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BP is the Brown-Peterson spectrum (for some prime p) and BP X=
nx(BPAX) is the Brown-Peterson homology of the CW spectrum (or com-
plex) X. BP.X is a lefc module over the coefficient ring BPy=~Z,[v,, v, -+*]
and a left comodule over the coalgebra BP4BP. A now classical result is
that the stable Hurewicz homomorphism z3X—H (X; Z) is an isomorphism
modulo torsion. In our context, we restate this as: the Hurewicz homomor-
phism %y(X): 7x(BPAX)—H«(BPA X; Q) has as its kernel the p-torsion sub-
group of BP,X. Thisis a prototype of our results.

Instead of restricting our attention to BP4X, it is convenient to study
abstract BP4BP-comodules (M, ), Yr: M—=BPBP®zp, M. A priori, M is
a left BPy-module. As such, it has a richer potential for torsion than mere
p-torsion. For any polynomial generator v, of BP, (by convention v,=p),
we say that an element yEM is v,-torsion if v,’y=0 for some exponent s.
If all elements of M are v,-torsion ones, we say that M is a v,-torsion module.
If no non-zero element of M is v,-torsion, we say that M is v,-torsion free.
Being a BP,BP-comodule severely constrains the BP,-module struciure of

M.

Theorem 0.1. Let M be a BPyBP-comodule. If yeM is a v,-torsion
element, then it is a v,_,-torsion element. Consequently, if M is a v,~torsion mo-
dule, then it is a v,_,-torsion module. Or:if M is v,-torsion free, it is v,,,-torsion
free (Lemma 2.3 and Proposition 2.5).

The primitive elements of a BP,BP-comodule M are those elements a
for which Jr(a)=1®a under M’s coproduct \»: M—>BPBPQ3, M. We find
that some qualitative properties of BPyBP-comodules are determined by these
primitives.

Theorem 0.2 Let M be an associative BP wBP-comodule. If all the primi-
tives of M are v,-torsion, then M itself is a v,-torsion module. Or: if none of the
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non-zero primitives of M is v,-torsion, then M is v,~torsion free (Proposition 2.7).

We may localize a BP,BP-comodule M with respect to v, to form v;'M.
Generally, the resulting BPy-module is not a BPyBP-comodule; we chara-
cterize when it is.

Theorem 0.3. Let M be an associative BPyBP-comodule. M 1is a v,_,-
torsion module if and only if v;'M is an associative BPyBP-comodule. (Propo-
sition 2.9) (The “only if” part is due to Miller and Ravenel [11].)

There is no dearth of homology theories associated to BP, but some of the
most interesting are the periodic homology theories E(n)y( ). The coefficients
of E(n)x( ) are E(n)y=Zy[v,, -+, v,_1, V,, v5']; the representing spectrum is
E(n). E(0)4X is the familiar rational homology of X. E(1)4X is a summand of
localized (at p) complex K-homology of X. There is a Boardman map BP—
E(n) A BP which induces a Hurewicz homomorphism 4,(X): zs(BP A X)—
E(n)«(BPAX). When n=1, this is properly called the Hattori-Stong homo-
morphism. We prove:

Theorem 0.4. Let X be a CW spectrum. The kernel of the Hurewicz homo-
morphism h,(X): wy(BP A\ X)—E(n)x(BP A\ X) is the v,~torsion subgroup of BPyX.
(Theorem 4.10)

We can localize BP,X to form v;'BP.X. We prove:

Theorem 0.5. Let X be a CW spectrum. v,'BPyX=0 if and only if
E(n)3«X=0. Hence v;'BPy( ) and E(n)y( ) have the same acyclic spaces.
(Corollary 4.11)

During a provocative talk at the Northwesiern conference of March 1977,
Douglas Ravenel shared his insight that Theorem 0.5 should hold. Our at-
tempts to substantiate his intuition led to this paper. We thank Ravenel for
making the manuscript [12] of his Northwestern talk available to us, for his
stimulating correspondence, and for his kind hospitality.

An obvious generalization presents itself. Let J={qy, ¢i, ***, ¢,-1} be an
invariant regular sequence of elements of BP,. There is a left BP-module
spectrum BPJ whose homotopy is BPJy==BPy/(gy, ***, ¢,-1)- When J is
empty, BP] is just BP. As we do prove our results for BPJ4BPJ-comodules,
we must list properties of such comodules (§1), prove some simple change-of-
ring (BPJ« to BPy) lemmas in §3, and sketch some proofs of the properties
of BPJ (85). A reader who is interested only in BPyBP-comodules may
neglect the “J” in the BPJ notation and read only the even-numbered sec-
tions: §2, “v,-Torsion Properiies,” and §4, ‘“‘Hurewicz Homomorphisms.”
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1. BPJ.BPJ-comodules

Let J={ge ***,¢,-1} be an invariant regular sequence of elements of
BPy=ny«BP. J(and n) will remain fixed throughout this section. There is an
associative left BP-module specirum BPJ which has homotiopy #«BPJ=
BPJ4«=BP4/(q0 *** §»-1)- A map ot spectra j: BP—>BP] induces an epimor-
phism in homotopy. Let @,: BPA BP—BP give BP its ring spectrum
structure and let p=¢,: BPABPJ—BP] give BP] its BP-module structure.
Then @(1A j)=jop, and @(A D =p(1A9).

When [ is empty, BP] is just BP. For J={p,v,, --*,v,_,}, BPJ is known
as P(n) [6; 16; 17]. The following properties have become classical for BP,BP-
comodules [7;8;9]. Wirgler has established these properties for P(n)4P(n)-
comodutes (p odd) [16]. We defer some of our exposition and our proof
sketches until §5.

