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Introduction

An example of foliation of codimension one with non trivial Godbillon-

Vey invariant ([3]) was constructed by R. Roussarie (see Bott [1]). Generaliz-

ing the Godbillon-Vey invariant, R. Bott [1] has defined exotic characteristic
classes for foliations. In this paper, we shall construct examples of foliations

with non trivial exotic characteristic classes.
Roussarie's example was constructed on a compact quotient space of SL(2\R)

by a discrete subgroup. This example may be regarded as an Anosov foliation

arising from the geodesic flow on the unit tangent sphere bundle of a surface

with constant negative curvature. This suggests us to consider such a folia-
tion on the unit tangent sphere bundle of a closed (#+l)-rcιanifold (q^l) with

constant negative curvature. In fact, our example is constructed as follows. Let

G denote the identity component of the Lie group

0(0+1, 1) - {XeGL(ϊ+2; Λ); *XBX = B} ,

where

Consider a compact subgroup

of G, and a closed subgroup K consisting of X=(xij}^G such that

( X X \*+l9+2J __ j

and

vig+2 = 0 (i = 1, •••, g).
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By a theorem of A. Borel [2], there exists a discrete subgroup D of G such that
D\M is a closed manifold, where M=G/H. Foliate M into the fibres of the fibre
bundle M= G/H-+G/K, and consider the foliation on M=D\M induced naturally
from the G-invariant foliation on M. Then it is proved that the foliation on M
has non trivial exotic characteristic classes.

In §1, we review differential geometry which will be needed. In §2, we
define exotic characteristic classes following R. Bott [1] and state our result
precisely. §3 is devoted to construct examples of foliations with non trivial
exotic characteristic classes. The proof of our result will be given in §4.

The author is grateful to Professor H. Ozeki and Mr. A. Ikeda for their
advices.

1. Preliminaries

1.1. First, we shall fix some notations:
For a smooth manifold JV, we put

X(JV)= {smooth vector fields on TV},
C°°(N)= {smooth real valued functions on N},
Ac(N)=the space of complex smooth forms on Ny

A*(N)=the space of (real) smooth forms on N,
Ap(N)={ωεΞA*(N); ω is^-form},
A*(N)= {ω<=Ap(N); ω has compact support},

Γ(f)=the set of smooth cross-sections of a smooth vector bundle ξ over N.
For a C^-smooth codimension q foliation 3 on JV, we denote by τ (£F) (resp.

v(3?)) the subbundle of τ(N) tangent (resp. normal with respect to a Riemannian
metric on N) to the foliation, where τ(N) denotes the tangent bundle of N.

1.2. Connections
Let N be a smooth manifold and ξ a smooth ^-dimensional vector bundle

over N.
(1.2.1) (1) A connection on ξ is an jβ-bilinear map

V: X(ΛΓ)XΓ(ί)->Γ(ί)

such that
(1) Vz(/ί)=^(/)ί+/Vx(ί)
(ii) V/x(ί)=/Vx(ί)

for all X(=*(N), ίeΓ(£),/eC~(N), where Vx(s)=V(X, s).
(2) Let 5= {ίj, •••, s9} be a smooth frame of ξ defined on some open set

U in N. The connection form of V relative to the frame 5 is a ^ X f ? matrix
θ=(θij) of 1-forms on U such that

v*(*,) = is <
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forί=l, ••-,5.

The curvature matrix of V associated to the frame S is a qx q matrix k=(k^)
of 2-forms on U such that

forί,j=l, •••, #.

Let (JV, 3) be a C°°-smooth codimension q foliation on JV, and ( , ) be a

Riemannian metric on z>(£?) not necessarily induced from a Riemannian metric
onN.

(1.2.2) (1) A metric connection on v(S£) is a connection V° on z (jF) such
that

dfc, s2) (X) = (Vi(*ι),

1,faeΓ(Kar)).
(2) A basic connection on *;(£?) is a connection V1 on !/(£?) such that

for JfeΓζT^)), seΓ(z>(5:F)), where π: τ(N)-*v(3f) is the natural projection, and
SeX(JV) is such that τr(5)=ί.

