J is the constant in (5.7)) and S+ Π supp %2C(A^

- ^ ' ) Π | τ > — ]. Then it follows that

|([AS%', ξ']vy AsX'v)\ ^C2(|||Λs%^|||2o+|||Λ%^|||2o

+ \\\AsX2v\\\l+\\\A*-*v\\\l) •

Therefore, we obtain (5.8) if the following estimates (5.10) and (5.11) hold

when 7= — Im T is large enough:

(5.10)

(5.11)

Noting that L~=Dx—ξ~ is elliptic if (Vy'τ) is near supp X2 and that Im

tf"o(?~) (j) >̂ τ ) is negative there (cf. (5.4)'), we see easily that the estimate

(5.11) holds.

Let us derive (5.10). By the Taylor expansion we write

*o(IΓ) (y,v,o—iy) =

Then, if ( ^ τ ) G S - f e τ ) ^ ( ^ > τ ' ) : ^ > 0 , ( ^ J ' J G Ξ ' } , σ f l(Γ)(j,^σ) and

Ko(y>y><r—iΎ) belong to S\T) and 5°τ) respectively. Take a symbol Xι(v,r)

(εS( τ ) ) homogeneous of order 0 and satisfying supp ^ C E and Xι{ηyr)=\ on

a conic neighborhood B of supp Xu and set

, ^ τ ) - σ o ( f ) (y, ?7, r))}^(17, T) ,
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Then we have \(y, ηy T) e SJτ), κ(y, y9 T) G *S(T), and for any p(y, ηy τ) e 5*) satisfy-

ing s u p p l e B

Applying Lemma 1.1 (N=l) to X(y, η, T) (cf. Remark 1.1 and (5.7)), we

obtain a symbol ξ(y,-η,T)e5(°τ) such that [λ ,?]eS; | , supp £ cHs and f(y,'7,τ)=

1 if (5?,τ)esupp %! (5?2+ | τ | 2 ^ l ) (let p in (5.1) be small enough). It is easy to
see that for large μ>0

Noting that (for large μ)

+A»|||[A-SΓ]Hllo+csIIIA-Iβί

in the same way as in (5.9) we have

Im ((?+iμA-*)L-v, (ζ+iμA-^v)

Inductively, we obtain

Im ((ξ+iμA-ιγAsL-v,

Therefore it follows that if γ is large enough

which proves (5.10).
From Lemma 5.1 and Proposition 5.1 it follows that
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where X"(ηy T) (GS°ω)= 1 on a neighborhood of supp % and supp %" C C {(*7,τ):

X'(Vfτ)=l}. Noting that Pζ=B2—(φ2+£)L+ and using (5.8) (set v=L+u) and

Proposition 1.3, we have

Therefore Lemma 5.2 is obtained. The proof is complete.

Proof of Theorem 5.1. Let X(v,τ) be the symbol in Lemma 5.1. Then it

follows that

where Cx does not depend on 8 or p'. Therefore, by Proposition 5.1 we
have

7\\\(l-X)u\\\l+1+^\\\Di(l-X)u\\\'mJi+1

where C4 is independent of £0 and p'. Fix p in L(P)(τ), and make only p' in B[p/)

and 60 so small that (|φ ( P ) 2 \0+S0)
2^ . Then, the following estimate holds:

Combining this inequality with Lemma 5.2, we obtain Theorem 5.1. The
proof is complete.

Proof of Lemma 5.1. We shall prove this lemma by the same procedure
as in the author [15] (cf. Lemma 3.2 of [15]). If € and p (of Bίp)) are small
enough for d '>0, P,=Dy+(φ^2+S)ξ- is elliptic on (Δ/)c (Δ/ is defined in
(5.5)). Therefore, in view of Proposition 1.1 we have only to derive the follow-
ing estimate when γ is large enough:

(5.12)

The first step is to show that the estimate
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(5.13)

holds if γ is large enough. Let X(η, τ) (eS(°τ)) be homogeneous of order
0 (V2~\- I T 12^ 1), X(η, τ)=ί on a conic neighborhood Π of supp X and supp Xd
Δdχy and set

a(y,v,r) =τ

o Γ1

ξ+(y,V,τ) = \ a(y,μ,τ)μdμ—Vb{y) r .
Jo

Then we have

(5.14) 9,l+(>','?,τ) = α(3',^τ)17,

(5.15) ζt(y,v,τ) = - f l ^ + ^ C y . ί . r ) if ( ΐ , τ ) e π ,

(5.16) Im t(y,V,τ)^δj i f (9,τ)eπ.

