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MIXED PROBLEMS FOR THE WAVE EQUATION
WITH A SINGULAR OBLIQUE DERIVATIVE
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Introduction. Let Q be a domain in R? with a compact C boundary T,
and consider the mixed problem

Fu

Ou= o

—Au=f(x,) in Qx(0,1),

o ) %lng(x',t) on Tx(0,1),

| o = ty(%) on Q,
u
ot

lt=g = t(x) on Q,

where v=w(x) is a non-vanishing real C= vector field defined in a neighborhood
of . We say that (0.1) is C* well-posed when there exists a unique solution
u(x, 2) in C=(Q2 X [0, t,]) for any (f, g, 4o, u)EC=(Q2 X0, 2,]) X C=(T' X [0, t,]) X
C=(Q2) X C=(Q)) satisfying the compatibility condition of infinite order.

In the case where v is not tangent to I" anywhere, various results have
been obtained. It has been well known for a long time that the problem (0.1)
is C~ well-posed if v is parallel anywhere to the normal vector n of T (the
Neumann boundary condition). Ikawa [3] showed that (0.1) is C> well-
posed also if v is oblique (i.e. not parallel to #) anywhere on T" (the oblique
boundary condition). When these two types are mixed, the shape of Q has to
be taken into consideration. Ikawa [4,5,6] examined it in detail.

In the present paper we shall study (0.1) in the case where » is not neces-
sarily non-tangent to I'.  We assume that » is tangent to T" at finite number
of points (of T'). And we call them singular points. At each singular point
the Lopatinski condition is not satisfied; therefore, the mixed problem frozen
there is not C= well-posed (cf. Sakamoto [13]). We can classify the behavior
of v near each singular point into the following three types: As x’ (€T") passes
the singular point in the direction of the tangential component of »(x") to T,

(I) <w(x"),n(x")> changes sign from positive to negative;

(IT) <v(x'), n(x')> changes sign from negative to positive;
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(IIT) <v(x"), n(x")> does not change sign,
where n(x’) is the unit inner normal vector to I". Assuming that Q=R3, the
author [15] has examined the problem (0.1) in the case (I) and (III). We want
here to investigate (0.1) in a more general domain in each case.

One of our main results is as follows:

Theorem 1. If the function {v(x"), n(x')> (€C=(T)) changes sign on T
(the case (1) or (II)), then the mixed problem (0.1) is not C= well-posed.

As is seen from the proof of Theorem 1 (see §4), we may say that in the
case (I) the uniquness does not hold and that in the case (II) the solvability is
violated.

Another main result is the following

Theorem 2. Assume the conditions (a) and (b):

(a) <v(x'),n(x")> does mot change sign on T (the case (III1)) and |<{v(x'),
n(x")> |2 is C~ smooth on T';

(b) v is oblique anywhere. ‘
Then, the mixed problem (0.1) is C~ well-posed, and domains of dependence are
bounded, but it has not a finite propagation speed.

Egorov-Kondrat’ev [1] considered an elliptic oblique derivative problem
similar to the above problem (0.1):

(A(x, D)u = f(x) in Q,

02 | —g=) onT,
14

where A(x,D,) is an elliptic differential operator of second order on  and »
is a non-vanishing real vecter field tangent to T" on its submanifold T',. They
assumed that dim I'y=dim I"'—1 (=1) and that » is transversal to I';. Then
the behavior of » near T, can be classified into the three types (I) ~(III) in
the same way. On account of Egorov-Kondrat’ev [1], Maz’ja [11], the author
[14], etc., in short, in the case (I) the kernel of (0.2) is infinite-dimensional, in
the case (II) the cokernel of (0.2) is infinite-dimensional and in the case (III)
the same results as in the coercive case are obtained.

As can be readily seen, our results (i.e. Theorem 1 and 2) are analogous to
those of the above problem (0.2). Our methods, however, are little similar to
those in the elliptic case.

Let us mention the procedure of the proofs of Theorem 1 and 2. Let
P be the Poisson operator of the following Dirichlet problem considered in
appropriate functional spaces:
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Cu(x,2) =0 in QX(—o0, ),
{ulp=h(x’,t) on I'X(—oo, o).

Set Th_—_—aq—.CPhlr. Then the well-posedness of (0.1) can be reduced to that
4

of the equation T h=g considered on I'X(—oo, ). Although T is hard to
deal with, T approximates to a pseudo-differential operator 7 if the wave front
of the 4 (or g) is near where the Lopatinskian vanishes. Analysing the (asym-
ptotic) null solution of T k=0, we prove Theorem 1 in §4. In §5, deriving
an estimate for 7 in the same way as in the author [15], we verify Theorem 2
by the procedure similar to that of Ikawa [3].

1. Notations and properties of pseudo-differential operators

We denote by S™ (mE R) the set of functions p(z,w) € C*(R?X R?) satisfy-
ing for all multi-indices &, 8

19802 p(2, @) | < Capg(1+ o))" 1, (2, 0)E RZX R?,

where 6§=<—56—)B and 8:=(—66—>. For p(2, w)eS™ we define a pseudo-
(O]

2
differential operator p(z, D,) by

pu = p(z, DYu(z) = Se‘“p(z, )i()do, u)ES,

where do=(27)"%dw, S is the space of rapidly decreasing functions and #(w)
is the Fourier transform Se“""u(z)dz. We denote by $™ the set of these

operators p(2, D,), and call p(z, w) the symbol of p(z, D,). It is well known
that the estimate

llp(z, DYull = Cllullyrmy, #ES (ER)
holds for p(z, w) € S™, where the norm |||, is defined by
hellz = [(1+ 1017 | (a) do
For p(z, v)€S™ and (s, 0)€S™ we set
a(pog) (3, ) = 12131 Sge"”X(ea, E2)p(2, o+ @)q(z+2, 0)d2ds ,
where X(2,0)€ S and X(0,0)=1. Then we have o(pog) (2,0)= S and
a(pog) (3, DJu = p(2,D,) (qu), uES.

Furthermore the asymptotic expansion formula
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(1) alpeq) )= 2,1 (2 ) 0e0)- Dz wyes= (D, = —i2)

lal<w ! P

is obtained for any integer N (>0). For p(z, 0)&S™ there exists a symbol
p*(2,0)€ 8™ such that

(P(z’D:)u: ‘U) = (u:p*(zrDz)v)’ w,vES,

and the following asymptotic expansion formula holds for any N (>0):

(1.2) Pz 0)— 3 TV 555G w) e 58

<y ¢!

These properties are described in Hérmander [2] or Kumano-go [7].

We introduce another class of pseudo-differential operators, whose symbols
have a parameter T=0—iy (c€R?, Y=0). Namely, the symbol p(y,7,7)is a
C= function in R} X R; with the parameter 7 and satisfies the following inequality
for all non-negative integers a, B:

18802 p(y,7,7) | <C( |21 +171)"%, (M) RE, |7|21,
where m& R and C,g is a constant independent of 7. We denote by S7, the
set of these symbols, and for p(y,n,7)=SG, define
pu= 05,0, = | p(y,m,m)a(mdn, u(y)es.

Let us define a norm |||-|||; (s€ R) with the parameter 7 by

lallz = -+ 119 ) 2
Then, for p(y,7,7)ESH, the following estimate holds:

Hlp(y:Dy)T)“”lséclllu”|3+m’ uES’ IT, ;1 .

The above constant C is uniform in 7. Hereafter, all the constants in estimates
stated with the norm |[||-]||, are independent of 7. Obviously we obtain
the same properties as for the class S™. Let us note that if p(y,n,0)sS™
(2=(y,t), =(»,)) then p(y,7,0) can be regarded as a symbol in S&, (T=0=1).
We say that a symbol p(y,7,7)E S, has a homogeneous asymptotic expansion

Z‘pm {9n,7) when p,_ ,(y,hv,m) AT p, (y,m,7) for AZ1 (4| 7|21,
J=0,1,---) and p(y,7,7)— me OmT)ESEH" (N=1,2,:+). We call p,(y,7,7)
the principal symbol of p and denote it by o(p) (¥,7,7).

Proposition 1.1. Let X(y,7,7)Sk and p(y,n,7)ESH. Suppose that
supp X is in an open conic set A and that the principal part p,(y,n,7) (i.e. p,E
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8 & p—pnES") satisfies
| pw(y,7,7) | Z8(I2|4-17])" (8>0)

when (1,7)EA and |n| 4| 7| ZL (L is a large constant). Then the following esti-
mate is obtained for any constant N >0:

Xl = C(llI el ||+l ]s-0), vES  (SER).

We can prove this proposition by constructing a parametrix for p(y,D,,)
available on A (cf. Hormander [2]).