(3) Let (̂ί?) X R denote the vector bundle over NxR with the same fibre
dimension as v(3<). Given a metric (resp. basic) connection V° (resp. V1) on

), a unique connection V01 on v(3) X R is defined by requiring
(i) On sections s which are constant in j£-direction, let V?/9ί(ί)=0;
(ii) If X^T,x>t,(Nx{t}\ define

Clearly, for a smooth frame 5— fo, •••, }̂ of z (F) defined on some open
set U in AT, a smooth frame S'= {si, ••-,$£} of z>(£F)x /2 on C/X jβ is defined by

s't(x, t) = (Si(x), t), i = 1, — , q ,

then connection form θ01 of V01 relative to the frame S' is represented as follows:

θ01 = (l-t)ff*+tθl ,

where #°(resp. θ1) is the connection form of V°(resρ. V1) relative to the frame 5.
Let N be a Riemannian manifold, ( , ) be the Riemannian metric on N.

The following is well known.
(1.2.3) There exists a unique connection V on τ(N) statisfying the following

conditions:

(i) VX(Y)-VY(X)=[X, Y]
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forX,Y(=Z(N);

(ϋ) d( γlt γt) (X) = (v*( YO, FO+( Y» vx( yf))

This connection is called the Riemannian connection on N. Clearly,
let V be the Riemannian connection on N, and / be an isometry on N, then

foτX,

1.3. Integration along the fibre
(1.3.1) (Bott [1]) Let N be an oriented smooth manifold and π: NX [0, 1]-̂

N be the natural projection, then there exists a unique homomorphίsm of C°°(N)-
modules

π*: Ap(Nx[0, 1]) -* A*-\N), for p^l ,

satisfying the equation

\ φ/\π*ψ = \
Jjvχ[o,ι] JN

for all φ<=Ap(Nx [0, 1]), ψ€ΞAr

0(N), where r=άim N-p+1.
This homomorphism π* is called integration along the fibre. Then it is

easy to see the following.
(1.3.2) Let N, N be oriented smooth manifolds of dimension ny and π: NX

[0, 1]-»2V, TT: Λ^X [0, 1]-»ΛΓ be the natural projections, then for any immersion f:
N—> N, the following diagram is commutative:

sί

Ap(Nx[0, 1])— > AP

2. Exotic characteristic classes and Theorem

In R. Bott [1], exotic characteristic classes for foliations have been defined
as follows.

Let q^.1 be an integer.
First, a cochain complex (WOg, d) is defined. Let R[c19 •••, cq] denote the

graded polynomial aglebra over R generated by the elements c£ with degree 2i.
Set

Let E(hl9 h3, ••-, hr) denote the exterior algebra over R generated by the elements
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hf with degree 2i—l, where r is the largest odd integer ^q. Then as a graded

algebra over R

W0q = Rg[c19 -, cJ^Efa, A,, ..-, hr) ,

and a unique antiderivation of degree 1

d: WOg -* WOq

is defined by requiring

Let £ be a smooth ^-dimensional vector bundle over a manifold N and V

a connection on ξ. For a curvature matrix k of V, local 2ί-forms c{(K) on TV are
defined by the following formula

Since £z (&) do not depend on the choice of the local frame of ξ, cf(k) define global

2ι-forms on N. Then a homomorphism of graded β-algebras

is defined by requiring

Let N be an oriented smooth manifold without boundary and (N, £F) a C°°-
smooth codimension q foliation on N. Let V° (resp. V1) be a metric (resp. basic)

connection on v(ΈF) and V01 be as in (1.2.2) (3). Then the followings hold.

(2.1) (1) λ(Vx) (φ)(=A$(N) is a closed form for any φ<ΞΞR[cly — , cg], and if

deg(φ)>2^ then λ(V x) (φ)=0.
(2) λ(V°) (φ)=Qfor φ<=R[cly •••, cg] such that deg(0)/2 is an odd integer.

