PERIODIC ACTIONS ON BRIESKORN SPHERES

Katsuo KAWAKUBO*

(Received December 3, 1974)

1. Introduction

In [1], Atiyah and Singer obtained an invariant for certain S^{1}-actions and Browder and Petrie used the invariant to distinguish certain semi-free S^{1} actions [5]. In [9], we made a different approach to these problems and were able to extend the result of [5].

In the present paper, we first define invariants for some periodic actions on oriented closed manifolds (see Theorem 2.1). The idea is really a mixture of those of [9] and [10]. Then, by making use of the invariants, we distinguish periodic actions on the Brieskorn spheres (see Corollary 2.2).

2. Statements of results

Throughout this paper, we assume that p denotes an odd prime integer. We identify the group Z_{p} with the group $\{\exp 2 \pi a i / p, a=0,1, \cdots, p-1\}$. Let (M^{n}, φ, Z_{p}) be a Z_{p}-action on a closed oriented manifold M^{n}. Then the normal bundle of each component F_{ν} of the fixed point set has a canonical decomposition invariant under Z_{p} :

$$
N_{\nu}=\sum_{m} N_{\nu}(m)
$$

where the m are positive integers with $1 \leqq m \leqq(p-1) / 2$ and where $N_{\nu}(m)$ has a unique complex structure such that $\exp (2 \pi i / p)$ operates by multiplication with $\exp (2 \pi m i / p)$. Therefore a fiber of the normal bundle of each component of the fixed point set has a canonical orientation. We can canonically orient F_{ν} so that the orientation of a fiber followed by that of F_{ν} yields the orientation of N_{ν}, where N_{ν} has the orientation of a tubular neighborhood of F_{ν} in M^{n}. When $N_{\nu}=N_{\nu}(m)$ for some fixed m and for all ν, we call the action a regular Z_{p}-action. Hereafter we assume that $m=1$ whenever we say regular. However, it will be easy to see that all the theorems in this paper still hold for any m.

Let $\left(M^{2 n-1}, \varphi, Z_{p}\right)$ be a regular Z_{p}-action on a closed oriented ($2 n-1$)manifold $M^{2 n-1}$. We suppose that

[^0](i) The fixed point set $F\left(Z_{p}, M^{2 n-1}\right)$ is a homology sphere,
(ii) $\left(M^{2 n-1}, \varphi, Z_{p}\right)$ extends to a regular Z_{p}-action $\left(W^{2 n}, \Phi, Z_{p}\right)\left(\partial W^{2 n}=\right.$ $M^{2 n-1}$ as Z_{p}-manifold) such that the fixed point set $F\left(Z_{p}, W^{2 n}\right)$ is connected and the i-th Chern class of the normal complex bundle of the fixed point set is divisible by p for all $i \geqq 1$.

When $\operatorname{dim} F\left(Z_{p}, W^{2 n}\right) \equiv 0(\bmod 4)$, we define Pontrjagin numbers of $F\left(Z_{p}, W^{2 n}\right)$ as follows. Let $P_{i}\left(F\left(Z_{p}, W^{2 n}\right)\right)$ be the i-th Pontrjagin class of $F\left(Z_{p}, W^{2 n}\right)$. Since $\partial F\left(Z_{p}, W^{2 n}\right)\left(=F\left(Z_{p}, M^{2 n-1}\right)\right)$ is a homology sphere, the natural homomorphism

$$
j^{*}: H^{i}\left(F\left(Z_{p}, W^{2 n}\right), \partial F\left(Z_{p}, W^{2 n}\right)\right) \rightarrow H^{i}\left(F\left(Z_{p}, W^{2 n}\right)\right)
$$

is an isomorphism for $0<i \leqq \operatorname{dim} F\left(Z_{p}, W\right)-1$. Given an oriented manifold M, let $\sigma(M)$ be the orientation class.

Definition. For each nontrivial partition $\omega=\left\{i_{1}, \cdots, i_{r}\right\}$ with $d(\omega)=$ $\operatorname{dim} F\left(Z_{p}, W\right) / 4$, we define the Pontrjagin number $P_{\omega}\left[F\left(Z_{p}, W^{2 n}\right)\right]$ by

$$
\left\langle j^{*-1} P_{i_{1}}\left(F\left(Z_{p}, W\right)\right) \cdots j^{*-1} P_{i_{r}}\left(F\left(Z_{p}, W\right)\right), \sigma\left(F\left(Z_{p}, W\right)\right)\right\rangle
$$

Then we shall obtain
Theorem 2.1. Pontrjagin numbers $P_{\omega}\left[F\left(Z_{p}, W\right)\right]$ mod p depends only on $M^{2 n-1}$ and not on $W^{2 n}$. If $\operatorname{dim} F\left(Z_{p}, M^{2 n-1}\right)<2 p-3$, then the index $I\left(F\left(Z_{p}, W^{2 n}\right)\right)$ mod p depends only on $M^{2 n-1}$ and not on $W^{2 n}$.

