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0. A non-singular projective surface X is called a quasi-elliptic surface
if there exists a morphism f : X— C, a curve, with almost all fibres irreducible
singular rational curves E with p,(E)=1(cf. [4]). According to Tate [5], such sur-
faces can occur only in the case where the characteristic p of the ground field & is
either 2 or 3, and almost all fibres E have single ordinary cusps. Let f be the
function field of C. Then the generic fibre of f with the unique singular point
taken off is an elliptic f-form of the affine line A" (cf. [2], [3]); if this form has a
f-rational point™ it is birational over ¥ to one of the following affine plane
curves:

(1) If p=3, =x*+v with yet—¥.

(i) If p=2, *=x’4PBx+v with B, y=t

and Bt or vy,

On the other hand, if X is unirational C must be a rational curve. Con-
versely if C is a rational curve X is unirational. Indeed, A(X)®f"” is rational
over k in the first case, and &(X)®£"/* is rational over % in the second case. In
this article we consider a unirational quasi-elliptic surface with a rational cross-
section only in characteristic 3. Thus X is birational to a hypersurface #*=x*
~+¢(¥) in the affiine 3-space A°, where ¢(y)et=k(y). If ¢(y) is not a polyno-
minal, write ¢(y)=a(y)/b(y) with a(y), b(y)=k[y]. Substituting ¢, x by &(y)’%,
b(y)’x respectively and replacing ¢(y) with b(y)’a(y) we may assume that ¢(y)
€k[y]. Moreover, after making suitable birational transformations we may as-
sume that ¢(y) has no monomial terms whose degree are congruent to 0 modulo
3; especially that d=deg, ¢ is prime to 3. It is easy to see that under this as-
sumption f(x, y)=x"+4¢(y) is irreducible.

A main result of this article is:

Theorem. Let k be an algebraically closed field of characteristic 3. Then

(*) This is equivalent to saying that f has a rational cross-section which is different from the
section formed by the (movable) singular points of the fibres.
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any umirational quasi-elliptic surface with a rational cross-section defined over
k is birational to a hypersurface in A® : C=x’+P(y) with p(y)Ek[y]. Let K=
k(t, x, y) be an algebraic function field of dimension 2 generated by t, x,y over k
such that t*=x’+$(y) with $(y)Ek[y] and d=deg, ¢ prime to 3. Let m be the
quotient of d divided by 6, and let H, be the (non-singular) minimal model of K when
K is not rational over k. Moreover if d=7 assume that the following conditions
hold*%;

(1) For every root a of ¢'(¥)=0, vy(p(y)—P()) =5, where v, is the (y—a)-
adic valuation of R[y] with v,(y—a)=1.

(2) If, moreover, $p(y)—p(a)=a(y—a)’+(terms of higher degree in y—a)
for some root & of ¢'(¥)=0 and ack—(0) then v (p(y)— P(a)—a(y—a)’)=5.

Then we have the following

(i) If m=0,1.e., d<5, then K is rational over k. If d="7, K is not rational
over k, and the minimal model H, exists.

(i1) If m=1,i.e., 7=<d <11, then H, is a K3-surface.

(iii) Ifm>1,i.e., d=13, then p,(H,)=p (H,)=m, g=dim H'(H,, Op,)=0,
the r-genus P,(H))=r(m—1)-1 for every positive integer r, and x(H,)=1.

We use the following notations: Let X be a non-singular projective
surface. Then Ky=the canonical divisor class on X, p (X)=dim H(X, Kx)=
the geometric genus, g=dim H'(X, Ox)=the irregularity, p,(X)=p,(X)—g=the
arithmetic genus, #(X)=the Kodaira dimension of X, and P,(X)=dim H(X,K %)
=the r-genus for a positive integer . For divisors D, D’ etc. on X, (D-D’) or
(D?) is the intersection number. We use sometimes the notation D-D’ or D? to
indicate the intersection number if there is no fear of confusion.

1. Let k be an algebraically closed field of characteristic p=3, let ¢(y)
be a polynomial in y with coefficients in % of degree d>0 and let f(x, y)=x’+
¢(y). Consider a hypersurface #*=ux°+ ¢(y) in the projective 3-space P?, which
is birational to a double covering®** of F,—=P'Xx P'. After a birational trans-
fromation of type (%, ¥, £)—(x+p(»), ¥, t) with p(y)Ek[y] we may assume that
(d,3)=1 and moreover that ¢(y) does not contain monomial terms whose degrees
are congruent to zero modulo 3. Since K is apparently rational if d=1 or 2 we
may assume that d>3.