(3) Let π: NX [0, 1]->W 6^ ίAβ natural projection and i: N X [0, l]->Λf X Λ
ίA^ inclusion mapping , then

φe.R[cίt •••, c,], especially

where π* is the integration along the fibre.
In view of (2.1), given a C"-smooth codimension q foliation (N, EF) on an

oriented smooth manifold N without boundary, a homomorphism of cohain
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complexes

is defined by requiring

;)= τr*/*λ(V01) (Cj) .

We used the notation \(N, 30 in place of \E of Bott [1]. Here the homomor-

phism λ(7V, 30 depends only on the choics of two connections V° and V1 on

v(3). In cohomology, \(Nt £P induces a homomorphism of graded /2-algebras

λ(W,5F): H*(WOg) -> H*(N; C)

which depends only on the foliation (N, F).

The elements of λ(ΛΓ,3θ(#*(WΌ0)) are called the exotic characteristic

classes for the foliation (N, £F).

It is easy to see the foillowing lemma.

Lemma 2.2. Each canonical generator of H2q+l(WOq) is represented by

some φ hjξΞ WOg, where φξΞRg[cί9 -••, cq] is a monomial with degree 2(q—j-}-\).

Then we have

Theorem. For any integer q^l, there exists a C" -smooth codimensίon q

foliation (M, £F) on a closed (2qjrl)-manifold such that all the exotic characteristic

classes for the foliation which correspond to the canonical generators [φ hj] of

H2qλ-\WOq} are non zero in H2*+\M\ C).

REMARK. When 5= 1, the generator fo-AJ ofH^WO^R is the Godbillon-

Vey invariant, and our foliation of codimension one is diffeomorphic to the

foliation constructed by R. Roussarie (cf. [1]).

3. Construction of the foliation (M, 5?)

Throughout this paper, integer q^>l is to be fixed, and all foliations are to

be C°°-smooth codimension q foliations. Let

O(ί+l, 1) - [X(ΞGL(q+2] Λ); *XBX=B}9 where B =( ff+1 ).

We can define subgroups H c K d G of 0(^+1, 1) as follows:

(3.1) Let G be the identity component of O(?+l, 1). Then H=

~:SO(q)t is a compact subgroup of G, and G/H is an open (λq-\-V)-ma\

(3.2) Let K be a subspace of G consisting of X=(Xfj)^G such that

(x °VVo J
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detl ,-^|= 1

and

then K is a subgroup of G, and G/K is a q-manίford.

Proof. The proof of (3.1) is trivial. We shall prove (3.2). Let J$Γ=(*ί

GL(q+2\ R) such that

*, *+rf*ί *+2 == 0, for i= 1, • ••,£.

If JΓeGcO(ί+l, 1), then the followings hold.

det (**+lf+1 *
\^+2 tf+1 ^0

X4+l 4+2\ ι
I — 1,

, , l tf-H 4+l 42 ι r ι ι r
and det I I — 1, if and only if

Mg+2 <2+2/

2) **+ι , —#<H-2 , = 0, for z = l , ••-,?.

If the above equality holds, (3.2) folows from 1) and 2) (q.e.d.)

Set M=G/H, then M is an open (2q-\- l)-manifold and M is foliated into the

fibres of the fibre bundle M=GIH-*G/K. We denote this foliation by (M, £F).

Clearly, the foliation (M, £?) is a G-invariant foliation of codimension q on M.

By A. Borel [2], the connected semi-simple Lie subgroup G of GL(q-\-2; C)

has the discrete subgroup Γ of G which contains a normal torsion free subgroup
D of finite index. Since H is compact subgroup of G, the subgroup D acts freely
on M=G/H and D\M is compact. Therefore we have.

(3.3) There exists a discrete subgroup DofG such that D\M is a closed (2q+ 1)-
manifold.