As an application, we can distinguish regular Z_{p}-actions on the Brieskorn spheres. Recall the explicit description of homotopy spheres in $b P_{4 q+4 r}$ given by Brieskorn [4] and Hirzebruch [8];

$$
\begin{array}{r}
\sum_{3.6 k-1}^{40+4 r-1}=\left\{\left(z_{1}, \cdots, z_{2 q+2 r+1}\right) \in C^{2 q+2 r+1} \mid z_{1}^{3}+z_{2}^{6 k-1}+z_{3}^{2}+\cdots+z_{2 q+2 r+1}^{2}=\varepsilon\right. \\
\left.\left|z_{1}\right|^{2}+\cdots+\left|z_{2 q+2 r+1}\right|^{2}=1\right\}
\end{array}
$$

where ε is a small real number. Let $\varphi: Z_{p} \rightarrow S U(2 r)$ be the representation defined by

$$
\begin{aligned}
& \varphi\left(e^{2 \pi i / p}\right)=\left[\begin{array}{cc}
A\left(e^{2 \pi i / p}\right) & 0 \\
\ddots & \\
0 & A\left(e^{2 \pi i / p}\right)
\end{array}\right] \text { where } \\
& A\left(e^{2 \pi i / p}\right)=\left[\begin{array}{ll}
\cos 2 \pi / p & -\sin 2 \pi / p \\
\sin 2 \pi / p & \cos 2 \pi / p
\end{array}\right] .
\end{aligned}
$$

Then Z_{p} acts on the last $2 r$ variables of $\sum_{3,6 k-1}^{4 q+4 r-1}$ by means of the representation φ. Let us denote this action by $\left(\sum_{3,6 k-1}^{4 q+4 r-1}, \varphi_{q, k}, Z_{p}\right)$. Then we shall have

Corollary 2.2. If $4 q<2 p-2$ and $k \equiv k^{\prime} \bmod p$, then $\left(\sum_{3,6 k-1}^{4 q+4 r-1}, \varphi_{q, k}, Z_{p}\right)$ is not equivalent to $\left(\sum_{3,6 k^{\prime}-1}^{4 q+4 r-1}, \varphi_{q, k^{\prime}}, Z_{p}\right)$.

Remark 2.3. Actually, if $q>r$, then $\left(\sum_{3,6 k-1}^{4 q+4 r-1}, \varphi_{q, k}, Z_{p}\right)$ is not equivalent to $\left(\sum_{3,6 k^{\prime}-1}^{4 q+4}, \varphi_{q, k^{\prime}}, Z_{p}\right)$ for $k \neq k^{\prime}$ (see Ku [11]).

The proofs of Theorem 2.1 and Corollary 2.2 will be given in $\S 3$ and $\S 4$ respectively.

3. Invariants for regular $\boldsymbol{Z}_{\boldsymbol{p}}$-actions

Suppose a regular Z_{p}-action ($M^{2 n-1}, \varphi, Z_{p}$) satisfies the hypotheses (i) and (ii) preceding Theorem 2.1 in $\S 2$. Let $\left(W_{1}^{2 n}, \Phi_{1}, Z_{p}\right)$ and $\left(W_{2}^{2 n}, \Phi_{2}, Z_{p}\right)$ be two extensions of the action ($M^{2 n-1}, \varphi, Z_{p}$) satisfying (ii). Denote by ξ_{1} and ξ_{2} the normal complex bundles of the fixed point sets $F\left(Z_{p}, W_{1}\right)$ and $F\left(Z_{p}, W_{2}\right)$ respectively. By pasting the two Z_{p}-manifolds together, we obtain the action $\left(W, \Phi, Z_{p}\right)=\left(W_{1} \cup_{i d}\left(-W_{2}\right), \Phi_{1} \cup \Phi_{2}, Z_{p}\right)$ where $-W_{2}$ is W_{2} with the opposite orientation. It follows from the uniqueness of the complex structure that the normal bundle of the fixed point set $F=F\left(Z_{p}, W_{1}\right) \cup\left(-\left(F\left(Z_{p}, W_{2}\right)\right)\right)$ of the action (W, Φ, Z_{p}) has the complex vector bundle structure ξ whose restrictions to $F\left(Z_{p}, W_{1}\right)$ and $F\left(Z_{p}, W_{2}\right)$ are isomorphic to ξ_{1} and ξ_{2} respectively as complex vector bundles. Hence we have by a standard argument involving MayerVietoris exact sequences that the i-th Chern class $c_{i}(\xi)$ is divisible by p for $0<i<\operatorname{dim} F / 2$.