The equation x°+ ¢(y)=0 defines a closed irreducible curve C in F,. First
of all, we shall look into singular points of C and the normalization C of C. Let
P : (%, y)=(B, «) be a singular point of C lying on the affine part A*>=F,—(x=

(*) Note that if K is ruled and unirational then K is rational. Hence if K is not rational
K has the minimal model.
(**) If either one of these conditions is violated we can drop the degree d by 6 by a suitable
birational transformation.
(¥**) A morphism f: X’—>X of complete integral algebraic surfaces is called a double covering
if f induces a separable quadratic extension of function fields A(X’)/k(X).
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wo)U(y=0o0). Then ¢(a)=0 and B+ ¢H(a)=0. Conversely every root of
¢'(y)=0 gives rise to a singular point of C lying on 4°. Since ¢'(y)=0 has at
least one root, C has at least one singular point on A’C F,. The point Q of C,
which is situated outside of A%, is given by (&, u)=(0, 0), where x=1/¢, y=1/u
and w?+ £ (u)=0 with y(u)=u?¢p(1/u) and (0)==0. Hence Q is a cuspidal
singular point with multiplicity (3, 3, -++, 3, 1, ---)* if d&=3n+1;and (3, 3, ---, 3,

N~ — —————

n n

2,1, - if d=3n+2.

Here we introduce the following notations: Consider a fibration F=
{l,: I, is defined by y=a} on F,. We denote by L. the fibre y=c0, and by S.
the cross-section x=co. We denote by [/ a general fibre of &.

Let o: F—F, be the smallest blowings-up of F, with centers at all singular
points of C and their infinitely near singular points, by which the proper trans-
form C=¢'C of C on F becomes non-singular. Let S.=¢’S.., and let l.=¢"L..
The following figures will indicate the configuration of F in a neighbourhood of
a (l.UuCUS..).

(Fig. 1)

(Fig. 2)

where d=3n-+2 and (C-E,.,)=2.
Since (f)e | pp=3S~4dl.., we have

()l ¢ = C+QBE,+6E,+ - +3nE)+ D—3(Sut E,+2E,+ -
+nB)—d(lo+E+ -+ E,) = C—35.+D—d(l+- B+ +E,)

(*) By this notation we mean that Q is a point with multiplicity 3, the infinitely near point
of C in the first neighborhood (which is a single point in this case) has multiplicity 3, etc.
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if d4=3n-4-1, where D is a positive divisor with support in the union & of ex-
ceptional curves which arise from the blowings-up with centers at the singular
points and their infinitely near singular points of C in the affine part A’CF,;
and also

(Nl r = C+QBEA6E,+--+3nE,+(3n+2)E,..)
+D—3(SaAt-EA2E,+ - +nEy+(n+1)Eyiy)—d(l+ B
+En+1) = C—_3S_°°'_E—n+1‘—d(iw+-E_1+ "‘+E_n+1)+D

if d=3n+-2.
On the other hand since Kz ~—28S..—2..., we have

Kp~—2SetEA2E,++nE,)—2(l+E+-+E,)
+E 4 2E,+ 4nE,+D, ifd=3n+1;

and
Ke~—2ASe+E i+ +(n+1)E,..)—2(le+ E+ - +E,.,)
+E+2E,+ - +nE,+(n+1)E,,+D,  if d=3n+2,

where D is a positive divisor with support in &.

We are now going to consider four cases separately.

(I) If d=6m+1 then d=3n+1 with n=2m. Let B=C+So+(l.+E,
++-+E,)+D, and let Z=2§w+(3m—|—l) (L—I—El-i—---—{—E_,,)—Dz, where D, and
D, are the divisors uniquely determined by the conditions that D,>0, every
irreducible component of D, has multiplicity 1, D,=0, D,+2D,=D, and Supp
(D,)USupp(D,)c&. Then(f)=B—2Z,and Kp+Z~(3m—1)(l.+E,+-+E,)
—(E\4-2E,++4-nE )+ (D,—D)~(3m—1)a () —(E,+2E,+ - +nE,)+(Dy—
D,). Hence Z.(Kg+Z)=2(3m—1)—2n+D,-(D,—D,)=2m—2+D,-(D,—D,),
and po(2)=Z+(Kp+2)[2+1=m+D,+(D,~D,)2.

