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Introduction

In 1955, M. Heins [6] introduced a class of analytic mappings of Riemann
surfaces. 'The maps in this class, called maps of type B1, can be seen as a natural
generalization of the Seidel functions. They have some remarkable interior
properties, e.g., the covering property. The boundary behaviour of a map of
type Bl is also interesting in suitable compactifications. We can find fruitful
results concerning this problem under the Martin compactification [1], [4].
The notion of a map of type Bl is extended by Constantinescu-Cornea to a
harmonic map of harmonic spaces satisfying Brelot’s axioms [3]. They defined
a harmonic map of type Bl and discussed similar interior properties and in-
vestigated the boundary properties by using the Wiener compactifications of
harmonic spaces. The results obtained there are very beautiful. The detailed
investigation on the covering properties of harmonic maps of type Bl will be
found in [10], [11].

The purpose of this paper is to study the boundary behaviour of a harmonic
map of type Bl at the Martin boundary defined in [§8]. Let ¢ be a harmonic
map of type Bl from a harmonic space X into X’, each of which satisfying
adequate conditions. We consider the Martin compactification X* of X and
define the fine cluster set $(x) of @ at a minimal Martin boundary point x of X,
which plays an important role in this article. The hypotheses, notations and
definitions which will be used in the following are stated in §1. §1 contains
also some results concerning the quotient sheaves. In §2, we deal with the
case of an arbitrary compactification of X’ including the case where X’ itself is
compact. The boundary characterization of maps of type B1 is stated in Theorem
2. In §3, we restrict ourselves to the case where X’ is non-compact and has a
potential. Our next concern is the case where the compactification of X’ is me-
trizable and resolutive. In this case we can derive a version of covering property
which is stated in the Corollary to Theorem 7 in §4. In §5, we consider the
Martin compactification of X’ and obtain the theorem that if ¢ is a finite covering
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(i.e., for every a’€X’ ¢~ *(a’) consists of at most 7 elements, where # is indepen-
dent of a’), then for every minimal positive harmonic function v" on X’ v/op
is a linear combination of a finite number of minimal positive harmonic functions
on X(Theorem 11). The last section is devoted to a short remark on a more
restricted class of harmonic maps, i.e., maps of type B1,. They can be seen as
a generalization of analytic maps of type Bl,, defined by Heins [6] originally
and considered by Constantinescu-Cornea [1] with the Martin compactification.

1. Preliminaries

Hypotheses. Let X be a harmonic space in the sense of Brelot; we further
assume that

1) X is non-compact,

2) X &P, i.e., there exists a positive potential on X,

3) X has a countable base of open sets,

4) X satisfies the proportionality axiom, i.e., for every a€X potentials
with single point support {a} are all proportional,

5) 1€9(X),i.e., constant functions are Wiener functions (for the definition
of Wiener function, we refer to [3]).

Next, let X’ be another harmonic space in the sense of Brelot. For X’
we assume only

1) X'ePUH, i.e., there exists a positive superharmonic function on X',

2) X’ has a countable base of open sets,

3) 1eP(X).

The Martin boundary. 'The Martin compactification XM of X is defined as
follows [8]: let S* be the set of all non-negative superharmonic functions and E
be the set of all potentials with single point support. By introducing Herve’s
topology [7], we know that the positive cone S* is metrizable and has a compact
base 4, and EN A is homeomorphic to X. XM is defined to be the closure of
ENA in A with respect to Herve’s topology. AM=XM\ X is termed the
Martin boundary of X. To each x& AM there corresponds a positive harmonic
function k, on X. A} is the set of all x &AM such that &, is minimal. The
Martin compactification is resolutive, and the harmonic measure on AM will be
denoted by w™.

DErFINITIONS. Let @ be a harmonic map of X into X’ ([3], p. 20). For a
function f defined on X and for an open subset U of X, we define
hyperharmonic function defined on U with non-
positive subharmonic minorant, s> f outside
%3 of a compact subset of X, hm mf s(a)=>0 for

every b&0U (the relative boundary of U)

E;I»X = inf 5
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and

hyperharmonic function defined and bounded
HYX = inf { s; below on U, s>0 outside of a compact subset
of X, lim ibnf s(a)> f(b) for every beoU

We abbreviate 2% to hf.