Set M=D\M. Since the foliation (M, £?) is G-invariant, the closed (2q+ 1)-

manifold M has a codimension q foliation (M, ΞF) induced naturally from (M, £?).
This foliation (M, £F) is the example of foliation with non trivial exotic charac-

teristic classes.

4. Proof of Theorem

4.1. Naturality of the homomorphism \(N, Ξf)
Let N be an oriented manifold without boundary and ( , ) be a Rie-

mannian metric on N. Let V be the Riemannian connection on N. Given a

foliation (N, £F) a metric connection V° and a basic connection V1 on y(2F) are
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defined as follows:

for any X^y,(N), Y<^Γ(v(EF)), where π: τ(N)-*v(£F) is the natural projection,

and Xτ(SF)^Γ(τ(ζF)), Xv^^T(v(S)) are such that X=Xτ(3)+Xv(3ϊ Here,
of course, we consider the Riemannian metric on z>(ΞF) induced naturally from
the Riemannian metric ( , ) on τ(JV).

Then the homomorphism of cochin complexes

y. WOq->A$(N)

is uniquely determined from the above connections V° and V1, hence from the
foliation (TV, £F) and the Riemannian metric ( , ). Thus we denote

this λ(JV, 30 (ω) by ω((ΛΓ, 9"), ( , )) for ω GE WOq.

Now, let O(q+l9 1), G, H, K, (M, £F) and (Λf, ff) be as in Section 3. Let

o(#+l, 1) (resp. gϊ^+2) denote the Lie algebra of O(q+l, 1) (resp. GL(q+2; R)),
then clearly

o(q+ί, 1) = {^egί?+2; 'XB+BX = 0} ,

and a basis of 0(^+1, 1) is given by the following elements:

Z==

H;

Y =-*• »

0

o

0
0 -2

-2 0 ,

... ό i •••

•— i ό

i j
1

0
-1

, -1

N.

1 -1

0 0

0 0 ,
2

O
-1

, 1

1 1

0 0

0 0 ,
i

<t

<ί
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It is known that {///,-}isf-<ys* is a basis of the Lie algebra of H. Then T0(M) is
identified naturally with the subspace of Te(G) spanned by {X19 •••, Xq Y19 •••,
Y<9 Z}, where o=H<=GIH=M.

In this time, we have

(Ad(g)(X1), ..-, Ad(g)(X9), Ad(g)(Y1), ..., Ad(g)(Yg), Ad(g)(Z))
IA 0 0\

\0 0 1.

0(A 0

Ko
f o r ^ = ln τ]^H(A^SO(q)). Therefore, < , \^=

_
is an ^trf(//)-invariant innerproduct on T0(M) where {^ίΓf, •••,

, Ff, -, 7*, Z*} denote the dual basis of {X19 -, Xq> Y19 -, Y,, Z}.

Hence, for any u=g o^M(g&G)y an innerproduct < , >M on TU(M) is

defined by < , >«=(5~1)*< , X- Therefore we have

(4.1.1) < , > is a G-ίnvariant Riemannian metric on M and M is orien-
table.

Then we have the folio wings.

Lemma 4.1.2. For any ω^WOqy ω((M, 2**), < , » is a G-invariant
differential form on M.

Lemma 4.1.3. Let < , > denots the Riemannian metric on M induced

naturally from the Riemannian metric < , > on M, then

for ω^WOq) where p: M->M is the natural projection.

Proof of (4.1.2). Let V be the Riemannian connection on the Riemannian

manifold (M, <( , ». Since the Riemannian metric < , > on M is G-
invariant,

for any ̂ e G and ̂ ί

Since the foliation (M, ff) is G-invariant, g* maps Γ(r(ff)) (resp. Γ(z>(5?)))

into Γ(τ(£F)) (resp. ^ (̂S'))) and g^π=πg* for ^eG, where π: τ(M)-*v(3) is
the natural projection.