Let ¢: S°—>BP be the unit map for the Brown-Peterson spectrum. There
are pairings u: BPJABPJ—BP] which make BP] into a quasi-associative
ring spectrum with unit ¢,=joc: S*>BPJ. Here p(iAl)=¢ and p(jAj)=
Jo@,. (See Proposition 5.5.) These pairings are not generally unique; the (co)
multiplicative structures which follow can depend on the particular (fixed)
choice of p. '

Let ¢: BPJ«BPJ— BPJ.BP] be the conjugation. BPJ.BP] is a free
left BP] x-module with basis given by symbols 2:4 ot dimension >7; e,(2p*—2)+
2 a;(dim (¢;)41). Here E=(ey, e, -++) is a finite sequence of non-negaiive
integers and A=(ay, ***, @,-,) is an n-tuple of zeros and ones. BPJ,BP] is
an associative left BP3BP=BP [t t,, --]-module with structure given by the
formula:

(1.1) {EgF A — gE*F4 for {F — t@tfe.. & BP4BP.

In particular, (JA j)«(t5)==2%° The ¢(2*4) give a basis for BPJ4xBP] as a
free right BPJ4-module. Because of this right freeness, there is a natural
isomorphism BPJ(BPJAX)=BP]«BP]Qp; BP]+X for any CW spectrum
X. The map 1A¢,Al: BPJAS°’ANX—BPJABPJAX induces a coproduct:

vyt BPJ+X — BPJ4(BPJ AX)~BPJ4+BPJ®;7.BP]+X .

We define natural homomorphisms s ,: BPJ4«X—BPJ4+X by the following
recipe

(1.2) Yx(x) = gc(zE'A)@)sE (%) .

We call these sz , elementary BP] operations. When J is empty and BPJ is
BP, the sy, coincide with BP operations 7; [2]. The elementary BP] opera-
tions satisfy the following properties.
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(1.3) Under the natural map jy: BP4X — BP] X, sg ojx(%) = jsre(x).

(1.4) The elementary BP] operations generate all the BP] operations in that any
BP]J operation @ can be written uniquely as a (possibly infinite) sum

0= E‘JE,ASE,A 9z, aEBP]y .
(See 5.12).

(1.5) The dimension of sz, is d=2); e(2p'—2)+ >); a;(dim (¢;)4-1) where
E=(e, €5, ) and A=(ay, ***,a,-;). Thatis: if x& BP X, then sz 4(x)€BP,_,X.
(This follows from (1.2).)

(1.6) For any element x&BPJ X, sz 4(x) is zero except for finitely many indices
E and A. (The proof is trivial.)

(1.7) There is a Cartan formula. If yeBP, and x&BPJX, then
Sk, 4(y%) =, ;_ 7e(¥)56,4(%) -
£G=p
(This follows from (1.1).)
(1.8) There are coefficients g, & BPJ such that

So,0(%) = %+ §QA30,A(’C)
for any x& BPJ,X and for any X. (See Remark 5.13.)

(1.9) For the elementary BPJ operations sz 4, and sg 5, there are coefficients
9o.c=9c,c(E, A; F, By BP] , such that

Sz, 4(Sp,5(%)) = E,QG,CSG,C(W)

for any x€BPJ+X and for any X. Furthermore, the dimension of s¢ ¢ is not
less than the sum of the dimensions of s; , and sz 5. (See Remark 5.14.)

Let M be a left BPJ,-module. M is defined to be a BPJBPJ-comodule
if the elementary BPJ operations act on M satisfying (1.5) through (1.8).
The BPJ«BP] coaction of M is given by ry: M—BP]BP]®gp;, M with

Yu(®) = 22 (25 4) s, 4(%) -

B,4
If (1.9) is also satisfied, we call (M, +ry) an associative BP]BP J-comodule.

The following remark follows from (1.2).

Remark 1.10. Let M be a BPJ«BPJ-comodule and letx& M. The follow-
ing are equivalent statements.
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(1) Pu(*)=1Qx

(i) sg,4(x)=0 if (E, 4)=(0,0) and so4(x)="2.

If x satisfies these equivalent statements, we call x primitive. Let PM be the
subgroup of primitive elements of M.

Define the primitive degree d(x) of an element x of a BPJ,BPJ-comodule
M as follows. If there is an elementary operation sz , of dimension m such
that sz 4(x)=0, then d(x)>m. Define d(0)=0. By (1.6), d(x)>0 is always
finite. We record two observations.

(1.11) If xeM, d(x)=0 if and only if x is primitive. (See Remark 1.10.)

(1.12) Let M be an associative BPJ4BPJ-comodule and let s; 4 be an elementary
BP] operation of dimensionm. For x&M, d(sg, 4(x)) <maximum {d(x)—m, 0}.
(See (1.9).)

Lemma 1.13. Let M be an associative or a connective BP ] . BP J-comodule.
Then M coincides with the union of all of its finitely-generated subcomodules.

Proof. This follows routinely using (1.6) and (1.9) or (1.5).

Lemma 1.14. Let M be an associative BP ] BP J-comodule. There is an
epimorphism of associative BP]BP J-comodules f: F—M with F BP] y-free. F
may be chosen to be finitely-generated in the case that M is finitely-generated.

Proof. Follow the proof of Proposition 2.4 of [9].

Lemma 1.15. Every associative BP] «BP J-comodule M is a direct limit of
finitely-presented associative comodules.

Proof. See the proof of Lemma 2.11 of [11] or see [17].

Recall that Iy=(p), I,=(p, v1, ***, Vp-1), and T=(p, 01, Vs, +**) are the non-
trivial prime ideals of BP, invariant under the BPyBP-coaction [7;5]. By
Landweber [10], the ideal-theoretic radical of (qy, **-, ¢,-1) is Z,.

Theorem 1.16 (Filtration Theorem). Let J={qq, -**, ¢,_1} be an invariant
regular sequence in BPy of length n. Let M be a finitely-presented, associative
BP]BP]-comodule. Then M has a finite filtration

M == MSDMS_ID"'DMIDMO - {0}

by finitely-presented, associative BP]4BPJ-subcomodules. As a BPJyBP]-
comodule, each quotient MM, ,, 1<i<s, is isomorphic to some suspension of
some BPy[I,, n<k.

