EXAMPLES OF FOLIATIONS WITH NON TRIVIAL EXOTIC CHARACTERISTIC CLASSES

Kenzi YAMATO
(Received August 12, 1974)

Introduction

An example of foliation of codimension one with non trivial GodbillonVey invariant ([3]) was constructed by R. Roussarie (see Bott [1]). Generalizing the Godbillon-Vey invariant, R. Bott [1] has defined exotic characteristic classes for foliations. In this paper, we shall construct examples of foliations with non trivial exotic characteristic classes.

Roussarie's example was constructed on a compact quotient space of $S L(2 ; \boldsymbol{R})$ by a discrete subgroup. This example may be regarded as an Anosov foliation arising from the geodesic flow on the unit tangent sphere bundle of a surface with constant negative curvature. This suggests us to consider such a foliation on the unit tangent sphere bundle of a closed $(q+1)$-manifold $(q \geqq 1)$ with constant negative curvature. In fact, our example is constructed as follows. Let G denote the identity component of the Lie group

$$
O(q+1,1)=\left\{X \in G L(q+2 ; \boldsymbol{R}) ;{ }^{t} X B X=B\right\}
$$

where

$$
B=\left(\begin{array}{lr}
I_{q+1} & 0 \\
0 & -1
\end{array}\right)
$$

Consider a compact subgroup

$$
H=\left\{\left(\begin{array}{cc}
X & 0 \\
0 & I_{2}
\end{array}\right) ; X \in S O(q)\right\}
$$

of G, and a closed subgroup K consisting of $X=\left(x_{i j}\right) \in G$ such that

$$
\operatorname{det}\left(\begin{array}{ll}
x_{\ldots} \ldots \ldots & x_{q+1} q_{+2} \\
x_{q+2} q_{+1} & x_{q+2} q_{+2}
\end{array}\right)-1
$$

and

$$
x_{i q+1}+x_{i q+2}=0(i=1, \cdots, q) .
$$

By a theorem of A. Borel [2], there exists a discrete subgroup D of G such that $D \backslash \bar{M}$ is a closed manifold, where $\bar{M}=G / H$. Foliate \bar{M} into the fibres of the fibre bundle $\bar{M}=G / H \rightarrow G / K$ and consider the foliation on $M=D \backslash \bar{M}$ induced naturally from the G-invariant foliation on \bar{M}. Then it is proved that the foliation on M has non trivial exotic characteristic classes.

In §1, we review differential geometry which will be needed. In §2, we define exotic characteristic classes following R. Bott [1] and state our result precisely. §3 is devoted to construct examples of foliations with non trivial exotic characteristic classes. The proof of our result will be given in $\S 4$.

The author is grateful to Professor H. Ozeki and Mr. A. Ikeda for their advices.

1. Preliminaries

1.1. First, we shall fix some notations:

For a smooth manifold N, we put
$\mathfrak{X}(N)=\{$ smooth vector fields on $N\}$,
$C^{\infty}(N)=\{$ smooth real valued functions on $N\}$,
$A_{\boldsymbol{C}}^{*}(N)=$ the space of complex smooth forms on N,
$A^{*}(N)=$ the space of (real) smooth forms on N,
$A^{p}(N)=\left\{\omega \in A^{*}(N) ; \omega\right.$ is p-form $\}$,
$A_{o}^{p}(N)=\left\{\omega \in A^{p}(N) ; \omega\right.$ has compact support $\}$,
$\Gamma(\xi)=$ the set of smooth cross-sections of a smooth vector bundle ξ over N.
For a C^{∞}-smooth codimension q foliation 3 on N, we denote by $7(\mathscr{F})$ (resp. $\nu(\mathscr{F})$) the subbundle of $\tau(N)$ tangent (resp. normal with respect to a Riemannian metric on N) to the foliation, where $\tau(N)$ denotes the tangent bundle of N.

1.2. Connections

Let N be a smooth manifold and ξ a smooth q-dimensional vector bundle over N.
(1.2.1) (1) A connection on ξ is an \boldsymbol{R}-bilinear map

$$
\mathrm{V}: \mathfrak{X}(N) \times \Gamma(\xi) \rightarrow \Gamma(\xi)
$$

such that
(i) $\nabla_{X}(f s)=X(f) s+f \nabla_{X}(s)$
(ii) $\nabla_{f X}(s)=f \nabla_{X}(s)$
for all $X \in \mathfrak{X}(N), s \in \Gamma(\xi), f \in C^{\infty}(N)$, where $\nabla_{X}(s)=\nabla(X s)$.
(2) Let $S=\left\{s_{1}, \cdots, s_{q}\right\}$ be a smooth frame of ξ defined on some open set U in N. The connection form of V relative to the frame 5 is a $q \times q$ matrix $\theta=\left(\theta_{i j}\right)$ of 1-forms on U such that

$$
\nabla_{X}\left(s_{i}\right)=\operatorname{li}_{j=1} \theta_{i j}(X) s_{j}
$$

for $i=1, \cdots, q$.
The curvature matrix of V associated to the frame S is a $q x q$ matrix $k=\left(k_{i j}\right)$ of 2-forms on U such that

$$
k_{i j}=d \theta_{i j}-\sum_{h=1}^{q} \theta_{i h} \wedge \theta_{h j}
$$

for $i, j=1, \cdots, q$.
Let $(N, 3)$ be a C^{∞}-smooth codimension q foliation on N, and (,) be a Riemannian metric on $\boldsymbol{\nu}(\mathscr{F})$ not necessarily induced from a Riemannian metric on N.
(1.2.2) (1) A metric connection on $\boldsymbol{\nu}(\mathscr{F})$ is a connection V° on $\boldsymbol{z}(F)$ such that

$$
d\left(s_{1}, s_{2}\right)(X)=\left(\nabla_{X}^{0}\left(s_{1}\right), s_{2}\right)+\left(s_{1}, \nabla_{X}^{0}\left(s_{2}\right)\right)
$$

for $X \in \mathfrak{X}(N), s_{1}, s_{2} \in \Gamma(\nu(\mathscr{F}))$.
(2) A basic connection on $\nu(\mathscr{F})$ is a connection ∇^{1} on $\nu(\mathscr{F})$ such that

$$
\nabla_{X}^{1}(s)=\pi[X, \tilde{s}]
$$

for $X \in \Gamma(\tau(\mathscr{F})), s \in \Gamma(\nu(\mathscr{F}))$, where $\pi: \tau(N) \rightarrow \nu(\mathscr{F}$ i) the natural projection, and $\tilde{s} \in \mathfrak{X}(N)$ is such that $\pi(\tilde{s})=s$.
(3) Let $\nu(\mathscr{F}) \times \boldsymbol{R}$ denote the vector bundle over $N \times \boldsymbol{R}$ with the same fibre dimension as $\nu(\mathscr{F})$. Given a metric (resp. basic) connection V° (resp. ∇^{1}) on $\nu(\mathscr{F})$, a unique connection ∇^{01} on $\nu(\mathscr{F}) \mathrm{X} R$ is defined by requiring
(i) On sections s which are constant in \boldsymbol{R}-direction, let $\nabla_{\partial / \partial t}^{01}(s)=0$;
(ii) If $X \in T_{(x, t)}(N \times\{t\})$,define

$$
\nabla_{X}^{01}(s)=(1-t) \nabla_{X}^{0}(s)+t \nabla_{X}^{1}(s)
$$

for $s \in \Gamma(\nu(\mathscr{F}) \times \boldsymbol{R})$.
Clearly, for a smooth frame $S=$ fo, $\left.\cdots, s_{q}\right\}$ of $\boldsymbol{z}(F)$ defined on some open set U in N, a smooth frame $S^{\prime}=\left\{s_{1}^{\prime}, \cdots, s_{q}^{\prime}\right\}$ of $\nu(\mathscr{F}) \times \boldsymbol{R}$ on $U \times \boldsymbol{R}$ is defined by