In addition to that, we shall have the following lemma.
Lemma 3.1. $\quad c_{i_{0}}(\xi)$ is divisible by p where $i_{0}=\operatorname{dim} F / 2$.
Proof. If $\operatorname{dim} F>\operatorname{dim} W / 2, c_{i_{0}}(\xi)=0$ by definition. Therefore we have only to prove that $c_{i_{0}}(\xi)$ is divisible by p when $\operatorname{dim} F \leqq \operatorname{dim} W / 2$.

We now introduce some notations. For a space X and a non-negative integer n, we denote by $\Omega_{n}(X)$ the bordism group in the sense of Conner and Floyd [6]. The bordism class to which $f: M^{n} \rightarrow X$ belongs is denoted by [$\left.M^{n}, f\right]$. Following [6], we also use the notations $\Omega_{n}(G)\left(=\Omega_{n}(B G)\right)$ and $\widetilde{\Omega}_{n}(G)$ where G is a finite group. Since we can regard $\Omega_{n-2}\left(\boldsymbol{C P}^{\infty}\right)\left(\operatorname{resp} . \Omega_{n-1}\left(Z_{p}\right)\right)$ as the bordism group of free S^{1}-actions (resp. free Z_{p}-actions), there is a natural homomorphism

$$
\mu: \Omega_{n-2}\left(\boldsymbol{C P}^{\infty}\right) \rightarrow \Omega_{n-1}\left(Z_{p}\right)
$$

defined by restricting the group S^{1} to Z_{p}. Denote by $\gamma_{2 i+1}$ the element of $\Omega_{2 i}\left(\boldsymbol{C P}^{\infty}\right)$ represented by the natural free S^{1}-action on $S^{2 i+1}$ where $i=0,1,2, \cdots$. Then we can interpret the main theorem of Conner and Floyd [6] as follows.

Theorem 3.2. There exist a sequence of manifolds $M_{o}^{0}=p$-points, M_{o}^{4}, M_{o}^{8}, \cdots such that
(i) Ker μ is the submodule generated by $\beta_{1}, \beta_{3}, \beta_{5} \cdots$ where $\beta_{2 k-1}=\left[M_{o}^{0}\right] \gamma_{2 k-1}$ $+\left[M_{o}^{4}\right] \gamma_{2 k-5}+\left[M_{o}^{8}\right] \gamma_{2 k-9}+\cdots$,
(ii) the ideal of Ω_{*} generated by all the $\left[M_{0}^{4 k}\right](k=0,1,2, \cdots)$ coincides with the ideal of all elements of Ω_{*} whose Pontrjagin numbers are all divisible by p.

Denote by $\boldsymbol{C P}(\xi)$ the total space of the complex projective space bundle associated with ξ and by $\pi: \boldsymbol{C P}(\xi) \rightarrow F$ the projection map. Let $f: \boldsymbol{C P}(\xi) \rightarrow \boldsymbol{C P}{ }^{\infty}$ be a classifying map of the canonical line bundle over $\boldsymbol{C P}(\xi)$ and $t \in H^{2}(\boldsymbol{C P}(\xi))$ (resp. $t_{o} \in H^{2}\left(\boldsymbol{C P}^{\infty}\right)$) be the first Chern class of the canonical line bundle over $\boldsymbol{C P}(\xi)\left(\right.$ resp. $\left.\boldsymbol{C P}^{\infty}\right)$. Denote by $f_{v}: \boldsymbol{C P}^{v} \rightarrow \boldsymbol{C P}{ }^{\infty}, v=0,1,2, \cdots$ the inclusion maps.

Denote by $D(\xi)$ (resp. $S(\xi)$) the normal disk (resp. sphere) bundle of F in W. Since the action $\left(W, \Phi, Z_{p}\right)$ is regular, $\mu[\boldsymbol{C P}(\xi), f]=\left[S(\xi), \Phi, Z_{p}\right]$, which is equal to zero by the bordism ($W-\operatorname{Int} D(\xi), \Phi, Z_{p}$).