Proposition 1.2. Let p(y,n,7)E Sty and its principal part p(y,n,7) fulfil
Im py(y,2,7)28(7), (n,7)eAn{|7|=1},

where &(7) is a positive function (=1) and A is an open conic set. Then, for any
X(n,7)E S satisfying supp XC A there is a constant C such that

Im (p(y, D,,7)X2,X0) Z8(7)||IX2|I[5—CllIX2||l5, 2(y)ES (I7|=21).

Corollary. In the above proposition, if X(y,n,7) (ESi) depends on y
and satisfies supp X C A, then we have for any N >0
7,7

Im (P(%Dy,“f)iv,x'v)2%3(””|I’zvlllﬁ—cxllIivlllﬁ—CzIHlez—m vES.
Proof. We set
9(¥,7,7) = (Im py(y,7,7)—8(7))X"(2,7)

where X'(7,7)E S, X'(7,7)=1 on supp X and supp X'CA. Then it follows
that

q(y,7,7)=0 for (y,m)ER? |7|=1,
Im ((p—18(7))Xv, Xv)=Re(gXv, X'v)——C1|||Xv|||§ .

Let g denote the Friedrichs approximation of g (cf. Theorem 5.1 of Kumano-
go [7]). Then, we have ¢—q=S{r and (gzv,v)=0. Therefore we obtain

Im (pXv,X0)—8()|[[X2||[; = Im ((p—i3(r)Xv,Xv) = —C,l||X]|[3 .
Next, let us check the corollary. Let X"(,7)€ S, X"(7,7)=1 on Sl%gp X
and supp X”CA. Then, from the above proposition it follows that
Im (pX"%o, X"%0) 2 8()|IX"Xolll3— Cll X "Xo|1
gi(;—)“|527)|lIg_cz|[|>~C7)H|g_03”|7)”!2-1v~
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On the other hand we have
Im (pX""Xv, X""Xv) = Im (pXv, Xv)+Im (pX"Xv, (X" —1)X)
+Im (p(X""—1)Xv, Xv)
< Im (p%o, %o)+Cill[o|2 -

Therefore the corollary is obtained. The proof is complete.
Now, let L be a differential operator of the from

L(y,D,,D,,7) = Dﬁ‘f‘jﬂzﬂsza,-u(y)’r'l)fl)ﬁ ’
j=0,1
where r=o —i7 (¢ € R, 720) and a,()€ B(R)={f€C=; sup 35f(y)| <
+ oo for @=0,1,:::}. We denote by £5(y,7,7) the roots of the equation (in §)

L{pEnn=E+ 3 au()rre =0.
§i=0,1
Obviously, £5(y,n,7) are homogeneous of order one in (1,7) and are smooth
where &5(y,7,7) and &5(y,7,7) are distinct each other. We obtain the following
factrization formula, which is proved in Kumano-go [9] (see Theorem 0 of

[9D)-
Proposition 1.3. Let £5(y,n,7) and E5(y,n,7) be distinct on R,x A, .

(A is an open conic set). Then there are symbols E*(y,n,7)ES(r such that
i) E*(y,n,T) have homogeneous asymptotic expansions whose principal symbols

ao(EF) satisfy
ao(&*) (0,7, 7) = EF(y,m,7) for yER, (1,T)EA;

ii) Set L*=D,—&£*(y,D,,t). Then for any X(y,n,7)ES@k satisfying
supp XCA, we have
,T

LX = L"L*X+rD,+r,,
XL = XL L*+7,D,+r,,

where 7,=1,(y,D,,7) €855 = 0 St (j=1,,4).
Let 6(y) be a real-valued C~ function on R! satisfying |6(y)| <1 for
yER, §(y)=y for |y| g% and 6(y)=1 for |y|=1. For p(y,n,7)E Sk, we set

(1.3) PO(y,n,7) = p(pﬂ(%’—), 7, -r) (p>0).

Then p®(y,n,7) belongs to S%. Moreover, p®(y,7,7) is equal to p(y,7,7)
if || g%, and independent of y if | y| =p.
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Lemma 1.1. Let A', A’ be open sets of S.={(n,7): n*+|7|*=1, v=
—Im >0} and A'CA’. Assume that q(y,n,7)E Sir has a homogeneous asympto-
tic expansion i q1-/(y,m,7) such that g(y,n,7) is real-valued and satisfies
j=0
(1.4) 19.0:(y,7, 7)1 28 (>0), yER', (1,7)ES. .

Then, if p>0 is small enough for an integer N >0, there exists a symbol £(y,n,7)
€8 such that

() [990,Dy7), £, D,y 1] (= ¢ —Lg?)ESE'
(i) supp L(y,m7)CA, O=oy(f)=1,

ty,m,7)=1 foryeR,(n,7) €A @+|7|*=1),

where A (resp. A)={(n,7)=7", A7"): (', T")EA’ (resp. A"), A>0}.

This lemma in the case N=1 is due to Ikawa [3].

Proof. We take open sets A/, A},---, Ay and A{, Aj,---, A} in S, such that

A'CCAyCCAj,,CC-CCAlCCACcC.-CCAjyCCA’,
where AC CB denotes ACB. For A, A}, «(CS,) we set
A= {(n,7) = ', A1) (7', T)EA NS0}, .-
Assume that {(y,7,7) is of the form
(0T = 2 ¢ 0m7)

where §_;(y,7,7) (€S#) is homogeneous of order —j in (7,7) (v*+ |7]2=1).
Then it follows from the formula (1.1) that the symbol of [¢®, ¢] has the
asymptotic expansion

N-1
(1.5) ,Z‘f) {6,,q(,p)(y, 7 T)Dyg—i(y’ 7, T)—quﬁ")(y, 7 T)6ﬂ§—i(yr 7,7)

+@_; 0, T} 7o (957 7) -

Here r_y(y,7,7) is a symbol belonging to SG) and ®_,(y,7,7) is defined by

o,=0,

e hmm) = 2 ,;17{6343‘?:(%77, D3, 7)

1<k :

gg‘;{il —D§q§p—)z(y,’7,T)af}C-s(y:’?,T)} (]gl) *

We shall choose &, ***, {_y+1 so that each term in the summation (1.5)
vanishes. Note that ®_;(y,»,7) is determined by only &, ¢_y, ==+, &_;4; and
homogeneous of order —j in (»,7) (7*+|7|?*=1). Let X(n,7) be homogeneous
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of order 0 in (7,7) (7*+ | 7|2=1) and satisfy 0<X=<1, supp XC A, and X(»,7)=1
on AN {r*+|7|?=1}. Let us consider the following equation with the para-
meter T:

0,4 (y,1,7)0,¢ _;— 0,4 (9,7, 7)0,¢ _;+i®_;(y,7,7) =0,

KOI.V:O = X(‘)),’T), c—j|y=o = 0 (]gl) .

The characteristic curves of this equation are given by

(1.6) {

dj = 6nqu)(y) 7, T) ’
ds

(17) 4 — o400,

5,|3=0=0’ 77|s=0=’7 (772+|T,2%1)-
Since 3,¢(y,7,7) and 8,¢¥(y,7,7) are C= real-valued functions on R}, ), we

have a unique solution (J(s;»,7), %(s;7,7)) of (1.7) defined on —oo<<s<Too. It
follows from the definition (1.3) that

103¢(y,m, 1) | = Ca(l] + 171 +1)°%, (@ = 1,2,-+),

198014 (y, 7 r)|{écm}_ﬁﬂ(lnl+ITH'l)l'y if |yl<p,
PPN _0if 1yl ze, (8= 1,257 = 0,),

(1.8)

where C, and Cpgy are constants independent of y, , 7 and p. From these
inequalities and the assumption (1.4) we obtain

(1.9) Sls| = |¥(s;mn, 1) =Chls|,
(1.10) [57(s;m,7)—n| < (' —1) (|7] 4| 7| +1).
for constants C,; and C, independent of s, », 7 and p. Combining (1.8), (1.9)

and (1.10), we see that if p is small enough the following statements i)~viii)
are valid:

) Cs(Inl+ITDS a7, 7) |+ 171 SC 121+ I 7)), SER, 74 |7]721;

i) If (p,7)eAN;,—A; (v*+|7|*=1), then (%(s;7,7), TVEA; ;1 —B 4 for
SER(j:l,--.,N, AN+1:A, AN+l=A);

0y(s;m,7) 0¥(s;n,7)

. Os on S
ii) | det =-, SER, 7 >1.
iii) |de Ba(s;m7) Bn(ssm ) || = 2 s 7+ |7|

Os on

Therefore, we obtain the required solution {_;(y,7,7) of (1.6). Noting that
¥(s;m,7) and #(s;»,7) are homogeneous of order 0 and 1 in (7,7) respectively,
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we see that {_;(y,7,7) is homogeneous of order —j in (»,7). Furthermore,
from the above statement ii) it follows that
L(ymr) =1 if (1,7)EA,, supp L3 m7)CA,,
supp £ T)CA =R, (15j=N-1),
supp D_; (3,1, T)CAj—Ry, (ISjSN-1).