@ is called of type Bl at o’ = X'if there exists an open neighbourhood U’ of
@ such that f$7U”"X=0. A map of type Bl is defined to be of type Bl at every
@’ €X’. Recall that if @ is of type Bl, then p’op is a potential for every potential
#’ which is locally bounded on X”, and £,V X <hY'*’ogfor every U’ e P and
locally bounded f’.

Quotient sheaves. Let u, be a positive harmonic function on X, 4, a sheaf
of u,-harmonic functions. A w#,-harmonic function is of form u/u,, where u is
harmonic. Obviously, constant functions are u,-harmonic. #,-regular domains,
i.e., regular domains for 4, are identical with original regular domains. The
u,-superharmonic functions (resp. #,-potentials) are the quotients of superharmo-
nic functions (resp. potentials) by #,. For positive u,~superharmonic function f,
u,-reduced function R¥ defined by

£ — inf {f,; a u,-superharmonic function dominating f on E}

is equal to Rf, [u,.

From the construction of the Martin compactification stated above, it is
evident that the Martin compactification X™* of X with respect to 4, is ho-
meomorphic to XM. We identify them. A set E of X is termed thin at x& A}M
if RE=kE,. Thinness of sets at x is unaltered when we consider the quotient
sheaves.

A continuous function f on X is termed a u,-Wiener function if #,f € 9Y(X),
then we have

dy = hsylty,

where d, is the harmonization of f with respect to 4. In particular, 1is a u,-
Wiener function and d,=1. We know ([8], Th. 5, p. 261) that for f = C(X™)

Dy =4y,

where 9, is the u,-Dirichlet solution of f, i.e., the Dirichlet solution with re-
spect to 4,,, which means that the Martin compactification is u,-resolutive. If
we write

D,ufa) = | f datt,

then
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dw*o(x) = (k.(a)[ua))dun(x),
where uo=Skxd (%) (the canonical representation of u,). In particular, if u =k,

for x,& A}, then dw}"*=¢, (The Dirac measure at x,).
Let X’ 2 and X’ be non-compact.

If X'* is an arbitrary resolutive compactification of X', then X'* is a u,/-resolu-
tive compactification of X', where u,=h¥'. For, let f’ be an arbitrary continuous
function on A’=X"*\ X’ and F’ be a continuous extension of f’ onto X"*. It
is readily seen that ﬁ§1“0f=(@ 7 ug?) U, and ﬁféﬁ,{/:(@ oug) U« Since 1=uy+¢’
and |¢'| <p’ for a potential p’, F'u/=F'-1—F’-q’. F’is a Wiener function and
F’.¢ is a Wiener potential, whence

=~/ 4 4
Ry = Wy = W5

Thus f” is u/-resolutive.
From the above proposition, we have for every a’ € X’ there exists the Radon
measure v’ on A’ called u,/-harmonic measure such that

@f’,uol(a,) — Sf/dv/a, for fEC(A/) .

The following proposition can be verified in a standard way ([2], 8).

Let X'* be a metrizable and resolutive compactification of X'.

(1) for every lower semi-continuous and bounded below function ' on A’, we
have

Doy = Sf’dv’ = sup {S g'dv'; ¢ is bounded, continuous and g’ < f'} .
(2) for an arbitrary function f,’ on A’, we have

D g iy = S J/dv’ = inf { S f'av’; f' is lower semi-continuous, bounded below
and f'> f,'} .
In particular, a function f' on A’ is uy/-resolutive if and only if it is dv'-sum-
mable.
Let f be a continuous function on A=X*\ X and F be a continuous exten-

sion of f onto X*, where X* is a metrizable and resolutive compactification of
X. We have seen that hf=hg, . Since

@) = | fdos = H/a)  and W (a)fu(@) = D,.ufa) = | fav,

we have d w,=uy(a)dv,. Thus we have:

Let X* be a metrizable and resolutive compactification of X and u,=h¥. The
u,~harmonic measures and the harmonic measures are mutually absolutely continuous.
A function f on A is u-resolutive, if and only if it is resolutive and 9 ;.. =H |u,.
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2. The case of arbitrary compactifications of X’
For a subset 4 of X we write
Ea= {x=AM; A is thin at x} .
We recall that a set 4 is thin at x& A} if and only if RA=£E,.