Therefore we have

for
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Let /^(resp. k°) be the curvature matrix of V^resp. V°) associated to some

local frame S= {sl9 --,*<,} of ι/(£F). Then by (*), (g~l)*kl (resp. (g'^k0) is the
curvature matrix of V^resp. V°) associated to the local frame g*S={gχSly •••,
g#Sg} . But Cj(kl)EiA2i(M) is independent of the choices of local frames, hence
cj(kl) is G-invariant. Therefore

is also G-invariant.

Similarly, λ(V01) (c^^A^MxR) is G-invariant. Hence it follows from

(1.3.2) that hi((M, £F), <~T~>) is G-invariant. (q.e.d)

Proof of (4.1.3). Let V be the Riemannian connection on (M, < , ».

Since the natural projection p: (M, < , >)->(M, < , » is a local iso-

metry, locally we have

Therefore, the proof is similar to that of (4.1.2). (q.e.d.)

4.2. Local frame of z/(2Γ)

Let o=H^M=GIH. To calculate the connection forms, we define local

vector fields around o^M as follows:

Define a prametrization φ around o^M by

In the sequel, we use the vector notations such as x=(xly •••, xg), y=(yly

.}v)
Set local vector fields Z, X19 •.-, Xq, Y19 •••, Y99 around oeM, Z=~φχ(d/dz),

Xt = ^(e~2Z8/8λ%.), ί = 1, -.., g ,

;=!,-,?,

at w— φ(y, x,
Then we have

Lemma 4.2.

(1) X19 •••, Xg, Z αr^ tangent to the foliation (M, £F).

(2) {j?!, •••, X^, Z, Fj, ••-, Ϋq} is a local or thonormal frame of r(M) with

respect to the Riemannian metric <( , />.

(3) (bracket relations)
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[Xί,Z] = 2X£ [£„*,] =0,

[Ϋ,,Z] = -2Ϋ,,

[Yit Y,]u = 2e"(x{(Ϋj)tt-Xj(Ϋi)u) ,

where u=φ(y, x, z)^M, and i,j—l, •••, q.

Proof. The bracket relations of (3) are calculated directly by the defini-

tions of Z, Xf, Ϋj.

We shall prove (1) and (2).
First, we define a local parametrization φ around e&G and a local section

σ around oeM as follows:
Set

φ(y, x, z, (htj)ιsίi<j&g) .

The local section σ is defined by requiring

σφ(y, x, z) = φ(y, x, %, (0)) .

Then the next (4.2.1) and (4.2.2) follows from tedious calculations, which

will be left to the reader.

(4.2.1) (1) forA=exp(i2:tfF,),
ί = l

Lgl(φ(y, x, z, (A,,)) = φ(y+y<>, x, *, (M)

(2)

where 5c=x+e~2Z Λ° '(exp (Σ A/y^v))-

(3) =

*, *,

, of course, Lg(resp. Rg) denote the left (resp. right) translation by g^ G.

(4.2.2) Let g=φ(y, x, z, (Aίy))eG, α«rf gίt g2, g3 be as in (4.2. 1), and let

ΦΛdlQxt), Y't=φ*(dldy{), Z'=φjίβl9»). Then,
(1) (L
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fori=l, •••, q;
(2) (R

(R
forί=\, — ,q;

i » j = 1

where a^ is the (i,j) compaonent of exp (£ h^-

(3) (*,,

fori=\, •-, q.
Then we have the following key lemma for the proof of Lemma 4.2.
(4.2.3) The following (a), (b), (c) hold at g=φ(y, x, %, (0))e G.
(a) Z;=(L,)*Z.
(b) (X'D^^LJiXfifar ί=l, -, ?.

(c) (Fθ,=(^)*(«-"

forj=l, •--, j.
r̂̂ , o/ course, the elements Xly •••, ̂ , Fu •••, F ,̂ Zy H{j of o(^+l, 1) are

regarded as the elements of Te(G)> and Hij=—Hjifor ι>j.