$$
s_{i}^{\prime}(x, t)=\left(s_{i}(x), t\right), \quad i=1, \cdots, q
$$

then connection form θ^{01} of ∇^{01} relative to the frame S^{\prime} is represented as follows:

$$
\theta^{01}=(1-t) \theta^{0}+t \theta_{1}^{1}
$$

where $\theta^{0}\left(\right.$ resp. $\left.\theta^{1}\right)$ is the connection form of $\nabla^{0}\left(\right.$ resp. $\left.\nabla^{1}\right)$ relative to the frame 5 .
Let N be a Riemannian manifold, (,) be the Riemannian metric on N. The following is well known.
(1.2.3) There exists a unique connection V on $\tau(N)$ statisfying the following conditions:
(i) $\quad \nabla_{X}(Y)-\nabla_{Y}(X)=[X Y]$
for $X, Y \in \mathfrak{X}(N)$;
(ii) $d\left(Y_{1}, Y_{2}\right)(X)=\left(\nabla_{X}\left(Y_{1}\right), Y_{2}\right)+\left(Y_{1}, \nabla_{X}\left(Y_{2}\right)\right)$
for $X, Y_{1}, Y_{2} \in \mathfrak{X}(N)$.
This connection is called the Riemannian connection on N. Clearly, let V be the Riemannian connection on N, and / be an isometry on N, then

$$
f_{*}\left(\nabla_{x}(Y)\right)=\nabla_{f * X}\left(f_{*} Y\right)
$$

for $X, Y \in \mathfrak{X}(N)$.
1.3. Integration along the fibre
(1.3.1) (Bott [1]) Let N be an oriented smooth manifold and $\pi: N X[0,1] \rightarrow$ N be the natural projection, then there exists a unique homomorphismof $C^{\infty}(N)$ modules

$$
\pi_{*}: A^{p}(N \times[0,1]) \rightarrow A^{p-1}(N), \quad \text { for } p \geqq 1
$$

satisfying the equation

$$
\hat{\jmath}_{N \times[0,1]} \phi \wedge \pi^{*} \psi=\hat{\jmath}_{N} \pi_{*} \phi \wedge \psi
$$

for all $\phi \in A^{p}(N \times[0,1]), \psi \in A_{o}^{r}(N)$, where $r=\operatorname{dim} N-p+1$.
This homomorphism π_{*} is called integration along the fibre. Then it is easy to see the following.
(1.3.2) Let \bar{N}, N be oriented smooth manifolds of dimension n, and $\bar{\pi}: \bar{N} X$ $[0,1] \rightarrow \bar{N}, \pi: N \times[0,1] \rightarrow N$ be the natural projections, then for any immersion $f:$ $\bar{N} \rightarrow N$, the following diagram is commutative:

$$
\begin{aligned}
& A^{p}(\bar{N} \times[0,1]) \xrightarrow{\bar{\pi}_{*}} A^{p-1}(\bar{N}) \\
& \\
& \qquad(f \times i d)^{*} \\
& A^{p}(N \times[0,1]) \xrightarrow{\pi_{*}} A^{p-1}(N) \quad f^{*} \\
& \text { for } p \geqq 1 .
\end{aligned}
$$

2. Exotic characteristic classes and Theorem

In R. Bott [1], exotic characteristic classes for foliations have been defined as follows.

Let $q \geqq 1$ be an integer.
First, a cochain complex $\left(W O_{q}, d\right)$ is defined. Let $R\left[c_{1}, \cdots, c_{q}\right]$ denote the graded polynomial aglebra over R generated by the elements c_{i} with degree $2 i$. Set

$$
\boldsymbol{R}_{q}\left[c_{1}, \cdots, c_{q}\right]=\boldsymbol{R}\left[c_{1}, \cdots, c_{q}\right] /\{\phi ; \operatorname{deg}(\phi)>2 q\}
$$

Let $E\left(h_{1}, h_{3}, \cdots, h_{r}\right)$ denote the exterior algebra over R generated by the elements
h_{i} with degree $2 i-1$, where r is the largest odd integer $\leqq q$. Then as a graded algebra over R

$$
W O_{q}=\boldsymbol{R}_{q}\left[c_{1}, \cdots, c_{q}\right] \otimes E\left(h_{1} h_{3}, \cdots, h_{r}\right),
$$

and a unique antiderivation of degree 1

$$
d: W O_{q} \rightarrow W O_{q}
$$

is defined by requiring

$$
\begin{aligned}
d\left(c_{i}\right)=0, & i=1, \cdots, q \\
d\left(h_{\imath}\right)=c_{i}, & i=1,3, \cdots, r
\end{aligned}
$$

Let $£$ be a smooth q-dimensional vector bundle over a manifold N and V a connection on ξ. For a curvature matrix k of V , local $2 i$-forms $c_{i}(k)$ on N are defined by the following formula

$$
\operatorname{det}\left(I_{q}+t k\right)=1+\sum_{i=1}^{q} t^{i} c_{i}(k)
$$

Since $c_{i}(k)$ do not depend on the choice of the local frame of $\xi, c_{i}(k)$ define global $2 i$-forms on N. Then a homomorphism of graded \boldsymbol{R}-algebras

$$
\lambda(\nabla): \boldsymbol{R}\left[c_{1}, \cdots, c_{q}\right] \rightarrow A_{\boldsymbol{C}}^{*}(N)
$$

is defined by requiring

$$
\lambda(\nabla)\left(c_{i}\right)=(\sqrt{-1} / 2 \pi)^{i} c_{i}(k), \quad \text { for } i=1, \cdots, q
$$

Let N be an oriented smooth manifold without boundary and (N, \mathscr{F}) a C^{∞} smooth codimension q foliation on N. Let V° (resp. ∇^{1}) be a metric (resp. basic) connection on $\nu(\mathscr{F})$ and ∇^{01} be as in (1.2.2) (3). Then the followings hold.
(2.1) (1) $\lambda\left(\nabla^{1}\right)(\phi) \in A_{\boldsymbol{C}}^{*}(N)$ is a closed form for any $\phi \in \boldsymbol{R}\left[c_{1}, \cdots, c_{q}\right]$, and if $\operatorname{deg}(\phi)>2 q$ then $\lambda\left(\nabla^{1}\right)(\phi)=0$.
(2) $\lambda\left(\mathrm{V}^{\circ}\right)(\phi)=0$ for $\phi \in \boldsymbol{R}\left[c_{1}, \cdots, c_{q}\right]$ such that $\operatorname{deg}(\phi) / 2$ is an odd integer.
(3) Let $\pi: N X[0,1] \rightarrow N$ be the natural projection and $i: N X[0,1] \rightarrow N X \boldsymbol{R}$ the inclusion mapping then

$$
d\left(\pi_{*} i^{*} \lambda\left(\nabla^{01}\right)(\phi)\right)=\lambda\left(\nabla^{1}\right)(\phi)-\lambda\left(\nabla^{0}\right)(\phi)
$$

for $\phi \in \boldsymbol{R}\left[c_{1}, \cdots, c_{q}\right]$, especially

$$
d\left(\pi_{*} i^{*} \lambda\left(\nabla^{01}\right)\left(c_{2 j-1}\right)\right)=\lambda\left(\nabla^{1}\right)\left(c_{2 j-1}\right)
$$

where π_{*} is the integration along the fibre.
In view of (2.1), given a C^{∞}-smooth codimension q foliation (N, \mathscr{F}) on an oriented smooth manifold N without boundary, a homomorphism of cohain

complexes

$$
\lambda(N, \mathscr{F}): W O_{q} \rightarrow A_{C}^{*}(N)
$$

is defined by requiring

$$
\begin{aligned}
& \lambda(N, \mathscr{F})\left(c_{i}\right)=\lambda\left(\nabla^{1}\right)\left(c_{i}\right), \\
& \lambda(N, \mathscr{F})\left(h_{j}\right)=\pi * i^{*} \lambda\left(\nabla^{01}\right)\left(c_{j}\right) .
\end{aligned}
$$

We used the notation $\lambda_{(} N, 30$ in place of $\lambda_{\boldsymbol{E}}$ of Bott [1]. Here the homomorphism $\lambda\left(N, 30\right.$ depends only on the choics of two connections V° and ∇^{1} on $\nu(\mathscr{F})$. In cohomology, $\lambda_{(N, \mathcal{F})}$ induces a homomorphism of graded \boldsymbol{R}-algebras

$$
\lambda_{(N, \mathscr{F})}^{*}: H^{*}\left(W O_{q}\right) \rightarrow H^{*}(N ; C)
$$

which depends only on the foliation (N, F).
The elements of $\lambda^{*}(N, \mathscr{F})\left(H^{*}\left(W O_{q}\right)\right)$ are called the exotic characteristic classes for the foliation (N, \mathscr{F}).