Lemma 1. Let U be an open subset of X. The following properties are
equivalent :

(i) BRVX=0,
(ii) ﬁuXO\U = u,, where u,= hf,
Proof. (i) « (ii): the equivalence in question is derived from the equalities:
u, = hZY = h7*+HY*  in U ([3], Lemma 2.7)
= hY*+RXNY in U ([3], Lemma 2.5 and Cor. 1.1).

(ii) < (iii): from the integral representation
Uy = s kadﬂ'o(x) ’
Ay
where u, is a Borel measure on AM, called the canonical measure of u,, we have
REY(g) = SA‘Mﬁﬁ\U(a)d po(®) (7], Th. 22.3).

Here IA\’ﬁ\U %k, if and only if x&Ex\y, which proves the equivalence in ques-
tion, since y, and »™ are mutually absolutely continuous ([8], p. 262).

Let X’* be an arbitrary compactification; if X’ is compact, we consider X’*
is X’ itself, and let P(x) be the fine cluster set at x= A¥:
P(x) = N {p(E); X \E is thin at x} ,
where the closure is taken in X"*,
Lemma 2. The following a) and b) are equivélent:
a) oM({xeAY; H(x)SX'})=0,

b) for every relatively compact open subset G’ of X’ not everywhere dense in
X'’ we have o™(E x\p-1c">)=0.

Proof. a) = b): xEEx -1, implies P(x)C p[@ (G')]=G". Let G’ be a
relatively compact open subset of X’ and G’ X’. Then,

Exo-1ahC xeAY; P()S X'},

which proves the assertion.
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b) =>a): let {U,’} be a countable base of open sets for X’. Since
{xeAl; Px)S X'} = “Ql{xe AY; Px)c X'\U,} ,
if oM({x=AY; H(x)SX'})>0, then there exists a U, such that
oM({xe A¥; §x)cX'\U,})>0.

In the same way, we can find a relatively compact open subset G’ of X'\ U,/
with oM({xeA¥; H(x)CG’})>0. Then, we have oM(Ex\p-16,)>0, since
P(x)C G’ implies xEE x\o-1¢6-

Theorem 1. A map ¢ is of type Bl if
oM({xeAY; P(x)SX'})=0.

Proof. Given any point a’X’ we can find U’(a’) which is relatively
compact open neighbourhood of a’, small enough not to be everywhere dense in
X’. Then, by Lemma 2, o™(Ex\p-1p’w’»)=0 and, by Lemma 1, this means
that ¢ is of type Bl, q.e.d..

Theorem 2. Let X'* be an arbitrary compactification of X'.

a) when X' € I\ P (i.e., there exists a positive harmonic function on X'
whereas X' has no potentials), ¢ is of type Bl if and only if P(x)=X"* (or
equivalently, P(x) N X'=X") do™—a.e. on AM.

b) when X'€P, @ is of type Bl if and only if P(x)C A’ (or equivalently,
Px)NX'=¢) doM—a.e. on AM, where N'=X"*\X'.

Proof. a) we shall assume that ¢ is of type B1, then 1 is harmonic on X’
([3], Th. 3.11) and for any open set U’'€ P we have kY"X'=0 ([3], p. 11).
Since B VX <RV ¥ op we have wM(Ex~y-1w1)=0 for every open subset U’
of X’ with U'e .

