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Introduction

This paper deals with a stationary construction of modified wave op-
erators for long-range scattering.

The time dependent construction of modified wave operators for long-
range scattering, the study of which was begun by Dollard [4] for the Schrodin-
ger operator with pure Coulmob potential, has been rather well established
recently by Buslaev-Matveev [3], Alsholm-Kato [1], Alsholm [2] and others.
But it seems that the time independent (or stationary) approach has not been
tried yet. In the theory of short-range scattering, however, the stationary ap-
proach has played an important role (see e.g. [7], [8], [9] and [10]). So it is
not too ridiculous to conceive that the stationary approach may be useful also in
studying the long-range scattering. In fact, using our method developed
below, we can prove that the invariance principle for modified wave operators
holds under Assumption 1.1 (see §4). But the proof of this result will not
be discussed in this work. It will be discussed elsewhere.

In this paper we shall construct the modified wave operators by a stationary
method essentially following the line established by Kato and Kuroda [7] and
[8]. But some modifications will be necessary (see the proof of Theorem 2.8).

Now we describe the outline of this paper and at the same time give a
heuristic explanation of some notations which will be used in this paper. Con-
sider the time dependent modified wave operator for long-range scattering:

W3 = s-lim eftHzg=itH1-ix®
tpoo

where H,=—— % A( —% Laplacian on R"), H,=H,+V (V denotes the long-

range potential) and X(t)=9"‘1|:$tV(s§)ds-}EF (& denotes the Fourier trans-
0

form in L’(R")). Here we have assumed that

V(%) <C(14+|x])*  with %<,8<1, c,>0,
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[oV(x)| <Cy(1+1x])"**,

|8*V(x)| <Cy(1+|x])"*" with “—*ﬁﬁ—z)<v<1,
where 0% denotes any k-th order partial differentiation in x. Now, for
u, vE L¥(R™), we have

(Whu,v)

— lim (e~ ftHi-iXby o itH:
= }_1’10101 (e~ u, e #Hy)

= lim 2v S e (e HHiX Dy, gmithzy)dt

Vo +0 0

By Parseval’s relation this becomes equal to

lim = Sl (S*(u+iv)u, R(n-+iv)v)du

V40 77
—lim S” (GH(utiv)u, Sy(ptivyo)dp .
Vot —00
Here SH(utiv)u = iSm ¢t g iHH Xy gy
0

GH(u+iv)u = (H,—(u+iv))SH(u+iv)u,
8 (n+iv) = % {n+iv)*Ry(u-+iv)
and R,(2) = (H,—=2)".

So, roughly speaking, we may only consider the boundary values of
G*(p+iv)u and 8,(p+iv)o when v—-+0 instead of the time limit W5. The
existence of the boundary value of §,(u+iv)v for ve D=F (CF(R"—{0}))
when v—+-0 is assured by the limiting absorption principle (see §2, Theorem
2.1). Here C7(S) for an open subset S of R” is the set of all the infinitely
differentiable functions on S into C with compact support in S. Thus it
appears as if our problem remaining were only to prove the existence of the
boundary value of G*(u+iv)u. But, in order to apply the Kato-Kuroda
method to our case, it is necessary, further, to prove that the approximate
spectral form

fH(p+iv; u, v) = Z(SH(u+v)u, S*(utiv)v)
4
for u, ve9), converges in some sense to the spectral form

e(u; 1, 0) = %((Rl(,u—kiO)——Rl(u—iO))u, v).
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Here R,(p4-10)u denote the boundary values of R,(p-+tiv)u (where R,(2)=
(H,—=)7"), the existence of which is also assured by the limiting absorption
principle. These two problems will be solved in §2 and §3.

Using those two results obtained in §2 and §3, we shall construct an
isometric linear operator G* from M, into M, in §2, where H; is the so-called
spectral representation space for H;(j=1, 2) (cf. Definition 2.6 and Proposition
2.7). This G* plays a role of alink between H, and H,. Then the stationary
wave operator W* can be easily constructed from G*. This will be done also
in §2.

In §4, some possible generalizations and some applications (z.e. invariance
principle) will be mentioned without proof. The proof will be discussed
elsewhere.

Here the author wishes to express his sincere appreciation to Professor
Yoshimi Saito for encouraging conversations with him.

Before entering into our main task, some notations are to be introduced.

1°  R”" denotes the n-dimensional Eucledean space. Moreover we shall use the
conventional notation such as Rj, R}, etc., to specify the variable x, £, etc.,
under consideration. .

2° & denotes the Fourier transform from L*(R;) onto L*(R}), that is,

(Fu)(§) = (2z)"™"*Lim.

N »oo SlxlSN

e"*u(x)dx  in L¥(R})

for ue L*(R;). Furthermore, we also use the notation #=%u for any ue L*(R).
3° For every measurable function F on R” into C, we put F(D)=%"'[F(§)-]¥,
where F(£)- denotes the maximal multiplication operator in L*(R}) defined by
the function F.

4° Cc*={z|zeC, Im 2=0}.