Hence the lemma is proved.

ReMARK 1.1. We can make the assumption (1.4) in Lemma 1.1 weaker as
follows:

(1.4) 18,0(3,7,7) | =8(>0), yER!, (n,7T)ER'—A’.

In fact: There exist symbols ¢.(y,7,7)E St satisfying all the assump-
tions in Lemma 1.1 and equal to ¢(y,%,7) on X} .={(n,7)€RA—A; +9,¢:(y,n,7)
=>38}. Applying Lemma 1.1 to ¢., we have ¢.(y,7,7)E S, such that

@) [¢2,t:1E8;
(ll) S‘%RP C'_t(.}" ﬂ,T)CAi U A (I\+ nK— = ¢: Eic CAi) ’
Oéao(é‘i)é 11 C:(}’, 7])7) =1 lf (77, T)EZ¢ U A.
&y, 1, 7)=C.(y,m,7)¢_(y,7,7) fulfills all the requirements.

2. Reduction to the problem in a half-space

Let x=(x,, x,) be an orthogonal local coordinate system defined near a
singular point 4T such that x,=x,=0 denotes x; and the x,-axis is tangent
to " at x5. Let the curve T (near xg) be expressed by the equation x;=pu(x;)
and Q (near xg) by x,>pu(x,). We take another local coordinate system: ¥=
%,— p(x,), ¥=x,. 'Then we have

i) Q is mapped near x; to (a neighborhood of) a half space {(%,75): >0},
and T to {(%,3): 2=0};

ii) A,=6—62+56—22 is transformed near x4 to
X1 X2
- ! 2 62 _2 ’ 82 az R 77 _@
&= (Hu0P) g =200 st oo r O

where p'=§;—" and p” =§;—‘: (note that p'(0)=0);

sy 0 .
iii) a0 transformed near x4 to
v

a(3) %wm% :
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where a(¥) and B(¥) are C= functions defined near =0 and satisfy «(0)==0
and B(0)=0.
Rewriting %, ¥ with x, y, we set
L(y,D,,D,,D,) = —(1+p'(y)")(A—0%)
(=Di+2a(y)D.D,+b(y)D;+c(y)D.—b(y)D3) ,
Y(y) = a(y)7'B() -

For a C= function ¢(y) defined near y=0 we define @®(y) (p>0) in the
same way as (1.3), and write for A=2]ay(y)D{. ,.»
Y

A® = 31aP(Y)De,y,0 -

From the statements i)~iii) stated earlier, it follows that (0.1) is equivalent

to the following mixed problem if » has support in %-neighborhood of the

singular point:

L®(y,D,,D,,D,)u = f(x,y,t) in Rix(0,,),
Dyuty®P(y)Du) | - = g(y,%) on R'x(0,1),
U] o = t(x,) on R,

(2.1)

Dy = w(x,y) on R%,

which we call the mixed problem localized at the singular point. The classi-
fication (I)~(III) stated in Introduction is rewrited respectively by the term
P®(y) in (2.1) in the following way (let p>0 be small enough):

I ¥(y)>0 for y<0 and 4 (y)<0 for y>0;
(2.2) (II) ®(y)<0 for y<0 and 4P (y)>0 for y>0;
(IIT) 4v®(y)>0 (or <0) for every y=0.

Hereafter we often abbreviate L®, +p®  ««« to L, r, .

Proposition 2.1. i) If the problem (2.1) localized at any singular point is
C= well-posed for a p>0, then (0.1) is C*= well-posed.

if) If (0.1) is C*= well-posed, then the problem (2.1) localized at any singular
point is C= well-posed for any small p>0.

We note that if (0.1) (or (2.1)) is C~ well-posed then so is also the mixed
problem considered on #,<t<t, (for any t,<<t,) with the initial condition on
t=t1.

Proof of Proposition 2.1. Let us prove only i). ii) can also be verified
in the same way.
Let {x}};-,,...v be the singular points, and set for €>0
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(2.3) UP = {x€0; |x—x}| <&} .

We make € so small that U{® N U{’=¢ (i< j) and that in each U’ (0.1) is equiv-
alent to the localized problem (2.1). From the results in the case where there
is no singular point (cf. Ikawa [3]), we see that if the data in (0.1) vanish on

(U U (')) X [0,2,] (¢, is small enough for &) there is a solution u(x, t) with support
in (Q U U('/”)X [0,2,). Furthermore, we see that if (x,£)e(Q— U UP)x(0,2,]
there exxsts the bounded domain of dependence of the point (x, t), Wthh is dis-~
jointed with U U< [0,q].

Let u(x,lt) be a solution of (0.1) with null data (i.e. f=0, g=0, u)=u,=0).
Then, from the above statement concerning the domain of dependence it follows

that supp uC G U x[0,t,]. Since the uniquehess for each localized problem
ji=1

(2.1) is assumed, we have u=0. Therefore the solution of (0,1) is unique in
C=(Q2x [0,1,]).

Let us show existence of the solution of (0.1). Solving the Cauchy problem
ignoring the boundary condition of (0.1), we may assume that f=0 and #,=u;=
0. Then the compatibility condition implies that Dig|,.,,=0 for k=0,1,---

N
Take a partition of unity {¢;(*)},<,...y on O such that supp ¢,cO—U U§?

and supp ¢,C UY (j=1,---,N). Obviously if (f,g,u,,%)=(0,g,0,0) is compat-
ible, so is (0,¢,9,0,0) (j=0,:--,N). From the results in the non-singular case,
we find a solution u©®(x,t) satisfying

Ou® =0 in Qx(0,t,),
Bu(°)
|r—¢og on I'x(0,%),

u<°>|,=0= 3u®|,.o=0 on Q.

Since each localized problem (2.1) is supposed C~ well-posed, for the data with
support near the origin there is a unique solution of (2.1) with support near
the origin (apply Theorem 3.1 in §3). Therefore, for j=1,2,::-,N we have a
solution u® satisfying

u® =0 in QXx(0,t),
a )]
u |r—¢1g on T'x(0,2),

u(!) l t=0 — 6tu(‘,) l t=0 = 0 on Q .

u(x,t)=§‘_, uP(x,t) (€C~(Q3x[0,2])) is the required solution. The proof is
FEY)

complete.
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3. Domains of dependence

In this section, assuming that the solution of (0.1) is unique, we shall study
the domain of dependence. We note that the solution is unique on #L=t=ft,
for any #,<t, if the uniqueness is guaranteed on 0=t =t¢,for some #,>>0 (because

0, 62 are independent of ). From Theorem 3.1 and 3.2 stated later, it follows
v

that the domain of dependence is bounded at any point although (0.1) has not
a finite propagation speed. The results in this section are all valid also for
the problem (2.1).

For a set S of RZx [0, o) we set

28 = Y3+X),

where 2: {X=(»,#): t=|x|}. Then, as is well known, the solution of the
Cauchy problem

Ou = f(x,t)  in R?X[0,0),
Ul =uy(*) on R?,

Ot | 4= = wy(x) on R?

has support in ‘j(S) (8= (supp f) U (supp #,x {t=0}) U (supp # X {t=0})).
Let T" be given by

dx’
= x’ y |/ =1
5= 2@ 1)

(x'(s) is a periodic C= function on R"), and for x(T" set

wls) = r(s: ) — | 1<P(E(V)), n(x' (M) | r(s)).
($) = «(s;x0) sso (') dn (x§ = x'(s,))

(‘f—df (s))_l is equal to the propagation speed of the mixed problem frozen at
x=x'(s) (let x’(s) be a non-singular point) (cf. Appendix of Ikawa [3]). We set
Db t) = {(#,5)ETX[0,0); &’ = x'(s), t—1,= | x(s; %) |, s€ R},
V(S) = U SASAX)) (S'STX[0,)).
Theorem 3.1. Assume that the solution of (0.1) is unique in C""(ﬁxﬂ [0,2,])-

Let S be (supp f)U (supp %, X {=0}) U (supp #, X {t=0}) and S’ be (Z3(S)N
(T'x[0,2])))Usupp g. Then the solution u(x,t) of (0,1) has support in

SAS)=DUS) US(S) .-

From this theorem it is seen that for any &>0 there is a constant #(§)>0
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such thatos U_ supp [u(x,?)] is contained in &-neighborhood of
t< i) ¥ .

data]. .
In the case where (0.1) has no singular point the above theorem has been
obtained (cf. Tkawa [3]).

. U_ supp [the

0<t<t(e) %

Remark 3.1. If the uniqueness in the Sobolev space holds, the above
theorem is valid for the solutions and data in that space.

Proof of Theorem 3.1. Because [] and 56— (in (0.1)) do not depend on ¢,
v

it suffices to show that supp u N {0=<t<¢} ©>)(S) for a sufficiently small ¢,>0.
For each singular point & (j=1,::-N) we define U’ (6>0) by (2.3). Let & be
so small that U N U =¢ if i+ j and take a small ¢, such that every 3} (U™

Uy {0=t=<t} (j=1, -, N) is disjointed with ;J;U;,".