It follows from Theorem 3.2 that there exist $b_{2 n-2 k} \in \Omega_{2 n-2 k}$ for $k=1,2, \cdots, n$, such that

$$
[\boldsymbol{C P}(\xi), f]=\sum_{k=1}^{n} b_{2 n-2 k}\left(\left[M_{o}^{0}\right] \gamma_{2 k-1}+\left[M_{o}^{4}\right] \gamma_{2 k-5}+\cdots\right)
$$

in $\Omega_{2 n-2}\left(\boldsymbol{C P}^{\infty}\right)$. Namely there exist a compact oriented manifold $X^{2 n-1}$ and a $\operatorname{map} f: X^{2 \boldsymbol{n}-1} \rightarrow \boldsymbol{C P}{ }^{\infty}$ such that

$$
\partial X=\boldsymbol{C P}(\xi) \cup-\sum_{k=1}^{n} B_{2 n-2 k} \times\left(M_{o}^{0} \times \boldsymbol{C P}^{k-1} \cup M_{o}^{4} \times \boldsymbol{C P}^{k-3} \cup \cdots\right)
$$

and

$$
\bar{f} \mid \boldsymbol{C P}(\xi)=f
$$

and

$$
\bar{f} \mid B_{2 n-2 k} \times M_{o}^{4 t} \times \boldsymbol{C P}^{k-2 t-1}=f_{k-2 i-1} \circ \pi_{1}
$$

where $B_{2 n-2 k}$ is a closed oriented manifold representing the class $b_{2 n-2 k}$ and $\pi_{1}: B_{2 n-2 k} \times M_{o}^{4 i} \times \boldsymbol{C P}{ }^{k-2 i-1} \rightarrow \boldsymbol{C P} \boldsymbol{P}^{k-2 i-1}$ is the projection map.

It will be convenient to introduce the following notations. Set $G=$ $\sum_{k=1}^{n} B_{2 n-2 k} \times\left(M_{o}^{0} \times \boldsymbol{C} \boldsymbol{P}^{k-1} \cup M_{o}^{4} \times \boldsymbol{C} \boldsymbol{P}^{k-3} \cup \cdots\right)$ and $\operatorname{set} f^{\prime}=\bar{f} \mid G$.

Then we have

$$
\begin{aligned}
& \left\langle f^{*} t_{o}^{n-1}, \sigma(\boldsymbol{C P}(\xi))\right\rangle \\
= & \left\langle f^{\prime} t_{o}^{n-1}, \sigma(G)\right\rangle \\
= & \sum_{k, i}\left\langle\pi_{1}^{*} f_{k-2 i-1}^{*} t_{o}^{n-1}, \sigma\left(B_{2 n-2 k} \times M_{o}^{4 i} \times \boldsymbol{C P}^{k-2 i-1}\right)\right\rangle \\
= & \left\langle\pi_{1}^{*} f_{n-1}^{*} t_{o}^{n-1}, \sigma\left(B_{0} \times M_{o}^{0} \times \boldsymbol{C P}^{n-1}\right\rangle\right) \\
= & \pm p b_{o} .
\end{aligned}
$$

Here we identified Ω_{0} with $Z . \quad$ It follows that $t^{n-1}\left(=f^{*}\left(t_{o}^{n-1}\right) \in H^{n-1}(\boldsymbol{C P}(\xi)) \simeq Z\right)$
is divisible by p. Let x be the element of $H^{n-1}(\boldsymbol{C P}(\xi))$ such that $t^{n-1}=p x$ and choose $c_{i}^{\prime} \in H^{2 t}(F)$ such that $c_{i}(\xi)=p c_{i}^{\prime}$ for $0<i<\operatorname{dim} F / 2$. According to Dold [7], $H^{*}(\boldsymbol{C P}(\xi))$ is a free graded $H^{*}(F)$-module with base $1, t, \cdots, t^{n-i_{0}-1}$, via the induced homomorphism π^{*}. It follows that there exist $y, y_{1}, \cdots, y_{i_{0}-1} \in$ $H^{2 i_{0}}(F)$ such that $x=\pi^{*}(y) t^{n-i_{0}-1}$ and $\pi^{*}\left(c_{i}^{\prime}\right) t^{n-i-1}=\pi^{*}\left(y_{i}\right) t^{n-i_{0}-1}, i=1, \cdots, i_{0}-1$. On the other hand, recall the following formula (cf. Borel-Hirzebruch [2] and Bott [3]),

$$
\begin{equation*}
t^{n-i_{0}}+\sum_{i=1}^{i_{0}} \pi^{*}\left(c_{i}(\xi)\right) \cdot t^{n-t_{0}-i}=0 \tag{3.3}
\end{equation*}
$$

Hence we have

$$
\begin{aligned}
& \pi^{*}\left\{p\left(y+\sum_{i=1}^{i_{0}-1} y_{i}\right)+c_{i_{0}}(\xi)\right\} t^{n-t_{0}-1} \\
= & p x+p \sum_{i=1}^{i_{0}-1} \pi^{*}\left(c_{i}^{\prime}\right) t^{n-i-1}+\pi^{*}\left(c_{i_{0}}(\xi)\right) t^{n-i_{0}-i} \\
= & t^{n-1}+\sum_{i=1}^{i_{0}} \pi^{*}\left(c_{i}(\xi)\right) t^{n-i-1} \\
= & t^{i_{0}-1}\left(t^{n-i_{0}}+\sum_{i=1}^{i_{0}} \pi^{*}\left(c_{i}(\xi)\right) t^{n-i_{0}-i}\right) \\
= & 0
\end{aligned}
$$