5° L%R"), a=R’, is a Hilbert space of all the measurable functions g(x) on
R" into C satisfying

lellgaen = [ | le@IF+1wly=dn [ <o

And the norm of this Hibert space is defined by this expression. The inner
product of this Hibert space is given as follows:

(s Ozacwn = | F@E)(1+ 51y de

When « is 0, ¢ is omitted.
6° C5(S) (S is an open subest of R") is a set of all the infinitely differentiable
functions on S into C' with compact support in S.
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7° For any Hilbert space Y, (, )y and || ||y denote the inner product and the
norm of Y, respectively. But, when unnecessary, the subscript Y is omitted.
8° L*R'; X) (X is a Hilbert space) is a Hilbert space of all the strongly
measurable functions g(x) on R' into X such that

1/2
el o= | Ng@likds | <oo.

The inner product of this Hilbert space is given as follows:

(f: Dot o=, (), g

9° H*C*; X) (X is a Hilbert space) denote the Hardy classes on C* into X,
i.e. all of the functions f: C*—X such that

(a) fis holomorphic on C*
and

o) sup (| 1futin)lidn)<oo .

v=0 -

10° For any Borel subset A of R™ (m>1), | A| denotes the Lebesgue measure
of 4.
11° 9(T) and R(T) denote the domain and the range of an operator 7T, re-
spectively.
12°  9=L*R").
13° X+(t)={ 1 for t>0

0 for t<0,
X_(t)={ 0 for t>0
1 for t<0.

1. Assumption and some definitions

We consider two self-adjoint operators H,:—% A (self-adjoint realization

of ——%A in L*(R™") and H,=H,4 U in a Hilbert space 4{=L*(R"), n>1.
Here U denotes a bounded self-adjoint operator in J satisfying the following
Assumption 1.1. U can be decomposed as U=V +V, where V, and

V denote the maximal multiplication operators defined by the functions V(x)
and V(x), respectively.

Vy(x) is a real-valued measurable function on R" and satisfies

1) As usual, H, is a unique self-adjoint extension of —%A =-1 "Z,‘ Kad with its domain

2 j=10x%
restricted to Cy’(R").

.ol
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(S) |V, (x)] <C(1+]x])*"*  with 0<a<1 and C,>0.

V(x) is a real-valued infinitely defferentiable function on R" and satisfies

(LO) V()| < Cy(14 | x])* with %<B<1 :
(L1) 10V (x)| < Cy(1+ | x])--*,

(L2) V@ <C+H) =7 with (B <y <1,
(L3) 18V ()| <Cy(1+ %)),

where 8% denotes any k-th order partial differentiation in .

Under this assumption, we have 9(H,)= 9(H,)= H*R")=the Sobolev
space of order two.

RemMARk 1.2. (L3) can be omitted without loss of generality. In this
case we may only consider V’(x)=( V*w)(x)ES V(x—y)o(y)dy and V/(x)=
R’l

V(x)+V(x)—V'(x), where o€ C5(R") and ||w|| 1zm=1, instead of V(x) and
V(x), respectively.
Now we make some definitions which will be useful later.

DErFINITION 1.3.

(1.1) X(t) = S' V(sD)ds  for tR'.

(1.2) St = i | Xuyexr ey,

(1.3) Or(Ru =V S*(2)u,

(1.4) Qi(a)u = i | x.(e)V— VD) xoenmudr,

(1.5) O%(2)u = Ot (Ju+Qz(2)u
— 1 Slxi(t)(U—— V(tD))e™XP gitceHoy dt ,
(1.6) G*(2u = u+0*()u,

where u= 9 and z=C*.

(1.7) Rj(2) = (H;—=)",
18 o@ =R @R ),
(1.9) ei(z; u, v) = (8;(2)u, v) 4,

where z€ p(H,;)=the resolvent set of H;, u, v€ 4l and j=1, 2.
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(1.10)  ot(e) = Il gr(aprgx(z),

(4
(1.11) (=5 u, 9) = (a*(2)u, v) 4,
for zeC* and u, vE Y.

Proposition 1.4.

(i) S%(s), 0F(®), Q=) O*(2)y G*(2), Ry(), 8,(s) and o*(z) are all
bounded operators in 9l for each z=C*.

(ii) For every z&C* and u, vE Y,

(1.12) G*(2) = (H,—2)S*(?),
(1.13) (25 u, v) = e,(z; G*(2u, G*(2)v).

For the proof of this proposition, we prepare the following two lemmas.

Lemma 1.5. Let X be a Banach space and B(X) be the Bancah space of
all the bounded operators in X. Suppose that I=[a, b], —c <a<b< oo, and
that f(t): I-X and A(t): I->B(X) are all strongly differentiable and their deri-
vatives are Bochner integrable on I. Then, A(t)f'(t) and A'(t)f(t) are Bochner
integrable in X on I, and

. 4 b
(1.14) Sa A@)f(t)dt = A(b)f(b)—A(a) f(a)—sa A'(t)f(t)dt .
The proof is similar to the numerical function case, and hence we omit it.

Lemma 1.6. Let (S, B, m) be a o-finite measure space, and X be a Banach
space. Let T be a linear operator in X and f be a Bochner m-integrable function
on S into X. Suppose that T and f satisfy the following three conditions :

(a) T is a closed operator in X.

(B) range of f=/(S)C O(T).

(¢) (Tf)(s): S—X is a Bochner m-integrable function.