Let ¢;(*)=1 on U§"? and supp ¢;C U7, and set uP=¢;(x)u(x,?). Then
1) satisfies

(Ou = [O,¢,Jut¢,f (= f9) in Ox(0,¢),

ou? 0 .
0 =206, Juletoig (=89 on TX(O,),
3.1 .
1) UD | 1o = bty (Suf’ on Q,
) .
agt] lizo = bt (=ut”) on Q.

Obviously it follows that
(DU x[0,6) NS 3XS),
where S;=supp (f%, g9, u§”, ui?). Set
I; = inf {t: (x},£)€2)(S;)} .

Then, for any # (0<#<Z,) we can solve (3.1) on 0<¢<7 by the methods in
the non singular case (cf. Ikawa [3]), which implies that supp ¥ N {0<t<7f}
2(S;) (because the solution is unique). Next, consider the problem (3.1)
on }<t<t, with the initial data (u"|,.7, 0,49 |,.7) on t=ZF. Then, by the
result concerning the domain of dependence in the non singular case, we see
that supp u N {f;<t<t,} ©33(S;). Therefore it is concluded that

supp # N {0<t<t}c3N(S) (j=1,N).
This yields
N N
(supp @) N(B UL X 0,61 US(S)N (0 U X 06D < 3X(S)
i= ’ = =1
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Take a C~ function @(x) such that p(x)=1 on O— U U$*® and @(x)=0 on
U U$/?, and consider the following equation for a sufﬁmently small constant ¢
i=1

(0<ty=1y):
O(eu) = [0, plut+ef  in Qx(0,4),

6(¢“)|P = [_@_, ¢]u|r+¢g on I'x(0,1),
ov ov

(pu)|1=o= pu, on Q,
0y(pu)|s=o=pu; on Q.

Then, by the result in the non singular case, we see that
N
supp [u] N (@~ U UP) ¥ [0,4] € 2(S) -

Therefore we obtain the theorem.
The following theorem is another main result in this section:

Theorem 3.2. Let the mixed problem (0.1) be C= well-posed. Then (0.1)
has not a finite propagation speed.

Proof. We can prove this theorem by the same procedure as in the author
[15] (see Theorem 4.1 of [15]). Let us mention an outline of the proof.

Obviously we have only to study near each singular point x;. For >0 and
1,>0 set

D(x4,t;0) = D = {(»,0)€0 X [0,4]; |x—x5 | < (t,—t)v} .

Assume that (0.1) has a finite propagation speed not more than >0. Then,
for any #, (0<t,<t,) it follows that if the equalities

Ou=290 on D(xg,t;v),
(3.2) g—’:|r=0, on DN(TX[0,1]),
Ulpmg = 0| 40g =0 on DN {t =0}

hold the solution u(x,t) equals 0 on D. In the same way as in the proof of
Theorem 4.1 of [15], we can construct an asymptotic solution

uy(, 23 K) = 23 €490 (x,2) (ik) 7
such that vy(x4,2,)30 and -
Ouy = e**oy@k)™ in Qx(0,2),
?TN'P —0 on DATX(O0,1),

Uy |10 = Oty |1=o=0 on DN {t=0}.
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Since (0.1) is supposed C* well-posed, there exists a solution wy(x,;k) satisfying
Owy = e**Jvy  in QX%(0,%),

%wy| —0  on T'x(0,1),
Ov

Wyl =0 = 0y | 4= =0 on Q,
and the estimate
lwylop=Cile** 0oy |,y < Cok' .

holds for constants C;, C,, I and a domain D’ (2DD) independent of k. Take
N so that [<<N, and set

u(x,t; k) = uy(x,t;k)— (k) Nwy(x, 13 k) .

Then u(x,t; k) satisfies (3.2), but u(xg,¢,; k) ==0 for large k, which proves Theorem
3.2.

4. Proof of Theorem 1

If the assumption of Theorem 1 is fulfilled, the {+®*)(y) in the problem
(2.1) localized at a certain singular point satisfies the condition (I) or (II) of
(2.2). To prove Theorem 1, it suffices from ii) of Proposition 2.1 to verify

Theorem 4.1. Suppose that ®(y) in (2.1) satisfies the condition (I) or
(IT) of (2.2). Then the mixed problem (2.1) is not C well-posed.

In the case (I) we can prove the theorem in the same way as in the author
[15], namely, by constructing an appropriate asymptotic solution of (2.1) violat-
ing an ineuqality to be satisfied if the problem is C~ well-posed (see § 5 of [15]).
But this method cannot be applied in the case (II). In this paper we employ a
method applicable to both cases.

At first we shall construct an (approximate) Poisson operator of (2.1) by
the methods of the Fourier integral operator. Consider the equation (in &)

Ly(y,&,m,0)=E+2a(y)nE+b(y)n*—b(y)e* = 0

for ye R, (n,0)€ R*. When (7,0)€A={(n,0): a*—7*>8(c*+7%)} (8 is a small
positive constant), this equation has the distinct real roots

&5 (y,m,0) = —a(y)11=F\/b(y) (0-2—772)—i-a2172 .

Applying Proposition 1.3, we have symbols £*(y,7,0)ES* (ES(s), || =1) with
the properties stated in i) and ii) of Proposition 1.3. Hereafter we denote by
£%(y,m,0) the principal symbols of £*(y,7,¢), and assume that £5(y,n,0) are
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real-valued on whole R} X R%, ,,. We set
A, = AN{(n, o): o>0} .

Lemma 4.1. Let A, be a conic open set such that A,CA,, and let p in
(2.1) be small enough. Then, for any X*(y,t,m,0)ES° satisfying supp X*CA,
n,6

and supp X+ C[#,,0), there exists a bounded voperator P*(x) on H,(R},.1) (the
t
mapping: x—P*(x) (0=x=x,) is C= smooth in the operator-norm) such that
iy L*PHx)eC7(8™=)" (0=x=x,),
i) @*(0)=X*(y,t,D,,D,),
i) LP*(x)eC7(8™>) (0=x=x,),
iv) supp [P*(x)h]C {(x,,8): F,+-8x=<1} for some constant §>0 (h(y,t)E S),
v) defining T by
Th= BP*h|,., (B= D,++D,),
we have TES" and
oo T) = (1+v ()& (9, 1,0)X*(9,,2,0) .

Proof. We make the above operator $*(x) in the same way as Kumano-go
[8] constructed fundamental solutions for operators of the type L,=D,—E*
(see §3 of [8]).

As is described in Theorem 3.1 of [8], the eiconal equation

{6::4)_&8—(}” V(y,t)¢') = Oa ngéxo (V(y,t)¢ = (6y¢’ ald’)) ’
bli=o=yntto ((1,0)ER?)

has a unique solution ¢(x,y,t,7,0) satisfying ¢—yn—tec=C7(S'). We assume
that P*(x) has the form

(@) (x3,8) = [erer 0 S e (w,9,8,9,0)h(1,0) dndo,

ej(x;y; t:ﬂ: 0') (S C:(S’) ’

and define {e;} inductively so that the requirements i) and ii) are satisfied.
Then we obtain the transport equation of the form

D,e;—0,£5(3,Vy,09)Dye;—0,E5 (¥, Viy 0p)Dee;
(4.1) —ge;—7; =0, 0=x=x,,
e0|z=0=x+(y’t:7]ya')’ ej,x=o=0 (]g_l)’

D CZ(S™) derotes the set of S™-valued C* functions.
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where g is a function independent of {e;} and r; is determined with only
ey €1, ***, €j41.  (4.1) has the solution ¢j(x,y,t,7,0)€C7(S7) (j=0, —1, -++) (cf.
proof of Theorem 3.2° of Kumano-go [8]). There exists a symbol e(x,y,2,7,0)

€ CF(S") such that e| .-e=X", supp eC Usupp ¢; and e(x,y,2,7, )= De;xt,
=0 =0
7,0)ECF(S™V) (N=1,2,+) (cf. Theorem 2.7 of Hérmander [2]).
Now we set here

*2)  (Ph) (x,y,t) = Sgexp {id(%,7,8, 7, 0)}e(%,9,2,7, 0 )h(m, o) dnddr .