Let {U,’} be a base of open sets for X’ with U,/ % and

A, = {xeAY; p(x)N U, = ¢} .
If x& AMN\ U 4, then Px)N U, +¢p, n=1,2, .--. We shall show that »™(4,)=0.
n=1

In fact, if V” is a relatively compact open set contained in U,/, then X'\ V'€ P
and A4,CEx\e-1x~7>- Thus we can conclude that ¢(x)=X'* whenever

o ©o
xe A\ U4, and ~U A, is of harmonic measure zero.
=1

n=1
The proof of the “if”” part is derived from Theorem 1.
Proof of b). Let {U,’} be a base of relatively compact open subsets for X’
and u,/=h¥’. RY7 is a locally bounded potential on X’. If @ is of type Bl,
then since u0=hi"’=h¥l0¢=uo’0¢,
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Un’ e-Yu,)
Ruo”‘ oq)z Ruo "

and R%'Us" is a potential on X. Therefore o™(A¥\ E,-1p7,15)=0 ([5], Cor. to
Th. 1), i.e.,  (Uy) is thin do™ —a.e. on AM, Thus, except a set of harmonic
measure zero we have

P(x)c X\ U,/
and further $(x)C N [X*\ U, ]=A".
n=1
The proof of the “if”” part is also immediately derived from Theorem 1.

Remark 1. If ¢: X—X’ is of type Bl and X’ P, then X’ is not compact;
for we have always @(x)= ¢, i.e., there exists no harmonic map of type Bl from
X into X’ with X’ &% and compact.

ReEMARK 2. A harmonic function defined on a harmonic sapce X in which
constant functions are harmonic can be considered as a harmonic map if we endow
R (the set of all real numbers) with the following harmonic structure. A har-
monic function on R is defined to be a linear function; any relatively compact
open setis regular. The harmonic space with this harmonic structure will supply
a somewhat pathological example of harmonic space. For example, if we con-
sider an open interval (a, b), which is a harmonic subspace of R, each point of it
is non-polar. A bounded harmonic function defined on X, considered as a
hamonic map of X into (a, b) is of type Bl if and only if f=au- B, where u is a
harmonic measure (i.e., Hy, for some characteristic function X, of a boundary
set A of AM or, equivalently, u 5 (1—u)=0) and «, B are constants. This is
easily derived from Theorem 2.

3. The case of X' 2P
Let X’e%P. We know the following relations among the properties:
(1) oM({xeAl; P(x)SX'})=0,
(ii) o s of type Bi,
(i) Px)CA doM—ae.,
(iv) for every relatively compact open subset G’ of X' with G'+X’ we have
oM(Exne-16)=0;
(1) = (iv) (Lemma 2)
(i)=(ii) (Theorem 1)
(ii) = (iii) (Theorem 2, b))
(iii) = (iv) (trivially derived)
Thus:

Theorem 3. In the case where X' € P, above properties (i), (ii), (iii) and (iv)



74 T. IKEGAMI

are equivalent.

Theorem 4. Let X'c<P. A harmonic map ¢: X—X' is of type Bl if and
only if for every potential p’ on X' we have

finelim p'op =0  dwM—ae..
To prove the theorem, we require the lemmas:

Lemma 3. Let ¢: X—X’ be of type Bl and let v be a positive harmonic
Sfunction on X such that v[u, is bounded above, u,=hi. If there exists a non-negative
superharmonic function s' on X’ satisfying s'op>v, then the lower envelope of such
functions is harmonic on X’.

Proof. Let U’ be a relatively compact open subset of X’, U’#X’ and
U=¢ (U’). By Theorem 3, we have ov™(Ex.y)=0. We shall show that if s’
is a positive superharmonic function on X’ such that

s>y on X'\ U’,

then §’op>v. For, s=s"op—uv is a superharmonic function on X, s/u, is
bounded below, X\ U is not thin at dw*-almost every point of A™ and s>s o
—oon X\\U. By the minimum principle ([5], Th. 5), s>0 on X and §”op>v.
Thus,

{s; non-negative superharmonic on X', s'op>v}

forms the Perron family, which proves the lemma.

Lemma 4. If fine lim p'op=0 dw™—a.e. on AM for every potential p’ on
X', then u,=h¥<uyop, where uy =h¥'.