Then L f(s)ym(ds)€ 9(T) and

(1.15) T SS F(s)ym(ds) = SS (Tf)(s)m(ds) .
Proof. See Hille and Phillips [5], Theorem 3.7.12.

Proof of Proposition 1.4. (i) is obvious. (ii) (1.13) is obtained by (1.9)~(1.12).
We proceed to the proof of (1.12). Let uc 9(H,)=9(H,). In Lemma 1.6,
let S=R' (with Lebesgue measure), X = 4, f(t)=X.(t)e XPe*=Hoy and
T=H,—=z, then the required conditions of Lemma 1.6 are satisfied. Thus,
S*(zue 9(H,) and
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(1.16) (H,—2)S*(z)u = :FS X1(t)e iX® % (e Hoy)dt

In Lemma 1.5, let X=94, I=[a, b], f(t)=e"**"H’u and A(t)=e**®. Then
making a— — oo or b— oo in (1.14), we obtain

(117)  (Hi—2)S*(z)u = uTFi S“ X (f)V(ED)e- 15 i~ Hoy iy
for each ues 9(H,)=9D(H,). The right-hand side of this equation defines

bounded linear operators in J{. Denote them by 1—T*(2)eB(4). Then we
obtain

(1.18) (H,—2)S*(z)u = (1— T*(z))u

for each uc P(H,)=9D(H,). Now, D(H,) is dense in J and H,—=z is a closed
operator in . Therefore, for every us 4, we obtain

(1.19) (H,—2)S*(2)u = (1—T*(2))u .
Thus, S*(2)HcC D(H,)=9D(H,) and
(1.20) (H,—2)S*(2) = US*(2)+(H,—=2)S*(?)
= US*(2)+(1—T*(2)) = G*(2). Q.E.D.
2. Construction of modified wave operators

Let I'=[a, b], 0<a<b< o be fixed in this section.
We first mention a theorem due to Ikebe-Saito [6].

Theorem 2.1. Let Assumption 1.1 be satisfied. Let K= {z=u+iv|uc€T,
»>0} and let 5> %. be fixed.

(1) Then the mapping

KX LY(R") — L2(R")
v U
(2, u) ——> R;(2)u

can be extended uniquely to a continuous mapping

KFXLY(R") —> L2y(R").
Moreover there exists a constant C >0 such that for every (z,u)E Kz X LR"),
2.1) IR (2)ullzt am < Cllullzzeen  (i=1,2).
Here R,(2)=(H;—=z)"".
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(it) The mapping

(KFUKT)X LYR")XLYR")—> C
U W
(2, u,9) | —> e;(2; u, v)

can be extended uniquely to a continuous mapping
(KHUTUK7T)XLYR"X LYR") —>C
and satisfies the following three conditions :

(a) e;(=; -+, *) is a non-negative Hermitian form on L}(R™) X LY R") for each
2eKiUT UKF (j=1, 2).
(b) For every u, ve LYR"), ¢;(-; u, v) L'(T") and

22) [ etms u, o) = (B 0, 0) 4

for any Borel subset A of T'. Here E; ,(A) for a Borel subset A of R' denotes
the absolutely continuous part of the spectral measure E;(A) associated with H;

(=1, 2).
(c) There exists a constant C>0 such that for each 2 K} UT' UK7T and

every u, ve L}(R")
(2.3) lej(z; u, v)| SClluHngnr ||‘Z’||L§(R") ’ (7=12).

ReEMARK 2.2. In the following, the notations R;(n+4:0)u, 8;(x)u and
ej(p; u, v) (j=1, 2) for p=T and u, v L}(R") will be used as denoting the
boundary values of R;(up+iv)u, 8;(p+iv)u and e;(p+-iv; u, v) when v— 40,
respectively, the existence of which is assured by the above theorem.

Proposition 2.3. Put 9=F " (C5(R*— {0})) and let uc 9 be fixed. Then
the following three propositions hold good.

(i) For any & such that 0£8<%—|—a, O1(2)ucs LYR") for each z=C*, and
(2.4) Oi(-)Jus H*C*; LYR™).

(ii) Put p=min(By—(1—pB), 28—1, ¥*)>0. Then for any & such that
0< 8<% + min(p, %), Oz (2)us Li(R") for each z=C*, and
(2.5) Oz (-)us H*C*; LYR™)).

(i) For any 5 such that 0<8 <%+ min (a, o, %) O*(z)ue LYR") for

each xzC*, and
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(2.6) O*(-)usH*(C*; LY{R")).
Especially, there exist 1.i.m. Q*(p+iv)u in L*(RL; L}(R™)).
V+0
For the definitions of Qi(2), 03(z) and Q*(=2), see (1.3)~(1.5).
The proof of this proposition will be given in §3.

Proposition 2.4. For every u, vE 9), there exist the limits Li.m. f*(p+tiv;
u, v) in L}(RL) and e

(2.7) Lim. f*(p4iv; u, v) = e(p; u,v)  for a.e. uET .
Here the exceptional null set may depend on u and v.
For the definitions of e, and f*, see (1.9) and (1.11).

The proof of this proposition also will be given in §3.