Proof. Follow the patterns of the proofs of Theorem 3.3 of [8] and
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Theorem 3.4 of [17].

2. uv,-torsion properties

Again, J will be a fixed invariant regular sequence and BP] will be the
resulting spectrum. BPJBP]J-comodules are BP,-modules through the epi-
morphism BP,—BP],. This section studies certain BPy-module properties
of BPJ«BPJ-comodules which are independent of the particular sequence J.
(Here, we use the letter “n” as a variable and not as the length of the fixed
sequence J.)

Our study begins with a lemma which descends directly from the “Ballen-
tine Lemma” of Smith (and Stong) [14]. For the exponent sequence E=
(e1, €3 +++), let |E|=>"; e(2p'—2). Let A=(0, -, 0,1,0, ) with the single
“1” in the k-th position. Exponent sequences are added (or multiplied by
positive integers) term-wise.

Lemma 2.1. Let E be an exponent sequence with |E|=2kp’(p"—p™),
n>=m, s=0,and R>1. Then

0,/ modulo I,*! if E=Fkpt"A,_,
re(0,") = .
0 modulo 7, *! otherwise.
Proof. The s=0 case is Corollary 1.8 of [5]. The general case follows
by induction on s using the Cartan formula and the fact that pe1,.

Lemma 2.2. Let M be a BP],BP J-comodule and let s; 4 be any elementary
BP] operation. If an element x&M is v,,-torsion for all m satisfying 0<m<m,
then sg 4(x) is also v,-torsion for such m, 0<m<n.

Proof. Assume inductively that s, z(x) is v,-torsion for every elementary
BP]J operation sz 5 and for all & satisfying 0<<k<<m. (The initial m=0 case is
the same as the inductive step.) Recalling (1.6), there is a non-negative integer
s=s(x, m) such that v,»'x=0 and I,,*'s; 5(x)=0 for all elementary BPJ opera-
tions sz 5. By (1.7) and Lemma 2.1,

0 = sp 4(Vp? %) = 0,755 4(%)
and so sz 4(%) is v,,-torsion.

Lemma 2.3. Let M be a BP]yBP]-comodule. If an element -x&M is
v,~torsion, then it is v,-torsion for each m satisfying 0<m<n.

Proof. Our proof is by double induction. The first induction (on m)
assumes that if x is v,-torsion, then x is v,-torsion for k<<m. For such an x and
for any elementary BP] operation s; 4, s 4(%) is v,-torsion for all k&<<m by Lemma
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2.2. We may choose an s>0 such that v,”x=0 and I, sp 4(x)=0 for all
Sp,a- Suppose sy 4 is an elementary BPJ-operation of dimension d(x). (See
(1.11) and (1.12).) Let G=p"**A,_,. By (1.7) and Lemma 2.1,

0 =$+a,4(0s"%) =E+F§+H re(v,2)sE, (%) = 76(0,2 )5 4(x)

= vmf’ssH, a(%) = sy, a(Vy5x) .

If d(x)=0, this computation shows that x is v,-torsion. If d(x)>0, it shows
that d(v,?'x)<<d(x). By a second induction on the primitive degree d( ), v,*'s
is assumed to be v,-torsion. Hence x is v,-torsion as desired.

Corollary 2.4. Let M be a BP]JBP]-comodule. If x€M is v,-torsion,
then sp 4(x) is v,,~torsion for all m satisfying 0<m<n and for all elementary BP]
operations si_,.

Proof. Lemmas 2.2 and 2.3.

Recall that a BPy-module M (e.g. a BPJ«BPJ-comodule) is v,-torsion if
every element x&M is v,-torsion. M is v,-torsion free if no non-zero element
is v,-torsion. The following proposition follows immediately from Lemma 2.3.

Proposition 2.5. Let M be a BPJBP]-comodule. If M is v,-torsion,
then it is v,_-torsion. At the other extreme: if M is v,-torsion free, then it is
v, 11-torsion free.

Let Y be an associative BP-module spectrum. We can form a new spec-
trum ;'Y which is defined to be the mapping telescope lim S~*¢"-DY of
the map

iy, Va1
S#"-2Y ——> BPAY —~>Y.
Note that v;'Y is a BP-module spectrum which is possibly nom-associative. We
have a canonical isomorphism ;' (Y «(X))—(v;' V) X.

Corollary 2.6. Let X be a CW spectrum. If (v;'BPJ)xX=0, then
(‘U;,—_l_lBP])*X:O.

Proposition 2.7. Let M be a BPJ«BP J-comodule which is either associative
or commective.
(1) If all the primitive elements of M are v ~torsion, then M is a v,~torsion module.
(ii) If none of the nom-zero primitive elements of M is v,-torsion, then M is a
v,~torsion free module.

Proof. To prove (i), assume M is an associative comodule with v,-torsion
primitives. Assume inductively that M is a v,-torsion module for k<m<n.
If ye M with d(y)=0 (see (1.11)), y is v,-torsion for all k<n by our hyro:hesis
and by Lemma 2.3.  Letx& M with d(x)>0. Let sz 4, be any positive dimen-
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sional elementary BPJ operation. Since M is associative, d(sg 4(x))<<d(x) by
(1.12). By a subsidiary induction on d(y), we may assume that such sz ,(x) are
v,-torsion. Hence there is an s>0 such that 1,°*'x=0 and I,,.,,""'s; 4(x)=0.
Note that (1.8) implies that s,(x)=x+=2 with I,.,;"*'2=0. For any positive
dimensional s 4,

SE,A(vmpsx) =F§ErF(vmps)sG,A(x) = 0 *

So v,?’x is primitive and hence v,,-torsion. Thus  itself is v,-torsion. This
completes both the auxiliary and the original inductions.