Then, obviously P* satisfies i) and ii). Since supp eCA, we obtain iii) by
7,0

Proposition 1.3 (Proposition 1.3 is valid also when X in ii) is a Fourier integral
operator). From the definition it follows that

D%k, = (SSe“"(G,(j)—}—D,e)fzdnda-) lmo
= gg(y’Dy’Dt)x+(y’t’Dy’D!)h+r(y’ t)Dy:Dt)h ’
where 7(y,t,7,0) €S°, which yields v). The bicharacteristic curve {g(x), p(*)} .20

={(q1,¢2), (p1,p2)} through (y,2,%,0) (7*+o°=1) is defined by

. d ;
jj—i = —0E@p), B =0 D),

B o fi@r), D=0l (= 0),
x X

‘9|x=o=(3’,t)» p|z=0=(77)°')‘
It is seen that if p>0 is small enough {p(x)},>,C A, follows from p(0)=(n,s)E
o b(j})d' ) 1 ([
A, and that —0zE¢(3,7,6)=— =0 (>0) for yER), (5,6)E
wand that = 0B 0.0 = ey (2)

A, (°+a*=1). From these facts we have j—qz (x)=38 for x=0, which implies ¢+
x

8x = gy(x) for x=0. Therefore, noting that {g(x)},2, is a characteristic curve of
(4.1), we see that supp ¢;C {(x,9,1): f+8x<t} (j=0,—1,-+-). This yields iv).

The proof is complete.
Now, let us consider the Dirichlet problem

(Lw=0 in RZxX(—o0,t),
{w|,=o=h on R!'X(—o0,t).

This satisfies the uniform Lopatinski condition (cf. Sakamoto [12]). We set
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C3(M X (—oo,t)]) = {usC=(MX(—o0,t,]); supp uC [t,,1,] for some
4 (<t)} (M= R%orRY).

Then, for any A(y,t)eC3(R' X (—o,1,]) there exists a unique solution w(x,y,)
in C5(R%x(—o,t]), and supp wC[t,t,] follows from supp AC[t,t,]. We
t t

define an operator T on C3(R X (—,t,]) by
Th= Bw|,~y (= Dyt ¥(y)Do)w|e=0) -

As is easily seen, this operator =T, does not depend on #, that is, for ar-
bitrary #,t; (6,<tg) Ty h=T;'h on —oo<t=<t, It follows that
the mixed problem (2.1) is C* well-posed if and only if for any

(4.3) g(y,t)eCz satisfying supp gC[0,¢,] there exists a unique solution k(y,t)

of Th=g in CT(R'X(—oo,t,]) whose support is in R'X[0,7,].
In fact: Ignoring the boundary condition of (2.1) and solving the Cauchy
problem, we may assume that the data (f,g,u,,#%,) in (2.1) satisfy f=0, uy=1,=0
and 9ig|,.,=0 (j=0,1,-:+). If for any g (€C%) with supp £2<[0,2,] there

exists a solution A(y,t) stated in (4.3), we have a function w(x,y,?) (€C?) such
that supp wC [0,2,], w|,-o=h and Lw=0 on R% X (—oo,%,]. Thisw is a solution
t

of (2.1) for the data (0,£,0,0). Conversely, if w(x,y,t) (EC?T) with supp wC

[0,2,] is a solution of (2.1) for the data (0,g,0,0), k(y,t)=w| -, satisfies Th=g.
The operator 7T stated in Lemma 4.1 approximates to 7T in the following
sense:

Lemma 4.2. Let ¢(t) (€C~)=1 on [2f,, o) and supp ¢ C (¥, ), and let
@(t) (€C*) satisfy supp PC(—o0,F) (0<2f,<%). Furthermore, let X(n,c) (€ S°)
be homogeneous of order 0 (7*+o*=1) and supp XCA (C CA,), and assume that
X*(y,t,m,0) in Lemma 4.1 is equal to 1 on a neighborhood of supp [@(t)X(7,0)]-
Then, for any positive integer N we have

i) 1¢(T— T)pXhllh=C|Ihl|L, h(y,H)ES;

i) (if p in (2.1) is small enough for N)

IXp(T— T)phllx<ClIkll;, h(y,t)ES,
where ||+ ||y is the norm of the Sobolev space H y(RY,.+).

Proof. By means of Corollary of Theorem 2 in Sakamoto [12] II, for
m=0, 1, -+« we have the estimate

(44) IEMHD&J)“”LKKQ‘F”Dxu”»,n,o<t<t1
éCI(IEMHD?)J)Lul,0,0<t<tl+“u“'ln+l,o<f<tl) )
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where Dju|,_,=0 for j=0,1, -+, m+1, ||u||?,,_o<,<,1=m§n SSS | DY..,. eyu | 2dxdydt

‘ #50,0<1<ty
and [[ul|Z<rc,= 3 SS D%, ] ,o|?dydt. Let w(x,y,t) (EC3) be the solu-
lo< 0S1<
tion of
1Lw =0 in Rix(—oo,1),
%|,mo=@Xk  on R'X(—oo, ),
and set ‘

W(x,y,t) = P*(pXh) .
Then it follows that
|1P(T— T)xhll4 < || Bo—)l Iy, 0<s<7
= Cy(|loo—||¥+1,0<s<7+ | Do(w— D)7 0<<7) -
It is obvious from ii) of Lemma 4.1 that
e —||v-11,0<e<3 = [|(1—=XF)PXhl |32 = Col 1ALy -
Using (4.4) and iii) of Lemma 4.1, we obtain
ID(w0—)l[x,0<:<7= Cul 23 1D oLabllo o< s<7s-1F 10— |11 0<0<7)
=GsllAl|Z, .

Therefore 1) of Lemma 4.2 is derived.
Let us show ii) of Lemma 4.2. Let p in (2.1) be so small that by Lemma
1.1 we have a symbol {(y,7,0)ESY(ES(,) satisfying [¢, E71€8 ¥, ¢(y,n,0)
=1 for (n,0)EA, and supp {CA,. Denote by w(x,y,t) (€C?) the solution of
7,0
Lw=0 in RixX(—o0,f+1),
o= p(Oh(y,1)  on RIX(—oo,F+1),
and take C* functions @y(#), @(f) such that supp @,C (%, ), supp #C
(—oo, #4+1) and @,(t)=1 on supp @, @(f)=1 on (— oo, £]. Then, using (4.4),
we have
IXP(T— T)phl|y = 1XPB {w—P*(ph)}Ii
= |IXPB{ptPrw— P*(ph)}H |+ Cillph|l] -

Let us express ¢,tPw by the Fourier integral operator. We write

L(p& Pw) = ¢t Lpw-+ [L, ¢1]§ P+ ¢1([L: ¢ ] - [L_L+, NP
+@[LLY (] Pw= Ji+Jo+Ts+ s -
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It is easily seen that
[1DG. 1y i”o,o<t<7§Cz”wl|1,o<t<7+1§03”¢h”f
for any ¢ and i=1,2. In view of Pfoposition 1.3 we have for any o
1D 1) Jsllo,o<e<3= Cullwll, 0<s<ta= Csllh 1 -
From finiteness of propagation speed, there is a constant x, such that supp [pr]

c[0,x,). Let 6(x) (€C~)=1 on (—o0,%] and 0 on [%+1, ), where % is a
constant larger than x,4-(f+1)8-! (§ is the constant in iv) of Lemma 4.1).
We set

0(x3,8) = 0() | P*(a—s) (6", 1P} ()ds.

Then, from Lemma 4.1 it follows that
ﬁ|z=0 = O’ supp ﬁC[Zo, °°) )
t

IXPB3| |3 < Col|Pwll= Cellphlls »

DG, 1 {L*o— [EY, §]¢1w} [lo
é “D?y. t) {L+ﬂ_ [§+) C]¢1w} “0,o<z<;+ I |D‘(ty. t)L+5| '0,;<x<;+1
= Gllpwl, < Cllphl|1 -

Here, the inequality [|Df), nL* ||y 3<,<31=C||Pw||; is derived from the fact
that supp Pw(s) Nsupp e(x—s)=¢ if s<T=x (e(x) is the symbol in (4.2)).
nt EA

Noting J,=@, L [E*,{]1Pw+@i[E7, 1L @ and [E7,5]€S77V ), by Proposition
1.3 and the last of the above estimates we have for any &

1D%. o(Js— LO) o< IDXL™L*—L)o|lo+||D°pi L™ (L* 0 —[E7, E]Pm0) o
+ID%pi[£7, EIL  Pwollo= Cuollphll1 -

Thus we see that @W(x,y,t)=0+P* (¢ {Piph) is the required expression of
Pt Pw: W satisfies

supp WC [£,, o),
DG, n L(p1E Prw—10)|[o.0<: <7 = Cullphlli (0= |a| =N),
[Pt Prv— ||, 0<:<7= Cisl l‘l’h! 7.

From these and (4.4), it follows that

“B(‘l’lf‘ﬁli"—w)l [Fo<i<i= Cl3l |@h|l] .

On the other hand we have
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IXP(T— T)phl|s < ||B(p:t Preo— )| |0 <1<+ | |[XPB (i — P+ (ph)} ||y
+Cullehll?,
and by Lemma 4.1
[1XPB{w— P*(ph)} [|h = |IXPBLP (916 P1— 1)k |5+ ||XPBD| |
éCm“‘Ph”f .