Theorem 2.5. Let %< 3 <%—|—min(a, P, %) For any ues 9, put
ﬁi(p)=u+l.vi;1}_10. O*(ptivyus L(T; LY(R™). Then, for every u, ve 9,
(2.8) e(p; W5(n), 95(n)) = e(n; u,v)  forae. peT.
Here the exceptional null set may depend on u and v.

Proof. From the definitions of #* and #*, and Proposition 2.4, we see
that there exist a sequence {v,} and a Borel subset 4 of T such that

(2.9) v,>0, lirgv,,=0, IT—A4]|=0
and

lim G*(p4t-iv,)u = 4*(u)

e in L}(R™)
(2.10) £1r2 G*(p+tiv,)v = 0*(p)

lim f*(u4-iv,; u, v) = e,(p; #, v)

for each p=A. Thus, from (ii) of Theorem 2.1 and (ii) of Proposition 1.4,
we obtain

e,(; a4 (p), 9*(p))
= lim e,(utiva; GH(ptiva)u, G*(ntiva)v)

= lim f*(p4iv,; u, v)
ﬂ.’“
= e,(p; 4, v)

for every pe 4. Q.E.D.
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In the following, we fix § as %<8 <%—|— min(a, Ps %), and put X,=9

endowed with the topology of L}(R") and 2X,=L}(R").

By X,c L} R") and Theorem 2.1, e,(-; -, -) (j=1, 2) are spectral forms
on I'X X; X X; in the terminology of Kato and Kuroda (see [7], p. 103), that
is, e;(+; -, +) satisfies (a) and (b) of Theorem 2.1.

Now, we make some definitions following Kato and Kuroda [7].

DErFINITION 2.6. Let j=1 or 2 be fixed.

ei(p; x)=ej(p; x, x) for x€X;, peT.

TN(p)={x=X;|ej(n; x)=0} for peT.

Xi(nw)=2;/T;(r) for peT. (This becomes a pre-Hilbert spece with respect
to the inner product induced by e;(x; -, +).)

%;(n)=the completion of X;(n) for pT.

(, );r and || ||;» are the inner product and the norm of i%,-(p,) for p€T,
respectively.

Ji(n): X;—>%,(1) is a canonical homomorphism. (This is a continuous linear
operator by (c) in (ii) of Theroem 2.1.)

X;= H %;(w) is an algebraic direct product of {%;(1)}per-

= {k I‘—>.‘X’ [ A(p)= 2 Xa, (1)xy, where A,CT (Borel subset) and x,& X;}.

(Here X, denotes the characteristic function for ACR'.)

gE¥X,; is called e;-measurable, if for some sequence {k,}CS;, g satisfies
,1'112 llg(r)—Jj(p)ha(p)ll; w=0 for a.e. pET.

For g,, gzei%,-, &~ ;8, means that g,(u)=g,(r) for a.e. pET.

For g& ¥;, [g] denotes the equivalence class of g by ~ .
—{[g]e:x' I~ ‘ [¢] is ¢,-measurable and [I[g]Il%,, S ;|g(ﬂ)1|2“dﬂ<oo}
(M; becomes a Hilbert space with respect to the norm || || ¢, and J;S;/~;
is a dense linear subspace of ¥ ,%.)

L2 (T)={2E, ..(As)xs]| A,CT (Borel subset), x,& ,}.

k=1

L; 2 T)=(L; a(T"))*, where (M)“ means the closure of M c 4 in 4. (In our

case, L; 4(T)=9; s (T)=E; ,(T)4.)

The next proposition gives a spectral representation for H; (j=1, 2).

Proposition 2.7. Let j=1 or 2. Then there exists a unitary operator n;
Jrom L; . (T') onto M; which satisfies the following two conditions :

2). For the proof of these two facts, see Propositions 1.9 and 1.10 of Kato and Kuroda [7].
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(a) 7;E; . (Ayu= {Xa(p)(mju)(p)}uer for ACR' (Borel subset) and uc
’Ej,ac(l-‘)'
(b) 7;E; s (T)x={] ()%} per for x€ X;.

Especially, for every u=3" E; . (Ap)xeE Wy '+ a(T), we have
k=1

U= {]j(ﬂ)‘g Xa(m)tetuer € J;S;]~; -
Proof. See Kato and Kuroda [7], p. 106.

In the above, we have constructed two spectral representations exactly in
the same way as Kato and Kuroda [7]. Now, we are in a position to con-
struct G* which play a role of links between H, and H,.

Theorem 2.8. Let Assumption 1.1 be satisfied. Then, there exist unique
isometric linear operators G* from M, into M, which satisfy the following two
conditions :

() G {Xy(u)u(p)}uer={Xa(u)(G*u)(n)} for any Borel subset A of T' and
any ue M,.

(b) CH{J(w)*uer= {J()F (W} ser for every x€ X, where F(n)=
x—l—l&.gx. O*(u4-tv)x (cf. Theorem 2.5).

Proof. We have to prove the existence and the uniqueness of isometric
linear operators from J,S,/~, into M, which satisfy conditions (a) and (b).