Proof. Since u,—p<1 and 1<u,/+p’ for some potentials p and p’ on X
and X', respectively, u, <uy op+-p’op+p. (4, op+p’ op-+p)/u, is a u,~superharmo-
nic function, bounded below and with fine limit inf >1 dw™—a.e.. 'Thus fine
lim inf (#,’o@)/ty>1 d w™—a.e., since fine lim p’op/u, and fine lim p/u, are both
zero dw™—a.e.. This implies u)/opfu,> 9, , =1, q.e.d..

Proof of Theorem 4. Suppose that @ is of type Bl and p’ is a potential on
X’. We shall show that the positive superharmonic function p’o@ dominates no
positive harmonic function v such that v/u, is a limit of an increasing sequence
of bounded #,-harmonic functions. For, if p’op dominates such function, then
it also dominates a positive harmonic function v with v/u, is bounded above.
By Lemma 3, we conclude that

o' = inf {s'; non-negative superharmonic on X', s’op>v}
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is harmonic on X’. Since p’>2'>0, we have v'=0, whence v=0. This means
that p’og is the sum of a potential and a u,-singular harmonic function w, i.e.,
inf (w, u,) is a potential, each of which has a fine limit zero d w™—a.e..

Next, supposing that fine lim p’op=0 whenever p’ is a potential on X’, we
shall show that w™(E xe-1¢,)=0 for every relatively compact open set G’ of X’
with G’%=X’. Consider a potential Rf,, where u/=h¥". By Lemma 4, u,—h¥
<u,’op, whence Ry 1‘5')§Rfo'zo¢. This implies that Ry %" has a fine limit
zero at doM—a.e. on AM and thus o™(Ex\e-16,)=0; for otherwise, at each
point x of a set of positive harmonic measure @ *(G”) is a trace of a fine neigh-
bourhood of x, i.e., the intersection of a fine neighbourhood of x with X. Then
fine 11m Ry “6D—fine hm #, and the latter fine limit is 1 on a set of positive

measure, which is absurd, q.e.d..

Theorem 5. Let ¢: X—X' be a harmonic map, then the following propo-
sitions are equivalent:

(i) for every a’ €X' we have fine lim [¢’,70p]=0 dw™—a.e., where g,/ is
a potential on X' with single point support {a'}.

(ii) o is of type BI,

(iii) for every potential p’ of X' we have fine lim [p'op]=0 dwM—a.e..

Proof. From Theorem 4, it is sufficient to prove that (i) implies (ii).
Suppose @ is not of type Bl. By Theorem 2, there exists a boundary set
AcC A¥ of positive harmonic measure such that $(x) N X’ =¢ for every xE 4.
Let {G,/} be a covering of X’ by relatively compact open sets. Denoting by

Ay = {x€d; P(x)N G+ ¢}
we have DA,,:A. Thus »™(4,)>0 for some n,. @ (G’,) is not thin at

every point x of 4,. Select a point ’€G’,, and form a potential g/,» with
support {a’}. Since G’, is relatively compact, inf g/,>0, whence g’,709 has a
G’y

positive fine lim sup at dw™—a.e. point of 4, q.é.d..

4. The case of metrizable and resolutive compactifications of X’

In what follows we shall assume that
X'* is a metrizable and resolutive compactification of X’.

In [4], Doob characterized the point at which an analytic map of a hyperbolic
Riemann surface into another Riemann surface is of type Bl in terms of fine
cluster sets. In our present case, we know that ([9], Th. 5)

oMAMN P\ F) =0,
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where F= {x& AM; §(x) is a single point of X'*} and P= {xe AN, P(x)=X"*}.
The essential closed range of § is defined to be

N APEN\E); E is of dw™-measure zero} ,

where ¢(F \NE)= {P(x); xeF \\E}. The following theorem is a generalization
of the theorem given by Doob in the probabilistic language.

Theorem 6. A harmonic map ¢: X—X' is of type Bl at a’ =X’ if and
only if a’ does not belong to the essential closed range of P.