In view of the module structure of $H^{*}(\boldsymbol{C P}(\xi))$, we may conclude that

$$
c_{i_{0}}(\xi)=-p\left(y+\sum_{i=1}^{i_{0}-1} y_{i}\right)
$$

This completes the proof of Lemma 3.1.
Using Lemma 3.1 and the formula (3.3), we obtain

Lemma 3.4. t^{i} is divisible by p for $i \geqq n-i_{0}$.

We are now ready to prove the following proposition which provides the main step in the proof of Theorem 2.1.

Proposition 3.5. $\left\langle P_{\omega}(F), \sigma(F)\right\rangle \equiv\left\langle P_{\omega}(\boldsymbol{C P}(\xi)) t^{n-i_{0}-1}, \sigma(\boldsymbol{C P}(\xi))\right\rangle \bmod p$ for all partitions ω with $d(\omega)=i_{0} / 2$.

Proof. Let η be the complex vector bundle along the fibers of the bundle $\pi: \boldsymbol{C P}(\xi) \rightarrow F$. Then the Chern class (with real coefficients) of the complex vector bundle η is generally given by the formula:

$$
c(\eta)=\sum_{i=1}^{i_{0}}(1+t)^{n-i_{0}-i} \pi^{*}\left(c_{i}(\xi)\right)
$$

(see Borel-Hirzebruch [2]). Hereafter we say that an element $x \in H^{*}(X, \boldsymbol{R})$ is dividsible by p if x is in the image of $p H^{*}(X ; Z)$ under the following natural
homomorphism $H^{*}(X ; Z) \rightarrow H^{*}(X ; \boldsymbol{R})$ induced by the inclusion $Z \rightarrow \boldsymbol{R}$. Then we can express $c(\eta)$ as

$$
c(\eta)=(1+t)^{n-t_{0}}+\delta_{1}
$$

where δ_{1} is an element of $H^{*}(\boldsymbol{C P}(\xi) ; \boldsymbol{R})$ divisible by p, since $c_{i}(\xi)$ is divisible by p for all $i \geqq 1$. The i-th Pontrjagin class $P_{i}(\eta)$ is in general given by $(-1)^{i} \sum_{j_{1}+j_{2}=2 i}(-1)^{j_{1}} c_{j_{1}}(\eta) \cdot c_{j_{2}}(\eta)$ for a complex vector bundle η. It follows immediately that we can express $P_{i}(\eta)$ (with real coefficient) as

$$
P_{i}(\eta)=(-1)^{i} \sum_{j_{1}+j_{2}=2 i}(-1)^{j_{1}}\left[\begin{array}{c}
n-i_{0} \\
j_{1}
\end{array}\right]\left[\begin{array}{c}
n-i_{0} \\
j_{2}
\end{array}\right] t^{2 i}+\delta_{2}
$$

where δ_{2} is an element of $H^{*}(\boldsymbol{C P}(\xi) ; \boldsymbol{R})$ divisible by p. Since $P(\boldsymbol{C P}(\xi))=$ $\pi^{*}(P(F)) P(\eta)$ modulo 2-torsion, we have the formula (with real coefficients);

$$
\begin{aligned}
P_{i}(\boldsymbol{C P}(\xi)) & =\sum_{i_{1}+i_{2}=i} \pi^{*}\left(P_{i_{1}}(F)\right) \cdot P_{i_{2}}(\eta) \\
& =\sum_{i_{1}+i_{2}=i}\left\{\pi^{*}\left(P_{i_{1}}(F)\right) \cdot(-1)^{i_{2}} \sum_{j_{1}+j_{2}=2 i_{2}}(-1)^{j_{1}}\left[\begin{array}{c}
n-i_{0} \\
j_{1}
\end{array}\right]\left[\begin{array}{c}
n-i_{0} \\
j_{2}
\end{array}\right] t^{z_{2}}\right\}+\delta_{3}
\end{aligned}
$$

where δ_{3} is an element of $H^{*}(\boldsymbol{C P}(\xi) ; \boldsymbol{R})$ divisible by p. Hence for each partition ω with $d(\omega)=i_{0} / 2$, we have