It is easy to see the foillowing lemma.
Lemma 2.2. Each canonical generator of $H^{2 q+1}\left(W O_{q}\right)$ is represented by some $\phi h_{j} \in W O_{q}$, where $\phi \in \boldsymbol{R}_{q}\left[c_{1}, \cdots, c_{q}\right]$ is a monomial with degree $2(q-j+1)$.

Then we have
Theorem. For any integer $q \geqq 1$, there exists a C^{∞}-smooth codimension q foliation (M, \mathscr{F}) on a closed $(2 q+1)$-manifolduch that all the exotic characteristic classes for the foliation which correspond to the canonical generators $\left[\phi h_{j}\right]$ of $H^{2 q+1}\left(W O_{q}\right)$ are non zero in $H^{2 q+1}(M ; C)$.

REMARK. When $q=1$, the generator fo-AJ of $H^{3}\left(W O_{1}\right) \cong \boldsymbol{R}$ s the GodbillonVey invariant, and our foliation of codimension one is diffeomorphic to the foliation constructed by R. Roussarie (cf. [1]).

3. Construction of the foliation (M, \mathscr{F})

Throughout this paper, integer $q \geqq 1$ is to be fixed, and all foliations are to be C^{∞}-smooth codimension q foliations. Let

$$
O(q+1,1)=\left\{X \in G L(q+2 \boldsymbol{R}) ;{ }^{t} X B X=B\right\}, \text { where } B=\binom{\mathrm{ff}+1}{)}
$$

We can define subgroups $H \subset K \subset G$ of $O(q+1,1)$ as follows:
(3.1) Let G be the identity component of $O(q+1,1)$. Then $H=\left\{\left(\begin{array}{cc}X & 0 \\ 0 & I_{2}\end{array}\right)\right.$; $X \in S O(q)\}$ is a compact subgroup of G , and G / H is an open $(2 q+1)$-maiifold.
(3.2) Let K be a subspace of G consisting of $X=\left(x_{i j}\right) \in$ Guch that

$$
\operatorname{det}\left(\begin{array}{ll}
x_{\boldsymbol{n} \ldots} & x_{q_{+1} q+2} \\
x_{\boldsymbol{q}+2} \boldsymbol{q + 1} & \\
x_{\boldsymbol{q}+2} \boldsymbol{q}+2
\end{array}\right)=1
$$

and

$$
x_{i q+1}+x_{i q+2}=0 \quad(i=1, \cdots, q)
$$

then K is a subgroup of G , and G / K is a q-maniford.
Proof. The proof of (3.1) is trivial. We shall prove (3.2). Let $X=\left(x_{i j}\right) \in$ $G L(q+2 ; \boldsymbol{R})$ such that

$$
x_{i q+1}+x_{i a+2}=0, \quad \text { for } i=1, \quad \cdot \cdots, q
$$

If $X \in G \subset O(q+1,1)$, then the followings hold.

1) $\operatorname{det}\left(\begin{array}{ll}x_{q+1} \boldsymbol{a + 1} & *^{q_{+1} q_{+2}} \\ x_{q_{+2} \mathrm{tf}+1} & x_{q_{+2} \boldsymbol{q + 2}}\end{array}\right)= \pm 1$,

$$
x_{q_{+1} q_{+1}}+x_{q+1 q+2}=x_{q+2} q_{+1}+x_{q+2} q_{+2}
$$

2) $x_{q_{+1 \imath}}-x_{q_{+2} \imath}=0, \quad$ for $i=1, \cdots, q$.

If the above equality holds, (3.2) folows from 1) and 2) (q.e.d.)
Set $\bar{M}=G / H$, then \bar{M} is an open $(2 q+1)$-manifold and \bar{M} is foliated into the fibres of the fibre bundle $\bar{M}=G / H \rightarrow G / K$. We denote this foliation by $(\bar{M}, \overline{\mathcal{F}})$. Clearly, the foliation $(\bar{M}, \overline{\mathcal{F}})$ is a G-invariant foliation of codimension q on \bar{M}.

By A. Borel [2], the connected semi-simple Lie subgroup G of $G L(q+2 ; C)$ has the discrete subgroup Γ of G which contains a normal torsion free subgroup D of finite index. Since H is compact subgroup of G, the subgroup D acts freely on $\bar{M}=G / H$ and $D \backslash \bar{M}$ is compact. Therefore we have.
(3.3) There exists a discrete subgroup DofG such that $D \backslash \bar{M}$ is a closed $(2 q+1)$ manifold.

Set $M=D \backslash \bar{M}$. Since the foliation $(\bar{M}, \overline{\mathscr{F}})$ is G-invariant, the closed $(2 q+1)$ manifold M has a codimension q foliation (M, \mathscr{F}) induced naturally from ($\overline{\mathrm{M}}, \overline{\mathscr{F}})$. This foliation (M, \mathscr{F}) is the example of foliation with non trivial exotic characteristic classes.

4. Proof of Theorem

4.1. Naturality of the homomorphism $\lambda(N, \mathcal{F})$

Let N be an oriented manifold without boundary and (, be a Riemannian metric on N. Let V be the Riemannian connection on N. Given a foliation (N, \mathscr{F}) a metric connection V° and a basic connection ∇^{1} on $\nu(\mathscr{F})$ are
defined as follows:

$$
\begin{aligned}
& \nabla_{X}^{0}(Y)=\pi \nabla_{X}(Y) \\
& \nabla_{X}^{1}(Y)=\pi\left[X_{\tau(\mathscr{F})}, Y\right]+\nabla_{X_{\nu}(\mathscr{F})}^{0}(Y)
\end{aligned}
$$

for any $X \in \mathfrak{X}(N), Y \in \Gamma(\nu(\mathscr{F}))$, where $\pi: \tau(N) \rightarrow \nu(\mathscr{F})$ is the natural projection, and $X_{\tau(\mathscr{F})} \in \Gamma(\tau(\mathscr{F})) X_{\nu(\mathscr{F})} \in \Gamma(\nu(\mathscr{F}))$ are such that $X=X_{\tau(\mathscr{F})}+X_{\nu(\mathscr{F})}$ Here, of course, we consider the Riemannian metric on $\nu(\mathscr{F})$ induced naturally from the Riemannian metric (,) on $\tau(N)$.

Then the homomorphism of cochin complexes

$$
\lambda(N, \mathscr{F}): \quad W O_{q} \rightarrow A_{\boldsymbol{C}}^{*}(N)
$$

is uniquely determined from the above connections V° and ∇^{1}, hence from the foliation (N, \mathscr{F}) and the Riemannian metric (,). Thus we denote this $\lambda\left(N, 30(\omega)\right.$ by $\omega((N, \mathscr{F}),(\quad, \quad))$ for $\omega \in W O_{q}$.