Proof. Suppose, first, o is not of type Bl at @’. Then, by the definition
of type B1 and by Lemma 1, we have o™(Ex\,-1w,)>0 for every open neigh-
bourhood U’ of a’ such that U'€P. Since xEEx y-17, implies H(x)c T,
we have 8X\¢—1(U/)CF doM—a.e., i.e., a)M(8X\¢—1(U/)\F):0. For every E of
d oM-measure zero, there exists xz (& pRg—l & Y\E; this implies P(xz)E

U’ﬂ¢(F\E), ie., Ij’ﬂ¢(F\E):l:¢. Since E is arbitrary, U’ intersects with
the essential closed range of ; whence @’ belongs to the essential closed range
of ¢ since U’ may range over a base of open neighbourhoods of a’.

Next, suppose @ is of type Bl at &/, then there exists an open neighbourhood
U’ of @’ such that U'e P and o™(Ex\p-107,)=0. If wM(If‘ )=0, then there is
nothing to prove. Assuming that wM(E)>0, we have P(x) is a single point and
) N(X U )*¢ if xEIf’\é’XW—x(U/). This implies that P(x)eE U’ and

a'€E¢'(F\8x_¢-1(U’>), and a fortiori a’ does not belong to the essential closed
range of @. B
In the following of this section we shall always suppose that X’ e .

Lemma 5. Let p: X—X’ be of type Bl. If f’ is a resolutive function on

A'=X"*\X', then
. { [f'[P(x)] whenever P(x) is defined and a point of A’
) = 0  elsewhere
is resolutive and
H.op=H,.
Proof. First of all, we shall show that f is #,-resolutive and
Dyt ut°P = D gy »
where u/=h¥ and w,=h¥. By Theorem 2, f(x) is defined dwM-a.e. on AM,
We have ([5])
( w/u, is a u,-hyperharmonic function, bounded below,
D4, = inf{ wfu,; fine lim inf (w/u)>f on AM except on a set of
d wM-harmonic measure zero
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Let ¢'[u,’ be a u,/-hyperharmonic function on X’ satisfying that ¢’/u,” is bounded
below and lim inf (¢//u)/)> f’ on A’. Since ¢ is of type Bl, #,/op=u, and
(v o@)[u, is in the class defining the lower envelope 9, ,,, whence Dy ufoP =
9 fuy  Similarly, we have 9, o< 9D, ., which proves the assertion, since f’
is u,’-resolutive (§1).

Next, we proceed to the ordinary Dirichlet solutions. From the result
stated in §1, we have

H [9(a)] = 4 [p(@)]|D g [#(a)] = (@)D (@) = H /@), qeed..

Theorem 7. A harmonic map ¢p: X—X' is of type Bl if and only if for
every Borel set A’ of A’ we have

o' (4, p(a)) = o™(PN(A'), a)  and h¥ op = k¥,

where p™H(A)= {x= AY; P(x) is a point of A’}, and o' is a harmonic measure on
A,

Proof. The proof of the “only if” part is an immediate consequence of the
above lemma. We proceed to the proof of the “if”” part. Denoting by u,/=h¥’
and u,=h{, oM(AM, a)=u(a)=u,[p(a)]=0'(A’, p(a))=o™($*(A"), a) implies
that @(x) is a point of A’ dwM-a.e., whence @ is of type Bl by Theorem 2, b,
q.ed..

Corollary. If ¢: X—X'is of type Bl and X'* is a metrizable and resolutive
compactification of X', then P(x) is a point of AN'=X"*\ X' dowM-a.e. on AM and
the set formed by these points P(x) covers A’ except on a set of harmonic measure
zero.

In a metrizable and resolutive compactification X"* of X’ a u,/-quasi-bounded
harmonic function #’ (a harmonic function which is the limit of an increasing
sequence of harmonic functions @’ such that «’[u,” is bounded) is expressed by
some boundary function f” as #'=H . In connection with this we have:

Theorem 8. Let p: X—X’ be of type Bl. If s is a positive superharmonic
Sfunction on X', then s'o@ has a fine limit f'[P(x)] at dwM-a.e. point of AM, where
f’ is a boundary function expressing the u,’-quasi-bounded harmonic part of s'.