(I1) If d=6m-+2 then d=3n+2 with n=2m. Let B=C+S.+E,.,+D,,
and let Z=25..+E,,,+(3m+1) (I.+E,++--+E,.,)—D,, where D, and D, are
divisors chosen as in the case (I). Then (f)=B—2Z, and Kp+Z~((3m—1)
(et - +Ep )= (B, 2E A+ -+ AnE,nE, . )+(D;—D,)~(Bm—1)o () —
(E+2E,+--+nE,+nE,.)+(D,—D,). Hence Z-(Kp+Z)=2(3m—1)—2n—
n+n—+D,-(D,—D,)=2m—2+D,-(D,—D,), and p,(Z)=m+D,-(D,—D,)/2.

(IIT) If d=6m+4 then d=3n+1 with n=2m+}1. Let B=C+S.+D,
and let Z=2§.,°—l—(3m—|—2) (L—{—E-l-l—---—l—E_,,)—Dz, where D, and D, are divisors
chosen as above. Then (f)=B—2Z, and Kp+Z~3moc *(])—(E,++nkE,)
+(D,—D,). Hence Z-(Kp+Z)=6m—2n+D,(D,—D,)=2m—2+D,-(D,—D,),
and p,(Z)=m+D,-(D,—D,)/2.

(IV) If d=6m+5 then d=3n-+2 with n=2m-+1. Let B=C+S.+(l.+E,
+.+E)+D, and let Z=25.+(3m+3) (I.+E,+-+E,.,)—D,, where D,
and D, are divisors chosen as above. Then (f)=B—2Z, and Ky+Z~(3m-+1)
o \()—(E,++-+nE,+m+1)E,, ) +H(D,—D,). Hence Z-(Kp+2Z)=2(3m-+1)
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—2(n+1)+D,*(D,—Dy)=2m—2+D,+(D,—D,), and p,(Z)=m~+D,+(D,—D,)/2.

In each case, p,(Z)=m-+D,-(D,—D,)[2. Let F—F be the smallest blow-
ings-up which make the branch locus of the double covering on F' non-singular,
let H be the normalization of F' in the function field K=k(t, x, y) and let =: H
—F be the canonical morphism. Then H is a non-singular projective surface
called the canonical model of K, which is a double covering of F with branch
locus B in each of the above four cases (cf. Artin [1]). Let Ky be the canonical
divisor of H. By Artin [1], we know that Ky~7n"(Kz+Z) and p,(H)=2p,(F)
~+p4(Z), since the singular points on the branch locus B on F are all negligible
singularities**> and since p,(F)=0.

Thus we proved:

Lemma 1. Let m be the quotient of d divided by 6. Then p,(H)=m-}
D,-(D,—D;)/2.

Now we show:

Lemma 2. With the notations and assumptions as above, H is a rational
surface if d <5.

Proof. First of all, we may assume that d<4. In effect, if d&=5 we may
assume that ¢(y) has no constant and degree 1 terms after a suitable change
of variables x and y. 'Then by a change of variables : #'=¢/y?, ¥’=x[y?, y'=1]y,
we have

t? = x4+ $(y))  with deg, H(y)<4.

Now assuming that d<4 and ¢(y) has no monomial terms whose degrees
are congruent to zero modulo 3, we are going to compute D,—D, and K ex-
plicitly. Let v be the number of distinct roots of ¢/(y)=0. If »=1, we may
assume that ¢(y)=y after a suitable change of variables. Let P: (x, ¥)=(0, 0).
P is a singular point of C with multiplicity (2, 1, ---) if d=2; (3, 1, -+*) if d=4.
Then D=2F with E=¢"'(P) if d=2; D=3E if d=4. Then D,=0, D,=D,=E
if d=2; D,=D,=D,=F if d=4. In each case D,—D,=0. If v=2, let a; and
a, be distinct roots. We have two possible casse: (i) Both «, and «, are simple
roots; (ii) One of @, and a, is a double root and the other one is a simple root.
However neither case can occur. Indeed, d=3 in the first case, and the second
case is impossible. If »=3, let a;, o, and «, be distinct roots. Then d=4, and

(*) A point P of F is a branch point, i.e., PEB if the normalization of Op,r in K is a local
ring.