Now, let $O(q+1,1), G, H, K,(\bar{M}, \overline{\mathscr{F}})$ and (M, ff) be as in Section 3. Let $\mathrm{o}(q+1,1)\left(\right.$ resp. $\left.\mathrm{gl}_{q+2}\right)$ denote the Lie algebra of $O(q+1,1)($ resp. $G L(q+2 ; \boldsymbol{R}))$, then clearly

$$
\mathfrak{v}(q+1,1)=\left\{X \in \mathfrak{g l}_{q_{+2}} ;{ }^{t} X B+B X=0\right\}
$$

and a basis of $\mathfrak{p}(q+1,1)$ is given by the following elements:

$$
\begin{aligned}
& Z=\left(\right) \\
& H_{i j}=\left(\begin{array}{ccc}
\vdots & & \vdots \\
\cdots & 0 & \cdots \\
\vdots & \cdots & \vdots \\
\cdots-1 & \cdots & \vdots \\
\vdots & & \vdots \\
\dot{\hat{i}} & & \vdots
\end{array}\right)<i, \quad 1 \leqq i<j \leqq q, \\
& X_{i}=\left(\begin{array}{c|cc}
0 & \mathbf{1} & -1 \\
\hline-\mathbf{1} & 0 & 0 \\
-\mathbf{1} & 0 & 0
\end{array}\right)<i, \quad i=1, \cdots, q, \\
& Y_{z}=\left(\begin{array}{c|cc}
O & 1 & 1 \\
\hline-\mathbf{1} & 0 & 0 \\
1 & 0 & 0
\end{array}\right)<i, \quad i=1, \cdots, q .
\end{aligned}
$$

It is known that $\left\{H_{i j}\right\}_{1 \leqq i<j \leqq q}$ is a basis of the Lie algebra of H. Then $T_{0}(\bar{M})$ is identified naturally with the subspace of $T_{e}(G)$ spanned by $\left\{X_{1}, \cdots, X_{q} Y_{1}, \cdots\right.$, $\left.Y_{q}, Z\right\}$, where $o=H \in G / H=\bar{M}$.

In this time, we have

$$
\begin{aligned}
& \left(\operatorname{Ad}(g)\left(X_{1}\right), \cdots, \operatorname{Ad}(g)\left(X_{q}\right), \operatorname{Ad}(g)\left(Y_{1}\right), \ldots, A d(g)\left(Y_{q}\right), \operatorname{Ad}(g)(Z)\right) \\
= & \left(X_{1}, \cdots, X_{q}, Y_{1}, \cdots, Y_{q}, Z\right) \cdot\left(\begin{array}{ccc}
A & 0 & 0 \\
0 & A & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

for $g=\left(\begin{array}{cc}\left(\begin{array}{c}17 \\ -1\end{array}\right. \\ 0 & I_{2}\end{array}\right) \in H(A \in S O(q))$. Therefore, $\left.<, \quad\right\rangle_{o}=\sum_{i=1}^{q} X_{i}^{*} \otimes X_{i}^{*}+\sum_{i=1}^{q} Y_{i}^{*} \otimes$ $Y_{i}^{*}+Z^{*} \otimes Z^{*}$ is an $\operatorname{Ad}(H)$-invariant innerproduct on $T_{o}(\bar{M})$ where $\left\{X_{1}^{*}, \cdots\right.$, $\left.X_{q}^{*}, Y_{1}^{*}, \cdots, Y_{q}^{*}, Z^{*}\right\}$ denote the dual basis of $\left\{X_{1}, \cdots, X_{q}, Y_{1}, \cdots, Y_{q}, Z\right\}$. Hence, for any $u=g o \in \bar{M}(g \in G)$, an innerproduct $\overline{,}_{u}$ on $T_{u}(\bar{M})$ is defined by $\left.\overline{<,\rangle_{u}}=\left(g^{-1}\right) * \overline{<}\right\rangle_{o}$. Therefore we have
(4.1.1) < , > is a G-invariant Riemannian metric on \bar{M} and \bar{M} is orientable.

Then we have the followings.
Lemma 4.1.2. For any $\omega \in W O_{q}, \omega((\overline{M, \mathscr{F}}),\langle\overline{, \quad>})$ is a G-invariant differentioflorm on \bar{M}.

Lemma 4.1.3. Let $<,>$ denots the Riemannian metric on M induced naturally from the Riemannian metric $<, \quad>$ on \bar{M}, then

$$
\left.p^{*} \omega((M, \mathscr{F}),\langle\quad, \quad\rangle)=\omega((\bar{M}, \overline{\mathscr{F}}), \overline{\langle,}\rangle\right)
$$

for $\omega \in W O_{q}$, where $p: \bar{M} \rightarrow M$ is the natural projection.
Proof of (4.1.2). Let V be the Riemannian connection on the Riemannian manifold ($\overline{\mathrm{M}}, \overline{\langle,\rangle}$). Since the Riemannian metric $\overline{\langle,}\rangle$ on \bar{M} is G invariant,

$$
\left.g_{*}\left(\bar{\nabla}_{X}(Y)\right)=\bar{\nabla}_{g_{* X}\left(g_{*}\right.} Y\right)
$$

for any $g \in G$ and $X, Y \in \mathfrak{X}(\bar{M})$.
Since the foliation ($\overline{\mathrm{M}}, \overline{\mathrm{ff}})$ is G-invariant, g_{*} maps $\Gamma(\tau(\overline{\mathcal{F}}))($ resp. $\Gamma(\nu(\overline{\mathcal{F}})))$ into $\Gamma(\tau(\overline{\mathscr{F}}))\left(\right.$ resp. $\Gamma(\nu(\overline{\mathscr{F}}))$) and $g_{*} \pi=\pi g_{*}$ for $g \in G$, where $\left.\pi: \tau \bar{M}\right) \rightarrow \nu \overline{(\mathscr{F})}$ is the natural projection.

Therefore we have

$$
\begin{align*}
& g_{*}\left(\nabla_{X}^{0}(Y)\right)=\nabla_{g_{* X}}^{0}\left(g_{*} Y\right), \\
& g_{*}\left(\nabla_{X}^{1}(Y)\right)=\nabla_{g_{*}}^{1}\left(g_{*} Y\right), \quad \text { for } \quad g \in G \tag{*}
\end{align*}
$$

Let k^{1} (resp. k^{0}) be the curvature matrix of ∇^{1} (resp. V^{0}) associated to some local frame $S=\left\{s_{1}, \cdots, s_{q}\right\}$ of $\nu(\overline{\mathscr{F}})$. Then by $\left(^{*}\right),\left(g^{-1}\right)^{*} k^{1}\left(\right.$ resp. $\left.\left(g^{-1}\right)^{*} k^{0}\right)$ is the curvature matrix of $\nabla^{1}\left(\right.$ resp. $\left.V^{\circ}\right)$ associated to the local frame $g_{*} S=\left\{g_{*_{1}}, \cdots\right.$, $\left.g_{*} s_{q}\right\}$. But $c_{i}\left(k^{1}\right) \in A^{2 i}(\bar{M})$ is independent of the choices of local frames, hence $c_{i}\left(k^{1}\right)$ is G-invariant. Therefore

$$
c_{i}((\bar{M}, \overline{\mathscr{F}}),\langle, \quad\rangle)=\lambda\left(\nabla^{1}\right)\left(c_{i}\right)=(\sqrt{-1} / 2 \pi)^{i} c_{i}\left(k^{1}\right)
$$

is also G-invariant.
Similarly, $\lambda\left(\nabla^{01}\right)\left(c_{i}\right) \in A_{C}^{2 i}(\bar{M} \times \boldsymbol{R})$ is G-invariant. Hence it follows from (1.3.2) that $h_{i}((M, \mathscr{F}), \overline{\langle,})$ is G-invariant. (q.e.d)