Proof. Let us decompose s into &'=p’+uy’+us’, where p’ is a potential,
ug is a u,~quasi-bounded harmonic function and ug’ is a u,-singular harmonic
function, and up'=H . By Theorem 4, fine lim p’op=0 dw™-a.e.. Since inf
(us’, u,") is also a potential, fine lim [inf (us’, u,")o@p]=0 d wM-a.e., which implies
that fine lim s’op=f'[P(x)]d 0M-a.e., q.e.d. .

Lemma 6. Let p: X—X’ be of type Bl, v' a positive harmonic function on
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X’ and v=v'op. @ is of type Bl of X into X’ endowed with quotient harmonic
structures by v and v', respectively.

Proof. Let U’ be a relatively compact open neighbourhood of &’'€X’,
U=¢ '(U’) and A=sup v". A4 is finite. If s is superharmonic on U, lim inf
U/

§>0on 90U and s>4 outside of a compact set K, then lim inf s/2>0 on 0U and
s/v>1 outside K, thus s/v>d¥"*, where d¥"* denotes the upper harmonization
of 1 with respect to the quotient harmonic structure 4, by v (Cf. §1). Since @
is of type B1, /"*=0. From this it follows that

0 = (AR X)jo>dV*X>0,
which proves the lemma.

Theorem 9. Assuming the proportionality axiom for X', if ¢: X—X' is of
type Bl and a’ = X'\ p(X), then there exists a point x<= A¥ such that P(x)=a’.

Proof. Denoting by X,/=X'\ {4’}, @ is of type Bl from X into X,. Let
2’ be a potential on X’ with support {a’}, and v=v"op. ¢’ is a positive harmonic
function on X/. We consider harmonic spaces (X, 4,) and (X, 4,/) endowed
with quotient harmonic structures by v and 7/, respectively. ¢ is of type Bl
from (X, 4,) into (X', Jl,). We shall apply our preceding result to these
spaces. In a suitable metrizable and resolutive compactification of (X', H,),
the point &’ is restored and the new boundary point @’ yields a v’-harmonic
function 1 as the Dirichlet solution, i.e., Dx(,,,»=1. Thus {a’} is of 2’-harmonic
measure positive and the theorem is derived from Corollary to Theorem 7 since
the Martin space X™ is homeomorphic to X** (Cf. §1).

5. The case of the Martin compactification X" of X’

In the following, we shall suppose that X’ satisfies the same conditions as
X. Then, the Martin compactification X’™ of X’ is defined.

Theorem 10. Let p: X— X’ be of type Bl, v' a positive harmonic function
on X' and v=9v"op= Skxdp,,(x). Then, for dp,-a.e. point x P(x) A'M=X"M\ X".
In particular, if v’ is a minimal harmonic function corresponding to x' € A,

then there exists x= A} such that P(x)=x'.

In view of the quotient sheaves (§1), this is an immediate consequence of
Corollary to Theorem 7. Combining this with Theorem 9 we have ([4], Th. 8.2)

Corollary. Let ¢: X—X' be of type Bl. If either ¥ €X'\ @(X) or
&' € AM, then there exists x& AY such that P(x)=x’.

Lemma 7. If ¢: X—X' is of type Bl and U’ is an open subset of X', then
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Rﬁr’\u’mp Rxw-‘w/)
where u,/=h¥.
Proof. It is obvious that
x\v’ RX\¢'UhH
R-uol °¢2 %o/ °¢ .
To prove the converse inequality, we recall that

! U’ ’ / ' x! Tl x! N . "
ROV = u) = ROX Y X = RYX LRI in U,

Since @ is of type B1, we have

’ x/\U’ pe WX __ .,/ X\¢- l(U’)
U, Oq)—R“O/\ o°p = h“o’ O¢)>h o/°(¢ "X = Uy oPp— R g/ °P

which proves

=1y’ 7 4
RNV S REN o0y

ug/ °p
Theorem 11. Let ¢: X—X’ be of type Bl. If for each a €X', p~'(a’)
contains at most n( <+ o) points of X', then for every ' € AiM, there exist at least
one and at most n points x,, x,, -+, x, < AY such that
1) P(x))=x 1<i<l,
2) @ maps every open neighbourhood of x; onto a deleted fine neighbourhood
of ¥,
3) kSop=31c;k,, where ¢;>0, 1<i<lI.
i=1
Moreover, if x’ is of positive harmonic measure, then each harmonic measure of
{x:} is positive.