(**) A point P of B has negligible singularity if and only if it is of one of the following types:
(i) a simple point of B, (ii) a double point of B, (iii) a triple point of B with at most a
double point (not necessarily ordinary) infinitely near (cf. Artin [1]). For the arithmetic
genus formula, see also [B. Iversen: Numerical invariants and multiple planes, Amer. J.
Math., 92 (1970), 968-996].
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ay, a, and a are all simple roots. Let P,(i=1, 2, 3) be the singular point of C
with y-coordinate o;. 'The multiplicity of P; is (2, 1, -+-). Hence D=2(a"'(P,)
407 (Py)+07'(Py), D;=0 and D,=D,=o"(P,)+0o (P,)+o '(P;). Thus D,—
D,=0. Therefore p,(H)=0.

On the other hand, since Ky~7z"'(Kz+Z), we see from the above observa-
tionson K z+Z that K+ Z <0 if d<4. Hence K; <0 and P,(H)=0. Therefore
H is rational by virtue of Castelnuovo’s criterion of rationality. Q.E.D.

2. Let us consider the following conditions on ¢(¥):

(1) For every root a of ¢'(y)=0, v,(d(y)— ())<= 5, where v, is the (y—cr)-
adic valuation of £[y] with v,(y—a)=1.

(2) If, moreover, ¢(y)—P(a)=a(y—a)*+(terms of higher degree in y—a«)
for some root o of ¢'(y)=0 and ack—(0) then v,(H(y)— p(a)—a(y—a)’)=5.

Assume that 9,(¢(¥)— p(a))=6 for some root a of ¢'(y)=0. Since d>0,
this assumption implies d=6. Then by a birational transformation (z, x, y)

(t=t(y—ay’, 5:=(e-+ $(c) ") (y—a), y:=y—a), we have
ti = xi+¢(y)) with deg, ¢, = deg,p—6.

Assume next that ¢(y)—¢(a)=a(y—a)*+(terms of higher degree in y—a)
for some root « of ¢/(y)=0 and that v,(p(y)—Pp(a)—a(y—a)’)=6. Then by 2
birational transformation (¢, x, y) > (¢,=t, x,=x-+a'*(y—a), y,=y) we have

£ = 2+ ¢(y;) with deg, b, =d and va(¢:(y:)— ()26 .

Therefore the argument in the former case applies, and we can drop the degree
of ¢, by 6. Therefore we may assume that d=7 and that the conditions (1)
and (2) hold. Hereafter we assume these conditions for ¢(y). Then we have:

Lemma 3. With the notations as above, D,=D,.

Proof. Let a be a root of ¢'(y)=0, and let P: (x, y)=(—¢(a)"?, a) be the
corresponding singular point of C. Let e=v,(¢(y)—¢(«)). Since the conditions
(1) and (2) hold, we may assume that e=2, 4 or 5. In fact, the case where e=3
can be reduced to the case where e=4 or 5 by a birational transformation (z, x, y)
(¢, x+a'*(y—a), y), which is biregular at P. P is then a cuspidal singular
point with multiplicity (2, 1, ---) if e=2; (3, 1, ---) if e=4; (3,2, 1, -++) if e=5.
Hence o7 '(P)=E, (irreducible) if e=2 or 4; ¢ '(P)=E,+E, (E, and E, are
irreducible) if e=5. Then D,=D,=E, if e=2 or 4; D,=D,=E,+2E, if e=5.
In both cases, D,=D,. Q.E.D.

Corollary. -Let m be the quotient of d divided by 6. If one assumes the
conditions (1) and (2) on ¢(y), p.(H)=m.
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The canonical model H of K might contain the exceptional curves of the
first kind. When p,(H)=m>0 (i.e., d=7), let H, be the minimal non-singular
model of K, which is, needless to say, obtained from H by contracting all excep-
tional curves of the first kind. We shall describe the canonical divisor Ky, of H,.

Lemma 4. Assume that d=6m--1 with m>0. Thren we have:

(i) = Y(lL.NE)=L =" (ENE)=L{, -, " (E,.,NE)=L}_, where L,
(0=i<n—1) is an irreducible non-singular rational curve with (L;*)=—2 and
n=2m.

(i) = %(l.)=2L,+L4, =~ (E;)=L}_,+2L,+L;(1=<=i<n—1), where L; (0=
1<n—1) is an irreducible non-singular rational curve such that (L3)=—1, (L})=—2
(I1=isn—-1).