By (5.15) we may assume that σo(ξ+) (y,v,τ)=— a(y)v+ξ(y,V,τ) for every
(y,v,r). Set θt{y)= {l—(<p(yf+£)a(y)} "α Then it follows that

inf 0,00^8, (>0),

+«[IMHS2)
Therefore, using Proposition 1.2 and its corollary (cf. (5.16)), we have

(5.17) Im(ΘJPt(A°+ίXv), A. +1Xvy^($av-Ci)(\\\φXv\\\'.l1+6\\\Xv\\\'.l1)

- \(θt[φ,ξ+]A*+1Xv, φK^Xυ)'\-C3\\\Xv\\\'2.

From (5.14) and dvA=A~1D}, it is seen that [φ,ξ+] and [φ,As+1] are of the form

where ά, βeS$ and <χ,-i, /S.^eS^1. Therefore, noting that Dy=P,—(φ2+
6)ξ+, we obtain

, As+1]Xv, As+1Xv)' \
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+ I (φ[φ, A^]ξ+Xv, A*+1Xv)' I + I {[φ, A°+1]<pξ+Xv,

Combining these inequalities with (5.17), we have

\(θ,As+ΨeXv,As+1XvY\^(δ2j-C7)(\\\φXv\\\'sl1+ε\\\Xv\\\'s
2

+1)

which yields the estimate (5.13).
The second step is to derive

(5.18) | | | o | | | ί ^

Let ψ(y)eCaiR1) and ψ{y)=1 neary=0. Then it follows that

From this inequality we have

|||»||lί̂ C4(|||Ptβ|||

+ \\\[Pι,A
s]v\\\Ό+\\\[φ\ξ+As]v\\\'0)>

which yields (5.18).
It is easy to derive (5.12) from (5.13) and (5.18). The proof is complete.

Proof of Theorem 2. From i) of Proposition 2.1 it suffices to show that
the mixed problem (2.1) with the boundary operator Dy-\-<p2Dx (or Dy—φ2Dx)
is C°° well-posed. Since the boundary condition of (5.1) is non degenerate if
£>0, by Ikawa [3] we have a solution uz of (5.1) in Hm+Z{R\) for any (f,g)^
Hm+z{R\)χHmΛ.z{Rι) and £>0 (if γ is large enough). Furthermore, by Theorem
5.1, this solution uζ satisfies

which implies that {uζ}0<s<ζQ is bounded in Hm+1(Rl) (for fixed (/,^)). There-
fore, uz converges to some uo^Hm+1(R2

+) weakly as 6->+0. Then u0 satisfies
L(τ)uo=f and BQu0=g. Hence, using the Laplace transformation in t, we see
that (if 7 is large enough) for any (J(x,y,t), g{y,t))tΞHm+z;i{RlχR})χ
Hm+3ty(R1χR1) (HmΊ{M) = {u: e-ytu<=Hm(M)}) there exists a unique solution
u(x,y, t)^Hm+l;f(Rl X R1) of the equation

ίL{y,Dx,Dy,Dt)u =f(x,y,t) in R\xΛ1,

\BJίy,Dx,D,)u=g{y>t) on ffxΛ1,
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and that supp ud{t^0} follows from supp (f,g)d {t^O}. Therefore we obtain
the uniqueness and existence of the solution of (2.1) in the Sobolev space.

Combining this fact and the investigation in §3 concerning domains of
dependence (cf. Remark 3.1), we see that the problem (2.1) is C°° well-posed.
In fact: Let {(Xj(x,y)} j=Otit.. .be a partition of unity on R\ such that O ^ α ^ l

and supp asC {(x,y):j—l^\(x,y) | ^ j+1}, and set βN(x,y)=='Σ aj{x,y). Let

u be a null solution of (2.1) (i.e./=0, g=0, uo=Uχ=O). Then βNu satisfies

L{βNu) = [L, βN]u in R\ x (0, ΐ0),

• B0{βNu) = [Boy βN]u on R1 x (0, ί0),

βNu 11=0 = Dt(βNu) 11=0 = 0 on R\ .

The data of this equation have support in {N—l<^(x2-{-y2y/2<^N+l} and
belong to the Sobolev space. From Theorem 3.1 (see Remark 3.1) it follows
that βNu=*ϋ on {(xϊ+yψ2^C(N)}, where C(N)->oo as iV->oo. Hence the
solution of (2.1) is unique in C°°(R\ X [0,£0]). Let us show the existence of the
solution in C°°(R\ X [0,ί0]). We may assume that/^0, ^ = 1 ^ = 0 and D{g\t=+O

= 0 0 = 0 , 1 , •••). By the solvability in the Sobolev space we have a solution u(i)

of (2.1) for the data (0,α, £,0,0). From Theorem 3.1 (Remark 3.1), it is seen

that w = Σ u<<i) is the required solution. The proof is complete.
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