Proof of (4.1.3). Let V be the Riemannian connection on $(M,<,>)$. Since the natural projection $p:(\bar{M},\langle,>) \rightarrow(M,\langle,>)$ is a local isometry, locally we have

$$
p_{*}\left(\bar{\nabla}_{X}(Y)\right)=\nabla_{p_{*} X}\left(p_{*} Y\right) .
$$

Therefore, the proof is similar to that of (4.1.2). (q.e.d.)
4.2. Local frame of $\nu(\overline{\mathscr{F}})$

Let $o=H \in \bar{M}=G / H$. To calculate the connection forms, we define local vector fields around $o \in \bar{M}$ as follows:

Define a prametrization ϕ around $o \in \bar{M}$ by

$$
\begin{aligned}
& \bar{\phi}\left(y_{1}, \cdots, y_{q}, x_{1}, \cdots, x_{q}, z\right) \\
= & \exp \left(\sum_{i=1}^{q} y_{i} Y_{i}\right) \exp \left(\sum_{i=1}^{q} x_{i} X\right) \exp (z \cdot Z) H \in \bar{M}=G / H .
\end{aligned}
$$

In the sequel, we use the vector notations such as $x=\left(x_{1}, \cdots, x_{q}\right), y=\left(y_{1}\right.$, \cdots, y_{q})

Set local vector fields $\bar{Z}, \bar{X}_{1}, \cdots, \overline{X_{q}}, \bar{Y}_{1}, \cdots,{ }^{-} Y_{q}$, around $o \in \bar{M},{ }^{-} Z=\bar{\phi}_{*}(\partial / \partial z)$,
$\bar{X}_{i}=\bar{\phi}_{*}\left(e^{-2 z} \partial / \partial x_{i}\right), \quad i=1, \cdots, q$,
$\bar{Y}_{j}=\bar{\phi}_{*}\left(e^{2 z}\left(\partial / \partial y_{j}+\sum_{k=1}^{q} x_{k}^{2} \partial / \partial x_{j}-2 x_{j} \sum_{k=1}^{q} x_{k} \partial / \partial x_{k}+x_{j} \partial / \partial z\right)\right), \quad j=1, \cdots, q$,
at $u=\boldsymbol{\phi}(y, x, z) \in \bar{M}$.
Then we have

Lemma 4.2.

(1) $\bar{X}_{1}, \cdots, \bar{X}_{q}, \bar{Z}$ are tangent to the foliation $(\overline{\mathrm{M}}, \overline{\mathcal{F}})$.
(2) $\left\{\bar{X}_{1}, \cdots, X_{q}, Z, \bar{Y}_{1}, \cdots-, \bar{Y}_{q}\right\}$ is a local orthonormal frame of $\tau(\bar{M})$ with respect to the Riemannian metric \langle,$\rangle .$
(3) (bracket relations)

$$
\begin{aligned}
& {\left[\bar{X}_{i}, \bar{Z}\right]=2 X_{i} \quad\left[\bar{X}_{i}, \bar{X}_{j}\right]=0,} \\
& {\left[\bar{Y}_{j}, \bar{Z}_{3}=-2 \bar{Y}_{j},\right.} \\
& {\left[\bar{Y}_{i}, \bar{Y}_{j}\right]_{u}=2 e^{2 z}\left(x_{i}\left(\bar{Y}_{j}\right)_{u}-x_{j}\left(\bar{Y}_{i}\right)_{s}\right)} \\
& {\left[\bar{X}_{i}, \bar{Y}_{j}\right]_{u}= \begin{cases}(\bar{Z})_{u}-2 e^{2 z} \sum_{\substack{k=1 \\
k \neq i \\
k \neq i}} x_{k}\left(\bar{X}_{k}\right)_{u}, & i=j \\
2 e^{2 z} x_{i}\left(\bar{X}_{j}\right)_{u}, & i \neq j\end{cases} }
\end{aligned}
$$

where $u=\bar{\phi}(y, x, z) \in \bar{M}$, and $i, j=1, \cdots, q$.
Proof. The bracket relations of (3) are calculated directly by the definitions of Z, X_{i}, \bar{Y}_{j}.

We shall prove (1) and (2).
First, we define a local parametrization ϕ around $e \in G$ and a local section σ around $\boldsymbol{o} \in \bar{M}$ as follows:

Set

$$
\begin{gathered}
\phi\left(y, x, z, \quad\left(h_{i j}\right)_{1 \leqq i<j \leqq q}\right) \\
=\exp \left(\sum_{i=1}^{q} y_{i} Y_{i}\right) \exp \left(\sum_{i=1}^{q} x_{i} X_{i}\right) \exp (z \cdot Z) \exp \left(\sum_{1 \leqq i<j \leqq q} h_{i j} H_{i j}\right) \in G .
\end{gathered}
$$

The local section σ is defined by requiring

$$
\sigma \bar{\phi}(y, x, z)=\phi(y, x, z,(0))
$$

Then the next (4.2.1) and (4.2.2) follows from tedious calculations, which will be left to the reader.

$$
\begin{array}{ll}
\text { (1) } & \text { For } g_{1}=\exp \left(\sum_{i=1}^{q} y_{i}^{0} Y_{i}\right) \tag{4.2.1}\\
& L_{g_{1}}\left(\phi\left(y, x, z,\left(h_{i j}\right)\right)=\phi\left(y+y^{0}, x, z,\left(h_{i j}\right)\right)\right.
\end{array}
$$

(2) For $g_{2}=\exp \left(\sum_{i=1}^{q} x_{i}^{0} X_{i}\right)$,

$$
R_{g_{2}}\left(\phi\left(y, x, z,\left(h_{i j}\right)\right)=\phi\left(y, \bar{x}, z,\left(h_{i j}\right)\right)\right.
$$

where $\bar{x}=x+e^{-2 z} x^{0} \quad\left(\exp \left(\sum h_{i j} H_{i j}\right)\right)$.
(3) $\quad=\exp \left(z^{0} Z+\sum_{1 \leqq i<j \leqq q} h_{i j}^{0} H_{i j}\right)$

$$
R_{g_{3}}\left(\phi\left(y, x, z,\left(h_{i j}\right)\right)=\phi\left(y, x, z+z^{0},\left(h_{i j}+h_{i j}^{0}\right)\right) .\right.
$$

Here, of course, $L_{g}\left(r e s p . R_{g}\right)$ denote the left (resp. right) translation by $g \in G$.
(4.2.2) Let $g=\phi\left(y, x, z,\left(h_{i j}\right)\right) \in G$, and g_{1}, g_{2}, g_{3} be as in (4.2.1), and let $X_{i}^{\prime}=\phi_{*}\left(\partial / \partial x_{i}\right), \quad Y_{i}^{\prime}=\phi_{*}\left(\partial / \partial y_{i}\right), Z^{\prime}=\phi_{*}(\partial / \partial z)$. Then,
(1) $\left(L_{\xi_{1}}\right) *\left(\left(X_{i}^{\prime}\right)_{g}\right)=\left(X_{i}^{\prime}\right)_{g_{1} g}$

$$
\left(L_{g_{1}}\right) *\left(\left(Y_{j}^{\prime}\right)_{g}\right)=\left(Y_{i}^{\prime}\right)_{g_{1} g}
$$

$$
\left(L_{g_{1}}\right) *\left(Z_{g}^{\prime}\right)=Z_{g_{1} g}^{\prime}
$$

for $i=1, \cdots, q$;
(2) $\quad\left(R_{g_{2}}\right)_{*}\left(\left(X_{i}^{\prime}\right)_{g}\right)=\left(X_{i}^{\prime}\right)_{g g_{2}}$