We turn to (ii). Let M be an associative comodule with no non-zero v,-
torsion primitives. We assume inductively that all non-zero elements y & M with
d(y)<! are not v,-torsion. If non-primitive x&M has d(x)=I, there is an
elementary BPJ operation sz , with sz 4(x)=3=0 and d(sz 4(*))<d(x) (1.12). So
sg,a(x) is not v,-torsion. By Corollary 2.4, x fails to be v,-torsion also. Thus
M is v,-torsion free.

Finally, assume M is connective. With a few minor modifications, the
above proofs of (i) and (ii) work if we replace the primitive degree d(x) of the
element x by x’s dimension |x].

A BPy-module (e.g. a BPJBPJ-comodule) M is said to be v,-divisible
if multiplication by v, on M is epic.

Proposition 2.8. If an associative BP ] . BP J-comodule M is v,~divisible, then
it s v,_;-torsion. (Cf. [11, Proposition 3.5].)

Proof. Assume inductively that M is o,-torsion for k<<m<m. Let 0%
®EM be a primitive element. By Proposition 2.7, it will suffice to show that
% is v,-torsion. There is an integer £>0 such that I,,"'x=0. Note that this
implies that I,'*s, 4(x)=0 (1.7). By the divisibility of M, there is an element
yEM with v,#y=x. In preparation for a second induction, we do a curious
computation. For any integer u>0, our (primary) inductive hypothesis gives
us an integer s>t such I,**'s; ,(v,"y)=0 for all elementary BPJ operations
Sg.4- Suppose d(v,"'y)=1 and let sy , be any elementary BPJ operation of
that maximal dimension /. Let G=p"*A,_,. Using (1.7) and Lemma 2.1
repeatedly, we compute:

0= ’G+H(7’np‘_ﬁf)'vmuplso,A(x) = rG+H(7’nﬁS_pl)so,A(”m”‘x) = sG+H,A(vnps_p"vmuptx)

= sG-i-H,A(vnp’_p’vmup'vnﬂy) = SG+H,A(‘Unps’Um“?,y) = rc(vnﬁs)sﬁ,A(vm”‘y)
= vmpssﬁ,d(vm“ﬁ’y) — SH,A(-U"‘P‘(PS-H'")y) .

If d(v,*'y)=0, this shows that v,,*”'y —and hence y and x- are v,-torsion. If
d(v,*'y)>0, the computation shows that d(v,?' @' "*“y)<d(v,“'y). This
indicates a proof that x is v,-torsion by induction on the primitive degrees of
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t
the v,,“'y.

The “only if”” part of the following proposition is due to Miller and Ravenel
[11, Lemma 3.2].

Proposition 2.9. Let M be an asscciative BP]«BP J-comodule. Then M is
v,_-torsion if and only if the localization v;'M is an associative BPJ.BP]-
comodule.

Proof. By Lemma 1.13, we may assume M is finitely-generated.
Assuming M is v,_;-torsion, there is an s>0 such that I,**'M=0 (Proposition
2.5). By Lemma 2.1, multiplication by v,*" on M is a comodule map. Hence
the localization v;'M, considered as the direct limit of the system

Xy
)

is an associative BPJBPJ-comodule. Furthermore, M—v;"*M is a comodule
map.

Now assume that ¢,”*M is an associative comodule. As a v,-divisible asso-
ciative comodule, v,”*M is v,_,-torsion by Proposition 2.8. Thus v,7%0,”'M
=0 for each k satisfying 0<k<n by Proposition 2.5. Assume induccvely
that M 1s v,_,-torsion. By the “only if”’ part of this proposition, v,7?M 1s an
associative comodule. Since v, 'v,"!M=wv, v, *M=0, the associative como-
dule v,7'M is v,-torsion, By Proposition 2.5, v,"*M is v,-torsion and thus is
zero. So M is v,-torsion.

3. More BP;-module properties of BP.J, BPJ-comodules

This section develops some algebraic preliminaries to Section 4. All of
the results here are well-known or trivial when BPJ=BP. Our point of
departure is the BPJ,BP] version of Landweber’s Filtration Theorem (1.16). A
unifying technique is the following.

Lemma 3.1. Let j: A—T be a homomorphism of commutative rings with
unit. Let A be a right A-module and let B and C be two-sided T-modules such
that there is an isomorphism BQrC=CQrB of left T-modules. Further assume
that B is T'-flat. If Tor,*(4, C)=0, then Tor,"(AQ \B, C)=0.

Proof. If either B or C is T'-flat, we have a Kinneth exact sequence
Tor,"(AQ B, C)—Tor*(4, BY®.C—Tor,(4, BQrC)—Tor,"(AQ B, C)—0.
When B is I'flat (and the roles of B and C are interchanged), this gives an

isomorphism . Tor,*(4, C)®pBiTor1A(A, CQ®rB). The lemma now follows
immediately from the isomorphism BQ.C==CQB.
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Throughout this section, let J={gy, ***, ¢,-1} be an invariant regular
sequence of length n. Let A=BPy and I'=BPJ,.

For any commutative ring R and any R-module }, we have two dimensions
of concern. The projective dimension, h.dimg M, is the greatest integer %
such that Extp*(M, N)==0 for some R module N. The weak dimension,
w.dim, M, is the greatest integer & such that Tor*(M, N)=0 for some R module
N. Of course, w. dim, M<h. dim, M.

Lemma 3.2. The projective dimension of T' as a A-module is n.

Proof. Let J,={qo ***, gu-1} SJ, m<n. For m<m, there are short exact
sequences of A-modules

0 — BPJ,» 22 BPJ » — BPJ, .1, — 0
showing inductively that h. dim, BPJ,«<m. The ideal (g, -+, ¢,_;) has radical

(Vo5 ***, v,-1) [10, Proposition 2.5]; so '=BP]J is a v,_,-torsion module. By
the “ideal annihilator estimate” [6, Proposition 4.6], h. dim, I'>=.

Corollary 3.3. Tor,X(Z,[vi, -+, v,,], T')=0 for all m>n.