(iii) Ky~n"'(Kp+2Z)~(m—1)x" a7 (I)+4mL,+ (4m—1)L§j+(4m—2)L,
+(4m_3)L{+’+3L£m—2+2L2m-1_"‘L£m—1
(iv) W:=L,+L{+L,+-+Lb,,_, is contractible. Let 7. H—H, be the con-
traction of W. Then H, is a minimal model of K. Hence K g ~(m—1)tz"'a7(l).
(v) For every positive integer r the r-genus P,(H,) of H, is r(m—1)4+1. In
particular, p (H)=p.(H,)=m and q=0.
(vi) If m=1,1i.e.,d=7, H,is a K3-surface. If m>1, x(H,)=1.

Proof. First of all note that B=C—I—§m—|—(Z,c.—i—E]l—l—-~-—}—E,,)+D1 and
Kp+Z~(m—)o )+ (2ml+(2m—1)E,+ -+ E,,_,). Let o,: F,—F be the
blowings-up with centers at I.NE,, E,NE,, ---, E,_.NE, (cf. Fig. 1). Then

7: H—F factors as x: H—gFl—o-l-»F, i.e., z=0c,m,. Since the branch locus
B, on F, is of the form B,=g{(l.)+ci(E)+ - +oi(E,_,)+Bf with B{ having
no intersections with o-{(L—i—E—,—l—---—l—E—,._l), 7, conicides with #: H—F, which
is the canonical normalization morphism, on a small open neighbourhood of
o (I.UE,U---UE,_,). Now writing locally the equations of 7z (l.NE,)=
77 (o7} (I-NE)), " (E,\NE,), -+, 7 (E,.,NE,), it is not hard to show that
L§, -+, L;_, are irreducible non-singular rational curves. For 0<:<n—1, (L{?)
=2(o7H(E;NE;;,)))=—2. This proves the assertion (i).

To show the assertion (ii), note that ., E,, ---, E,_, are components of the
branch locus B. Therefore = '(l.)=2L,+Lj and n (E;)=L}_,+2L,+L/
(1=£7=<n—1) with non-singular irreducible rational curves L; (0=i=<n—1).
Since (¢§(Z..)*)=—2and 77 *(c{(1..))=2L,, we have 4(L%)=—4. Hence (L3)=—1.
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Similarly, (¢4(E;)?)=—4 and #7*(c{(E;))=2L, for 1 <i<n—1. Hence (L})=—2
for 1<i<n—1.

By virtue of the assertions (i) and (ii), Ky~z"(Kz+Z)~(m—1)z"'c7*(])
477 2mlA+(2m—1)E,~+ -+ E,,_)=(m— 1)z~ ({)+4mL,+(4m—1)Li+(4m
—2)L,+---+3L},_,+2L,, ,+L},_,. Since L’s and L{’s (0=¢<2m—1) have
the configuration as indicated in the Fig. 3, it is easy to show that ¥ is contrac-
tible, and (m—1)z"'c*(/) is the moving part of |Ky|. Let 7: H—H, be the
contraction of W. Then Ky =7((m—1)z"'¢"'({)). Hence dim|Ky | =0 and
| Ky,| has no fixed components if m=>1. This implies that H, is a minimal
model of K. Thus the assertions (iii) and (iv) are proven.

Let us show that P,(H,)=(m—1)r41 for every positive integer ». 'There
exists a non-singular irreducible rational curve S.. on H such that z(S.)=S.,

77%(8.)>28.. and 5..N Supp(W)=¢. Let S.=7(5..). Then S.. is a non-singular
irreducible rational curve. Since dim|rKy |=dim TrsmHKHol—i—dlmHKHo
Sel+1, we compute dim Trg_|7Ky,| and dlmHKHo—S |. Suppose that
|rKH0 S| +¢, and let M & |[rKy, | be such that M>S.. Then ‘M >7"'S..
=S.,and 7~ "M~r(m—1)z"*c7*(l). Then or(r" 1]W)><7'7TSoo S, and az(T7*M)
~2r(m—1)I. This is a contradiction since no members of |27(m—1)/| on
F,= P‘><P1 contain S... Thus dim|rKpy, —8.]=—1. On the other hand,
since S..~P* and deg Tr. |rKy, | =r(m—1)* and Trg_ |rKy,| is apparently
complete we have dim Trg_|rKy |=r(m—1). Therefore P,(H)=r(m—1)+1.
In particular, p (H,)=P,(H,)=m=p,(H,). Hence ¢g=dim H*(H,, Og,)=p(H,)
—pa(H,)=0. Thus H, is a regular surface. If m=1, H, is a K3-surface. If
m>1, k(H,)=1 since P,(H,) is a linear polynomial in 7. This completes the
proof of the assertions (v) and (vi). Q.E.D.