Therefore we obtain the estimate ii) of the lemma. The proof is complete.

Next, lec us construct an aymptotic null solution of Th=0 which is of the
form

N
ha(y,t;k) = 2} e*®Dy_(y,0)k™7  (k>0),
=0
where ®(y,t) is a real-valued C~ function. As is stated in Lemma 4.1, the
symbol of T has a homogeneous asymptotic expansion ’iql_ i{(¥,t,m,0) and its
ji=o0

principal symbol ¢, is of the form stated in v) of Lemma 4.1. The following
proposition plays a basic role on construction of the required solution.

Proposition 4.1. Let p(z,0)ES™ and h(z)=C7(R"). Assume that I(2) is
a real-valued C* function and satisfies

inf |Vi(2)|>0.
h

ZESsupp

Then we have

i) sup |Dip(z,D,) (¢*'h) ()| = Cok™*'™;

ZER"

ii) if p(2, w) is homogeneous of order min w(|w|=1), the following asymptotic

expansion is obtained for any integer N>0:
eMp(3,D,) (") (3) = 23 a7z
= p(3, VI()h(z)k"
+(330.,2) (& VIE)D.he)

_%’ {31 0.,8,,5(, VI(2))0,,0./(=)} h(z))kmﬂ
e,
where ay(2), -+, ay_1(3) and ry(2; k) (€ C=(R})) satisfy
supp @;Csupp [p(z, VAz))h()] »
sup |Diry(z;R)| SC R .
2ER"

PPS
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We can prove this proposition by the method of stationary phase (e.g., cf.
§4 of Matsumura [10]).

ReMARK 4.1. In the above statement i), p(e’*'h) is computed also in the
following way: :

llp(2,D,) (6*'h) (R)lIy=Cnk™™" (N =0,1,-).
By this proposition we can write
PllIO) ThN(z)

= k{g(2, VO)ve} -

FE (s, VCID)v_,_l-f—Z;G,qu(z, v®)D, 0.,
+ ()0 —P-(2)}
e (E=01),
where 7(2)=gy(2, vq>)—%' {ji}lamiam,ql(z, V®)3,0,®(2)} and v_,(z) is a func-

tion determined with only v, +-+,v_,,;. Let us solve the following two equation
(corresponding to the eiconal and transport equations):

(4.3) @(y,t,V®) =0,
(4.6)  8,q(y,t, V®)D,0_+0,4:(9,2, V@)D _+¥(2)v_; = ¥_(y,1) -
(4.5) is of the form

(0,2 +v()Es (v, VO)X* = 0.

It is easily seen that the function

I %
20 = | s+

is a solution of the equation

0,2+ (»)EF (Y, VP) =0,

and satisfies
(4'7) V<I>(y,t)€£+ and |V¢(J’,t)| g% ’ (yxt)ERz

for a conic neighborhood A, (C CA,) of g-axis (¢>0) (if p in (2.1) is small
enough). Put this ®(y,t) into (4.6). Then, noting that (if p in (2.1) is small
enough)
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anql(y:t)ﬂro') = 1+ill‘(y)6-,,fs'(y,7],o')28 (>O); (W)U)EAM tgzzo;

= b(y)e
0 \y,HL1,0)= , o . t22F,
Atme) 1Ir(y)«‘Eo(y,77,cr)+a(y),7 (mo)EA,, 1222
b(y)e 5 (<0 i
Eo(y,n,a)+a(y),,§ (<0), (n0)EA,,

we see that the characteristic curve t=Z(y) of (4.6) is of the following form:
i) if the c~ondition (I) of (2.2) is satisfied, the curve is convex (i.e. Z—yf(y)<0
for y<0 and Z—;(y)>0 for y>0);
ii) if the condition (II) of (2.2) is satisfied, the curve is concave (i.e.
42 ()50 for y<0 and % (1) <0 for y>0).
dy dy

Since oo T*) is of the same form (cf. (1.2)), the above statements are
valid also for T*.

Therefore, by choosing the solutions 9, v_;, =+ of (4.6) appropriately,
we have

Lemma 4.3. i) Let p in (2.1) be small enough to have i) of Lemma 4.2.
Then, if the condition (I) of (2.2) holds, there is an asymptotic solution hy(y,t;k)
Jor any integer N >0 such that

supp hyC[28,, 4%,]",
t
sup |Ay(0,2;k)| =1 for large k,

0<t=<3t,
-~ -N
| Tth m.oétsatoéclkm ’

where the norm |k, 05s7 denotes >3 sup |D%(y,?)].

l®I=™ o< <?
yeR!

ii) For any integer N >0 let p in (2.1) be small enough to have ii) of Lemma
4.2. Then, if the condition (11) of (2.2) is satisfied, we have an asymptotic solution
gn(9,t; k) such that

su?p gNC [fO: 32:0] ’
[1gnll0,57or2<e<s7, 21 for large &,

” T*gN”;'l,z?o<l<4?o é Czkm_N .

Proof of Theorem 4.1. At first let us prove the theorem in the case (I).
Assume that (2.1) is C= well-posed. Then, for any compact set DC R} there are

1) Assume that y* in Lemma 4.1 satisfies supp x* C[fo, ) and x*(3,¢,7.06)=1 for (7,0)EA+,
t
tgz‘io.
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an integer / and a compact set D’ (DD) such that
|k 0,D><[0,370]§- C|Th| 1,0"x[0,371
where Dih|,_y=0 for j=0,1, --- (cf. (4.3)).Putting ky(y,#;k) stated in i) of Lemma
4.3 into the above estimate, we have (by i) of Lemma 4.2 and 4.3)
1= thlo,Dx{0,370]§Cl( [(T— T)hN | 1,0” [0 37,1 | ThN I 1,D’x[o,37o])
SCy(RN+ETY).

Let N>I Then the above inequality does not hold when k—> co.

Next, let us examine the case (II). Let (2.1) be C~ well-posed for a p(>0).
Then, it is so for any small p (>>0). Furthermore, there are a constant Z, (>0)
for any small p (>0) and an integer / independent of p such that the estimate

(4.8) _ IIh”f,o<t<47,§C“T(p)hm,o<r<47p

holds for h(y,#)& C3(R*x [0,4%,]) with Dik|,=0 (j=0,1,+--). In fact, fix p=
po- Then, for any #>0 we have

(4-9) || 1,Dx[o,'t']§ Ci|T®oh| Io,D" x[0,71

for heCF(R'x[0,7]) with Djk|,—e=0 (j=0,1,-:+), where /, is an integer inde-
pendent of #, D=[—1, 1] and D’ is a compact set containing D. Let a(y) and

ai(y) be C= functions such that a(y)+au(y)=1, supp aoc[—g , %] and supp
a1C<—°°: "%] U [%, 00), and let h, and A, be the solutions of T®hy=

ao(T®h) and T®h=c,(T®h) respectively. Then, h=hy-+h, and it follows
from the result in §3 concerning domains of dependence that supp hOD[—g,
y

g] and supp ylc(—oo, —lﬁz]u[ﬁ, oo)" if 0<t<4%, (£,(>0) is a small con-

stant depending on p). By the resuls in the non singular case (cf. Ikawa [3]), we
have .

llhllli,o<,<47,,§CzHT“”hxlli,o<:<ﬁ, .
Since T®hy=T®h, if 0<t<4%,, (4.9) yields

“hol“,0<t<4?,§c3”T(p)h0|‘;0+l,0<t<4?p .
Therefore (4.8) is obtained. Let @(tf)eC=, supp ¢C(2%,, ) and @(t)=1 on
[% t,, w), and let % be a solution of T®h=g?g,, where gy is the function

stated in ii) of Lemma 4.3 (set #,=7,). Then, from ii) of Lemma 4.3 it follows
that

1=<llpgulls’ = (Th, gn)’ = (PTPh, gx)’ »
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where @(t) (€C~)=1 for t<3f, and P(t)=0 for t=4f,. We take a symbol
X(n,0) (€S°) such that X(n,0)=1 on a conic neighborhood of g-axis (¢=1) and
supp XCA, (A, is the set in (4.7)), and write

(PTPh, gy)' = (PTPh, gy +(P TPk, (X—1)gy)’
+(P(T— TPk, Xgy) +(@PTPh, (1—X)gy)’
= h+ L+ 1L+,

i) of Proposi.ion 4.1 yields that for any m>0
(1—=X)gnll 2y =Cik™,
where D is a compact set in R% Therefore, using (4.8), we have

[ L] = GlRl11 o<e<arll(1—=X)gnllZ20r (D = supp PTPh)
SCek™?

Similarly, it follows that
|L|=Ck™.
(4.8) and ii) of Lemma 4.3 yield

L] = |(Ph, T*gN)’I écs“h”t’),z}',q«'t“‘,”T*gzv”tl),z?pq«?,
éCgkl_N .