Proof. Apply Landweber’s Theorem 4.2 of [9] to the connective,
associative BPBP-comodule BPJ,=T.

Lemma 3.4. For any m satisfying n<m<n-+k-+1,
Tor," (Zy[vy, *++, Vysrl @a BPJ«BP], BPy/[I,) = 0.

Proof. Recall that BPJ«BP]is I'-free. Tor,(Z(y[vy, ***, Vpss)s BPx/1,,)=0
for m<n+k+1. For n<m, BPy/I, is a T-module. Apply Lemma 3.1.

Recall that E(m)x=Zp[1, **, Vp1y Vs U ']-

Lemma 3.5. Let M be an associative BP]BP]J-comodule. Let B be
(1) T, (ii) BPJ«BP], or (iii) BP] «(v,,*BP]). Then Tor,"(E(m)xQ B, M)=0.

Proof. Both T' and BPJBP] are I'-free. As a direct limit of copies
of BPJ«BP], BP].(v, 'BPJ) is T-flat. By Landweber’s Exact Functor
Theorem [9), Tor,*(E(m)y, BP4/I,)=0, k>—1. If k>n, BP4/I,is a T-module
and so Lemma 3.1 implies that Tor," (E(m)«® B, BP4/I,)=0, k>n. If M is
finitely presented, M has a finite filtration whose subquotients are isomorphic
to suspended copies of BPy[I,, k>n (1.14). By an induction over M’s filtra-
tion, Tor,"(E(m)x® B, M)=0 when M is finitely presented. By (1.13), this
suffices to prove the lemma.

Lemma 3.6. Let M be an associative BP]BP]J-comodule. If w.dimy
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M<m—n+-1, then:
(1) Torlr(z(p)[vly oty ‘vm]®AFJ M):O>
(i1) the sequence

V1 QM

0— Z(p)[’Un ) ‘Um+1]®AM Z(p)['vh '"’:vm-\‘—l]@AM
b d Z(p)[‘vl, ey vm]@AM - O

1s exact.

Proof. By Corollary 3.3, the endomorphism v,,,;QT" of Z(,)[v, **,0,,11] @ AT
is injeccve; part (ii) follows from the resulting short exact sequence and from
(). Let A=Z[v, -+, v,] and note that v, "A=E(m)y. So v, "Tor,"(AQx
T, M) =Tor," (E(m)4®,T, M)=0 by Lemma 3.5 (i). So Tor,;"(A®\T, M)
is a v,-torsion module. Part (i) is obvious when w. dim, M=0; we may assume
w. dimp=k>0. Using (1.13) we construct an exact sequence of BPJ«BP]-
comodules

0-K—->F—->M-—0

where F is T'-free. Consequently, w. dimp K <k—1 and we assume inductively
(ii) that A®, K is v,,~torsion free. (N.B. k—1<m—1—n-+1.) So the v,,-torsion
module Tor,"(4® AT, M) injects into the v,,-torsion free module AQ T QR K==
AQ® K thus establishing (i).

Proposition 3.7. Let | be a finite invariant regular sequence of length n.
Let M be a connective associative BP ] BP J-comodule. If w. dimgp; M<k—n,
then M is v,~torsion free.

Proof. It suffices to rrove by an induction on />k that v, acts injectively
on Zy[vy, -+, v]@,M. When [=k, this follows from the m-+1=Fk case of
Lemma 3.6 (if). The general proof follows from a five lemma argument
involving a diagram whose horizontal rows are two copies of the short exact
sequences of 3.6(ii) (/=m) and whose vertical arrows represent multiplication
by v,. The left vertical arrow would be injective by a subsidiary induction on
dimension; the right one by the original induction on I

4. Hurewicz homomorphisms

Let J={q,, ***, ¢,-1} continue to be an invariant regular sequence of
length n. Let T'=BPJy=BP[(q, ***; ¢,-1) and let A=BP,. The ring epi-
morphism A—T results in the identification AQ,B=AQ B for arbitrary
I’-modules 4, and B. Hence, throughout this section, we can adopt the
convention that AQB means AR , B.

By Lemma 3.5(i), X+—E(m), @ BPJ4X defines a homology theory; let
E(m, J) be its representing CW spectrum. E(m, J)4X==E(m),QBPJX for
any CW spectrum X. Recall from §2 that we can form the spectrum v,,"BPJ
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with z4(v,, 'BPJ)=<v, 'BP],. For a spectrum Y, we have the Boardman
map Y—E(m, J)AY which induces a Hurewicz homomorphism 7Y A X)—
E(m, ])x(Y AX). The key topological results of this section compute the kernels
of these homomorphisms when Y=BP] or v, 'BP]. These computations
depend on a theorem of Ravenel concerning the right unit of the BP spectrum.

Theorem 4.1 (Ravenel [13]). Let 7,, be the composition

2n: BPy BP,BP — Z|p[v,]QBPBP.
Then 1,(v,,)=2,, and for k>1,
nm(‘vnﬁ—k) = 7)mtkpm_‘umi)ktk mOdUIO (nm(vm+l)’ R 77»1(‘vm+k—l)) M

Let G(m, J)sx=Zp[vy, +++, v, ] QBPJ «BP] and let »: G(m, ])x—v,, 'G(m, ])x
= E(m, J)«BP] be the localization homomorphism. We have two Hurewicz
homomorphisms induced by BPJ’s right unit:

hy/(T): T = BPJ, % BPJ,BP] - G(m, ])s
ho(T') = Noh,'(T): T 2% BPJBPJ — E(m, ])+BPJ .
For a left I module M, we define:

h, (M) =h,' TYQl: M=T'QM — G(m, J)+QM
hy(M) = h,(TYQ1l: M=T'QM — E(m, ])xBPJQM .
Lemma 4.2. Letm>n Let h'=h, '(BPy/I,). For any non-zero element
y in BPy/1,, left multiplication by h'(y) in G(m, J)xQ BPy[I,, is injective.