Proof. First, notice that
(*) (XO^X* for i=l, ...,?,

(YO^y,, for ί=l, ...,?>

For ^=(y, Λ:, sr, (0)), set ^ι=e

We shall prove (a). By (4.2.2),

Z'g =

Then, by (*),
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But,

Xk, for *= l,-,q,

and Ad(g-l)(Z)=Z.

Therfore, Z's=(Lg}*Z.

(b) and (c) are proved similarly, (q.e.d.)

Now, let P: G^M=GjH be the natural projection, then clearly we have

i =!,-,?,

where o=H^M=GjH.

Hence, by the definition of the G-invariant Riemannian metric < , > on

M, the following lemma shows Lemma 4.2 (2).

(4.2.4) Let σ be the local section defined as before, then

(a) (Z)«=σ(u)*(2)M

(b) (Xά,=σ(u)*(X)0, 1=1, -.,?,

_
for any point u of some neighborhood of o in M.

Proof. Clearly, P*(Aκ«>)*=5(tt)*P*, and (φ*)σ(U^<r*°(φ*)u. Then, in
view of the definitions of Xi9 YJy Z, we have (4.2.4) easily from (4.2.3).

(q.e.d.)

By the definition of Lie algebras of Lie groups, we have the following easily.

(4.2.5) The following elements 0(^+1, 1) form a basis of the Lie algebra of K,

where the subgroup K of O(q+l9 1) is as in (3.2).

Since the foliation (M9 £F) is G-invariant and each leaf of this foliation is

a fibre of the fibre bundle M=GIH->G/K9 we have Lemma 4.2 (1) from (4.2.4)

and (4.2.5).
This completes the proof of Lemma 4.2.

REMARK. Consider Z, Xi9 Y . of o(#+l,l) as left-invariant vector fields on

G. It hold that Z=P*(Z) and Z is G-invariant, then we may define Z by P*(Z).

However it is impossible to define X, (resp. Fy) by P*J^(resp. P*Fy), for Xi9 Yj

are not

4.3. Calculation of_c,((M, ff), < , » and Ay((Λί, £F), < , » . _

Let Z* (resp. Xf, ΫJ) denote the dual one form of Z (resp. Xiy Fy) with



414 K. YAMATO

respect to the G-invariant Riemannian metric < , > on M.
Then we have

Lemma 4.3. At o=HtΞM=G/H,

(1) c&M, ff), m>)=αf (v/ι:T/27r)ί(^*)s α,>0,
for t=l, •••, 5;

(2) Ay((M,ff), <~7^)=^(v/:rϊ/27rχz*Λ(^*χ-1, /8y<0,
forj=l, 3, •••, r.

We shall prove Lemma 4.3. As usual, ώc( and rfyz are regarded as local
1 -forms on M by the parametrization ~φ. It is easy to see the following.

(4.3.1) Let Z*, Xfy ΫJ be as above, then
(1) Yf=e'2zdyj9 for ;'=!, •••, q, at u=

(2) ̂

Since the Riemannian metric < , )> on M is given, connections V° and

V1 on z>(£?) are uniquely defined as in Section 4.1. Then {F1} •••, ΫJ is a local

orthonormal frame of v(β) by Lemma 4.2. Let θ°=(θQ

i5) (resp. ^=(5^)) be
the connection form of V°(resp. V1) relative to the frame {Ϋ^ •••, Ϋg} , then we
have

(4.3.2) At u=φ(yί, ••-, yqj x19 ~, xq,

m β«={° i==
1 j ^ ί j 2

Proof. Let V be the Riemannian connection on the Riemannian manifold

(M, < , » and θ—(θij) be the connection form of V relative to the frame

861^=1^, •••, Sg=Y9,s9+1=Xt, •••, sM=Xg, sM+1=Z. Then by the defini-

tion of V,

d<S» SjXX) =

for JSΓe3e(M). Hence

( i ) θtj=-θiίt for i,y=l, ..-,

Moreover VS|.(f/)—Vsy(ίί)=[ί, , ίy]> then we have the followings (i i) (iii) from
Lemma 4.2 (3).
For /, y= 1, •••, ^ and zφj .