Proof. Consider quotient sheaves by %’,s and k' ,/0p on X’ and X,
respectively. @ is also of type B1 with respect to these new quotient sheaves.
Then &’ is of harmonic measure 1, hence $~'(x”) is of harmonic measure 1. We
write

K yop — Sk, p
and define
A = {x=A¥, x has an open neighbourhood U(x) with f(U(x) A AY) = 0} .

We note that $~'(x')\ 4= ¢; this is an immediate consequence of the Lindelof
property of metric space and &P '(x'))>0. Let x=9p '(x')\ 4, U(x) an open
neighbourhood of x. Then X"\ @(U(x) N X) is thin at «’; in fact, otherwise we
would have
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Sk, dﬁ = k'x/o¢ = R{,’}‘P(U(x)nX)o¢
= R%YY, V@0 1 (hy] emma 7, since ¢ is an open map [3], Th. 3.3)
< REINY® = SR;:{\U(JE) dps .
This would imply that
A({x=AM; X\ U(x) is thin at x}) = 0.

On the other hand, since X\ U(x) is thin at each point of U(x) N A¥, Z(U(x)N
A{M)=0, which would contradict with xe£ 4.

Next, we shall show that #7(x’)\4 contains at most 7 points; let x;&$™
(®)\4, i=1,2, .-, k; k>n, and let {U;} be a system of neighbourhoods which
are mutually disjoint and x;€ U;, i=1, 2, ---, k. Since

k k
U \e(U: N X)] = X'\ Np(U; N X)
is thin at &/, there exists a points &’ e.r_"x o(U;NX). Thus o7 (@)NU;=*¢,

1<i<k, which conflicts the hypothesis of the theorem. From the above consi-
deration we conclude that
]
/’7’ = 21 ¢ exi ’

which means also that

]
Koyop =316k, .

It remains to prove the last assertion of the theorem, but now it is easily
derived from above argument, q.e.d. .

6. Mappings of type BI,

In case of an analytic mapping of Riemann surface, Heins [6] defined a more
restricted class of maps called of type Bl,. In this section, we concern ourselves
with a generalization of this class in our present setting. In view of Theorem 3,
we shall define that a harmonic map @: X— X’ is of type Bl, if for every relatively
compact open set G’ with G’ + X’ we have Ex~ p-16,=2¢, i.€., X \ @ (G’) is not
thin at every point of A¥. A map of type B1, is obviously of type Bl. We have:

Theorem 12 ([1], Satz 27). Let @ be a harmonic map of X into X', X' &P
and X'* be an arbitrary compactification of X', then @ is of type Bl, if and only if
P(x) A A F @ for every xE AM.

In particular, if P(x)C A’ for every x= AY, then @ is of type Bl,.

The proof of this theorem is carried out easily. We shall omit it.

Finally, we shall prove the following theorem, which will justify our defini-
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tion.

Theorem 13. Let ¢ be a harmonic map of X into X’ and X'€P. If ¢ is
of type Bl,, then p’oq is a potential on X for every potential p’ on X'.

Proof. Let G’ be a relatively compact open set with @’+X’ and p’ be a
potential on X’. We decompose p’og into the harmonic part w and the potential

part p:
p,0¢ = w—l—p .
Since X\ @ (G’) is not thin at every point x of A}, we have

x\e~%G6H _
Rlu, - kz

for every x= A¥, where %, is a suitably normalized positive harmonic function
corresponding to x. Then

b Yeld i e ld
RXN\¢TIGN — SRﬁ\w gy, = Sk‘ dp,=w,
where w:Sk, d p,, is the canonical integral representation of w. We have ([7],
Prop. 10.1)
R’gf\G'oqu Rj’{/},f_l“;/’ — R¥\¢-1(G’)_|_ R,’”"\"_l(c’)Zw .

Since G’ is an arbitrary relatively compact open set we have w=0, therefore p’op
is a potential, q.e.d. .
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