Take any element @ of J,S,/~,. Then it can be represented as p=[],k]
for some k= S,. Put F=range of h. Then F is a finite set {k,, -, h,,} (m>0,
m is an integer), where k;& X, (j=1, 2, ---, m) and h;=h, for j=k. If we put
B;={peT|h(p)=h;} (j=1, 2, .-+, m), then B; becomes a Borel subset of T"
since k€ S,. Furthermore, I'= CJB,- and B; N B,=empty for j +=k.

j=1

Set hjt(p)=hj+l\.’i.g1. O*(p+iw)h, e L(T; X,) (j=1,2, -+, m) and h*(p)=
k% (u) for peB; (j=1, 2, +-,m). Then k*(y) are uniquely defined for a.e.
pwET because I'= C}B,- and B;NB,=empty for j+k So the mappings

j=1

F*: T'— %, are well defined. Moreover, since B; is a Borel subset of T" and
ke LXT; %) for j=1, 2, ---, m, these mappings k* are strongly measurable.

Thus, J,5* € %, are e,-measurable because J,(1): %, — %,(1) is continuous by
Theorem 2.1.

On the other hand, using Theorem 2.5, we have for a.e. p€B; (j=1,
2, -, m),

) B ()13
= 2(#'; ”;i(l"))
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= e)(u; ﬁft(/“))
= ey(n; k)

= e,(u; h(w))

= I J(u)(p)l[E -

Therefore, we have

(2.11) R g, = 1| L)1y, = Nlpll gy, <o

and [ ] ] H,.

Although g€ J,S,/~, does not determine A< S, uniquely, using (2.11),
we can easily show that [ ],#*] does not depend on the choice of k€ S,. Thus
we can define isometrical mappings

G*: ]Sy~ — M,
w U
WA WA

The linearity of these mappings is obvious. Moreover, as can be easily shown,
these mappings satisfy (a) and (b).

Now there remains only to prove the uniqueness of these operators. Let
H* be the isometric linear operators from ., into ., which satisfy (a) and

(b). Then for any h(y,)=i Xa, (£)%E S, (A CT (Borel subset), x,€ X)),
k=1

A= h = B={J, ()W)} er
= 33 (X, () E = { ()5 ner)()}ver
= 3} (X (W)} ver
by (a) and (b). Similarly,

G-k = 3 {Xa (WIWEH ()} er -
Thus we obtain H*=G* on JiSi[~. Q.E.D.
Now we can define the modified wave operators W.
DErFINITION 2.9.

7Gx for ue L .(T),
0 for ues AL, 4..(T).

Here, note that [, ;(T)=J1, ,(T') in our case.

Wiu=

Theorem 2.10. Let Assumption 1.1 be satisfied. Then Wi are partially
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isometric operators in Y with the initial sets 9, ,(T") and the final sets contained
in H, . T). And for any Borel subset A of R', we have

(2.12) WEE(A)=E(A)WE .

Moreover, for any x X,, y& X, and Borel subsets A,, A, of T,

(2.13)  (WEE, oA, B, o (A,)y) g0 = Sm o, () 8(m)y) grdpe

Proof. It is obvious that W% are partially isometric operators with the
initial sets 4, ,(T') and the final sets contained in 4, ,(T).

Let a Borel set A of R' be fixed. If u_| 4, ,(T), then WE,(Ayu=0=
E,(A)W%u by Definition 2.9. If ue 4, ,(T), then WEE,(A)u and E,(A)Wru
both belong to 4, ,(I'). Thus we have only to prove that =,WzE,(A)u=
n,E,(A)W+u. This is proved as follows:

n,WEE,(A)u
= G*mE(A)u (by Definition 2.9)
= G*n,E, . (A
= G*Xymyu (by (a) of Proposition 2.7)
= X\Gtm,u (by (a) of Theorem 2.8)
= m,E, . (A)3'G*mu  (by (a) of Proposition 2.7)
= m,E(A)Wru (by Definition 2.9).

The last part of this theorem is proved as follows:

(Wli‘El,ac(Al)x’ Ez,ac(Az)y),g[
= (éiﬁ'lEl,ac(Al)x’ ”zEz,ac(Az))juz
= (G*Xa, Ji%, X, J.¥) sy,  (by (a) of Proposition 2.7)
= (Xa,G*J%, Xy o 9) a1, (by (a) of Theorem 2.8)
= (X8, Jo %) Xa,J2¥) o, (by (b) of Theorem 2.8)

= SAIMZ(L(#)%*(M), Jo()y),ndp
B sAlﬂ AzeZ(M; %i(”')’ y)dll'

= SA,MZ(F(”% 8(m)y) g QE.D.

3. Proof of Propositions 2.3 and 2.4

To begin with, we prepare some lemmas which will be used in the proof
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of Propositions 2.3 and 2.4. As the first two lemmas are found in Alsholm-
Kato’s paper [1], the proof will be omitted.

Lemma 3.1. For any tR' and uc H=L*(R"), we have
(3.1) e (V' —V(tD))e #*H
— Sl [% eiﬂ\"lHl( AV)(Ax)e i H
]

e (VYY) wyu [d.
where {x, y>=,§”1 X Yi for x,y=C™" and (VV)(x):(S_;/(x), e, %(x))

Lemma 3.2. Put 9,={ucP|supp 4cE,={¢| || =a}} for a>0 and
(3.2) Y=Y, \) = H+X(¢) .