$$
\left(R g_{2}\right)^{\prime}\left(\left(Y_{i}^{\prime}\right)_{g}\right)=\left(Y_{i}^{\prime}\right)_{g g_{2}}
$$

for $i=1, \cdots, q$;

$$
\left(R_{g_{2}}\right) *\left(Z_{g}^{\prime}\right)=Z_{g g_{2}}^{\prime}-2 e^{-2 z} \sum_{i, j=1}^{q} a_{i j} x_{j}^{0}\left(X_{i}^{\prime}\right)_{g g_{2}}
$$

where $a_{i j}$ is the (i, j) compaonent of $\exp \left(\sum h_{i j} H_{i j}\right)$;
(3) $\left(R_{g_{3}}\right) *\left(\left(X_{j}^{\prime}\right)_{g}\right)=\left(X_{i}^{\prime}\right)_{g g_{3}}$
$\left(R_{g_{3}}\right) *\left(\left(Y_{i}^{\prime}\right)_{g}\right)=\left(Y_{i}^{\prime}\right)_{g g_{3}}$
$\left(R_{g_{3}}\right) *\left(Z_{g}^{\prime}\right)=Z_{g g_{3}}^{\prime}$
for $i=1, \cdots, q$.
Then we have the following key lemma for the proof of Lemma 4.2.
(4.2.3) Thefollowing (a), (b), (c) hold at $g=\phi(y, x, z,(0)) \in G$.
(a) $Z_{g}^{\prime}=\left(L_{g}\right)_{*} Z$.
(b) $\quad\left(X_{j}^{\prime}\right)_{g}=e^{2 z}\left(L_{g}\right)_{*} X_{i}, j i=1, \cdots, q$.
(c) $\left(Y_{i}^{\prime}\right)_{g}=\left(L_{g}\right)_{*}\left(e^{-2 z} Y_{j}+2 e^{2 z} x_{j} \sum_{k=1}^{q} x_{k} X_{k}-e^{2 z} \sum_{k=1}^{q} x_{k}^{2} X_{j}-x_{j} Z+\sum_{\substack{k=1 \\(k \neq j)}}^{q} 2 x_{k} H_{k j}\right)$, for $j=1, \cdots, q$.
Here, of course, the elements $X_{1}, \cdots, X_{q}, Y_{1}, \cdots, Y_{q}, Z, H_{i j}$ of $\mathfrak{p}(q+1,1)$ are regarded as the elements of $T_{e}(G)$, and $H_{i j}=-H_{j i}$ foi>j.

Proof. First, notice that
(*) $\left(X_{i}^{\prime}\right)_{e}=X_{i}, \quad$ for $i=1, \cdots, q$, $\left(Y_{i}^{\prime}\right)_{e}=Y_{i}, \quad$ for $\quad i=1, \cdots, q$, $Z_{e}^{\prime}=Z$.
For $g=(y, x, z,(0))$, set $g_{1}=\exp \left(\sum_{i=1}^{q} y_{i} Y_{i}\right), g_{2}=\exp \left(\sum_{i=1}^{q} x_{i} X_{i}\right), g_{3}=\exp (z \cdot Z)$. Then $g=g_{1} \cdot g_{2} \cdot g_{3}$.

We shall prove (a). By (4.2.2),

$$
\begin{aligned}
Z_{g}^{\prime} & =\left(L_{g_{1}}\right) *\left(Z_{g_{2}}^{\prime}\right) \\
& =\left(L_{g_{1}}\right) *\left(R_{g_{3}}\right) * Z_{g_{2}}^{\prime} \\
& =\left(L_{g_{1}}\right) *\left(R_{g_{3}}\right) *\left(R_{g_{2}}\right) *\left(Z_{e}^{\prime}+2 \sum_{k=1}^{q} x_{k}\left(X_{k}^{\prime}\right)_{e}\right) .
\end{aligned}
$$

Then, by (*),

$$
\begin{aligned}
Z_{g}^{\prime} & =\left(L_{g_{1}}\right)_{*}\left(R_{g_{3}}\right)_{*}\left(R_{g_{2}}\right) *\left(Z+2 \sum_{k=1}^{q} x_{k} X_{k}\right) \\
& =\left(L_{g}\right)_{*}\left(L_{\left(g_{2} g_{3}\right)^{-1}}\right)_{*}\left(R_{g_{2} g_{3}}\right) *\left(Z+2 \sum_{k=1}^{q} x_{k} X_{k}\right) \\
& =\left(L_{g}\right)_{*} A d\left(\left(g_{2} g_{3}\right)^{-1}\right)\left(Z+2 \sum_{k=1}^{q} x_{k} X_{k}\right) \\
& =\left(L_{g}\right)_{*} A d\left(g_{3}^{-1}\right) \operatorname{Ad}\left(g_{2}^{-1}\right)\left(Z+2 \sum_{k=1}^{q} x_{k} X_{k}\right) .
\end{aligned}
$$

But, $\quad \operatorname{Ad}\left(g_{2}^{-1}\right)(Z)=Z-2 \sum_{k=1}^{q} x_{k} X_{k}$,
$\operatorname{Ad}\left(g_{2}^{-1}\right)\left(X_{k}\right)=X_{k}$, for $k=1, \cdots, q$,
and $\quad \operatorname{Ad}\left(g_{3}^{-1}\right)(Z)=Z$.
Therfore, $Z_{g}^{\prime}=\left(L_{g}\right) * Z$.
(b) and (c) are proved similarly. (q.e.d.)

Now, let $\bar{P}: G \rightarrow \bar{M}=G /$ Hoe the natural projection, then clearly we have

$$
\begin{array}{lc}
\bar{P}_{*}\left(X_{i}\right)=\left(\bar{X}_{i}\right)_{o} & i=1, \cdots, q \\
\bar{P}_{*}\left(Y_{j}\right)=\left(\bar{Y}_{j}\right)_{o} & j=1, \cdots, q \\
\bar{P}_{*}(Z)=(\bar{Z})_{o} & \\
\bar{P}_{*}\left(H_{i j}\right)=0, & 1 \leqq i<j \leqq q
\end{array}
$$

where $o=H \in \bar{M}=G / H$.
Hence, by the definition of the G-invariant Riemannian metric $<,>$ on \bar{M}, the following lemma shows Lemma 4.2 (2).
(4.2.4) Let σ be the local section defined as before, then
(a) $(\bar{Z})_{u}=\sigma(u)_{*}(\bar{Z})_{o}$,
(b) $\left(X_{i}\right)_{u}=\sigma(u)_{*}\left(\bar{X}_{i}\right)_{o}, i=1, \cdots, q$,
(c) $\left(\bar{Y}_{j}\right)_{u}=\sigma(u)_{*}\left(\bar{Y}_{j}\right)_{o}, j=1, \cdots, q$,
for any point u of some neighborhood of o in \bar{M}.
Proof. Clearly, $\bar{P}_{*}\left(L_{\sigma(u)}\right)_{*}=\sigma(u)_{*} \bar{P}_{*}$, and $\left(\phi_{*}\right)_{\sigma(u)}=\sigma_{*} \circ\left(\phi_{*}\right)_{u}$. Then, in view of the definitions of $\bar{X}_{i}, \bar{Y}_{j}, \bar{Z}$, we have (4.2.4) easily from (4.2.3).
(q.e.d.)

By the definition of Lie algebras of Lie groups, we have the following easily.
(4.2.5) Thefollowing elements $\mathfrak{n}(q+1,1)$ form a basis of the Lie algebra of K,

$$
Z, X_{1}, \cdots, X_{q}, H_{i j}, 1 \leqq i<j \leqq q
$$

where the subgroup K of $O(q+1,1)$ is as in (3.2).
Since the foliation ($\bar{M}, \overline{\mathscr{F}}$) is G-invariant and each leaf of this foliation is a fibre of the fibre bundle $\bar{M}=G / H \rightarrow G / K$,we have Lemma 4.2 (1) from (4.2.4) and (4.2.5).