(ii) 0ί,(ί,)=-2Λ, ) (9ίχίl)=2e"*y.

(iii) ^(ί.)= f̂e( .̂). for *=1, - . 2?+l and
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ΘQ+J k(Si}=θik(sq+j}, for *=1, •••, q.

029+1 ^g)=θik(sM+1)9 for k=l, •••, 2q+l,

and Λφz, 2q+l.

Let /,/=!, •••, <?. Now, let Λ—1, •••, q, and ΛΦ/,/, then by ( i ) and (iii),

ΘM - -MO = -MO = MO = MO = -M*) = -^yW

Hence θfj(sk)=0t It is shown similarly by making use of ( i ) and (iii) that

θij(sk)=Q f°Γ k=q+l, •••, 2q+l. Therefore we have

=

lo,

for /, j = 1, , q and i Φ j.

But by the definition of V°,

0^ = 0,,, for i,y= 1, ..-, 9.

Hence we have (4.3.2) (1).

(4.3.2) (2) is shown easily by the following.

By the definition of V1 and Lemma 4.2 (3),

Ό,

2Ϋ,,

if X =

if X=

if X=

, Xq

• Ϋ,

f o r x = l , —, j. (q.e.d.)

Now, let k1=(k}J) be the curvature matrix of V1 associated to the frame

{Ϋlt --, Ϋg}. Let V01 be the connection on v(3)xR defined by V° and V1 as

in (1.2.2) (3), and 001-(001

ίV) be the connection form of V01, that is,

and k°1=(k°l

ίj) be the curvature matrix of V01. Then we have

(4.3.3) (1) Ato=H(ΞM=G/H,

(2) At (o, t)<=oxRc:MxR,

(2dt/\Z*+2tdZ*y£,01
= J

(2π^(dxjf\dyi-dxi/\dyj\ i Φ
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where π: MxR~*M in the natural projection.

Proof. By (4.3.2) (1), proof of (1) is trivial. By the definition of

then by (4.3.1), we have (2). (q.e.d.)

By the definition of the determinant of matrices, we have the following.

(4.3.4) Let K=(K^) be a qxq matrix of 2-forms. Assume that

where %, •••, γ^, ,̂ •••, ηq are \-forms. Then

n are even

for i—\, .-., q and each aίn is a positive number.

Now, Ci((M, £?), < j >) and Ay((M, ff), < j >) are calculated as follows.

In view of (4.3.1), we have Lemma 4.3 (1) from (4.3.3) (1) and (4.3.4).

Similarly, by (4.3.3) (2),

are even

+ (terms which do not contain dt) ,

fory=l, •••, q, at (o,
Let i: M χ[0, 1]<^M X/2 be the inclusion mapping, and π: Mx[0, 1]-»M be

the natural projection, then then by the definition of Integration along the fibre

This completes the proof of Lemma 4.3.

4.4. Proof of Theorem

Let ω be an element of WOq with degree 2#+l such that ω—φ hj for some
monomial φ&Rg[cly •••, cj as in Lemma 2.2. By Lemma 4.2 (1), {X^ •••,

X«> Γi, , ί;, is a local frame of τ(M). Then by (4.3.1) (2), (2?+l)-form
is non zero around

Hence ω((M, £F), < , » is non zero at o^M by Lemma 4.3. On the other

hand, ω((M, £F), < , » is a G-invariant form on M by Lemma 4.1.2.
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Therefore ω((M, £F), < , » is nowhere zero on M. In view of Lemma
4.1.3, ω((M, £?), < , » is a nowhere zero (2<? + l)-form on the closed
orientable (2^+l)-manifold M. Therefore ω((M, £F), < , » represents a non
zero cohomology class of H2g+1(M C).
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