Then, for any a>0, there exists a postitve constant C, such that for any uc 9,
teR' and 1>0\>0, the next four estimates hold good :

(i) I+ Dhal) R Tull < Co(1+ 2]y ML+ 2] oull, (=0, 1, 2).
(i) (4 o)) e Y ull < Co(l+ [£1) N1+ | he ] Yl
(iii) 1I(14 ] ) P (VXY (B)ull
<Co(14 84|14 | nax] Youll, (R=0, 1).
(iv) N+ [na]) e (VX (Bl
<C(14] )= min® ] (14 | ] Y.

Here (VX)(t)zg—l[vE ) V(sg)ds-:lﬂ".
0
Lamma 3.3. For tR' and 1>\>0, put
(3.3) A2, ) = i?te—it(l—k‘l)Hl(AV)()Lx)e-itk'lﬂl-c'X(t) ,

(34) Ayt \) = e-it(l—h‘l)Hl<(VV)(Xx)e—it)\“lHl—iX(t), x>,
(3.5) Ay, N) = e ARV )(Ax)e T HSIXSO (VX (8)>

Then, for any a>0 and us 9, there exist positive constants C, and C(u) such
that for any tE R and N\ with 1>N\>0, the following four estimates hold good :

(i) 11+ 2] )24, Aull < Co(14 1 2] )F"FC(u) (k=0, 1).

(i) (1 x| )AL, AMul| < Co(14 | 2] Y¥*7PC(u) (=0, 1).

(i) [J(14 | ax])eAq(2, Nul| S Co(1+ | 2] )p-1-min®Y-a-pR28-0C(y) (k=0, 1).

(iv) [+ | Ax] )2 At Nul| < Cu(14 2] Y¥~*-°Cu) for k=0, 1 and m=1,
2, 3, where p=min(By —(1—B), 28—1, ¥*)>0.
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Proof. Let a>0 and uc 9, be arbitrarily fixed. (iv) is the direct con-
sequence of (i)~(iii). So we only prove (i)~(iii).
Case 1) k=0 in (i)~(iii). This case can be easily shown using (3.3)~

(3.5) and Lemma 3.2. For example, let us prove (iii) for 2=0. From (3.5) we
have

4,2, Ml < C, 2 (1 [ ax] )P ¥ 2@, X )(t)ull

where C, is the constant given in Assumption 1.1. Thus, by interpolating
the estimates (iii) and (iv) of Lemma 3.2, we obtain (iii) for k=0. (Here

(9,X) (t)=£F'l[% S' V(sg)ds-]szf.)

J

Case 2) k=1 in (i)~(iii). Because
1+ I ] ) A2, Mull <[ At Mull+ ,Z; A A (2, N)ull

we have only to estimate |[Ax;4,(¢, Null (j=1, 2, -+, n, m=1, 2, 3).
From the identity

Naje HAAIL = g HOA DI o —1)D;), Dy = —i -
Xj

we obtain the following three equations:
(3.6) Ax ;A (2, N)u

_ i'zt_e-.'ta—rl)l-ll[xxj(A V)(Ax)+ (A —1)(D;AV)(Ax)

F+t(A—1)(AV)(Ax)D;le ¥ Py
(3.7) Ax; A, (2, Nu
= e A ADHI D\ (VY )(AX)+EAMA—1)(D,; VV)(Ax)
+t(A—1)(VV)(Ax)D;le ¥, x>u .
(3.8) Ax Ayt N)u
= ¢ A DH IAx (VY )(Ax) HEMA—1)(D,VV)(Ax)
+HA—1)(VV)(Ax)D;Je ¥4, (VX)(#)u .
Thus, by direct computation and by interpolating the estimates of Lemma
3.2, we obtain the required results. Q.E.D.

Proof of Proposition 2.3. (i) Let O§6<%+a be fixed. Then —2<

—1—aL—1—a+38 <—% and
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(3.12) |(14 | 2] PV(6) | < Co(14 | 2] )22
And hence (1+|x|)’V,(x)€B(H). Thus,
(1+ | %] #Q(2)u
= (14| 2| PV S*(2)u
= i 7 X 2 PP, x iy e

Moreover, by (3.12) and (i) of Lemma 3.2, we obtain
(14 ] PV e~ X8| | < Clu)(1+ |2]) 77"+

for some constant C(x)>0. Therefore (1+|xl)3Vse"'X“)'“HlueL"‘(R}; H).
Thus (14 | x| )*Q7(2)u belong to the Hardy-class H*(C*; %) as the one-sided
Laplace transforms of L*(R}; 4)-functions.