By means of ii) of Lemma 4.2 and Proposition 4.1 (Remark 4.1), we have

|| < (1XP(T— T)@h |3l gullZn
< Cyllph||{-Cuk™
écxzkl—N .

We choose N beforehand so that /<<N. Then it follows that
1< 3L SCk,

which is a contradiction when k—co. The proof is complete.

5. Proof of Theorem 2

If the assumption (a) of Theorem 2 is satisfied, the y+(y) in the problem
(2.1) is written by the form

v() = o) (or —o(3)’),

where @(y) is a real-valued C* function defined near y=0 and satisfies ¢(0)=0
and @(y)#0 for y#0. Let us consider the problem
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LO(tyu=L®"(y,D,,D,,7)u = f(x,y) in R%,

(5.1) {ng)(y,D,,D,)uE {Dyu+(¢(p)(y)2+e)1)xu} =0 = &() on R'.

Here T=0—iv (c € R', v=0) and 0<E<E, (&, is a samll constant). We define
anorm |||+[l|, (m=0,1,++) with the parameter T by

e )13 = 33 | %~*-PIIDEDRul s -
Similarly, |||+]|| (s€ R) is defined by
eIl = {er-+ 171771 067) 12

We shall derive estimates with the norms |||+, [l|+|||; uniform in 7. A main
task in this section is to prove

Theorem 5.1. For any integer m (= 0) there exist constants v, and C
independent of T and € such that if y=—Im 7>,

m+1 .
Al MDA 111 S CY AL 1Bl )
u(x,y)ECH(RL) (0=€<E),
where A=(D3+ | 7|32

We note that the statements in this section are all valid also in the case
where the boundary operator in (5.1) is of the form D,—(@®(y)*+€)D..

Now, we consider the equation (in &)

(5-2) Ly(y,&,7,7)=8"+2a(y)nE+b(y)n*—b(y)* = 0,
(y,mER'XR!, v=—Im 7>0.

This has two roots £5(y,7,7) of the form

(5.3) E5(y,n,7) = —a(y)n£Vb(y) (P—rP)+a(y)yr*,

where /"« means the square root with positive imaginary part. From the
hyperbolicity of L, the following estimate holds:

(54) +1Im £§(y,7,7) =8y (8>0).

For c€R' we define E&F(y,n,0)=1lim £3(y,n,0—1v), which coincide with
Y>+0

£5(y, n,0) defined in §4. Obviously £§(y,»,7) are homogeneous of order one in
(7,7). We set
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S, = {(n,7):?+|7|*=1, n€R, v = —Im 70},
(5.5) A= {(=",7")eS,; |7'|<d} (d>0),

Ay = {(n,7) = A", A7) (0", 7")EAL A>0}.
Let d, d,, d, be small positive constants (d,<<d;). Then, if p in (5.1) is small
enough, from the form (5.3) we have
(5-6) Es(y,n',7")FE (', 7"), yER', (n',7)ED],
-7 IRe 8,E5(y,7",7)[ 28" (>0),

yER), (n',T')E(ZéI—Aéz) N{0=—Im7'=d}.

Since £3(y,7,7) and Eg5(y,n,7) are distinct on Aj, we can apply Proposition
1.3 to the operator L{t) (=L®(7)), and we have symbols £*(y,7,7)ES{, such

that o(£*) (3,7, 7)=E#(y,m,7) on B, N {4 | 7|?21} and L*=D,—£*(y,D,,7)
has the property ii) of Proposition 1.3. We set

P, = D, (p(y)+E)E*(y,D,,7) (0=<E<E&).
The following lemma plays an essential role on proof of Theorem 5.1.

Lemma 5.1. Let X(n,7) (€S{,) be homogeneous of order 0 (7*+ |7|2=1)
and satisfy X(n,7)=1 on Ay N {7*+ |7|*=1} (d'>0) and supp XC A, (d, is the
constant in (5.6)), and let {(y,n,7) (ES%) be equal to 1 on a neighborhood of R;
X(supp X). Then, for s€ R there are constants 7y, and C independent of € and
sucn that if y=—Im =1,

lIXell|E < C(y g Pellld+Hllolll-), v()ES (0=€<&).
We shall prove this lemma later. By Sakamoto [12] I we have

Proposition 5.1. For m=0,1, -+ there are constants C and vy, independent
of T such that if y=—1Im 7=,

m+1 X
Vel s 1+ 23 11D5ullln=500 = COy L )l A+ lliud 1)
u(x,y)EC5(RL) .
Combining this proposition with Lemma 5.1, we obtain

Lemma 5.2. Let X(n,7) (ES{,) be the symbol stated in Lemma 5.1.
Then, for m=0,1, -+ there are constants v, and C independent of & and T such that
if y=—Im =9,

YDy, Tyl 32 NDEX(D,, 7Yl

< C(yHIACL(rYall |47 1 Bel a3+ [l w31 »
u(x,y)eC7(R%) .
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Proof. Let X'(n,7) (€S(,) be homogeneous of order 0 (7*+|7|*=1),
supp X'C4A,, and X'(7,7)=1 on a neighborhood of supp X.. At first, we show
that for =0 there is a constant v, such that if y=v,

(5.8) Ixollls < CLIIAX Lol A *2l]]),  o(x,9)ECT(RL),

where X(n,7) (€SF,) is homogeneous of order 0 (7*+ |7[*=1), X((n,7)=1 on
Ay NA{7*+|7[*=1} and supp X,C A (A is the set in Proposition 1.3).  We may
assume that the principal symbols of £* saiisfy the inequalities (5.4) for every
Yy, T

(54) - +Im oy(£*) (9,7, 7) 287, (9, 1) ER'X R, v>0.

Combining (5.4)" and Proposition 1.2, we have
(5.9)  Im(AX'L v, A'X'0) = "}Z 1X2]]]7—Im (A*X'E-v, A*X0)
= LI el + 8 — v A% ol = | (A, £To, AX'D)]

Take symbols Xy(n,7), X(n,7) (€S¢,) homogeneous of order 0 (7 IT1*=1)
such that X,(%,7)+X,(n,7)=1 on supp X' Nsupp (1—X’), S, Nsupp X,CE'=
(A%, —A%¥)N {y=—Im 7<d} (d is the cons:ant in (5.7)) and S, Nsupp X,C (A7

)N {7> %} Then it follows that

[([AX', E7 T, AKX D) [ < Co(|IIAX ][54 (| AX,2]l[5
A X054 [1A*2]][) -
Therefore, we obtain (5.8) if the following estimates (5.10) and (5.11) hold
when y=—Im 7 is large enough:
(5.10) NAX2l|1E < Co(HIAXL 2|5+ [11A*2][]1) ,
(5.11) A2l [[§= Cy(IlIA° X L0154 11 A*%2][]o) -
Noting that L™=D,—§" is elliptic if (», 7) is near supp X, and that Im

ao(7) (¥, m, 7) is negative there (cf. (5.4)"), we see easily that the estimate

(5.11) holds.
Let us derive (5.10). By the Taylor expansion we write

oo(§7) (0,1, 0—1%) = ao(E7) (9,7, 0)+ Ko Y5 1, a—i'Y)_v .

Then, if (1,7)€E={(n,7)=(un’, p7'): p>0, (', 7)EE}, o) (7,0) and
ko(¥,m,0—17) belong to S}, and S, respectively. Take a symbol X,(»,T)
(€S?%)) homogeneous of order 0 and satisfying supp X,CE and X,(7,7)=1 on

a conic neighborhood & of supp X;, and set

M) = {oolE7) (052, 0)+(E (0.2, 1) —00(E) (07, T} X0, 7)
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©(Y,,T) = Ko(Y57, 7)521(77’ 7),
E(,n,7) = A, 1)+ x(y,,7T)Y .
Then we have A(y,7,7)E S, #(y,7,7)E S, and for any p(y, 7, 7)€ S4, satisfy-
ing supp pcé
T .
[Xl’ g—]pE [xla g_]P» [P? ‘E_] = [P: g-] mOd S(_‘r;o *

Applying Lemma 1.1 (N=1) to A(y,7,7) (cf. Remark 1.1 and (5.7)), we
obtain a symbol ¢(y,n,7) €SS, such that [A, )€ 85), supp tCE and {(y,7,7)=

1 if (n,7)Esupp X; (v’ |7|?=1) (let p in (5.1) be small enough). It is easy to
see that for large >0

lllA ol =<2l +inA Yol o(x,y)ECT(RE) -
Noting that (for large u) '

Mg+ E Tl =1L, Molllo+Y IS, €121l
+ullI[ALE7 12l lo+Cslll A0l ],
=Cs(14-vu ) +inAolll,

in the same way as in (5.9) we have
Im ((§+-ipA™) L0, (E+ipA™)v)
Z e +inA ol By — CAllE+inA ol
—Co(1+vu (¢ +inA™)ollE
2(Sv—Cu)l-+inA el @CH7<p).
Inductively, we obtain
Im (({+ipA™)'A°L7o, (§+ipA7Y)A%0)
2(2y—Cy)lig+innyall.
Therefore it follows that if v is large enough
IAX,2][§< CooIE+ipA ™)AL |[5+ 1A 22II[5) ,
which proves (5.10).
From Lemma 5.1 and Proposition 5.1 it follows that
Tl 3 MDDl
=< Co(y MLl HHIX Pl s 3+l w1
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where X"/(n,7) (€ S7,)=1 on a neighborhood of supp X and supp X" € < {(»,7):
X'(n,7)=1}. Noting that P,—=B,—(¢?+&)L* and using (5.8) (set v=L*u) and
Proposition 1.3, we have

X" Pl |7 5= Cio([[1X "Ll a3+ [ Beelllms s+ 2l 1)
= Cog(IA™*Xo L™ L ulllo+ 1Bl 17+ 3+ A" L0 [y 4] 14] | 1)

= CuINLulll+ N Betel s+ 111l 1) -
Therefore Lemma 5.2 is obtained. The proof is complete.