$$
\begin{aligned}
& \left\langle\boldsymbol{P}_{\omega}(\boldsymbol{C P}(\xi)) t^{n-i_{0}-1}, \sigma(\boldsymbol{C P}(\xi))\right\rangle \\
= & \left\langle\pi^{*}\left(P_{\omega}(F)\right) t^{n-i_{0}-1}+\text { terms with higher powers of } t, \sigma(\boldsymbol{C P}(\xi))\right\rangle \bmod p \\
= & \left\langle\boldsymbol{P}_{\omega}(F), \sigma(F)\right\rangle \bmod p
\end{aligned}
$$

by Lemma 3.4. This completes the proof of Proposition 3.5.
A brief computation, using Theorem 3.2, leads to the following result.
Lemma 3.6. The bordism Pontrjagin numbers

$$
\left\langle P_{\omega}(\boldsymbol{C P}(\xi)) f^{*} t_{o}^{n-1-2 \alpha(\omega)}, \sigma(\boldsymbol{C P}(\xi))\right\rangle
$$

are divisible by p for all partitions ω with $0 \leqq d(\omega) \leqq(n-1) / 2$.
By combining Proposition 3.5 and Lemma 3.6, we conclude that

$$
\left\langle P_{\omega}(F), \sigma(F)\right\rangle \equiv 0 \bmod p
$$

for all partitions ω with $d(\omega)=i_{0} / 2$. We are now ready to prove our Theorem 2.1. We introduce some notatoins. Denote by a, 1 or 2 . Then we set $F_{a}=F\left(Z_{p}, W_{a}\right)$. Let $i_{a}: F_{a} \rightarrow F_{1} \cup\left(-F_{2}\right)$ be the inclusion and let $\pi: F_{1} \cup\left(-F_{2}\right)$ $\rightarrow F_{1} \cup\left(-F_{2}\right) / \partial F_{1}$ be the map obtained by collapsing ∂F_{1} to a point. Let $j_{a}: F_{a} \rightarrow F_{a} / \partial F_{a}$ be the map obtained by collapsing ∂F_{a} to a point and $\pi_{a}: F_{1} \cup$ $\left(-F_{2}\right) / \partial F_{1} \rightarrow F_{a} / \partial F_{a}$ be the map obtained by collapsing F_{3-a} to a point. Since

$$
j_{a}^{*}: H^{i}\left(F_{a} / \partial F_{a}\right) \rightarrow H^{i}\left(F_{a}\right)
$$

is an isomorphism for $i \leqq 2 i_{0}-1$, there exists the unique class ${ }_{a} \hat{P}_{i} \in H^{4 i}\left(F_{a} / \partial F_{a}\right)$ such that $j_{a}^{*}\left({ }_{a} \hat{P}_{i}\right)=P_{i}\left(F_{a}\right)$ for $4 i \leqq 2 i_{0}-1$. We shall now show that $\pi^{*}\left\{\pi_{1}^{*}\left({ }_{1} \hat{P}_{i}\right)+\right.$ $\left.\pi_{2}^{*}\left({ }_{2} \hat{P}_{i}\right)\right\}$ is equal to $P_{i}\left(F_{1} \cup\left(-F_{2}\right)\right)$ for $4 i \leqq 2 i_{0}-1$. Sicne

$$
i_{1}^{*} \oplus i_{2}^{*}: H^{i}\left(F_{1} \cup\left(-F_{2}\right)\right) \rightarrow H^{i}\left(F_{1}\right) \oplus H^{i}\left(F_{2}\right)
$$

is an isomorphism for $0<i \leqq 2 i_{0}-1$, an element $x \in H^{4 t}\left(F_{1} \cup\left(-F_{2}\right)\right)$ satisfying $i_{a}^{*} x=P_{i}\left(F_{a}\right)(a=1,2)$ is nothing but $P_{i}\left(F_{1} \cup\left(-F_{2}\right)\right)$. We have

$$
\begin{aligned}
& i_{a}^{*} \pi^{*}\left\{\pi_{1}^{*}\left({ }_{1} \dot{P}_{i}\right)+\pi_{2}^{*}\left({ }_{2} \hat{P}_{i}\right)\right\} \\
= & i_{a}^{*} \pi^{*} \pi_{1}^{*}\left({ }_{1} P_{i}\right)+i_{a}^{*} \pi^{*} \pi_{2}^{*}\left({ }_{2} \hat{P}_{i}\right) \\
= & j_{a}^{*}\left({ }_{a} \hat{P}_{i}\right) \\
= & P_{i}\left(F_{a}\right) \text { for } 0<4 i \leqq 2 i_{0}-1,
\end{aligned}
$$

since

$$
i_{a}^{*} \pi^{*} \pi_{a^{\prime}}^{*}=\left\{\begin{array}{cl}
j_{a}^{*} & \text { if } a=a^{\prime} \\
0 & \text { if } a \neq a^{\prime}
\end{array}\right.
$$