Next we prove (ii). Let O£8<%+min (p, %), where p=min(By—
(1-8), 28—1, v*)>0. Then,
1

1 . 1
(3.13) —1—p£—1—p+8<—5—p—l—mm<p,7>< >

Moreover, by Lemma 3.1 and the equation

xe tX® — e-iX(t)(x+(VX)(t)) ,

we obtain

(3.14) Of () = :tigl Xi(t)sl 3 At Nudn e dt

Here we note that (14 |x|)*4,.(¢, M)ue*® is a Bochner integrable function
from R'x (0, 1] into 4. In fact this function is continuous by (3.6)~(3.8).
Moreover ||(14|x|)*4,,(¢, A)ue*?|| is integrable over R*x (0, 1] because Im 20
and

(3.15) (L L) Am(2, NJull
AT+ [ | ) A2, M)ull
<A1+ | £]) "3 C ()
for some constant C(x)>0 by (iv) of Lemma 3.3. Thus in Lemma 1.6, putting

S=R'x(0, 1], X=U, f(t, \)=X.(t)A,(¢, N)ue** and T=(14|x]|)*-, we obtain
Oz (2)us LY R")=9D((1+ | x|)*-) and

(1411 )0z (=)
=+if” xi(z)Bl Y1+ [l P AL, x)udx]e"" dt .

om=1



A STATIONARY APPROACH TO LONG-RANGE SCATTERING 327

On the other hand, by (3.15), we obtain
HS 3 (1 |21 P At x)ude
0 m=

<31 [0+ 11 P, Nyuian

m=1 Jo
1

< S A1+ [2]) " C (W) .

0

Therefore, by (3.13), (14 |x|)’Qz(2)u belong to the Hardy-class H*(C*; ) as
the one-sided Laplace transforms of L*(R;}; 4{)-functions.

(iif) is obvious by O*(2)=01(2)+ Q37 (). Q.E.D.
Lemma 3.4. Put

(316)  Z* = Z*(t, ) = tH, Fegn(t){X( |s))— X(&(Is] +121))}

for t, s€ R', where

1 for t>0,

f) =
sgn (?) { 1 for t<0.

Then, for any u, ve 9, v>0 and uE R, we obtain
(3.17) [Hutiv; u, v)
= 21_” [" emran” xeme i, o) ydsat
Proof. First of all, we explain some notations which will be used in this

proof. We shall use the notation &F as the Fourier transform from L*(R}; ()
onto L*(RL; 4), that is,

(Ff)(p) = (27) 1.13_&.& LMDt in LR )

It

for any fe L*(R}; H). Moreover we shall use &' as the inverse Fourier
transform from L*(R}) onto L*(R}).

Now let us prove Lemma 3.4. Let u, v 4 and »>0 be fixed. By
definition,

f(ptivyu, v) = % (S*(p 4 iv)u, S*(u L iv)v).

Here

S*(ptivyu = £/ 27i(F g0 (B)»
S*(ptiv)o = £/ 27i(Fh) (1),
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where
{ ZE(t) = Xu(t)e i XW® g vIimithyy

B (g }e L(RY; )N L (RY; ).
Then, for a.e. uER’,

(3.18) fH(ptiv; u, v)
= 20((F g0 1)y (FHY) (1)) 4

— 22 A(F ([ (g50—9), B0 .d5) o) -
Here we have
G19) |7 e B s
_ S“; X (E—5)Xz(s)e™ V1t s1-VIsl (¢ HHIiXU-DHIXC Dy ) s

— -Vl S‘:o X (s) e 2Isl (g2 oy, v) 4,5 .

Then combining (3.18) and (3.19) we obtain the desired formula. Q.E.D.

Lemma 3.5. For any a>0, there exists some constant C,>0 such that
for allue 9, and t, s R,

(3.20) (1] ) e 25D ul| < Co(14-12]) (14 ] ull -

Proof. We first list up some notations which will be used in this proof:
Xt ) = | visyas,
0

0%(t, 55 §) = |£1* F4-sn ()] 151 (5757 X ) o158

— 181 (5 5 X JeEClel 123 8) |,

O*(t, 5) = F'[O*(2, 55 £)-1F,
Zt, 53 8) = tIEle%gn(t){X(:tISI L E)— X((Is| +121); B)} .
Notice that X(¢)=F""[X(¢; £)-]F and Z*(t, $)=SF'[Z*(t, s; &)-]<.

Let a>0 be fixed. We divide the proof into four steps.
1st step) We prove the identity

(3.21) {x, D>e—izt(t.s)_e-izi(t.s)<x) D> = te-iz*(t,s)Q:r(t, s) ,
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where D=(D,, -+, D,;). This is proved as follows:
Fx, DYe 2" = (iV;, Epe 2@ s: OF
— (7 DGV, By e DGV 25t 53 E), N
Here we get by straightforward computation
V(—iZ*(t, 535 £)), E> = tQ*(¢, s; &) .
Thus we obtain
Fx, Dye 2" = Femiz" &9y D)—Fte iZ"tDQ%(¢, 5) .

This completes the proof of (3.21).

2nd step) Next we prove the following proposition:

There exists a positive constant B, such that for any (€ E,=
{EER”| |E] =4}, |t| =B, and sER’,

(3.22) 10*(2, 53 £)| > ”52'2 .

Put /)= 1£1 (5 5 X )ors 1= 53¢, (%X)(r; £). Then

(3.23) Ot s;H)—1EI" = %E% sgn (S (£ s1)—f (s +121))} -
By the mean-value theorem, we get

(3.24) AL s =AEs|+121) | <nC(1+[sE]) 7« |2].