In a similar fashion we can show:

Lemma 5. Assume that d=6m--2 with m>0. Then we have:

(1) 7 '(l)=L,+Li, o (E)=L;+L; (1=i<2m—1) where L;’s and L}s
are irreducible non-singular rational curves such that (L§)=(L¢*)=—1 and (L})=
(L)=—2 (1=i<2m—1). They have the following configuration:

(*) Cf. 2(SA,,- 1o~ () =28, 7o YD) =(28 o 10T H(1)) = 2(S oo v 0 (1)) =2.
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(ii) Ky~n"(Kp+2Z)~m—1)z"'c" ())+2mL,+(2m—1)L,+ -+ L,,,_,

+2mLg+(2m—1)L{+--+L;,,_,.

(i1) Let W:=L,+L,+--+L,,_,+Ls+Li+--+L}, .. Then W is con-
tractible, and if 7: H—H, is the contraction of W, H, is a minimal model of K.
Hence Ky ~(m—1)tz"'a7'(l).

(iv) For every positive integer r, P,(H,))=r(m—1)+1. In particular, p (H,)
=p,(H,)=m and q=0.

(v) Ifm=1,1i.e.,d=8, H,is a K3-surface. If m>1, x(H,)=1.

Lemma 6. Assume that d=6m-+4 with m>0. Then we have:

(i) = Yl.)=L,+L{, = (E)=L;+L), (1=:<2m), where L;’s and L{’s are
irreducible non-singular rational curves such that (L¥)=(L§)=—1, (L})=(L{*)=—2
(1=i<2m). They have the following configuration:

(i) Ky~n"(Kp+Z)~(m—1)r" ' (I)+(2m-+1)Ly+2mL,~- -+ L,,
+(2meA D)Ls2mLi 4 -+ L,

(iii) Let W:=Ly+L,++++L,,+Lt+Li+---+Ls,. Then W is contrac-
tible, and if T: H—H, is the contraction of W, H, is a minimal model of K. Hence
Ky~(m—1)rz" a7 '(l).

(iv) For every positive integer v, P,(H,)=r(m—1)-+1. In particular, p (H,)
=p.(H,)=m and g=0.

(v) Ifm=1,1i.e.,d=10, H,is a K3-surface. If m>1, x(H,)=1.

Lemma 7. Assume that d=6m--5 with m>0. Then we have:

(i) =(l.NE)=L§, = (E,NE)=L{, -+, z"(E,N E,.,)=L}, where n=
2m+1 and L} (0<i=<n) s an irreducible non-singular rational curve with (L;*)=—2.

(ii) = *(l.)=2L,+L§{ and n *(E)=L;_,+2L;+L; (1=<i<n), where L,
(0=i<n) is an irreducible non-singular rational curve such that (L3)=—1 and
(LH)=—2 (0<iZm). L;/s and L}’s have the following configuration:
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(iii)) Ky~zn""(Kp+Z)~(m—1)z" o~ (})+ (4m+4)L,~(4m-+3)Lg
oo 2Lt L.

(iv) Let W:=Ly+L{+-+Lypi,+L}pis. Then W is contractible. If 7:
H—H, is the contraction of W, H, is the minimal model of K. Hence Ky~
(m—1)rn"a7(]).

(v) For every positive integer r, P,(H,)=r(m—1)+1. In particular, p ,(H,)
=p.(Hy)=m and ¢=0.

(vi) If m=1, i.e., d=11, H, is a K3-surface. If m>1, x(H)=1.

Combining the above results, we have our main theorem.

Remark. If m>1, H, is not birational to an elliptic surface. Assume
the contrary, and let p: H'—H, be a birational morphism with a non-singular
projective surface H’ endowed with an elliptic pencil L= {C,; a=P'}. Then
Ky~(m—1)p 't~ a7 (I)+E, where E=0 with Supp(E) the union of excep-
tional curves arising from p. For a general member C of £ we have (C?*)=0,
and C.K ;=0 because C is a non-singular irreducible curve distinct from com-
ponents of E. Since 1=p,(C)=(C?*4C-K)/2+1 we have C-K»=0. Hence
C coincides with a component of a member of |(m—1)p™ 'tz a7 ()], i.e., C=
p it e ()=Tr"'c"Y(l) for some /. This is absurd because Tz 'c7(l) is
rational.
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