Proof of Theorem 5.1. Let X(7,7) be the symbol in Lemma 5.1. Then it
follows that

(=Xl < Clll(1—X)D,ul 12
< CHIIBE ullln+ (19 | g+ EIIDull |}
+CllIDalllh-y (0=€<E),

where C, does not depend on &€ or p’. Therefore, by Proposition 5.1 we
have

PIA—0ullat-3 DI =l
< Cr NEO(ull -+ IBE ul -+l )
+C19®" |o+EPlIDIE

where C, is independent of €, and p’. Fix p in L®(r), and make only p’ in B¢’

and &, so small that (| ®*|,+&)2< f% Then, the following estimate holds:

4
VA=l ll201+-33 DL —Xpull2S
éCs(?’"”lL‘”’(T)uHIi-I-HlBé""uHI,’f+ll|u|l|3.+1)+%lllD:uHI,’,.z .
Combining this inequality with Lemma 5.2, we obtain Theorem 5.1. The
proof is complete.

Proof of Lemma 5.1. We shall prove this lemma by the same procedure
as in the author [15] (cf. Lemma 3.2 of [15]). If € and p (of B{"’) are small
enough for d'>0, P,=D,+(p®"+&)&" is elliptic on (Ay)° (A is defined in
(5.5)). Therefore, in view of Proposition 1.1 we have only to derive the follow-
ing estimate when v is large enough:

(5.12) HIX(D,, r)olll*= CyllIP(XD)llI45, v(D)ES.

The first step is to show that the estimate
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(5.13) lleXoll| 1 4-€ll1Xo][|3 1= Cry  ([IPLX0)| |53 241Xl |5),
v(y)es

holds if v is large enough. Let X(n,7) (€S%,) be homogeneous of order
0 (7*+ |7|2=1), X(n, 7)=1 on a conic neighborhood II of supp X and supp XC
Ay and set

N ay—bO) s
N7 oY e

E(y,m,7) = S:a(y, w,T) pdp—Vb(y) T.

Then we have

a(y,ﬂ,T)ESG§, g(y’ny’r)es%“') ’

(5.14) 0,E%(y,7,7) = a(y,7,7)1,
(5.15) E(y,n,7) = —a(y)n+E(y,m,7) if (v, 7)€,
(5.16) Im £+(y,n,7) 28y if (n,7)EM.

By (5.15) we may assume that oo(E*) (y,%,7)=—a(y)n+E(y,n,7) for every
(7,m,7).  Set 0,(y)={1—((y)*+€)a(y)} *. Then it follows that

Jnf 6(y)28 (>0),

<e<eo
yERl

Im (0,P.0, ©)’ 2 Im ((9*+-€)8.£ "0, v)'— Cy((l[0ll|Z3+-loll5?
+élllollle®) .
Therefore, using Proposition 1.2 and its corollary (cf. (5.16)), we have

(5.17)  Im (6.P(AX0), A+X0) Z(8,7—Cs) (Ill@Xol||s €[l X013,
— (O, ET1A X0, A YD)’ | —Cll[X0l]] 12 .
From (5.14) and 8,A=A"'D,, it is seen that [, £*] and [@, A**'] are of the form

[¢’ §+] == dDy+B°) [‘P’ As+l] = as-lDy+Bs—l ’

where &, 3€ 87 and a,_;, B,.1E 8. Therefore, noting that D,=P,—(¢*+
€)E*, we obtain

110.[, E A X0][13< 1110, &A+ D, Xo| |5+ 111084 X o] |5

= C(|IIDyXollls+-11IX2ll[5)

< C5(|I1P(X0)||ls+Hlp(X)|I$ satEllIX2 |50+ 1X2I]S)
(B[P, AH]X0, A X))’ |

<&|(B[EH, AH]Xv, A XY’ |+ | (PP[ET, A ]Xo, A Xo)'|
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+ (o[, ASTET XD, AT X0)" |+ |([@, A‘+1]<;)E+X7), AsX0)’ |
= C(llIPXoll|24-llXolllsk+ellXolllE+1Xo]]1%) -

Combining these inequalities with (5.17), we have

[(BA P X0, A*1X0)" | Z(8,7—C) (lllgXoll|E1+-¢ll[Xol]]5)
—Cy(ll1X0l[[2+[[|PeX0l|[7)

which yields the estimate (5.13).
The second step is to derive

(5.18) [llelll:=C(lIP2lli+lgolllcntellollintlloll-), 2(0)eES.
Let yo(y)€C5(R!) and y(y)=1 near y=0. Then it follows that

Hellls= Ci(lll@ollls+11I(1—)olllo)
= G(lID2llls+1(Dyyr)ellla+ I —v)ellld)
= Cy(llIP2llls+11(@* )& 2llls+le2l]l6) -

From this inequality we have

llollls= CullliPeollls+l@ollliat-elllolllsa+ ol
HI[Pe, ATollls+I[o? E-AToll0)

which yields (5.18).
It is easy to derive (5.12) from (5.13) and (5.18). The proof is complete.

Proof of Theorem 2. From i) of Proposition 2.1 it suffices to show that
the mixed problem (2.1) with the boundary operator D,+ @D, (or D,—¢?D,)
is C= well-posed. Since the boundary condition of (5.1) is non degenerate if
&€>0, by Ikawa [3] we have a solution %, of (5.1) in H,,,;(R3) for any (f, g)e
H,  (R3)X H, (R and £>0 (if v is large enough). Furthermore, by Theorem
5.1, this solution u, satisfies

YHtell|n1 = Cy XA N A- 11 g% 5) 5

which implies that {u.}o<.<, is bounded in H,,,,(R}) (for fixed (f, g)). There-
fore, u, converges to some u,&H,,,(R%) weakly as &>+4-0. Then u, satisfies
L(7)uy=f and Bu,—g. Hence, using the Laplace transformation in #, we see
that (if v is large enough) for any (f(x,9,1), g(3,t)) € H,sv(RE X RY) X
H, ;y(R'XR") (H, y(M)={u: e"ucsH,(M)}) there exists a unique solution
u(x,y,t)E H,, 1 v(R% X R") of the equation

{L(y:DnDy’Df)u:f(x’ylt) in R'Z*XRI’
By(y,D,,D,)u = g(v,t) on R'XR',
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and that supp #C {¢=0} follows from supp (f,g)C {t=0}. Therefore we obtain
the uniqueness and existence of the solution of (2.1) in the Sobolev space.
Combining this fact and the investigation in §3 concerning domains of
dependence (cf. Remark 3.1), we see that the problem (2.1) is C* well-posed.
In fact: Let {a;(%,¥)} j=o.,. be a partition of unity on R% such that 0= q;=<1

N
and supp @, {(x,9): j—1= ()| S 741}, and set By(x,)=3] a,(x,9). Let
# be a null solution of (2.1) (i.e. f=0, g=0, u,=u,=0). Then B,u satisfies

j’L(BNu) =[L,ByJv in R%x(0,%),
By(Byu) = [By,ByJu on R'x(0,t),
(ﬁN“h:o =D/(By4)];=e=0 on RS.

The data of this equation have support in {N—1=<(x*4)?)¥2<N+1} and
belong to the Sobolev space. From Theorem 3.1 (see Remark 3.1) it follows
that Byu=0 on {(¥*4+1*)V’<C(N)}, where C(N)—>oo as N—>co. Hence the
solution of (2.1) is unique in C=(R% X [0,2,]). Let us show the existence of the
solution in C*(R3 X [0,4,]). We may assume that f=0, uy=14,=0 and Dig|,_,,
=0(j=0,1,--+). By the solvability in the Sobolev space we have a solution u”
of (2.1) for the data (0,;g,0,0). From Theorem 3.1 (Remark 3.1), it is seen

that u=> u¥ is the required solution. The proof is complete.
i=o
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