Thus, combining (3.23) and (3.24), we obtain the following consequence:
There exists some constant 4,>0 such that for any £ E,, t& R" and |s| >4,

|02, 55 £)—|£1°] s%
and hence

(525) 0 G en= L,

On the other hand, we have by direct computation,

L) <Ci1E|7Flr| P
with C,=nC,/(1—8). Thus, we get

(326) | f(k1sD)—FE(Is|+ 12D <CLIEIA(1s|*P4(15] 4 12])-#) .

So, combining (3.23) and (3.26), we obtain the following result: There exists
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some constant B, >0 such that for any é€E,, |t|>B, and |s| <A4,,

(3.27) |05 (t, 5; )| z-'_gﬁ.

Thus by (3.25) and (3.27), we obtain the desired result.

3rd step) In this step we prove the following estimates:

There exists a positive constant C§ such that for any uc 9,, |¢| > B, and
SERY,

(3.28) (141 2]) e "2 u|| <Cq12] (14 | 2| Jull -
From (3.21) and (3.22), we have
e iZE Dy
= t7'[{x, Dye iZ" #9201, 5) " u—e 2" x, DYQ*(t, 5)" u]

for any uc 9, |t| >B, and s€R'. Therefore, using the triangle inequality
and the Plancherel’s theorem, we get

1+ 2] ) emiz ey
<[ Q7 s; ) g1 l+nllQ*Ct, 5 ©) 2

+2H|5|Q*(t, 587 2y 3

T B8 @ s o .

All terms in the parentheses [ ] except the fourth one can be easily estimated
by (3.22) and € 9,. And hence we have

(1 ] )iz to|
<l -'[Zn(a-1+a—2>||uu+2na-‘|| ||

]-

%(Q*—(t, s; £))|. For this purpose let us com-

j

+3[1810 5 7 @ 55

Thus we have only to estimate

pute %(Qi(t, s; £)). Then we have
i

i(Q*(t, )

= 26,% 1 sgm O {55 X ) 1913 1= (2 X )l +140): 0]

5 {0 (55, )91 -8 (555 X Jelst 41019 |
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Applying the mean-value theorem as in the 2nd step to #+1 terms in the par-
entheses [ ], we get

%(Q*(t, S s))]s21esl+co|s|~‘+nco|s| -2,

Thus we have from ue 9, and (3.22),

U|5|Qi(t, 5 z)*% (0%(t, 5; E)a| <220+ Ca*+nCoa~?)|lul].

So, setting Cs=4n(a"'+2a >4 C,a *(14+na')), we have the desired estimates.
4th step) Let us prove Lemma 3.5. If uc€9,, |t| <B, and s&R', then
we have

(3.29) (1 2] ) e 2" 2ul| < (14 Ba)(1+ 1 #]) (14 | 2] Yl -
Thus, putting C,=max {(1+B,), B,”*(1+B,)C}, we obtain (3.20) from (3.28)
and (3.29). Q.E.D.

Proof of Proposition 2.4. By Lemma 3.5, there exists some constant
C >0, such that for any »>0 and tR,

2v S: X.(t)e s (e7iZ 2y, v) 4 ds
SO+ [2)7HIA A |2 ul [+ 114 L2 o] -

The right-hand side of this inequality belongs to L*(Rj}).
On the other hand, for any t& R', we have

(3.30) lim 2v S” X, (s)e 5 (e 2" 40y, v) 4 ds

V>»+0

= lim (e"12"¢*9y, ) g

= (e *Hu, v) 4.
Here (e~ #*#1u, v) 4 L'(R;) N L*(R}) by (i) of Lemma 3.2.
Therefore, by the domianted convergence theorem of Lebesgue, there

exist the limits

Lim. e™*"¥2p Sw X.(s)e ™\ (e 2"y, v) 4ds  in L*(R})

V40

and these are equal to (e”*iu, v) 4 in L(R}). Thus by Lemma 3.4 there exist
the limits Li.m. f*(u+iv; u,9) in L*(R}) and we have
Vy+0

Lim. f*(usiv; u, o) = zi” S: ey, o) ydt i LA(RY).
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The right-hand side of this equality is equal to ¢,(u; , v) for uT". Q.E.D.

4. Concluding remarks

In the above, we have constructed the modified wave operators by a sta-
tionary method under Assumption 1.1. But, if we replace X(¢) by some ap-
propriate self-adjoint operator X’(¢), this assumption can be weakened in the
direction that it admits longer range potentials. This will be discussed else-
where.

Next we remark on the time limits and the invariance principle. Using
our method, we can show that there exist the time limits

Wli)(I‘) — s-lim eisze—itHl—a'X(t) E1,ac(F)

typtoo
and that W3(T')=W45. Furthermore we can prove that the invariance princi-
ple holds under Assumption 1.1. This result is formulated as the following

Theorem 4.1. Let Assumption 1.1 be satisfied. Let p=C>=(R") be real-
valued and put

Wa(t) = it H Y g iteCH D= i X9/ CH 2

for every teR'. Suppose, further, that ¢’>0 and ¢” %0 on some open neigh-
bourhood of T'.  Then the limits

W5 *(T) = s-lim W*(2)E, ,.(T)
tyto
exist and the following relations hold :
Wge(T) = Wxr.

This theorem also will be discussed elsewhere together with the existence
of the time limits mentioned above.

Osaka City UNIVERSITY
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