Proof. The m=n=0 case is well-known; so we assume thatm>0. Since
7x(v,)=v, modulo I,- BP,BP [2,11.16.1], we have the isomorphisms ¢ and p
in commutative diagram 4.3.

1R AJ)x
—_—

BP, - Z|p[v,]@BP4BP Z/p[v,]® BPJ+BP]
4.3) J Z[p[v,)J@BP]«BPJQBPy/[1,
p =

’

h
BP /I, —> G(m, ])x@BPy/[I,, = Zy[vy, -+, v,] @BPJxBPJ@BPy/I,,

A Z[p-basis element of BP4/I, is (represented by) a monomial of form
0,000, 110,12+ =01, Let i=d-+1,-}+14,--- and let

P = P ot Pt P in e = 32" iug P e (t,=1).
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If E=(ey, e, -++) and tF=t,12,%2-+-, observe that (jA j)xtF=2%° which is a left
BP] «-basis element of BPJ+BP]J (Lemma 5.10). Filter each gradation of the
image of 1Q(jA j)« by defining v,°®z*° to be of lower filtration than v,*®z"°
provided that .-+, e,,,=f, .2, €,11=f.11, Dut e,<f,. We now interpret Theorem
4.1 as saying that {7 ph/(v")=(1Q A j))1m(?") =2,/ ®2?"1"* modulo terms of
lower filtration. The result is now evident.

Corollary 4.4. Let m>n. Then h,(BPy/l,): BPy/I,,— E(m, ])+xBP]®
BP/[1, is a monomorphism.

Proof. By Lemma 4.2, lef: multiplication by v,,®@1=h'(v,,) on G(m, J)+Q
BP,[I,, is monic; thus the localization map A®1: G(m, J)x @ BPy/I,—
E(m, J)xBPJQBP/I, is monic. A second application of Lemma 4.2 shows
that &,'(BP4/1,) is injective. But &,(BP4/I,)=AQ1)h,'(BPy/1,,).

Let us adopt the notation
7a(T): 0, T = 0, 'BPJy = (v, 'BP]) — E(m, ])«(v,, 'BP])

for the Hurewicz homomorphism induced by the Boardman map v, 'BPJ—
E(m, J)Av,,'BP]. For any I'-module M, we define %,(M) by

;;m(M) = Em(r)®1’ 7)m_l*]‘l = vm_lF®M_> E(mJ])*(vm—lBPJ)®M .

Using the notation A(M): M—v,'M for the algebraic localization of M and
A: BPJ—v, 'BP] for the topological localization of the spectrum BP], we
have the commutative diagram 4.5.

h,(M)
(4.5) M =5 E(m, J)«BPJ@M
>»(M_ i (O E_(m,f)*(%)®1
0, "M 3 E(m, J)(v, ' BP)Y@M

Lemma 4.6. Let m>n. For any assoctative BP ] «BP J-comodule M, },,(M)
is monic.

Proof. For a future analogy and some present simplicity, let A=BPJ,=
T, B=E(m, J)xBP], and f=h,(T"): A—=B. We record four essential facts.
(i) By Corollary 4.4, fQBPy/I,,: AQBP4|I,—~BQBP,/I, is monic.
(ii) By Lemma 3.5(ii), Tor,"(B, BPy/I,,,)=0, n<j+1 (<m+1).
(ii)) By Lemma 3.5(iii), Tor,"(BQv,, 'T, BP4/I;)=0, n<j.
(iv) A is connective.
The lemma is well known when m=n=0; so we assume m>0. Multiplication
by v; on BP4/I; induces commutative diagram 4.7 which has exact rows. We
assume 7 < j<m so that the bottom torsion term is zero as indicated.
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1 .
47)  Tor,T(4, BP /L)~ AQBPJL,~ 2% AQBP4/I,~A@BP4[I,.—0

h g L %

0 = Tor,"(B, BP4/I;,;)~>BQBP/I, ——>BQBP/I,~BQBPy/I,;,,—>0
The vertical f’s are f@BPy/I,’s as appropriate. By a downward induction
beginning with j=m (i), we assume f; is monic. By an upward induction on
the dimension of elements in connective A@QBPy/I; (iv), we assume f; is monic
in the dimension of interest. Note that 1Qo, raises dimensions. Thus f, is
monic by the five lemma. By this double induction f@BPy/I; is monic for
j satisfying #<j<m. Upon 9,-localization f induces f: v, '4—E(m, ])x
(vn'BPJ). Since (v, 'A)QBP4/I;=0 for j>m, we have that fQBP,/I;:
0, 'BPy/I,—E(m, ])s(v,, *BP])®BP/I; is monic for all j satisfying n<j. To
prove f®M is monic for all associative BPJ.BPJ-comodules, it suffices to
prove fQM is monic where M is finitely presented (Lemma 1.13). Such a
finitely presented comodule M has a finite filtration by sub-comodules whose
subquotien:s are suspended copies of BP4/I;, j >n. The remainder of the proof
is a five-lemma-aided induction over the filtration of M using fact (iii) to have
the “bottom-left torsion term” zero.

Lemma 4.8. Let m>n and let M be an associative BP] «BP J-comodule.
Left multiplication by h,,(M)(v,) acts injectively on E(m, J)«BP]JQM.

Proof. Let A=B=G(m, ])x=Z[v\, -, v,| @BPJ«BP]. Let f: A—>B
be left multiplication by 4,,'(T")(v,,). We record four essential facts.
(i) By Lemma 4.2, f®BP,/I,, is monic.
(ii) By Lemma 3.4, Tor,"(B, BPy/I;,,)=0, n<j+1<m+1.
(i) By Lemma 3.5 (ii), Tor,"(v,,"'B, BP4/I;)=0, n<j.
(iv) A is connective.
Follow the pattern of the proof of Lemma 4.6.

Theorem 4.9. Let J={qy, ***, q,-1} be an invariant regular sequence of
length n and let m>n. Let M be an associative BP]J (BP]J-comodule. The kernel
of

h,(M): M—E(m, ])x«BP]Qgp;.M

is the v,,~torsion subgroup of M.