Therefore we have shown that

$$
\pi^{*}\left\{\pi_{1}^{*}\left({ }_{1} \hat{P}_{i}\right)+\pi_{2}^{*}\left({ }_{2} \hat{P}_{i}\right)\right\}=P_{i}\left(F_{1} \cup\left(-F_{2}\right)\right)
$$

Let $\omega=\left(i_{1}, \cdots, i_{r}\right)$ be a non trivial partition of $i_{0} / 2$, then

$$
\begin{aligned}
& P_{\omega}\left(F_{1} \cup\left(-F_{2}\right)\right) \\
= & \pi^{*}\left\{\pi_{1}^{*}\left({ }_{1} \hat{P}_{i_{1}}\right)+\pi_{2}^{*}\left({ }_{2} \hat{P}_{i_{1}}\right)\right\} \cdots\left\{\pi_{1}^{*}\left({ }_{1} \hat{P}_{i_{r}}\right)+\pi_{2}^{*}\left({ }_{2} \hat{P}_{i_{r}}\right)\right\} \\
= & \pi^{*}\left\{\pi_{1}^{*}\left({ }_{1} \hat{P}_{\omega}\right)+\pi_{2}^{*}\left({ }_{2} \hat{P}_{\omega}\right)\right\},
\end{aligned}
$$

where ${ }_{a} \hat{P}_{\omega}$ means ${ }_{a} \hat{P}_{i_{1}} \cdots_{a} \hat{P}_{i_{r}}$, since $\pi_{a}^{*}\left({ }_{a} \hat{P}_{i}\right) \cdot \pi_{a^{\prime}}^{*}\left({ }_{a^{\prime}} \hat{P}_{i^{\prime}}\right)=0$ for $a \neq a^{\prime}$. Hence we have

$$
\begin{aligned}
& \left\langle P_{\omega}\left(F_{1} \cup-F_{2}\right), \sigma\left(F_{1} \cup\left(-F_{2}\right)\right)\right\rangle \\
= & \left.\left\langle\pi^{*}\left\{\pi_{1}^{*}\left({ }_{1} \hat{P}_{\omega}\right)\right\}+\pi_{2}^{*}\left({ }_{2} \hat{P}_{\omega}\right)\right\}, \sigma\left(F_{1} \cup\left(-F_{2}\right)\right)\right\rangle \\
= & \left\langle\pi_{1}^{*}\left({ }_{1} \hat{P}_{\omega}\right)+\pi_{2}^{*}\left({ }_{2} \hat{P}_{\omega}\right), \pi_{*} \sigma\left(F_{1} \cup\left(-F_{2}\right)\right)\right\rangle \\
= & \left\langle\pi_{1}^{*}\left({ }_{1} \hat{P}_{\omega}\right), \pi_{*} \sigma\left(F_{1} \cup\left(-F_{2}\right)\right)\right\rangle+\left\langle\pi_{2}^{*}\left({ }_{2} \hat{P}_{\omega}\right), \pi_{*} \sigma\left(F_{1} \cup\left(-F_{2}\right)\right)\right\rangle \\
= & \left\langle{ }_{1} \hat{P}_{\omega}, \pi_{1 *} \pi_{*} \sigma\left(F_{1} \cup\left(-F_{2}\right)\right)\right\rangle+\left\langle_{2} \hat{P}_{\omega}, \pi_{2 *} \pi_{*} \sigma\left(F_{1} \cup\left(-F_{2}\right)\right)\right\rangle \\
= & \left\langle\left\langle_{1} \hat{P}_{\omega}, \sigma\left(F_{1} / \partial F_{1}\right)\right\rangle+\left\langle_{2} \hat{P}_{\omega},-\sigma\left(F_{2} \mid \partial F_{2}\right)\right\rangle\right. \\
= & P_{\omega}\left[F_{1}\right]-P_{\omega}\left(F_{2}\right) .
\end{aligned}
$$

Thus we have that

$$
P_{\omega}\left[F_{1}\right] \equiv P_{\omega}\left(F_{2}\right) \quad \bmod p
$$

If $\operatorname{dim} F<2 p-2$, then $\left\langle P_{\omega}(F), \sigma(F)\right\rangle \equiv 0 \bmod p$ means that $[F]$ is divisible
by p in Ω_{*} (see Conner-Floyd [6]). In particular, $I(F) \equiv 0 \bmod p$. Since $I(F)=I\left(F_{1}\right)-I\left(F_{2}\right)$, we have that

$$
I\left(F_{1}\right) \equiv I\left(F_{2}\right) \quad \bmod p
$$

This completes the proof of Theorem 2.1.