This completes the proof of Lemma 4.2.
REMARK. Consider Z, X_{i}, Y of $\mathrm{o}(q+1,1)$ as left-invariant vector fields on G. It hold that $\bar{Z}=\bar{P}_{*}(Z)$ and \bar{Z} is G-invariant, then we may define \bar{Z} by $\bar{P}_{*}(Z)$. However it is impossible to define $X_{i}\left(\right.$ resp. $\left.\bar{Y}_{j}\right)$ by $P_{*} X_{i}\left(\right.$ resp. $\left.P_{*} Y_{j}\right)$, for X_{i}, Y_{j} are not $\operatorname{Ad}(H)$-invariant.
4.3. Calculation of $c_{i}((\bar{M}, \overline{\mathrm{ff}}), \overline{<,>})$ and $h_{j}((\bar{M}, \overline{\mathscr{F}}), \overline{<,>})$.

Let $Z^{*}\left(\right.$ resp. $\left.\bar{X}_{i}^{*}, \bar{Y}_{j}^{*}\right)$ denote the dual one form of $Z\left(\right.$ resp. $\left.X_{i}, \bar{Y}_{j}\right)$ with
respect to the G-invariant Riemannian metric $\overline{<\quad, \quad>}$ on \bar{M}.
Then we have
Lemma 4.3. At $o=H \in \bar{M}=G / H$,
(1) $\left.c_{i}((M, \mathrm{ff}), \overline{\zeta, ~}\rangle\right)=\alpha_{i}(\sqrt{-1} / 2 \pi)^{i}\left(d \bar{Z}^{*}\right)^{i}, \alpha_{i}>0$, for $i=1, \cdots, q$;
(2) $h_{j}((M, \mathscr{F}), \overline{<,})=\beta_{j}(\sqrt{-1} / 2 \pi)^{j} \bar{Z}^{*} \wedge\left(d \bar{Z}^{*}\right)^{j-1}, \beta_{j}<0$, for $j=1,3, \cdots, r$.

We shall prove Lemma 4.3. As usual, $d x_{i}$ and rfy y_{z} are regarded as local 1-forms on \bar{M} by the parametrization $\bar{\phi}$. It is easy to see the following.
(4.3.1) Let $Z^{*}, \bar{X}_{i}^{*}, \bar{Y}_{j}^{*}$ be as above, then
(1) $\bar{Y}_{j}^{*}=e^{-2 z}$ dyfor $j=1, \cdots, q$, at $u=\bar{\phi}\left(y_{1}, \cdots, y_{q}, x_{1}, \cdots, x_{q}, z\right) \in \bar{M}$;
(2) $d \bar{Z}=\sum_{i=1}^{q} d y_{i} \wedge d x_{i}=\sum_{i=1}^{q} \bar{Y}_{i}^{*} \wedge \bar{X}_{i}^{*}$.

Since the Riemannian metric $\overline{\langle,}\rangle$ on \bar{M} is given, connections V° and ∇^{1} on $\nu(\overline{\mathscr{F}})$ are uniquely defined as in Section 4.1. Then $\left\{\bar{Y}_{1}, \cdots, \bar{Y}_{q}\right\}$ is a local orthonormal frame of $\nu(\overline{\mathscr{F}})$ by Lemma 4.2. Let $\theta^{0}=\left(\theta_{i j}^{0}\right)\left(\right.$ resp. $\left.\theta^{1}=\left(\theta_{i j}^{1}\right)\right)$ be the connection form of $\nabla^{0}\left(\right.$ resp. $\left.\nabla^{1}\right)$ relative to the frame $\left\{\bar{Y}_{1}, \cdots, \bar{Y}_{q}\right\}$, then we have
(4.3.2) At $u=\phi\left(y_{1}, \cdots, y_{q}, x_{1}, \quad \cdot \cdot, x_{q}, z\right) \in \bar{M}$
(1) $\mathbb{\theta}_{i, j}^{\Omega}=\begin{array}{ll}0 & i=j \\ \left(<e^{2 z}\left(x_{j} \bar{Y}_{i}^{*}-x_{i} \bar{Y}_{j}^{*}\right),\right. & i \neq j\end{array}$
(2) $\quad \theta_{i j}^{1}= \begin{cases}2 \bar{Z}^{*}, & i=j \\ \theta_{i j}^{0}, & i \neq j .\end{cases}$

Proof. Let V be the Riemannian connection on the Riemannian manifold $(\overline{\mathrm{M}}, \overline{\langle,}\rangle)$ and $\theta=\left(\theta_{i j}\right)$ be the connection form of V relative to the frame $\left\{\bar{Y}_{1}, \cdots, \bar{Y}_{q}, \bar{X}_{1}, \cdots, \bar{X}_{q}, \bar{Z}\right\}$ of $\tau(\bar{M})$.

Set $s_{1}=\bar{Y}_{1}, \cdots, s_{q}=\bar{Y}_{q}, s_{q+1}=\bar{X}_{1}, \cdots, s_{2 q}=\bar{X}_{q}, s_{2 q+1}=\bar{Z}$. Then by the definition of V,

$$
d \overline{\left\langle s_{i}, s_{j}\right\rangle}(X)=\overline{\left\langle\nabla_{X} s_{i}, s_{j}\right\rangle}+\overline{\left\langle s_{i}, \nabla_{X} s_{j}\right\rangle}
$$

for $X \in \mathfrak{X}(\bar{M})$. Hence
(i) $\theta_{i j}=-\theta_{i j}$, for $i, j=1, \cdots, 2 q+1$.

Moreover $\nabla_{s_{i}}\left(s_{j}\right)-\nabla_{s_{j}}\left(s_{i}\right)=\left[s_{i}, s_{j}\right]$, then we have the followings (ii) (iii) from Lemma 4.2 (3).
For $i, j=1, \cdots, q$ and $\imath \neq \jmath$.
(ii) $\theta_{i j}\left(s_{j}\right)=-2 e^{2 z} x_{i}, \theta_{i j}\left(s_{i}\right)=2 e^{2 z} x_{j}$.
(iii) $\theta_{j k}\left(s_{i}\right)=\theta_{i k}\left(s_{j}\right)$,for $k=1, \cdot \cdot, 2 q+1$ and $k \neq i, j$.

$$
\begin{aligned}
& \theta_{q+j k}\left(s_{i}\right)=\theta_{i k}\left(s_{q+j}\right) \text {, for } k=1, \cdots, q . \\
& \theta_{2 q+1 k}\left(s_{i}\right)=\theta_{i k}\left(s_{2 q+1}\right) \text { for } k=1, \cdots, 2 q+1,
\end{aligned}
$$

and $k \neq i, 2 q+l$.
Let $i, j=1, \cdots, q$. Now, let $k=1, \cdots, q$, and $k \neq i, j$, then by (i) and (iii),

$$
\theta_{i j}\left(s_{k}\right)=-\theta_{j i}\left(s_{k}\right)=-\mathbf{M O}=\mathbf{M O}=\theta_{j k}\left(s_{i}\right)=-\theta_{k j}\left(s_{i}\right)=-\theta_{i j}\left(s_{k}\right)
$$

Hence $\theta_{i j}\left(s_{k}\right)=0$. It is shown similarly by making use of (i) and (iii) that $\theta_{i j}\left(s_{k}\right)=0$ for $k=q+1, \cdots, 2 q+1$. Therefore we have

$$
\theta_{i j}\left(s_{k}\right)= \begin{cases}-2 e^{2 z} x_{i}, & k=j \\ 2 e^{2 z} x_{j}, & k=i \\ 0, & k \neq i, j\end{cases}
$$

for $i, j=1, \quad, q$ and $i \Phi j$.
But by the definition of V°,

$$
\theta_{i j}^{0}=\theta_{i j}, \text { for } i, j=1, \cdots, q
$$

Hence we have (4.3.2) (1).
(4.3.2) (2) is shown easily by the following.