Proof. In diagram 4.5, %,(M) is monic by Lemma 4.6. By Lemma 4.8,
left multiplication by &, (M)(v,,)—i.e. right multiplication by v, &®1—is monic
on E(m, J)xBPJQM. Thus the localization map E(m, J)x(A)®1 is monic in
4.5. Thus the kernel of A,(M) coincides with that of (M) which is the v,,-
torsion subgroup of M. '
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Theorem 4.10. Let J=1{qy, ***, q,-1} be an invariant regular sequence of
length n and let m>n. Let X be any CW spectrum.

(i) The Boardman map v, *BPJ—E(m, J])A\ v, 'BP] induces a Hurewicz
monomorphism

Bin(X): wy(v,, 'BPJAX) — E(m, J)x(v,, 'BPJAX) .
(ii) The Boardman map BPJ—E(m, J) \ BP] induces a Hurewicz homomorphism
ha(X): m5(BPJ AX) — E(m, ])«(BPJAX)
whose kernel is precisely the v,,-torsion subgroup of BPJX=nw(BPJ A X).

Proof. The latter part follows immediately from Theorem 4.9 and the
isomorphism E(m, J)x(BPJ A X)=E(m, ])x«BP] Q@ BPJ,X (Lemma 3.5(ii)).
Similarly, the first part follows from Lemma 4.6.

Corollary 4.11. Let ] continue to be an invariant regular sequence of length
n and let m>n. For any CW spectrum X, (v, 'BP])4X =0 if and only if
E(m, J)xX=0.

Proof. The “only if” statement follows from a Conner-Floyd type iso-
morphism:

E(m, ])xX =E(m)4«® zp, BP] X =E(m)4«®,,,-15p. BPJ X .
Its converse follows from Theorem 4.10(i) and the isomorphisms
E(m, ]J)+X@sps. BP] (v, 'BP])=E(m, ])«(X Av,'BP])
=~E(m, J)4(v,, 'BPJAX).

Corollary 4.12. Let | be a finite invariant regular sequence of lengthn. Let
m>=n. Let X be a connective CW spectrum. If w.dimgp; BPJ+X <m—n, then
the Hurewicz homomorphism

ho(X): we(BPJAX) — E(m, J)x(BP] AX)
is injective. (Cf. [6, Theorem 6.1].)
Proof. Proposition 3.7 and Theorem 4.10 (ii).

5. BPJ.BPJ and BPJ*BPJ

Let A be an algebra over the ground ring R, N be an R-module, and M
be an associative A-module. Then there is an isomorphism

0: Hom, (A® N, M) — Hom, (N, M)
defined by 6(f)=f(n®1) where 7: R—>A is the unit map. 07'(g)=¢(1RQg)
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where @: AQrM—M gives M’s A-module structure. (Adams [1, p. 320].)

Lemma 5.1. Let h: M—AQyN be an A-module homomorphism. If h is
split epic as an R-module homomorphism, then it is also split epic as an A-module
map.

Proof. Let the R-module map f: AQ,N—M be a right inverse for A.
Then 07Y(f(»®1)) is the desired A-module splitcing of A.

Lemma 5.2. Let C be a coalgebra over R, N be an R-module, and M be an
associative C-comodule. Let h: CQrN—>M be a C-comodule map. If h is split
monic as an R-module homomorphism, then it is also split monic as a C-comodule
map.

Proof. This is the formal dual of Lemma 5.1.

Let J=1{qo ***, ¢,-1} be a finite invariant regular sequence in BPy. By
Baas [4], there exists an associative left BP-module spectrum BP] with pairing
@: BPABP]—BP] such that 7y BPJ=BP]=BPy/(qs, ***» §u-1). Let J, =
{90 ***» g}, m<n. BP], and BP],,., are related by a cofibration of BP-module
spectra

W3 A1 2 k,
sppy, 29 ) ppy Jx ppy 5 senppy, .

Here d is the dimension of g, in BPy. ¢,: BPABPJ,—BP], defines BP],’s
BP-module siructure; @,(1A 1) =Jju-10Pn_1 and @,=@. BPJ,=BP and
@,=m: BPANBP—BP. Let

jm+s,m :jm+s—l°"'°jm: BP]m—aBP]m+s .

Let ¢,=jne0t: S*>BP]J,, where ¢: S>>BP is the unit for the Brown-Peterson

spectrum.
The homomorphism

v BPJ*BPJ,ABPJ,) PAPS UNTAVE by Bp A BPABPJ,ABP),)

— BPJ*(BP A BP)® 5p;« BPJ*(BP],A BP],,)

m2kes BPJ*(BPJ,A BP],) into an associative BPJ*(BP A BP)-comodule.
(See Wirgler [16].) @(1A ju0)=Js0o®, gives a distinguished element of
BPJ*(BPABP). A map f: BP[,ABPJ,—~BP] is s2id to be primitive if
YIf1=ln0o@] ®[f]. Inother words, f(p,A@, ) AN T A 1)=@(, A1) (AN IA ).
We follow Wiirgler in denoting the set of primitives of BPJ*(BPJ,A BP],) by
Pr BPJ*(BP],A BP] ).

ReMARk 5.3. When BPJ,=BP],=BP], a multiplication x: BPJ A\ BPJ—
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BP] in BPJ*(BPJABP]J) is primitive if and only if the following three con-
ditions hold.

(1) wleAl)=@(1Ap): BPABPJA\ BP]—>BP]

(i) w@eA)(TA)=p(lA@): BPJABPABP]J—BP]

(i) p(IA@)AIAT)=@oT(xA1): BPJABPJ]ABP—BP]

(The first two conditions imply the third.) Conditions (i), (ii), and (iii) give
Araki-Toda’s characterization of a guasi-associative multiplication [3].