4. An application to $\boldsymbol{Z}_{\boldsymbol{p}}$-actions on Brieskorn spheres

Let $\sum_{3,6 k-1}^{4 q-1} \subset \sum_{3,6 k-1}^{49+4 r-1}$ be the imbedding defined by

$$
\left(z_{1}, \cdots, z_{2 q+1}\right) \mapsto\left(z_{1}, \cdots, z_{2 q+1}, 0, \cdots, 0\right)
$$

then the fixed point set of the action $\left(\sum_{3,6 k-1}^{4 q+4 r-1}, \varphi_{q, k}, Z_{p}\right)$ is this submanifold which is a homology sphere [4], [13]. The manifold

$$
\begin{aligned}
W_{3,6 k-1}^{4 q+4 r}= & \left\{\left(z_{1}, \cdots, z_{2 q+2 r+1}\right) \in C^{2 q+2 r+1} \mid z_{1}^{3}+z_{2}^{6 k-1}+z_{3}^{2}+\cdots\right. \\
& \left.+z_{2 q+2 r+1}^{2}=\varepsilon,\left|z_{1}\right|^{2}+\cdots+\left|z_{2 q+2 r+1}\right|^{2} \leqq 1\right\}
\end{aligned}
$$

admits a regular Z_{p}-action given in the manner of the action $\left(\sum_{3,6 k-1}^{4 q+4 r-1}, \varphi_{q, k}, Z_{p}\right)$. We denote it by $\left(W_{3,6 k-1}^{4 q+4 r}, \Phi_{q, k}, Z_{p}\right)$. Then the restriction $\partial\left(W_{3,6 k-1}^{4 q+4 r}, \Phi_{q, k}, Z_{p}\right)$ to the boundary $\partial W_{3,6 k-1}^{4 p+4 q}$ is nothing but $\left(\sum_{3,6 k-1}^{4 q+4 r-1}, \varphi_{q, k}, Z_{p}\right)$. The fixed point set of the action [$W_{3,6 k-1}^{4 q+4 r}, \Phi_{q, k}, Z_{p}$] is $W_{3,6 k-1}^{49}$ which is connected and the normal complex bundle of the fixed point set is trivial, i.e., the hypotheses (i) and (ii) preceding the statement of Theorem 2.1 in $\$ 2$ are satisfied. According to [4], $I\left[W_{3,6 k-1}^{4 q}\right]=(-1)^{q} 8 k$. It follows from Theorem 2.1 that $\left(\sum_{3,6 k-1}^{4 q+4 r-1}, \varphi_{q, k}, Z_{p}\right)$ is not equivalent to $\left(\sum_{3,6 k^{\prime}-1}^{4 q+4}, \varphi_{q, k^{\prime}}, Z_{p}\right)$ if $k \equiv k^{\prime} \bmod p$. This completes the proof of Corollary 2.2.

Osaka University

Reference

[1] M.F. Atiyah and I.M. Singer: The index of elliptic operators III, Ann. of Math. 87 (1968), 546-604.
[2] A. Borel and F. Hirzebruch: Characteristic classes and homogeneous spaces, I, Amer. J. Math. 80 (1958), 458-538.
[3] R. Bott: Notes on K-theory, Harvard University, Cambridge, Mass., 1962.
[4] E. Brieskorn: Beispiele zur Differentialtopologie von Singularitäten, Invent. Math. 2 (1966), 1-14.
[5] W. Browder and T. Petrie: Semi-free and quasi-free S^{1}-actions on homotopy spheres, Memoires dédiés à George de Rham, Springer-Verlag (1970), 136-146.
[6] P.E. Conner and E.E. Floyd: Differentiable Periodic Maps, Springer-Verlag, 1964.
[7] A. Dold: Relations between ordinary and extraordinary homology, Colloquium on Algebraic Topology, Aarhus Universitet, 1962.
[8] F. Hirzebruch: Singularities and exotic spheres, Séminaire Bourbaki, 1966/67, No. 314.
[9] K. Kawakubo: Invariants for semi-free S^{1}-actions, Springer Lecture Note, 298 (1972), 1-13.
[10] K. Kawakubo: The index and the generalized Todd genus of Z_{p}-actions, to appear in Amer. J. Math.
[11] H.T. Ku: The Eells-Kuiper invariants and group actions, mimeographed, University of Massachusetts, Amherst 1972.
[12] J. Milnor: Lecture on characteristic classes, mimeographed notes. Princeton, 1958.
[13] J. Milnor: Singular Points of Complex Hypersurfaces, Annals of Mathematics Studies 61, Princeton, 1968.

[^0]: * Current address: Mathematisches Institut der Universităt Bonn, Wegelerstraße 10, West Germany