By the definition of ∇^{1} and Lemma 4.2 (3),

$$
\nabla_{X}^{1}\left(\bar{Y}_{i}\right)= \begin{cases}0, & \text { if } \quad X=\bar{X}_{1}, \cdot \bar{X} q \\ 2 \bar{Y}_{i}, & \text { if } \quad X=\bar{Z} \\ \nabla_{X}^{0}\left(\bar{Y}_{i}\right), & \text { if } \quad X=\bar{Y}_{1}, \cdots \quad \bar{Y}_{q}\end{cases}
$$

for $i=1, \cdots, q$. (q.e.d.)
Now, let $k^{1}=\left(k_{i j}^{1}\right)$ be the curvature matrix of ∇^{1} associated to the frame $\left\{\bar{Y}_{1}, \cdots, \bar{Y}_{q}\right\}$. Let ∇^{01} be the connection on $\nu(\overline{\mathscr{F}}) \times \boldsymbol{R}$ defined by V° and ∇^{1} as in (1.2.2) (3), and $\theta^{01}=\left(\theta^{01}{ }_{i j}\right)$ be the connection form of ∇^{01}, that is,

$$
\theta^{01}=(1-t) \theta^{0}+t \theta^{1}
$$

and $k^{01}=\left(k^{01}{ }_{i j}\right)$ be the curvature matrix of ∇^{01}. Then we have
(4.3.3) (1) At $o=H \in M=G / H$,

$$
k_{i j}^{0}= \begin{cases}2 d \bar{Z}^{*} & i=j \\ 2\left(d x_{j} \wedge d y_{i}-d x_{i} \wedge d y_{j}\right), & i \neq j\end{cases}
$$

(2) $A t(o, t) \in o \times \boldsymbol{R} \subset \bar{M} \times \boldsymbol{R}$,

$$
k_{i j}^{01}=\left\{\begin{array}{lr}
2 d t \wedge \bar{Z}^{*}+2 t d \bar{Z}^{*}, & i=J \\
2 \pi^{*}\left(d x_{j} \wedge d y_{i}-d x_{i} \wedge d y_{j}\right), & i \neq
\end{array}\right.
$$

where $\pi: \bar{M} \times \boldsymbol{R} \rightarrow \bar{M}$ in the natnralprojection.
Proof. By (4.3.2) (1), proof of (1) is trivial. By the definition of θ^{01},

$$
\theta_{i j}^{01}= \begin{cases}2 t \bar{Z}_{*}, & i=j \\ 2 e^{2 z}\left(x_{j} \bar{Y}_{i}^{*}-x_{i} \bar{Y}_{j}^{*}\right), & i \neq j\end{cases}
$$

then by (4.3.1), we have (2). (q.e.d.)
By the definition of the determinant of matrices, we have the following.
(4.3.4) Let $K=\left(K_{i j}\right)$ be a qxq matrix of 2-forms. Assume that

$$
K_{i j}= \begin{cases}\omega, & i=j \\ \gamma_{j} \wedge \eta_{i}-\gamma_{i} \wedge \eta_{j}, & i \neq j\end{cases}
$$

where $\gamma_{1}, \cdots, \gamma_{q}, \eta_{1}, \cdots, \eta_{q}$ are 1-forms. Then

$$
c_{i}(K)=\sum_{\substack{0 \leq n \leq i \\ n \text { areven }}} a_{i n} \cdot \omega^{i-n} \wedge\left(\sum_{k=1}^{q} \eta_{k} \wedge \gamma_{k}\right)^{n}
$$

for $i=1, \cdots, q$ and each $a_{i n}$ is a positive number.
Now, $c_{i}((M, \mathscr{F}),\langle\rangle$,$) and h_{j}((M, \mathrm{ff}),\langle\rangle$,$) are calculated as follows.$ In view of (4.3.1), we have Lemma 4.3 (1) from (4.3.3) (1) and (4.3.4). Similarly, by (4.3.3) (2),

$$
\begin{aligned}
c_{j}\left(k^{01}\right) & =\sum_{\substack{0 \leq n \leq j \\
n \text { areeven }}} a_{j n} \cdot 2^{n}(j-n) t^{j-n-1} d t \wedge \bar{Z}^{*} \wedge\left(d \bar{Z}^{*}\right)^{j-1} \\
& +(\text { terms which do not contain } d t),
\end{aligned}
$$

for $j=1, \cdots, q$, at $(o, t) \in \bar{M} \times \boldsymbol{R}$.
Let $i: \bar{M} \times[0,1] \hookrightarrow \bar{M} \times \boldsymbol{R}$ be the inclusion mapping, and $\pi: \bar{M} \times[0,1] \rightarrow \bar{M}$ be the natural projection, then then by the definition of Integration along the fibre π_{*},

$$
\begin{aligned}
h_{j}((\bar{M}, \overline{\mathscr{I}}), \overline{\zeta, \quad>}) & =(\sqrt{-1} / 2 \pi)^{j} \pi_{* i} i^{*} c_{j}\left(k^{01}\right) \\
& =\beta_{j}(\sqrt{-1} / 2 \pi)^{j} \cdot \bar{Z}^{*} \wedge\left(d \bar{Z}^{*}\right)^{j-1}, \beta_{j}>0
\end{aligned}
$$

This completes the proof of Lemma 4.3.

4.4. Proof of Theorem

Let ω be an element of $W O_{q}$ with degree $2 q+1$ such that $\omega=\phi h_{j}$ for some monomial $\phi \in \boldsymbol{R}_{q}\left[c_{1}, \cdots, c_{q}\right]$ as in Lemma 2.2. By Lemma 4.2 (1), $\left\{\bar{X}_{1}, \cdots\right.$, $X_{q}, \bar{Y}_{1}, \quad, \quad \bar{Y}_{q}, \quad$ is a local frame of $\tau(M)$. Then by (4.3.1) (2), $(2 q+1)$-form $\bar{Z}^{*} \wedge\left(d \bar{Z}^{*}\right)^{q}=q!\cdot \bar{Z}^{*} \wedge\left(\bar{Y}_{1}^{*} \wedge \bar{X}_{1}^{*}\right) \wedge \cdots \wedge\left(\bar{Y}_{q}^{*} \wedge \bar{X}_{q}^{*}\right)$ is non zero around $o \in \bar{M}$. Hence $\omega((\bar{M}, \overline{\mathscr{F}}), \overline{<,}\rangle)$ is non zero at $o \in \bar{M}$ by Lemma 4.3. On the other hand, $\omega((\bar{M}, \overline{\mathscr{F}}), \overline{\zeta,}\rangle)$ is a G-invariant form on $\overline{\mathrm{M}}$ by Lemma 4.1.2.

Therefore $\omega((\bar{M}, \overline{\mathscr{F}}), \overline{\langle,\rangle})$ is nowhere zero on \bar{M}. In view of Lemma 4.1.3, $\omega((M, \mathscr{F}),<, \quad\rangle)$ is a nowhere zero $(2 q+1)$-form on the closed orientable $(2 q+1)$-manifold M. Therefore $\omega((M, \mathscr{F}),<, \quad>)$ represents a non zero cohomology class of $H^{2 q+1}(M C)$.

OSAKA UNIVERSITY

References

[1] R. Bott: Lectures on Characteristic Classes and Foliations, Lecture Notes in Math. No. 279, Springer-Verlag, 1972.
[2] A. Borel: Compact Clifford-Klein forms of symmetric spaces, Topology 2 (1962), 111-123.
[3] C. Godbillon and J. Vey: Uninvariant desfeuilletages de condimension 1. C.R. Acad. Sci Paris Sér. A. 273 (1971) 92.