Lemma 5.4. Let a multiplication 1.: BPJ A\ BP]J— BP] be quasi-associative
and let ¢,: S*>BPJ,=BP] be a unit for u. Then the following diagram com-
mutes.

e By L Bpr A gpy 1A ppr o pp

@\ l”“ lT

BP] <Z— BPABPJ
Proof. Routine.

Proposition 5.5 (Wirgler [16, Theorem 5.1]). Let J=1{qy, ***, ¢,-1} be
an invariant regular sequence of BPy. For 0<m<n, there is a quasi-associative
multiplication u,: BPJ, N\ BP],,— BP], with unit ¢,: S°— BP], such that
jm—lol-"m—l:”‘m(jm—l/\jm—l) as maps BPJm—l/\BR,m—l_)BP]m

Proof. For 0<m<n, we construct primitive maps u,,": BPJ,_;ABP],—
BP], and u,: BPJ,ABPJ,—~BP], such that all of the obvious compositions
commute:

(1) o' (AN juet)=Jm-10Bm-15
(i) 2 Un-1,0AD)=bms
(i) (-1 A =15
() 2a(IAJn0)=bueT
where T: BPJ,, A BP—BP A\ BP],, is the switching map. (Compare Lemma 5.4.)
The proof is by induction on m. We sketch the inductive step.
Since 7z(¢,)) € (40 **+» q,)-BP*BP, the cofibration

(5.6) BP], 21 BP],+1 — S**'BPJ,.,
induces a split short exact sequence of BPJx-modules, 0<k, [4+1<m<n.
(5.7) 0 — BPJ%(BPJ,ABP]) - BPJ%(BPJ, A BP],.,)
NI ppreBP]ABP]) —0.
We assume inductively that BPJ%(BPJ,ABP];)= BPJ(BP ABP)®gp;,.N
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for some BPJ,,-module N. By Lemma 5.1, (5.7) splits as BPJ(BP A\ BP)-
modules and the middle term of (5.7) has the desired inductive structure. By
Lemma 5.2, (5.7) splits as BPJ%(BP A BP)-comodules. Hence the functor
Pr(—) preserves the exactness of (5.7). We first pick p,,'€ PrBPJ,*(BP], 1A
BPJ,) satisfying (i) and (ii), and next u,EPrBP],*(BP],N\BP],) satisfying
(iii) and (iv).

Quasi-associative multiplications u: BPJABPJ—BP] with unit ¢,: $°—
BP] exist by Proposition 5.5. We assume that a choice of such a p is fixed
throughout this paper.

The cofibration (5.6) induces two split short exact sequences of BPJ, =
BPJ*-modules.

(5.8) 0 — BPJBPJ,"> BP] .BP],.. 2> BPJBP]J, — 0
k % y ¥
(5.9) 0 — BPJ*BPJ, "> BPJ*BP],.,""> BPJ*BP], — 0

Recall that BP BP==BP,[t), t,, -*-] where the indeterminate #; is of dimen-
sion 2p'—2. (Let {,=1.) Thus BPJBP=BP] [t ,, **]. An argument using
Lemma 5.1, similar to that of the proof of Proposition 5.5, shows that
BPJ«BP], is a free left BPJ,BP-module. Let A=(ay, ***, a;_;) be an [-tuple
of 0’s and 1’s. A free left BPJ.BP-basis of BPJ.BP], is given by the sym-
bols

04 = 80”o-~-8,_1“1_1

of dimension >3;a; (dimension (g;)4+1). In (5.8), j» sends 94 to a symbol of
the same name. We choose elements 340, BPJ4BP],., so that k(049,)=04.
Let 224 BPJBP] be the element corresponding to #,‘.--¢,’"04 where E=
(€1 ***, €, 0, -++). Let ¢: BPJ BP]J—BP].BP] be the conjugation induced by
interchange of the BPJ factors of BPJ A BP].

Lemma 5.10. Let J={qq, ***, q,_1} be an invariant regular sequence of BP.
A free BP]y basis for BPJ«BP] is given by the elements 254 where A=
(@9, **+, a,_1) s a sequence of O’s and 1’s.  The left action of BP«BP on BP]BP]
is given by

(5.11) trebA = gE+F4
BPJ] «BP] is free as a right BP ] y~-module on the basis c(z***).
As explained in §1, 1A ¢,: BPJA S*—BPJ ABP] induces a coaction
Vx: BPJ4X — BPJy(BPJ A X)=BPJ+BP]@sps, BPJ5X

and we define elementary BP] operations sz 4, by the formula
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(5.12) Vx(¥) = 23 (2" 4) Bs5,4(%) -

Since BPJ*BP] is Hausdorff, each elementary BPJ operation
sg,a: BPJ*()— BEJ*™(),

d=2e,(2p'—2)+>a;(dim(g;)+ 1), is induced by a unique map of spectra Sy ,:
BPJ—S*BP]. By an induction (over /<) using (5.9), one can prove:

Lemma 5.12. BPJ*BP] is a direct product of copies of BPJ* indexed by
the maps Sg 4. Each element 0 € BP]J'BP] has a unique representation as a con-
vergent infinite sum

0 =2 4s4554>  45aSBPJ
where d is the dimension of Si 4.
ReMARK 5.13. Another induction using the exactness of (5.9) shows that
S0,0°jn,l—jn,l = EOQASO,A"]'”,I
for 0<I<n and g,BPJ*. This establishes (1.8).

ReMARK 5.14. The composition Sy 40Sy 5 has a representation 3¢ ¢S¢ ¢
by Lemma 5.12. Here the dimension of S; . must be greater than or equal
to the sum of the dimensions of S; 4, and Sp 5. Since sp 405p =Sk 4+°Sg .=
(SE,4°SF 5)x (1.9) is es:ablished. In general, the relations given by Sz 4055 5
will be even more frightful than the ones given by rzor, in BP theory. In par-
ticular: S; go.Sy o will not be S, unless the g,’s in Remark 5.13 happen to be all
zZero.
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